LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

DEPARTMENT OF MECHANICAL ENGINEERING **COURSE HANDOUT PART-A**

: Dr.V.Dhana Raju (T405) Name of Course Instructor

Course Name & Code : 20ME17

L-T-P Structure : 3-1-0 Credits: 3 Program/Sem/Sec : B.Tech., Mech Engg., VI-Sem., Section-A A.Y: 2024-25

PRE-REQUISITE: Thermodynamics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To learn the physical mechanisms on modes of heat transfer, differential equations in heat transfer applications and the significance of Non-Dimensional Numbers.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to

CO1	Understand the basic heat transfer principles and their practical relevance in Planes,
	Cylinders and Spherical components. (Understanding - L2).
CO2	Analyze steady and unsteady state heat transfer concepts and fins. (Analyzing – L4).
CO3	Formulate the expressions to solve free and forced convection problems related to external
	and internal flows. (Applying -L3).
CO4	Apply the concepts of heat transfer in boiling, condensation, and radiation thermal systems.
	(Applying -L3).
CO5	Design the simple heat exchanger for engineering applications using the data handbook.
	(Analyzing – L4).

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	2	1	-	1
CO2	2	3	2	3	-	-	-	-	-	-	-	2	2	-	-
CO3	3	2	3	2	ı	-	1	-	ı	-	-	2	3	-	1
CO4	3	2	2	1	ı	-	1	-	ı	-	-	2	3	-	2
CO5	2	3	3	3	-	-	-	3	-	-	-	3	2	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXTBOOKS

- T1. R.C.Sachdeva Fundamentals of Engineering Heat and Mass Transfer -New Age Science Publishers, 3nd Edition, 2009.
- **T2.** Yunus. A. Cengel, Heat & Mass Transfer-A Practical Approach Tata McGraw Hill, 4 edition, 2012.
- T3. P.Holman, Heat transfer Tata McGraw-Hill, 9th Edition, 2010

REFERENCE BOOKS:

1	M.NecatiOzisik, Heat Transfer- A basic Approach, 4thEdition, McGraw-Hill book
	company, 1985.
2	P.K.Nag, Heat and Mass Transfer- TMH 2ndEdition, 2007.
3	P.S.Ghoshdastidar, Heat Transfer - Oxford Higher Education 6th Edition 2011.
4	C.P.Kothandaraman and Subramanian, Heat and Mass Transfer, New Age International
	Publications 7thEdition 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: INTRODUCTION, ONE- DIMENSIONAL STEADY STATE CONDUCTION

		UNIT-I: INTRODUCTION, ONE-					
1. Outcomes (COs) and POs articulation matrix. 2. Introduction of five Units importance 1 03-12-2024 TLM1 Introduction of five Units importance 1 03-12-2024 TLM1 TLM1 TLM1 Transfer 1 1 04-12-2024 TLM2 TLM5 TLM5 Transfer 1 1 06-12-2024 TLM5 TLM5 Transfer 1 1 06-12-2024 TLM5 TLM5 Transfer 1 1 06-12-2024 TLM5 TLM1 Transfer 1 1 06-12-2024 TLM5 TLM1 Transfer 1 1 06-12-2024 TLM1 TLM1 Transfer 1 1 06-12-2024 TLM1 TLM1 Transfer 1 1 06-12-2024 TLM1 TLM1 TLM1 Transfer 1 1 06-12-2024 TLM1 TLM1 TLM1 Transfer 1 1 06-12-2024 TLM1 TLM1 TLM1 TLM1 TLM1 TRANSFER 1 1 10-12-2024 TLM1 TLM1 TLM1 TLM1 TLM1 TLM1 TLM1 TLM1	S.No.	Topics to be covered					
Introduction to heat transfer and its applications, Basic Modes of Heat Transfer 1	1.	Outcomes (COs) and POs articulation		-	•		·
3. applications, Basic Modes of Heat Transfer	2.	Introduction of five Units importance	1	03-12-2024		TLM1	
Fransfer - Tutorial - 1 Transfer - Tutorial - 1 Basic laws of Heat Transfer-Steady, Unsteady and Periodic Heat Transfer General heat conduction equation in Cartesian coordinate system and its simplifications. TLM1 Fourier's law of heat conduction; TLM1 Romerical problems on plane wall, composite plane wall. General heat conductivity. Numerical problems on plane wall, composite plane wall. General heat conduction equation in cylindrical coordinate system and its simplifications. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. 10. Numerical problems on sphere and composite sphere Heat conduction through plane wall and cylinder with constant thermal conductivity—Numerical Problems. Tutorial - 2 12. Numerical problems on sphere and composite sphere Heat conduction through plane wall and cylinder with constant thermal conductivity—Numerical Problems. Tutorial - 2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. Numerical Problems on thermal toefficient. TLM1, TLM2 TLM3 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM3 TLM1, TLM3 Critical radius of insulation for cylinder, Sphere and Applications. Tutorial-3 Numerical Problems on critical radius of insulation for cylinder, Sphere and Applications. 1 30-12-2024 TLM1 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2	3.	applications, Basic Modes of Heat Transfer	1	04-12-2024		TLM2	
Distactly and Periodic Heat Transfer General heat conduction equation in Cartesian coordinate system and its simplifications. 7. Fourier's law of heat conduction; TLM1, TLM2, Composite plane wall. 8. Numerical problems on plane wall, composite plane wall. 9. cylindrical coordinate system and its simplifications. 10. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. 11. Seneral heat conduction equation in spherical coordinate system and its simplifications. 12. Numerical problems on sphere and composite cylinder. 13. Numerical problems on sphere and composite system and its simplifications. 14. Numerical problems on sphere and composite system and its simplifications. 15. Tutorial -2 16. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 17. Numerical Problems on thermal resistance and overall heat transfer coefficient. 18. Numerical Problems on thermal resistance and overall heat transfer coefficient. 19. Numerical Problems on thermal resistance and overall heat transfer coefficient. 10. Numerical Problems on intermal resistance and overall heat transfer coefficient. 10. Numerical Problems on intermal resistance and overall heat transfer coefficient. 10. TLM1, TLM2, TLM2, TLM3, TLM2, TLM3, TLM2, TLM3, TLM4, TLM2, TLM3, TLM4, TLM4, TLM4, TLM4, TLM5, TLM4, TLM4, TLM5, TLM4, TLM5, TLM6, TLM6, TLM6, TLM7, TL	4.		1	06-12-2024		TLM5	
6. Cartesian coordinate system and its simplifications. 7. Fourier's law of heat conduction; Thermal conductivity. 8. Numerical problems on plane wall, composite plane wall. 9. cylindrical coordinate system and its simplifications. 10. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. 11. spherical coordinate system and its simplifications. 12. Numerical problems on sphere and composite cylinder. 13. conductivity—Numerical Problems. Tutorial -2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 15. Numerical Problems on thermal resistance and overall heat transfer coefficient. 16. Heat transfer through composite slab and cylinder, Numerical Problems. TLM1, TLM2 16. Heat transfer through composite slab and cylinder, Numerical Problems. 17. Critical radius of insulation for cylinder, Sphere and Applications. 18. Of insulation 19. 11. 12-2024 and 19. TLM1, TLM2 19. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	5.		1	09-12-2024			
Numerical problems on plane wall, composite plane wall, composite plane wall. General heat conduction equation in simplifications. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. Numerical problems on cylinder and composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. 10. Numerical problems on sphere and composite sphere Heat conduction through plane wall and cylinder with constant thermal conductivity—Numerical Problems. Tutorial -2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 15. Numerical Problems on thermal resistance and overall heat transfer coefficient. 16. Heat transfer through composite slab and cylinder, Numerical Problems. 17. Critical radius of insulation for cylinder, Sphere and Applications. 18. Original Problems on critical radius of insulation in sulation for insulation of insulatio	6.	Cartesian coordinate system and its	1	10-12-2024		TLM1	
8. composite plane wall. 9. General heat conduction equation in cylindrical coordinate system and its simplifications. 10. Numerical problems on cylinder and composite cylinder. 11. Seneral heat conduction equation in spherical coordinate system and its simplifications. 12. Numerical problems on sphere and composite sphere 13. Composite sphere 14. Heat conduction through plane wall and cylinder with constant thermal conductivity— Numerical Problems. 15. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 16. Numerical Problems on thermal resistance and overall heat transfer coefficient 16. Heat transfer through composite slab and cylinder, Numerical Problems. 17. Critical radius of insulation for cylinder, Sphere and Applications. 18. Oritical Problems on critical radius of insulation 19. 13-12-2024 10. 14. 15-12-2024 11. 16-12-2024 12. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	7.	I -	1	11-12-2024		,	
9. General heat conduction equation in cylindrical coordinate system and its simplifications. 10. Numerical problems on cylinder and composite cylinder. 11. Spherical coordinate system and its simplifications. 12. General heat conduction equation in spherical coordinate system and its simplifications. 13. Numerical problems on sphere and composite sphere 14. Heat conduction through plane wall and cylinder with constant thermal conductivity— Numerical Problems. 15. Place of the problems on thermal resistance and overall heat transfer coefficient. 16. Numerical Problems on thermal resistance and overall heat transfer coefficient. 17. Critical radius of insulation for cylinder, Sphere and Applications. 18. Of insulation 19. 16-12-2024 11. 17-12-2024 11. 18-12-2024 12. 18. 18. 16-12-2024 12. 17. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	8.		1	13-12-2024		TLM1,	
composite cylinder. General heat conduction equation in spherical coordinate system and its simplifications. 1	9.	General heat conduction equation in cylindrical coordinate system and its	1	16-12-2024		TLM1	
11. spherical coordinate system and its simplifications. 12. Numerical problems on sphere and composite sphere Heat conduction through plane wall and cylinder with constant thermal conductivity— Numerical Problems. Tutorial -2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. Numerical Problems on thermal resistance and overall heat transfer coefficient 15. Numerical Problems on thermal resistance and overall heat transfer coefficient 16. Heat transfer through composite slab and cylinder, Numerical Problems. 1 27-12-2024 TLM1, TLM2	10.		1	17-12-2024		TLM1,	
12. composite sphere Heat conduction through plane wall and cylinder with constant thermal conductivity— Numerical Problems. Tutorial -2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. Numerical Problems on thermal resistance and overall heat transfer coefficient 15. Resistance and overall heat transfer coefficient 16. Heat transfer through composite slab and cylinder, Numerical Problems. 17. Critical radius of insulation for cylinder, Sphere and Applications. Tutorial-3 Numerical Problems on critical radius of insulation 18. Numerical Problems on critical radius of insulation 19. 20-12-2024 TLM1, TLM2, TLM2, TLM3 TLM1, TLM2, TLM3 TLM1, TLM2	11.	spherical coordinate system and its	1	18-12-2024			
13. and cylinder with constant thermal conductivity— Numerical Problems. Tutorial -2 14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 15. Numerical Problems on thermal resistance and overall heat transfer coefficient 16. Heat transfer through composite slab and cylinder, Numerical Problems. 17. Critical radius of insulation for cylinder, Sphere and Applications. Tutorial-3 18. Numerical Problems on critical radius of insulation for insulation 19. 23-12-2024 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2, TLM3 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2 TLM1, TLM2	12.		1	20-12-2024		TLM1,	
14. Electrical analogy, thermal resistance, and overall heat transfer coefficient. 1 24-12-2024 TLM2 TLM5 Numerical Problems on thermal resistance and overall heat transfer coefficient 1 27-12-2024 TLM1, TLM1, TLM2 16. Heat transfer through composite slab and cylinder, Numerical Problems. 1 27-12-2024 TLM1, TLM2, TLM2, TLM3 Critical radius of insulation for cylinder, Sphere and Applications. Tutorial-3 Numerical Problems on critical radius of insulation for cylinder, Sphere and Applications. TLM1, TLM2 18. Numerical Problems on critical radius of insulation for cylinder, Sphere and Applications. TLM1 TLM2	13.	and cylinder with constant thermal conductivity— Numerical Problems.	1	23-12-2024			
15. resistance and overall heat transfer coefficient 1	14.		1	24-12-2024		TLM2	
16. Heat transfer through composite slab and cylinder, Numerical Problems. 1 27-12-2024 TLM2, TLM3 17. Critical radius of insulation for cylinder, Sphere and Applications. 1 30-12-2024 TLM1, TLM1 Tutorial-3 TLM1 Numerical Problems on critical radius of insulation 1 31-12-2024 TLM2	15.	resistance and overall heat transfer	1	27-12-2024			
17. cylinder, Sphere and Applications. Tutorial-3 1 30-12-2024 TLM1, TLM2 18. Numerical Problems on critical radius of insulation 1 31-12-2024 TLM1 TLM1 TLM2	16.		1	27-12-2024		TLM2,	
18. of insulation 1 31-12-2024 TLM2	17.	cylinder, Sphere and Applications.	1	30-12-2024			
No. of classes required to complete UNIT-I: 18 No. of classes taken:		of insulation		31-12-2024			
	No. o	of classes required to complete UNI	T-I: 18		No. of class	sses taken:	

UNIT-II: ONE DIMENSIONAL STEADY AND TRANSIENT STATE HEAT CONDUCTION:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Derivation on heat flow through a plane wall, cylinder with variable thermal conductivity.	1	03-01-2025		TLM1	
2.	Numerical problems on variable thermal conductivity – plane wall and cylinder - Tutorial-4	1	03-01-2025		TLM1, TLM2	

	Derivation on Uniform Internal heat		04.01.2025	TLM1,	
3.	generation in slabs	1	04-01-2025		
4.	Numerical Problems on Uniform Internal heat generation in slabs.	1	06-01-2025	TLM1,	
5.	Numerical Problems on Uniform Internal heat generation in cylinders.	1	07-01-2025	TLM1, TLM2	
6.	Extended surfaces - Classification	1	08-01-2025	TLM1,	
7.	and their applications; Thermal analysis of long Fins	1	10-01-2025	TLM1, TLM4	
8.	Thermal analysis of short fins with insulated tip.	1	10-01-2025	TLM1, TLM2	
9.	Numerical Problems on long and short fins.	1	17-01-2025	TLM1,	
10.	Fin efficiency and effectiveness	1	17-01-2025	TLM1,	
11.	Problems on Fin efficiency and effectiveness	1	20-01-2025	TLM1,	
12.	Systems with negligible internal Resistance (Lumped Heat Analysis), Significance of Biot and Fourier Numbers	1	21-01-2025	TLM1, TLM2	
13.	Numerical Problems, Heisler chart solutions Tutorial-5	1	22-01-2025	TLM1, TLM2	
14.	Basics of convective (Forced and Natural) heat transfer and Applications. Dimensional analysis and Buckingham Pi theorem applied to Forced Convection.	1	24-01-2025	TLM1, TLM2	
15.	Significance of Non-Dimensional Numbers.	1	24-01-2025	TLM3	
16.	Dimensional analysis and Buckingham Pi theorem applied to Natural Convection.	1	27-01-2025	TLM1,	
17.	Derivation of Buckingham Pi theorem applied to forced convection Tutorial 6	1	28-01-2025	TLM1,	
18.	Revision of the above two units.	1	31-01-2025	TLM1,	
No. o	f classes required to complete UN	IT-II: 18	•	No. of classes taken:	

UNIT-III: CONVECTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Forced Convection heat transfer - Introduction The concept of boundary layer; Velocity and Thermal Boundary Layers,	1	10-02-2025		TLM1, TLM2	
2.	Numerical Problems on boundary layers.	1	11-02-2025		TLM1,	
3.	Forced convection analysis in external flows (Flow over a Flat Plate): Laminar and turbulent flows.	1	12-02-2025		TLM1, TLM2	
4.	Numerical Problems on flow through pipes. Tutorial -7	1	14-02-2025		TLM1,	
5.	Forced convection analysis in internal flows (Flow through circular pipe): Laminar and turbulent flows.	1	14-02-2025		TLM1, TLM2	
6.	Numerical Problems on Forced Convection, Reynolds Colburn Analogy.	1	17-02-2025		TLM1, TLM2	

7.	Natural convection: Development of Hydrodynamic and thermal boundary layer along vertical plate.	1	18-02-2025	TLM1, TLM2 TLM4
8.	Development of Hydrodynamic and thermal boundary layer along horizontal plate,	1	19-02-2025	TLM1, TLM2
9.	Forced convection in Vertical and horizontal plates	1	21-02-2025	TLM1,
10.	Numerical Problems Tutorial -8	1	21-02-2025	TLM3
11.	Numerical Problems	1	24-02-2025	TLM1,
No. o	f classes required to complete UN	IT-III:11		No. of classes taken:

UNIT-IV: BOILING AND CONDENSATION. THERMAL RADIATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to boiling heat transfer and applications, Pool Boiling, Different regimes of boiling; Critical heat flux.	1	25-02-2025		TLM1, TLM2	
2.	Numerical problems on nucleate boiling, Critical heat flux conditions.	1	26-0-2025		TLM1, TLM2 TLM5	
3.	Condensation: Film wise and drop wise condensation, Laminar film wise condensation on Vertical plate	1	28-02-2025		TLM1, TLM2	
4.	Numerical Problems - Tutorial-9	1	28-02-2025		TLM3	
5.	Introduction and applications of Thermal Radiation, Emissive Power, Absorption, Reflection and Transmission and	1	03-03-2025		TLM1,	
6.	Definitions related to radiation, Concept of black and non-black bodies, Laws of black body radiation	1	05-03-2025		TLM1,	
7.	Emissivity, Kirchhoff's law, Shape Factors	1	06-03-2025		TLM1,	
8.	Radiation heat exchange between two black isothermal surfaces, Nonblack infinite parallel plates;	2	10-03-2025		TLM1,	
9.	Numerical Problems - Tutorial-12	1	12-03-2025		TLM1,	
No. o	f classes required to complete UNI	T-IV:09		No. of class	sses taken:	

UNIT-V: HEAT EXCHANGERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction-Classification of heat exchangers - Flow arrangement, Temperature distribution,	1	17-03-2025		TLM1, TLM2 TLM6	
2.	Applications of Heat Exchangers	1	18-03-2025		TLM1, TLM2	
3.	Overall heat transfer coefficient- Fouling factor	1	19-03-2025		TLM1, TLM2	
4.	Derivation on LMTD method of Heat exchanger analysis-	1	21-03-2025		TLM1, TLM2 TLM4	
5.	Parallel flow, Numerical Problems	1	21-03-2025		TLM1,	
6.	Derivation on LMTD method of Heat exchanger analysis- Counter flow,	1	24-03-2025		TLM1, TLM2,	

				TLM3
7.	Numerical Problems – Counter flow HE – Tutorial 10	1	25-03-2025	TLM1,
8.	Correction factor for LMTD for use with Multi pass and Cross flow Heat Exchangers	1	26-03-2025	TLM1, TLM2
9.	Derivation - Effectiveness - NTU method of Heat Exchanger Analysis – parallel flow arrangement - Applications	1	28-03-2025	TLM3
10.	Effectiveness - NTU method of Heat Exchanger Analysis – parallel flow arrangement problems	1	28-03-2025	TLM1,
11.	Counter flow - Effectiveness - NTU method of Heat Exchanger Analysis-Applications of Heat Exchangers	1	31-03-2025	TLM1, TLM5
12.	Cross flow - Effectiveness - NTU method of Heat Exchanger Analysis- Applications of Heat Exchangers-	1	01-04-2025	TLM1,
No. o	f classes required to complete UNI	T-V: 12		No. of classes taken:

S.No.	Revision and recap of the Contents	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Revision of the course outline	1	02-04-2025		TLM5	

S.No.	Content Beyond the Syllabus	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
2.	PCB Cooling	1	04-04-2025		TLM2	
3.	Unsteady state thermal analysis	1	04-04-2025		TLM2	

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

Academic Calender-A.Y-2024-25

Description	From	To	Weeks							
B Tech VI Semester										
Commencement of class work 02.12.2024										
I phase of Instructions	02.12.24	01.02.25	9							
I Mid Examination	03.02.25	08.02.25	1							
II phase of Instructions	10.02.25	05.04.25	8							
II Mid Examination	07.04.25	12.04.25	1							
Preparation and Practical	14.04.25	19.04.25	1							
Semester End Examination	21.04.25	03.05.25	2							
Internship	05.05.25	28.06.25	8							

PART-C

EVALUATION PROCESS (R20 Regulations):

Evaluation Task	Marks				
Assignment- Cycle I	A1=5				
I-Mid Examination (Units-I,II half of III unit)					
I-Quiz Examination (Units-I,II half of III unit)	Q1=10				
Assignment- Cycle - II	A3=5				
II-Mid Examination (half of Unit-III, IV & V)	M2=15				
II-Quiz Examination (half of Unit-III, IV & V)	Q2=10				
Mid Marks =80% of Max (M1, M2) +20% of Min (M1, M2)	M=15				
Quiz Marks =80% of Max (Q1, Q2) +20% of Min(Q1, Q2)	B=10				
Cumulative Internal Examination (CIE): A+B+M	30				
Semester End Examination (SEE)	70				
Total Marks = $CIE + SEE$	100				

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 4	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
103	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess
100	societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
	sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.									
PSO 2	To apply the principles of manufacturing technology, scientific management towards									
	improvement of quality and optimization of engineering systems in the design, analysis and									
	manufacturability of products.									
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of									
	various systems relating to transmission of motion and power, conservation of energy and other									
	process equipment.									

Course Instructor	Course Coordinator	Module Coordinator	HOD
(Dr.V.Dhana Raju)	(Dr.P.Ravindra Kumar)	(Dr.P.Vijay Kumar)	(Dr.M.B.S.S.Reddy)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. A NAGESWARA RAO, Sr Assistant Professor

Course Name & Code : CAD/CAM & 20ME18 Regulation: R20

L-T-P Structure : 3-0-0 Credits: 03

Program/Sem/Sec : B.Tech VI Sem (A) **A.Y.:** 20224-2025

PREREQUISITE: Design of Machine Elements -I, Machine Tools and Metrology

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to familiarize the principles of geometric modeling, numerical control and part programming.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Comprehend the principles of CAD/CAM for design and manufacturing (Understanding -L2)
CO2	Formulate mathematical equations for geometrical entities like curves, surface, and solids. (Applying -L3)
CO3	Write the program for part profiles to accomplish numerical control machining. (Applying -L3)
CO4	Discuss the codes for different parts using GT and apply in automated manufacturing systems. (Understanding -L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1			2										2	
CO2	1	1	2	2	1							1		3	
CO3	1	1	1		1							1		3	
CO4		2		1										2	
CO5	1				1									3	
1 - Low				2	-Medi	ium			3	- High					

TEXTBOOKS:

- P.N Rao ,CAD/CAM Principle and applications, Tata McGraw Hill Education Private **T1** Ltd, New Delhi,8th edition 2013.
- Ibrahim Zeid, Mastering CAD/CAM, TATA McGraw-Hill publishing CO.Ltd, NewDelhi 2011.

T2

REFERENCE BOOKS:

R1	Mikel P.Groover and Emory W.Zimmers, CAD/CAM-Prentice Hall of India Private Ltd. New
	Delhi, 20 th edition, May 2010.
R2	P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM, New Age International
	Publishers,3 rd edition 2010.
R3	Mikel P.Groover, Automaiton, Production Systems and Computer Integrated Manufacturing,
	Prentice Hall of India Private Ltd. New Delhi, 3 rd edition, May 2008.
R4	Ibrahim Zeid and R. Sivasubramanian, CAD/CAM theory and practice, Tata McGraw Hill
	Publishing Co. Ltd,New Delhi 2009.
R5	Tien-Chienchang, Richard A.Wysk and HSU-Pin (Ben) Wang, —Computer Aided
	Manufacturing, 3 rd Edition, 2006

$\underline{PART-B}$ COURSE DELIVERY PLAN (LESSON PLAN): Section - A

UNIT-I: FUNDAMENTALS OF CAD, COMPUTER GRAPHICS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to CAD/CAM	1	02-12-2024		TLM1/TLM2	
2.	Product Cycle Revised with CAD/CAM	1	05-12-2024		TLM1/TLM2	
3.	Reasons for implementing CAD	1	06-12-2024		TLM1/TLM2	
4.	Creating Manufacturing database & Benefits of CAD	1	07-12-2024		TLM1/TLM2	
5.	Tutorial-I	1	09-12-2024		TLM1/TLM2	
6.	Computer Graphics- Introduction , Database structure	1	12-12-2024		TLM1/TLM2	
7.	Functions of a graphics package	1	13-12-2024		TLM1/TLM2	
8.	Raster scan graphics	1	14-12-2024		TLM1/TLM2	
9.	Concatenated transformations.	1	16-12-2024		TLM1/TLM2	
10.	Translation, scaling,	1	19-12-2024		TLM1/TLM2	
11.	Reflection, rotation	1	20-12-2024		TLM1/TLM2	
12.	Problems on Transformations	1	21-12-2024		TLM1/TLM2	
13.	Tutorial-II	1	23-12-2024		TLM1/TLM2	
No.	of classes required to complete U	No. of classe	es taken:			

UNIT-II: GEOMETRIC MODELING: REPRESENTATION OF CURVES, REPRESENTATION OF SURFACES AND SOLIDS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Geometric Modelling: Introduction	1	26-12-2024		TLM1/TLM2	
15.	Wireframe Modelling: Entities wireframe models	1	27-12-2024		TLM1/TLM2	
16.	Parametric representation of analytical curves	1	28-12-2024		TLM1/TLM2	
17.	Parametric representation of	1	30-12-2024		TLM1/TLM2	

	analytical curves				
18.	Hermite cubic spline curve	1	02-01-2025		TLM1/TLM2
19.	Bezier curves	1	03-01-2025		TLM1/TLM2
20.	B-spline curves	1	04-01-2025		TLM1/TLM2
21.	Characteristics of Curves, Problems	1	06-01-2025		TLM1/TLM2
22.	Tutorial-III	1	16-01-2025		TLM1/TLM2
23.	Surface representation: Entities	1	17-01-2025		TLM1/TLM2
24.	Solid modelling	1	18-01-2025		TLM1/TLM2
25.	B-Rep	1	20-01-2025		TLM1/TLM2
26.	CSG	1	23-01-2025		TLM1/TLM2
27.	Tutorial-IV	1	24-01-2025		TLM1/TLM2
No. of classes required to complete UNIT-II: 14 No. of classes tak					s taken:

UNIT-III: COMPUTER NUMERICAL CONTROL, PART PROGRAMMING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Numerical control: Introduction, NC Modes	1	24-01-2025		TLM1/TLM2	_
29.	NC elements	1	25-01-2025		TLM1/TLM2	
30.	N C Coordinate systems	1	27-01-2025		TLM1/TLM2	
31.	Structure of CNC machine tools	1	30-01-2025		TLM1/TLM2	
32.	Spindle design	1	31-01-2025		TLM1/TLM2	
33.	spindle drives,	1	01-02-2025		TLM1/TLM2	
34.	Feed drives,	1	03-02-2025		TLM1/TLM2	
35.	actuation systems	1	06-02-2025		TLM1/TLM2	
36.	Tutorial-V	1	07-02-2025		TLM1/TLM2	
37.	CNC Part programming: fundamentals	1	10-02-2025		TLM1/TLM2	
38.	Manual part programming	1	13-02-2025		TLM1/TLM2	
39.	Computer Aided part programming	1	14-02-2025		TLM1/TLM2	
40.	Part programming examples	1	15-02-2025		TLM1/TLM2	
41.	examples	1	17-02-2025		TLM1/TLM2	
42.	Tutorial-VI	1	20-02-2025		TLM1/TLM2	
No.	No. of classes required to complete UNIT-III: 15			No. of classe	es taken:	

UNIT-IV: GROUP TECHNOLOGY, FLEXIBLE MANUFACTURING SYSTEM

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
43.	Group Technology	1	21-02-2025		TLM1/TLM2	
44.	Coding and classification schemes- OPITZ	1	22-02-2025		TLM1/TLM2	
45.	MICLASS, example for coding	1	24-02-2025		TLM1/TLM2	
46.	CODE Systems, examples for coding	1	27-02-2025		TLM1/TLM2	

No. of classes required to complete UNIT-IV: 14			No. of classes taken:	
56.	Tutorial-VIII	1	20-03-2025	TLM1/TLM2
55.	FMS Planning and implementation	1	17-03-2025	TLM1/TLM2
54.	FMS Planning and implementation	1	15-03-2025	TLM1/TLM2
53.	FMS equipment, FMS layouts, benefits	1	10-03-2025	TLM1/TLM2
52.	Flexible Manufacturing System: Introduction	1	08-03-2025	TLM1/TLM2
51.	Tutorial-VII	1	07-03-2025	TLM1/TLM2
50.	CAPP- Retrieval and Generative	1	06-03-2025	TLM1/TLM2
49.	GT Machine cells, Benefits of GT	1	03-03-2025	TLM1/TLM2
48.	Advantages and limitations	1	01-03-2025	TLM1/TLM2
47.	Production Flow Analysis	1	28-02-2025	TLM1/TLM2

UNIT-V: COMPUTER AIDED QUALITY CONTROL, COMPUTER INTEGRATED MANUFACTURING SYSTEMS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
57.	CAQC: Introduction, The computers in QC	1	21-03-2025		TLM1/TLM2	
58.	Contact inspection methods	1	22-03-2025		TLM1/TLM2	
59.	Non-Contact inspection methods: Optical	1	24-03-2025		TLM1/TLM2	
60.	Non-Contact inspection methods: non optical	1	27-03-2025		TLM1/TLM2	
61.	Computer aided testing,	1	28-03-2025		TLM1/TLM2	
62.	CAQC with CAD/CAM	1	29-03-2025		TLM1/TLM2	
63.	CIM Introduction, Tutorial-IX	1	01-04- 2025		TLM1/TLM2	
64.	CIM integration, Implementation	1	03-04-2025		TLM1/TLM2	
65.	Benefits of CIM	1	04-04-2025		TLM1/TLM2	
66.	Lean manufacturing, Tutorial-X	1	05-04-2025		TLM1/TLM2	
No. o	No. of classes required to complete UNIT-V: 10				sses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15

I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10			
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)				
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15			
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10			
Cumulative Internal Examination (CIE): M	30			
Semester End Examination (SEE)	70			
Total Marks = CIE + SEE	100			

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

110 010	while about the objective of a cost.
PEO 1	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.
PEO 2	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.
PEO 3	To develop inquisitiveness towards good communication and lifelong learning.
PROGRA	MME OUTCOMES (POs):
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
P0 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage

	projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	A.Nageswara Rao	A.Nageswara Rao	Mr.J.Subba Reddy	Dr.M.B.S.Sreekara Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. CH. Siva Sankara Babu

Course Name & Code : Design of Machine Elements-II & 20 ME19

L-T-P Structure : 2-1-0 Credits: 3
Program/Sem/Sec : B.Tech/VI/A A.Y.: 2024-25

PREREQUISITE: Design of Machine Elements-I

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to understand and apply the standard procedure available for the design of mechanical components and IC engine components.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO ₁	Select suitable bearings under different load, speed, and life conditions. (Applying - L3)
CO2	Design internal combustion engine components for safe and continuous operation. (Applying -
COZ	L3)
CO ₃	Select the belt and rope drives for elevators, cranes, and hoisting machinery. (Applying - L3)
CO ₄	Design the springs under static and dynamic loads. (Applying - L3)
CO5	Estimate the performance parameters of the gears for various loading conditions. (Applying -
COS	L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1	1							1	1	1	3
CO2	1	2	3	1	2							1	2		3
CO3	3	2	3		1	1						1		1	3
CO4	3	2	3	2	1				1			1		-	3
CO5	3	2	3	2	2	1			1			1		1	3
			1 - Lo	W				2 –Me	dium			3 -	High		

TEXTBOOKS:

- T1 Bhandari V.B, Design of Machine Elements, 3rd Edition, TataMcGraw-Hill2010. Sundararajamoorthy T. V, Shanmugam. N, "Machine Design", Anuradha Publications,
- **T2** Chennai, 2003.

REFERENCE BOOKS:

- R1 Norton R.L—Design of Machinery, TataMcGraw-Hill Book Co, 2004.
- R2 Shigley J.E and Mischke C.R.—Mechanical Engineering Designl, TataMcGraw-Hill, 2003

HANDBOOKSTOBEALLOWED

Design Data book by PSG College of Technology, Coimbatore.
Design Data Hand book for Mechanical Engineering by Mahadevan.K and K.Balaveera Reddy.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: SLIDING CONTACT BEARINGS & ROLLING CONTACT BEARINGS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Sign
1.	Introduction to Subject, CEO's and CO's	1	02-12-2024		TLM1	
2.	Introduction to Unit-1, Bearings –Introduction, Types	1	02-12-2024		TLM1 TLM2	
3.	Lubricating Oils Properties, Materials used for bearings and their properties	1	03-12-2024		TLM1 TLM2	
4.	Journal Bearings –Introduction, Types, Dimensionless parameters	1	05-12-2024		TLM1 TLM2	
5.	Design procedure of journal bearing	1	09-12-2024		TLM1	
6.	Journal bearings - problems	1	09-12-2024		TLM1.2	
7.	Dimensionless parameters used in the bearing design – problem	1	10-12-2024		TLM1.2	
8.	Tutorial-1	1	12-12-2024		TLM3	
9.	Rolling contact bearings-types, bearing life, Materials used and designation of rolling contact bearings	1	16-12-2024		TLM1 TLM2	
10.	Static load and dynamic load capacity	1	16-12-2024		TLM1	
11.	Selection of ball bearing - problems	1	17-12-2024		TLM1.2	
12.	Tutorial-2	1	19-12-2024		TLM3	
13.	Cubic mean load derivation, Reliability of bearings - problems	1	23-12-2024		TLM1.2	
No. of	classes required to complete UNIT-I	13	No. of class	es taken:		

UNIT-II: IC ENGINE COMPONENTS: PISTON, CONNECTING ROD AND CRANK SHAFT

		No. of	Tentative	Actual	Teaching	
S.No.	Topics to be covered	Classes	Date of		Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Unit-II, Engine Parts and	1			TLM1	
1.	working	1	23-12-2024		TLM2	
2.	PISTON: Design procédure of piston	1	24-12-2024		TLM1.2	
3.	Piston design - problems	1	26-12-2024		TLM1.2	
4.	Piston design - problems	1	30-12-2024		TLM1.2	
5.	Cylinder design, cylinder liners-design	1	30-12-2024		TLM1.2	
6.	Cylinder, cylinder liners-design Problems	1	31-12-2024		TLM1.2	
7.	Tutorial-3	1	02-01-2025		TLM3	
8.	CONNECTING ROD : Thrust in C.R,	1			TLM1	
0.	buckling load	1	06-01-2025		TLM2	
9.	Design Procedure of Connecting rod	1	06-01-2025		TLM1.2	
10.	Stresses due to whipping action on connecting	1			TLM1.2	
10.	rod ends- problems	1	07-01-2025		1 LIVI1.2	
11.	CRANK SHAFT: Design of crank and crank	1			TLM1.2	
11.	shaft	1	09-01-2025		1 LIVI1.2	
12.	Design of center crank shaft -problems	1	13-01-2025		TLM1,2	
13.	Tutorial-4	1	16-01-2025		TLM3	
No. of	classes required to complete UNIT-II	13	No. of class	es taken:		

UNIT-III: FLAT BELTS & PULLEYS &V-BELTS & V-GROOVED PULLEYS

S.No.	. Topics to be covered		Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to Unit-III		20-01-2025		TI 1/1	
1.	Flat belts Introduction, Materials and	1			TLM1 TLM2	
	Design Procedure				I LIVIZ	
2.	Design Procedure of flat belts - Problems	1	20-01-2025		TLM1	
2	PULLEYS: Design of pulleys mild steel &	1	21-01-2025		TI 1/1	
3.	cast iron	1			TLM1	
4.	Design of pulleys mild steel & cast iron	1	23-01-2025		TLM1	
5.	Design of pulleys mild steel & cast iron	1	27-01-2025		TLM1	
6.	Design of pulleys Problems	1	28-01-2025		TLM1	
7.	Tutorial-5 Revision	1	30-01-2025		TLM3	
8.	Mid-I Examination from	03-02-202	25 to 08-02-202	25	•	
9.	V-belts –designation, design and selection	1	10-02-2025		TLM1,2	
10.	Design of V belts - problems	1	10-02-2025		TLM1,2	
11.	Design of V belts - problems	1	11-02-2025		TLM1,2	
12.	Design of V- grooved pulley	1	13-02-2025		TLM1	
13.			17-02-2025		TLM1,2	
14.	Tutorial-6	1	17-02-2025		TLM3	
No. of	classes required to complete UNIT-III	14	No. of class	es taken:		

UNIT-IV: SPRINGS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-IV SPRINGS: Introduction, classification	1	18-02-2025		TLM1 TLM2	
2.	Stresses, deflection and stiffness in springs and their derivations	1	20-02-2025		TLM1 TLM2	
3.	Springs for fatigue loading	1	24-02-2025		TLM1,2	
4.	Design of springs-problems	1	24-02-2025		TLM1	
5.	Tutorial-7	1	27-02-2025		TLM3	
6.	Spring failures, design of helical springs	1	03-03-2025		TLM1	
7.	Natural frequency of helical spring	1	03-03-2025		TLM1	
8.	Energy storage capacity in springs	1	04-03-2025		TLM1	
9.	Tension and torsion springs	1	06-03-2025		TLM1	
10.	Co-axial springs design- Problems	1	10-03-2025		TLM1	
11.	Design of leaf springs- Problems	1	10-03-2025		TLM1	
12.	Tutorial-8	1	11-03-2025		TLM3	
lo. of	classes required to complete UNIT-IV	12	No. of classe	es taken:	·	

UNIT-V: SPUR & HELICAL GEARS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	GEARS : Introduction and terminology, Types of gears, design formulae	1	13-03-2025		TLM1 TLM2	
2.	Design formulae	1	17-03-2025		TLM1 TLM2	
3.	Design Analysis of gears, Estimation of centre distance, module & face width	1	17-03-2025		TLM1 TLM2	
4.	Design procedure of spur gears, Check for dynamic and wear considerations	1	18-03-2025		TLM1 TLM2	
5.	Design of spur gears -Problems	1	20-03-2025		TLM1,2	
6.	Design of spur gears -Problems	1	24-03-2025		TLM1,2	

7.	Tutorial-9	1	24-03-2025	TLM3	
8.	Design procedure of Helical gears, Check	1		TLM1	
0.	for dynamic and wear considerations	1	25-03-2025	I LIVI I	
9.	Design of Helical gears -Problems	1	27-03-2025	TLM1,2	
10.	Design of Helical gears -Problems,	1	31-03-2025	TLM1,2	
11.	Tutorial-10	1	31-03-2025	TLM3	
No. of classes required to complete UNIT-V		11	No. of classes taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Design of flywheels	1	27-01-2025		TLM1 TLM2	
2.	Design of Worm gear	1	01-04-2025		TLM1 TLM2	
3.	Design of Gear Box	1	03-04-2025		TLM1 TLM2	

Teaching	Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.
PO 12	Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.
	long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.								
	To apply the principles of manufacturing technology, scientific management towards								
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis and								
	manufacturability of products.								
	To apply the basic principles of mechanical engineering design or evaluation of performance of								
PSO 3	various systems relating to transmission of motion and power, conservation of energy and other								
	process equipment.								

Signature				
Name of the Faculty	Dr. Ch. Siva Sankara Babu	Mr. B. Sud	heer Kumar	Dr. M.B.S Sreekara Reddy
Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

COURSE HANDOUT PART-A

Course Instructor : Dr.Murahari Kolli **Course Coordinator**: Dr.Murahari Kolli

Course Name : Modern Machining Processes Course Name : 20ME21

L-T-P Structure : 3-0-0 **Credits** : 3

Program : B.Tech., III Year VI-Sem., **Department** : Mechanical Section : Mech (A) A.Y : 2024-25

PRE-REQUISITE: PRODUCTION TECHNOLOGY, MACHINE TOOLS&METAL CUTTING

COURSE OBJECTIVE: The main objective of this course is to familiarize with unconventional machining processes and rapid prototyping.

COURSE OUTCOMES (CO)

CO1	Assort appropriate unconventional machining processes for machining materials and
	to develop relevant industrial solutions for machining hard materials.
	(Understanding-L2)
CO2	Understand the principles of Electro Chemical Machining Process for machining of hard
	materials. (Understanding-L2)
CO3	Apply Electrical Discharge Machining principles for machining intricate components.
	(Understanding-L2)
CO4	Comprehend the basic principles and applications of thermal machining processes like
	EBM, LBM and PAM. (Understanding-L2)
CO5	Identify the need of Rapid Prototyping in manufacturing sectors. (Applying-L3)

COURSE ARTICULATION MATRIX (Correlation between COs&POs.PSOs):

0001	do onder mirro de partition (and remains between dosar os), sos j.														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2		3									2	
CO2	3	2	3		3									3	
CO3	3	2	3		3								2	3	
CO4	3	2	3		3								2	3	
CO5	3	2	3		3									3	

Note: Enter Correlation Levels: **1-**Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Pandey P.C. and shah H.S, Modern machining processes /TMH.
- T2 Chua C.K, Leong K.F, and Lim C.S, Rapid prototyping principles and applications, second edition, world scientific publishers, and 2003.

BOS APPROVED REFERENCE BOOKS:

- **R1** M K Singh, Unconventional machining process / New age international.
- **R2** V K Jain, Advanced machining processes /Allied publishers.
- R3 N.Hopkinson, R.J.MHaque &P.M. Dickens Rapid Manufacturing, John Wiley & sons, 2006.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN) UNIT-I: Introduction & Mechanical Processes

	UNIT-I: Introduction & Mechanical Processes No. of Tantative Actual Teaching Learning Text HOD											
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly				
1.	Introduction of MMP and Course Co's and Po's	1	02.12.2024		TLM1/TLM2	CO1	T1/R1					
2.	Need for unconventional machining methods	1	03.12.2024		TLM1/TLM2	C01	T1/R1					
3.	Classification of unconventional machining processes	1	04.12.2024		TLM1/TLM2	C01	T1/R1					
4.	Classification of unconventional machining processes	1	06.12.2024		TLM1/TLM2	C01	T1/R1					
5.	Considerations in process selection	1	09.12.2024		TLM1/TLM2	C01	T1/R1					
6.	Considerations in process selection	1	10.12.2024		TLM1/TLM2	CO1	T1/R1					
7.	Mechanical Processes	1	11.12.2024		TLM3/TLM6	C01	T1/R1					
8.	ultrasonic machining, Basic principle equipment setup and procedure,	1	13.12.2024		TLM1/TLM2	CO1	T1/R1					
9.	Process variables and applications	1	16.12.2024		TLM1/TLM2	CO1	T1/R1					
10.	Basic principle of Abrasive jet machining,.	1	17.12.2024		TLM1/TLM2	CO1	T1/R1					
11.	Process variables and applications	1	18.12.2024		TLM1/TLM2	C01	T1/R1					
12.	Water jet machining, Basic principle, equipment setup	1	20.12.2024		TLM1/TLM2	CO1	T1/R1					
13.	Process variables and applications	1	23.12.2024		TLM1/TLM2	CO1	T1/R1					
14.	Comparison of Mechanical methods and Case Study	1	24.12.2024		TLM1/TLM2	CO1						
	classes required to ete UNIT-I	14			No. of classes t	aken:						

UNIT-II: Electro Chemical Processes & Chemical Machining

	UNIT-II. Electi o chemical Frocesses & chemical Machining											
		No. of	Tentative	Actual	Teaching	Learning	Text	HOD				
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign				
		Required	Completion	Completion	Methods	COs	followed	Weekly				
15.	Electrochemical Process Introduction	1	27.12.2024		TLM1/TLM2	CO2	T1/R1					
16.	ECM Process, and principles	1	30.12.2024		TLM1/TLM2	CO2	T1/R1					
17.	Equipment and material removal rate	1	31.12.2024		TLM1/TLM2	CO2	T1/R1					
18.	Electrochemical machining	1	06.01.2025		TLM1/TLM2	CO2	T1/R1					

19.	Electrochemical grinding	1	07. 1.2025	TLM1/TLM2	CO2	T1/R1	
20.	Electrochemical grinding	1	08. 1.2025	TLM1/TLM2	CO2	T1/R1	
21.	Electrochemical deburring,	1	10.01.2025	TLM1/TLM2	CO2	T1/R1	
22.	Electrochemical honing	1	13.01.2025	TLM1/TLM2	CO2	T1/R1	
23.	Chemical machining- principle	1	14.01.2025	TLM1/TLM2	CO2	T1/R1	
24.	Maskants –Etchants,	1	15.01.2025	TLM1/TLM2	CO2	T1/R1	
25.	Advantages and Applications.	1	17.01.2025	TLM1/TLM2	CO2	T1/R1	
No. of classes required to complete UNIT-II		11		No. of classes to	aken:		

	UNIT-III: Electrical Discharge Machining										
		No. of	Tentative	Actual	Teaching	Learning	Text	HOD			
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign			
		Required	Completion	Completion	Methods	Cos	followed	Weekly			
26.	What is EDM, working Principle	1	20.01.2025		TLM1/TLM2	CO3	T1/R1				
27.	Power circuits for EDM	1	21.01.2025		TLM1/TLM2	CO3	T1/R1				
28.	Power circuits for EDM	1	22.01.2025		TLM1/TLM2	CO3	T1/R1				
29.	Applications of EDM	1	24.01.2025		TLM1/TLM2	CO3	T1/R1				
30.	Mechanics of metal removal in EDM	1	27.01.2025		TLM1/TLM2	CO3	T1/R1				
31.	Process parameters	1	28.01.2025		TLM1/TLM2	CO3	T1/R1				
32.	Selection of tool electrode	1	29.01.2025		TLM1/TLM2	CO3	T1/R1				
33.	dielectric fluid	1	10.02.2025		TLM1/TLM2	CO3	T1/R1				
34.	Electric discharge wire cutting principle	1	11.02.2025		TLM1/TLM2	CO3	T1/R1				
35.	Applications of EDM and Wire EDM	1	12.02.2025		TLM1/TLM2	CO3	T1/R1				
	classes required to ete UNIT-III	10			No. of classes t	aken:					

UNIT-IV: Electron Beam, Laser Beam & Plasma Arc Machining

		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
	-	Required	Completion	Completion	Methods	Cos	followed	Weekly
	Electron Beam		14.02.2025				TO /DO	
36.	Machining,	1			TLM1/TLM2	CO4	T2/R3	
	Principle, process				•			
37.	EBM Applications and	1	17.02.2025		TLM1/TLM2	CO4	T2/R3	
37.	Advantages	1			ILMIT/ILMIZ	LU4		
38.	laser beam machining,	1	18.02.2025		TI M1 /TI M2	CO4	T2/R3	
38.	Principle, process	1			TLM1/TLM2	CO4	,	
20	LBM Applications and	1	19.02.2025		TIM4 /TIM2	CO.4	T2/R3	
39.	Advantages	1			TLM1/TLM2	CO4	,	
4.0	Plasma arc machining,	4	21.02.2025		mi M4 /mi M2	604	T2/R3	
40.	Principle, process	1			TLM1/TLM2	CO4	, -	

41.	PAM Applications and Advantages	1	24.02.2025	TLM1/TLM2	CO4	T2/R3	
42.	Hot machining, Process, equipment, applications	1	25.02.2025	TLM1/TLM2	CO4	T2/R3	
43.	Comparisons of EBM and LBM	1	26.02.2025	TLM1/TLM2	CO4	T2/R3	
44.	Case study -II	1	28.02.2025	TLM1/TLM2			
No. of classes required to complete UNIT-IV		9		No. of classes ta	aken:		

	UNIT-V: Rapid Proto	typing						
		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	Cos	followed	Weekly
45.	Introduction to Prototype fundamentals	1	03.03.2025		TLM1/TLM2	CO5	T2/R3	
46.	historical development, fundamentals of Rapid Prototyping	1	04.03.2025		TLM1/TLM2	CO5	T2/R3	
47.	Advantages of Rapid Prototyping	1	05.03.2025		TLM1/TLM2	CO5	T2/R3	
48.	classification of Rapid prototyping	1	07.03.2025		TLM1/TLM2	CO5	T2/R3	
49.	classification of Rapid prototyping	1	10.03.2025		TLM1/TLM2	CO5	T2/R3	
50.	Rapid Prototyping process chain	1	11.03.2025		TLM1/TLM2	CO5	T2/R3	
51.	Liquid types –SLA,SGC	1	12.03.2025		TLM1/TLM2	CO5	T2/R3	
52.	Stereo Lithography Apparatus (SLA)	1	14.03.2025		TLM3/TLM2	CO5	T2/R3	
53.	SLA, Solid Ground Curing (SGC)	1	17.03.2025		TLM1/TLM2	CO5	T2/R3	
54.	Solid Ground Curing (SGC) Solid based Porotype-FDM	1	18.03.2025		TLM3/TLM2	CO5	T2/R3	
55.	Powder based Porotype- SLS	1	19.03.2025		TLM1/TLM2	CO5	T2/R3	
56.	Powder based Porotype- SLS	1	21.03.2025		TLM3/TLM2	CO5	T2/R3	
57.	Applications of Rapid Prototyping	1	24.03.2025		TLM1/TLM2	CO5	T2/R3	
	classes required to lete UNIT-V	13			No. of classes	taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
58.	Abrasive water jet aerospace applications	1	25.03.2025		TLM1/TLM2			
59.	EDM process parameters	1	26.03.2025		TLM1/TLM2			
60.	Rapid prototyping case study	1	28.03.2025		TLM1/TLM2			
61.	Rapid prototyping case study	1	31.03.2025		TLM1/TLM2			

Teachi	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD			
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo			
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study			

Academic Calendar:

Description	From	To	Weeks
I Phase of Instructions	02-12-2024	01-02-2025	9W
I Mid Examinations	03-02-2025	08-02-2025	1W
II Phase of Instructions	10-02-2025	05-04-2025	8W
II Mid Examinations	07-04-2025	12-04-2025	1W
Preparation and Practicals	14-04-2025	09-04-2025	1W
Semester End Examinations	21-04-2025	03-05-2025	2W

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment–I (Unit-I,II & III (Unit-III Half of the syllabus))	A1=5
I-Mid Examination (Unit-I,II & III (Unit-III Half of the syllabus))	M1=15
Quiz-Q1 (Unit-I,II & III (Unit-III Half of the syllabus))	Q1-10
Assignment – II (Unit-III Remaining Half of the syllabus)) IV & V	A2=5
II-Mid Examination (Unit-III Remaining Half of the syllabus)) IV & V	M2=20
Quiz-Q2 (Unit-III Remaining Half of the syllabus)) IV & V	Q2-10
Mid Marks: B=80% of Max((M1,Q1+A1), (M2,Q2+A2), +20% of Min(M2,Q2+A2), (M1,Q1+A2)	M=30
Cumulative Internal Examination : M	30
Semester End Examinations (SEE)	70
Total Marks: 30+70	100

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodads@lbrce.ac.in, ads@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE HANDOUT PART-A

Name of Course Instructor: Ms.G.DIVYA

Course Name & Code : INTRODUCTION TO ARTIFICIAL INTELLIGENCE – 20AD81

L-T-P Structure : 3-0-0 Credits:3

Program/Branch/Sem : B.Tech/ME- A/B/VI A.Y.: 2024-25

PRE-REQUISITE: Basic Engineering Mathematics Knowledge

Course Educational Objective:

The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, reasoning, and learning. Students will implement a small AI system in a team environment. The knowledge of artificial intelligence plays a considerable role in some applications students develop for courses in the program.

Course Outcomes: At the end of this course, the student will be able to

CO1	Enumerate the history and foundations of Artificial Intelligence. (Understand-L2)
CO2	Apply the basic principles of AI in problem solving. (Apply-L3).
CO3	Explain the different searching algorithms to find and optimize the solution for the given Problem. (Understand-L2)
CO4	Illustrate the different gaming algorithms and identify the importance of knowledge Representation in Artificial Intelligence. (Apply-L3)
CO5	Describe the use of predicate logic and rule-based system to represent the knowledge in AI domain. (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO2
CO1	2	3	2	-	3	-	-	-	-	-	-	2	3	-	-
CO2	2	3	3	3	3	-	-	-	-	-	-	2	3	-	-
CO3	2	3	3	-	3	-	-	-	-	-	-	2	3	-	-
CO4	2	3	3	2	3	1	1	-	-	ı	1	2	3	ı	-
CO5	2	3	3	2	3	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach",3rd edition, Prentice Hall, 2009. Can also use 2nd Ed., Pearson Education International, 2003.
- T2. Saroj Kaushik, "Artificial Intelligence", Cengage Learning India, 2011

BOS APPROVED REFERENCE BOOKS:

- R1. Nils Nilsson, "Artificial Intelligence: A New Synthesis", Morgan Kaufmann, 1998.
- R2. David Poole, Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge Univ. Press, 2010.
- R3. Ronald Brachman, "Knowledge Representation and Reasoning", Morgan Kaufmann, 2004.
- R4. Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds), "Handbook of Knowledge representation", Elsevier, 2008.
- R5. Ivan Bratko, "Prolog Programming for Artificial Intelligence", 4th Ed., Addison-Wesley, 2011.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: INTRODUCTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
1.	Discussion of CEO's and CO's, Introduction to	1	02-12-2024		-	CO1	-	
2.	Introduction: What Is AI?,	1	04-12-2024		TLM1	CO1	T1,T2	
3.	The Foundations of Artificial Intelligence	1	05-12-2024		TLM1	CO1	T1,T2	
4.	The History of Artificial Intelligence,	1	06-12-2024		TLM1	CO1	T1,T2	
5.	The State of the Art.	1	09-12-2024		TLM1	CO1	T1,T2	
6.	Agents and Environments	1	11-12-2024		TLM1	CO1	T1,T2	
7.	Types of agents	1	12-12-2024		TLM2	CO1	T1,T2	
8.	Types of agents	1	13-12-2024		TLM2	CO1	T1,T2	
9.	Types of agents	1	16-12-2024		TLM2	CO1	T1,T2	
10.	Good Behavior: The Concept of Rationality	1	18-12-2024		TLM1	CO1	T1,T2	
11.	Omniscience vs Rational agent	1	19-12-2024		TLM1	CO1	T1,T2	
12.	The Nature of Environments	1	20-12-2024		TLM1	CO1	T1,T2	
13.	The Structure of Agents	1	23-12-2024		TLM1	CO1	T1,T2	
14.	Assignment/Quiz-2	1	26-12-2024		TLM1	CO1	-	
	No. of classes required to co	mplete UN	NIT-I: 14		No. of cla	asses taker	 n:	

UNIT-II: PROBLEM SOLVING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
15.	Problem-Solving Agents, Example Problems	1	27-12-2024		TLM1	CO2	T1,T2	

No	o. of classes required to co	NIT-II: 12	No. of cla	No. of classes taken:			
26.	Assignment/Quiz-2	1	22-01-2025	TLM1	CO2	T1,R1	
25.	Searching with Nondeterministic Actions.	1	20-01-2025	TLM2	CO2	T1,T2	
24.	Local Search Algorithms	1	17-01-2025	TLM2	CO2	T1,T2	
23.	Local Search Algorithms	1	16-01-2025	TLM2	CO2	T1,T2	
22.	AO* Algorithm	1	10-01-2025	TLM2	CO2	T1,T2	
21.	A* Algorithm	1	09-01-2025	TLM2	CO2	T1,T2	
20.	Best first search algorithm	1	08-01-2025	TLM2	CO2	T1,T2	
19.	Types of search algorithms.	1	06-01-2025	TLM1	CO2	T1,T2	
18.	Properties of search algorithms	1	03-01-2025	TLM1	CO2	T1,T2	
17.	Search algorithms terminologies	1	02-01-2025	TLM1	CO2	T1,T2	
16.	searching for Solutions, Uninformed Search Strategies	1	30-07-2024	TLM1	CO2	T1,T2	

UNIT-III : SEARCH ALGORITHMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
27.	Introduction	1	23-01-2025		TLM1	CO3	T1,T2	
28.	Uniformed/Blind Search Algorithms:	1	24-01-2025		TLM1	CO3	T1,T2	
29.	Breadth-first Search	1	27-01-2025		TLM2	CO3	T1,T2	
30.	Depth-first Search,	1	29-01-2025		TLM2	CO3	T1,T2	
31.	Depth limited search	1	30-01-2025		TLM2	CO3	T1,T2	
32.	Iterative deepening depth-first search	1	31-01-2024		TLM2	CO3	T1,T2	
33.	Uniform cost search	1	10-02-2025		TLM2	CO3	T1,T2	
34.	Bidirectional Search.	1	12-02-2025		TLM2	CO3	T1,T2	
35.	Assignment/Quiz-3	1	13-02-2025		TLM1	CO3	-	
	No. of classes require	ed to comple	ete UNIT-III:	09	No. of class	ses taken:		

UNIT-IV: ADVERSARIAL SEARCH/ GAME PLAYING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
36.	Introduction	1	14-02-2025		TLM1	CO4	T1,T2	
37.	Minimax algorithm	2	17-02-2025 19-02-2025		TLM2	CO4	T1,T2	
38.	Alpha-Beta pruning	2	20-02-2025 21-02-2025		TLM2	CO4	T1,T2	

	No. of classes required	l to comp		No. of class	ses taken:		
46.	Assignment/Quiz-4	1	12-03-2025	TLM1	CO4	-	
45.	issues in knowledge representation	2	07-03-2025 10-03-2025	TLM1	CO4	T1,T2	
44.	Approaches of knowledge representation,	1	06-03-2025	TLM1	CO4	T1,T2	
43.	Backward chaining/reasoning	1	05-03-2025	TLM1	CO4	T1,T2	
42.	Inference Engine:Forward chaining/reasoning	1	03-02-2025	TLM1	CO4	T1,T2	
41.	Representation mappings	1	28-03-2025	TLM1	CO4	T1,T2	
40.	Knowledge base Levels and types	1	27-02-2025	TLM1	CO4	T1,T2	
39.	Knowledge Based Agent, Architecture	2	24-02-2025 26-02-2025	TLM1	CO4	T1,T2	

UNIT-V: KNOWLEDGE REPRESENTATION TECHNIQUES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly			
47.	Introduction	1	13-03-2025		TLM1	CO5	T1,T2				
48.	Logic, Propositional Logic:	1	17-03-2025		TLM1	CO5	T1,T2				
49.	A Very Simple Logic,	1	19-03-2025		TLM1	CO4	T1,T2				
50.	Ontological Engineering	1	20-03-2025		TLM2	CO4	T1,T2				
51.	Categories, Objects and Events	1	21-03-2025		TLM2	CO5	T1,T2				
52.	Mental Events and Mental Objects	1	24-03-2025		TLM1	CO5	T1,T2				
53.	What is reasoning and Types	1	26-03-2025		TLM1	CO4	T1,T2				
54.	Types of reasoning	1	27-03-2025		TLM1	CO4	T1,T2				
55.	Reasoning Systems for Categories	1	28-03-2025		TLM2	CO5	T1,T2				
56.	The Internet Shopping World	1	02-04-2025		TLM1	CO5	T1,T2				
57.	Assignment/Quiz-5	1	03-04-2025		TLM1	CO5	-				
	No. of classes required to complete UNIT-V:11 No. of classes taken:										

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
58.	Turing test, Interview Questions	1	04-04-2025		TLM1			

Teachi	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam /MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the fundamental engineering knowledge, computational principles, and
	methods for extracting knowledge from data to identify, formulate and solve real
	timeproblems.
PSO 2	To develop multidisciplinary projects with advanced technologies and tools to
	address social and environmental issues.
PSO 3	To provide a concrete foundation and enrich their abilities for Employment and
	Higher studies in Artificial Intelligence and Data science with ethical values

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	G.Divya	G.Divya	Dr.V.Surya Narayana	Dr. O. Rama Devi	
Signature					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I)
An ISO 21001:2018,14001:2015,50001:2018Certified Institution
Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

http://lbrce.ac.in/it/index.php,hodit@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. Ch. Poorna Venkata Srinivasa Rao

Course Name & Code : CYBER SECURITY AND DIGITAL FORENSICS & 201T84
L-T-P Structure : 3-0-0 Credits: 03

Program/Sem/Sec : B.Tech-ME – VI /A&B

A.Y. : 2024-25

PRE-REQUISITE: Understanding of digital logic, operating system concepts, Computer

hardware knowledge.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The Objective of the course is to provide the basic concepts of cyber security and digital Forensics which help to protect ourselves from various kinds of cyber-attacks. Digital forensics is a branch of forensic science encompassing the recovery and investigation of material found in digital devices, often in relaxation to computer crime. It enables students to gain experience to do independent study and research

CO1	Understand the implementation of cybercrime. (Understand - L2)
CO2	Identify key Tools and Methods used in Cybercrime. (Remember- L1)
CO3	Under the Concepts of Cyber Forensics. (Understand- L2)
CO4	Apply Cyber Forensics in collection of digital evidence and sources of evidence (Apply- L3)
CO5	Analyze the cyber forensics tools for present and future(Analyze- L4)

Course Articulation Matrix (Correlation between COs &POs, PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	1	1	-	1	-	-	-	1	-	-	-
CO2	-	1	1	-	3	1	-	-	-	-	-	1	-	-	-
CO3	1	•	-	1	3	1	-	-	•	-	•	1	•	•	-
CO4	1	1	-	3	1	•	-	-	•	-	•	1	•	•	-
CO5	-	•	1	-	3	1	-	1	ı	-	1	1	•	•	-
1 - Low						2 -Medium				3 - High					

TEXT BOOKS:

- 1. Dejey, Dr.Murugan, "cyber Forensics", Oxford University Press, India, 2018
- 2. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY,2011

REFERENCE BOOKS:

- Michael Simpson, Kent Blackman and James e. Corley, "Hands on Ethical Hacking and Network Defense", Cengage, 2019
- 2. Computer Forensics, Computer Crime Investigation by John R.Vacca, Firewall Media, New Delhi
- 3. Alfred Basta, Nadine Basta, Mary Brown and Ravindra Kumar "Cyber Security and Cyber Laws", Cengage, 2018

Part-B
COURSE DELIVERY PLAN (LESSON PLAN): SECTION B

UNIT-I: Introduction to Cybercrime

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
1	Introduction to CSDF	1	02-12-2024		TLM2	CO1	
2	Cybercrime definition and origins of the word	1	04-12-2024		TLM1	CO1	
3	Cybercrime and Information Security	1	05-12-2024		TLM2	CO1	
4	Cybercriminals	1	06-12-2024		TLM7	CO1	
5	Classifications of Cybercrime	1	09-12-2024		TLM2	CO1	
6	Cyberstalking Cybercafé and Cybercrime	2	11-12-2024 12-12-2024		TLM2	CO1	
7	Botnets Security Challenges Posed by Mobile	2	13-12-2024 16-12-2024		TLM2	CO1	
8	Attacks on Mobile/Cell Phones Network and Computer Attacks	2	18-12-2024 19-12-2024		TLM2	CO1	
9	Unit-I Assignment Test	1	20-12-2024		TLM6	CO1	
No. of UNIT	classes required to complete	12	No. of classe	es taken:			

UNIT-II: Tools and Methods

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
10	Proxy Servers and Anonymizers	1	23-12-2024		TLM2	CO2	
11	Phishing, Password Cracking	2	26-12-2024 27-12-2024		TLM7	CO2	
12	Key loggers and Spywares Virus and Worms	1	02-01-2025		TLM2	CO2	
13	Trojan Horses and Backdoors Steganography	1	03-01-2025		TLM2	CO2	
14	Sniffers, Spoofing, session Hijacking Buffer Overflow Identity Theft	2	06-01-2025 08-01-2025		TLM1	CO2	
15	Dos and DDos Attacks SQL Injection Port Scanning	1	09-01-2025		TLM2	CO2	
16	Unit-II Assignment Test	1	10-01-2025		TLM6	CO2	
	f classes required to lete UNIT-2	09	No. of classe	es taken:			

UNIT – III: Cyber Forensics

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
17	Cyber Forensics Definition	1	17-01-2025		TLM2	CO3	
18	Disk Forensics	2	20-01-2025 22-01-2025		TLM1	CO3	
19	Network Forensics	1	23-01-2025		TLM2	CO3	
20	Wireless Forensics	1	24-01-2025		TLM2	CO3	
21	Database Forensics	2	27-01-2025		TLM2	CO3	
22	Malware Forensics	1	29-01-2025		TLM2	CO3	

23	Mobile Forensics	1	30-01-2025	TLM2	CO3	
24	Email Forensics	1	31-01-2025	TLM1	CO3	
25	Unit-III Assignment Test	1	10-02-2025	TLM6	CO3	
No. of classes required to complete UNIT-3		11	No. of classes taken:			

UNIT-IV: Digital Evidence

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
26	Introduction to Digital Evidence and Evidence Collection procedure	2	12-02-2025 13-02-2025		TLM2	CO4	
27	Source of Evidence Operating systems and their Boot Processes	2	14-02-2025 20-02-2025		TLM7	CO4	
28	File System Windows Registry	2	21-02-2025 24-02-2025		TLM1	CO4	
29	Windows Artifacts Browser Artifact	2	27-02-2025 28-02-2025		TLM2	CO4	
30	Linux Artifact	2	03-03-2025 05-03-2025		TLM1	CO4	
31	Digital evidence on the internet	2	06-03-2025 07-03-2025		TLM3	CO4	
32	Impediments to collection of Digital Evidence	1	10-03-2025		TLM1	CO4	
33	Challenges with Digital Evidence	2	12-03-2025 13-03-2025		TLM2	CO4	
34	Unit-IV Assignment Test	1	17-03-2025		TLM6	CO4	
No. of classes required to complete UNIT-4 16 No. of classes taken:							

UNIT-V: Cyber Forensics

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
35	The Present and The Future Forensics Tools	1	19-03-2025		TLM2	CO5	
36	Cyber Forensics suite Imaging and Validation Tools	1	20-03-2025		TLM5	CO5	
37	Tools for Integrity Verification and Hashing	1	21-03-2025		TLM2	CO5	
38	Forensics Tools for Data Recovery Encryption/decryption	1	24-03-2025		TLM5	CO5	
39	Forensics tools for Password Recovery Analyzing network	2	26-03-2025 27-03-2025		TLM1	CO5	
40	Forensics Tools for Email Analysis	1	02-04-2025		TLM2	CO5	
41	Unit -5 Assignment Test.	1	03-04-2025		TLM6	CO5	
	No. of classes required to complete UNIT-5		No. of classe	s taken:			

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Cloud Security, Using AI/ML to Analyze	1	04-04-2025		TLM2	
2.	Cyber Threats	1	05-04-2025		TLM2	

TLM1	Chalk and Talk - 8	TLM6	Assignment / Quiz - 5
TLM2	PPT - 24	TLM7	Seminar / Group Discussion - 3
TLM3	Tutorial -1	TLM8	Lab Demo
TLM4	Demonstration (Lab/Field Visit)	TLM9	Case Study
TLM5	ICT (NPTEL/Swayam Prabha/MOOCS) - 2		

Part - C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

ACADEMIC CALENDAR:

Description	From	To	Weeks		
Commencement of Class Work	02-12-2024				
I Phase of Instructions	02-12-2024	01-02-2025	9W		
I Mid Examinations	03-02-2025	08-02-2025	1W		
II Phase of Instructions	10-02-2025	05-04-2025	8W		
II Mid Examinations	07-04-2025	12-04-2025	1W		
Preparation and Practical's	14-04-2025	19-04-2025	1W		
Semester End Examinations	21-04-2025	03-05-2025	2W		

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- **PEO 1** Pursue a successful career in the area of Information Technology or its allied fields.
- PEO 2 Exhibit sound knowledge in the fundamentals of Information Technology and apply practical experience with programming techniques to solve real world problems.
- PEO 3 Able to demonstrate self-learning, life-long learning and work in teams on multidisciplinary projects.
- PEO 4 Able to understand the professional code of ethics and demonstrate ethical behavior, effective communication and team work and leadership skills in their job.

PROGRAMME OUTCOMES (POs):

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5 Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solution sin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO1** Organize, Analyze and Interpret the data to extract meaningful conclusions.
- **PSO2** Design, Implement and Evaluate a computer-based system to meet desired needs.
- **PSO3** Develop IT application services with the help of different current engineering tools.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Ch.Poorna Venkata Srinivasa Rao	Mr. Ch.Poorna Venkata Srinivasa Rao	Mr. G.Rajendra	Dr.B.Srinivasa Rao
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(An Autonomous Institution since 2010)

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada

L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

HT Lab COURSE HANDOUT

Part-A

PROGRAM: B.Tech, VI-Sem., ME, A/S

ACADEMIC YEAR : 2024-25

COURSE NAME & CODE: Heat Transfer Lab & 20ME62

L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 2

LABORATORY INSTRUCTORS: Dr. V.Dhana Raju/Mr. K.Sai Babu

LABORATORY INCHARGE: Mr.K.Lakshmi Prasad **PREREQUISITE SUBJECT:** Thermodynamics, Heat Transfer

COURSE EDUCATIONAL OBJECTIVES:

The objective of this course is to understand the modes of heat transfer in various heat transfer equipment used for different applications by conducting experiments.

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Estimate the thermal conductivity of different materials and powders. (Applying - L3)

CO2: Estimate the value of heat transfer coefficient in free and forced convection. (Applying - L3)

CO3: Validate the Stefan Boltzmann's constant and estimate emissivity of grey body. (Applying - L3)

CO4: Compare the parallel and counter flow heat exchanger performance characteristics. (Analyzing - L4).

COURSE ARTICULATION MATRIX (Correlation between COs & POs, PSOs):

COs	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	-	-	-	2	2	1	-	1	3	-	1
CO2	3	2	2	3	-	-	-	2	2	1	-	1	3	-	1
соз	2	1	2	3	-	-	-	2	2	1	-	1	3	-	1
CO4	1	3	2	3	-	-	-	2	2	1	-	1	3	-	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

Lab Manuals, Heat and Mass Transfer Data Book, 6th Edition, New Age International Publishers

Part-B

COU	RSE:	B.Tech	BRANCH:	MECH	IANICAL	ENGG.	SECTIO	N: A-Sec	(Tue	sday)		BATCH	ł: 1	A.Y:	2024-	25
		EXP. No	0	1	2	3	4	5		6	7	8	9	10	11	12
S. No	Batch	Date	03 -12 -	10 - 12 -	17 -12 -	24 - 12 -	31 - 12 -	07 - 01 -	21 - 01 .	28 - 02 -	11 -02 -	18- 02 -	25 - 02 -	04 -03 -	11 -03 -	18 -03 -
			24	24	24	24	24	25	25	25	25	25	25	25	25	25
		Regd. No			CY	CLE-I						CYCLE-2				
1 2	H	22761A0301 22761A0302														
3 4	ватсн-і	22761A0304 22761A0305	DEMO	HT-1	НТ-2	НТ-3	HT-4	HT-5		HT-1	HT-2	НТ-3	HT-4	НТ-5		
5	:-I	22761A0307														
6 7 8 9	ватсн-2	22761A0310 22761A0311 22761A0312 22761A0313	DEMO	НТ-2	HT-3	HT-4	HT-5	HT-1		НТ-2	НТ-3	HT-4	HT-5	HT-1	REPETITI	
10	1-2	22761A0314	1												ON/E	IN.
11 12 13 14	ватсн-з	22761A0315 22761A0316 22761A0317 22761A0318 22761A0319	DEMO	НТ-3	HT-4	НТ-5	HT-1	HT-2	REPETITION	НТ-3	НТ-4	HT-5	HT-1	HT-2	REPETITION/Experiment beyond the	INTERNAL LAB
15 16 17	В/	22761A0319 22761A0320 22761A0330							Ž						yond t	LAB TEST
18 19 20	ВАТСН-4	23765A0301 23765A0302 23765A0303	DEMO	HT-4	HT-5	HT-1	HT-2	HT-3		HT-4	HT-5	HT-1	HT-2	HT-3	he Syllabus	
21 22 23 24 25 26 27	ватсн-5	23765A0304 23765A0305 23765A0306 23765A0307 23765A0308 23765A0309 23765A0310	DEMO	НТ-5	HT-1	HT-2	HT-3	HT-4		НТ-5	HT-1	HT-2	НТ-3	HT-4	bus	

LAB INCHARGE

CC	DURSE: B	.Tech	BRANCH:	MECH	ANICAL		SECTIO	N: A-Sec (Sa	aturd	ay)	ВА	TCH: 2	A.Y:2024-25			
		EXP. No	0	1	2	3	4	5		6	7	8	9	10	11	12
S.No	Batch	Date	07- 12 - 24	21 - 12 - 24	28 -12 - 24	04 - 01 - 25	25- 01 - 25	01 - 02 - 25		15 - 02 - 25	22 - 02 - 25	01 -03 - 25	15 - 03 - 25	22 - 03 - 25	29-03 - 25	29-03 - 25
		Regd. No			CY	CLE-I						CYCLE-2				
1	23765A0311	23765A0311														
2	BA'	23765A0312	DEMO	HT-1	HT-2	НТ-3	UT A	HT-5		HT-1	HT-2	НТ-3	HT-4	HT-5		
3	rc	23765A0313	DEMO	П1-1	П1-2	H1-3	HT-4	H1-5		н1-1	H1-2	HT-3	H1-4	HT-5		
4		23765A0314														
5		23765A0315							-							
7	23765A0316															
8	AT	23765A0317	DEMO	HT-2	HT-3	HT-4	HT-5	HT-1		HT-2	HT-3	HT-4	HT-5	HT-1		
10	ватсн-2	23765A0318 23765A0319	-													
11	2	23765A0319 23765A0320	1													=
13		23765A0321							1							INTERNAL
14	₽	23765A0322	1		З НТ-4	HT-5	HT-1	HT-2							콘	另
15	ĀŢ	23765A0323	DEMO	HT-3						НТ-3	HT-4	HT-5	HT-1	HT-2	B	NA
16	ватсн-з	23765A0324													REPETITION	E
17	ώ	23765A0325													T	LAB
18		23765A0326													ဋ	
1 9		23765A0327														TEST
20	ВАТСН-4	23765A0328														ij
21	TC	23765A0329	DEMO	HT-4	HT-5	HT-1	HT-2	HT-3		HT-4	HT-5	HT-1	HT-2	HT-3		
22	Ä	23765A0330	_				-									
23	4	23765A0331	4													
24		23765A0332 23765A0333													-	
25 26	B/		1													
26	TT	23765A0334 23765A0335 23765A0336 23765A0336	HT-5	HT-1	HT-2	HT-3	HT-4		HT-5	HT-1	HT-2	HT-3	HT-4			
28	HC	23765A0336	1													
29	ĊΊ	23765A0337	1													
47			1		l .								l	l	l	

LAKIREDDY BALIREDDY COLLEGE OF ENGINEERING (AUTONOMOUS) MYLAVARAM

DEPARTMENT OF MECHANICAL ENGINEERING HEAT TRANSFER LABORATORY LIST OF EXPERIMENTS

Course	: B Tech	Branch: Mech Sem: VI	Section: A Sec Batch: 2022 A.Y: 2024-25							
S.No	Cycle	Exp Code	Name of the Experiment							
1		DEMONSTRATION	DEMONSTRATION							
2		HT-1	Determination of Thermal Conductivity of Insulating Powder (Asbestos).							
3		HT-2	Determination of Thermal Conductivity of Lagged Pipe (Glass wool).							
4	CYCLE-I	HT-3	Determination of Thermal Conductivity of Metal Bar (Brass).							
5	CICLE-I	HT-4	Study of Transient Heat Conduction (Unsteady Heat Conduction).							
6		HT-5	Test on Tube in Tube Parallel Flow Heat Exchanger.							
7	нт.6									
8		HT-1	Determination of Thermal Conductivity of given Liquid.							
9		HT-2	Determination of Convective Heat Transfer Co-efficient of air in Natural Convection.							
10		HT-3	Determination of Convective Heat Transfer Co-efficient of air in Forced Convection.							
11	CYCLE-II	HT-4	Heat Pipe Demonstration							
12		HT-5	Test on Tube in Tube Counter Flow Heat Exchanger.							
13		HT-6 (Content Beyond the Syllabus)	Test on Pin-Fin Apparatus.							
14		REPETITION	REPETITION.							
15		INTERNAL	INTERNAL LAB TEST.							

LAB INCHARGE

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

Part - C EVALUATION PROCESS:

Evaluation Task	COs	Marks
Day to Day Evaluation	1	A=5
Record	2	B=5
Internal Examination	3	C=5
Cumulative Internal Marks : A+B+C	1,2,3	A+B+C=15
Semester End Examinations	1,2,3	D=35
Total Marks: A+B+C+D	1,2,3	50

PROGRAMME OUTCOMES (POs) & PROGRAM SPECIFIC OUTCOMES:

	ANNIE OUTCOMES (1 08) & TROGRAM SI ECHTE OUTCOMES.
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex
	engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work,
	as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of
	technological change.
PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of
	engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to
	transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	нор

AFYLAVAR DATE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.A Nageswara Rao, Mrs.B.Kamala Priya, Ms.P. Mounika

Course Name & Code : CAD/CAM LAB & 20ME63 Regulation:R20

L-T-P Structure : 0-0-3 Credits: 1.5
Program/Sem/Sec : B.Tech/VI/B A.Y.: 2024-25

PREREQUISITE: Computer Aided Machine Drawing, CAD/CAM

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to design, assemble, analyze and manufacture engineering components using computer aided tools.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Design and assemble the mechanical components using CAD Software. (Analyzing - L4)
CO2	Apply finite element analysis for components using analysis software. (Applying - L3)
	Develop NC code for different part profiles and perform machining on CNC Machine tools.
CO3	(Applying - L3)
CO4	Simulate part program to perform various operations on CNC machine. (Applying - L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1			2										2	
CO2	1	1	2	2	1							1		3	
CO3	1	1	1		1							1		3	
CO4		2		1										2	
1 - Low						2 -Medium				3 - High					

 $\textbf{SOFTWARE PACKAGES:} \ \mathsf{CATIA} \ \mathsf{/ANSYS} \ \mathsf{/} \ \mathsf{Iron} \ \mathsf{CAD} \ \mathsf{etc}.$

REFERENCES:

Lab Manuals

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

Schedule of Experiments (Section - A)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B1	22761A0301-331, 23765A0301-329	58

S. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to CAD/CAM Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	3	04-12-2024		TLM4	-		
Cycle	e-I							
2.	Design and Assembly Modeling of Knuckle joint using CAD software	3	11-12-2024		TLM4			
3.	Design and Assembly Modeling of Universal Coupling using CAD software	3	18-12-2024		TLM4			
4.	Design and Assembly Modeling of Piston, Connecting Rod parts using CAD software	3	08-01-2025		TLM4			
5.	Analysis of trusses using ANSYS	3	22-01-2025		TLM4			
6.	Analysis of Beams using ANSYS	3	29-01-2025		TLM4			
7.	Analysis of 3D solids using ANSYS	3	12-02-2025		TLM4			
8.	Steady state heat transfer analysis using ANSYS	3	19-02-2025		TLM4			
Cycle	-II							
9.	Estimation of natural frequencies and mode shapes for simple problems using ANSYS	3	05-03-2025		TLM4			
10.	Development of NC code using CAM packages	3	12-03-2025		TLM4			
11.	Machining of simple components on CNC Turning by transferring NC Code from CAM package	3	19-03-2025		TLM4			
12.	Additional Experiments: Machining of Simple		26-03-2025		TLM4			
13.	Robot programming, simulation, and execution	3	26-03-2025		TLM4			
14.	Revision	3	02-04-2025		TLM4			
16.	Internal Exam	3	05-04-2024		TLM4			
No. of classes required to complete: No. of classes taken:								

Teaching	Teaching Learning Methods										
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)								
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)								
TLM3	Tutorial	TLM6	Group Discussion/Project								

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
$Record = \mathbf{B}$	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination: $A + B + C = 15$	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.						
FEUI	Mathematics, Science and Mechanical Engineering.						
DEO 2	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.						
PEU Z	become successful in multidisciplinary activities.						
	To develop inquisitiveness towards good communication and lifelong learning.						

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science,
PO 1	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
	Problem analysis: Identify, formulate, review research literature, and analyze
PO 2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO 3	problems and design system components or processes that meet the specified
FU 3	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge
PO 4	and research methods including design of experiments, analysis and
PU 4	interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources,
PO 5	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and

	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
FU 9	member or leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities
PO 10	with the engineering community and with society at large, such as, being able to
FU 10	comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding
PO 11	of the engineering and management principles and apply these to one's own
1011	work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
	Life-long learning: Recognize the need for, and have the preparation and ability
PO 12	to engage in independent and life-long learning in the broadest context of
	technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
	To apply the principles of manufacturing technology, scientific management
PSO 2	towards improvement of quality and optimization of engineering systems in the
	design, analysis and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty				
Signature	Mr.A Nageswara Rao, Mrs.B.Kamala Priya, Ms. P Mounika	Mr.A.Nageswara Rao	Mr.J.Subba Reddy	Dr.M.B.S.Sreekara Reddy

REDDY COLLEGE OF THE PROPERTY OF THE PROPERTY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr.Ch.Siva Sankara Babu, Mr.K. V. Viswanadh

Course Name & Code : ROBOTICS AND SIMULATION LAB & 20ME64 Regulation: R20

L-T-P Structure : 1-0-2 Credits: 2

Program/Sem/Sec : B.Tech/VI/A A.Y.: 2024-25

PREREQUISITE: Engineering Mechanics, Theory of Machines, Robotics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to demonstrate and analysis of various types of robots.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Simulate forward and inverse kinematic movements of a robot using Robo Analyzer and MATLAB. (Understanding - L2)
CO2	Perform the demo operations on SCARA and PUMA using Robo analyzer software. (Applying - L3)
соз	Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and Unloading. (Applying - L3)
CO4	Develop Robot Programmes to use to control commands. (Analyzing - L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	1			3							2		3	
CO2	1	2	2		3							2		3	
CO3	3	3		2	3							3			3
CO4	1	1			3							2			3
1 - Low			2 -Medium				3 - High								

SOFTWARE PACKAGES: ARISTO ROBOT, C Prog, Robo Analyzer, MAT Lab **REFERENCES:**

➤ Lab Manuals

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

Schedule of Experiments (Section - B: B1 Batch): Saturday

S.No	Batches	es Regd. Nos	
1	Batch B1	22761A0301 - 22765A0320, 330, 23765A0301 - 23765A311	28

S. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	3	07-12-2024		TLM4	
		Cycle	-I		'	
2.	Study the anatomy of robots	3	21-12-2024		TLM4	
3.	Analysis of robot configuration and Simulation of Robot with 2 DOF using Robo Analyzer.	3	28-12-2024		TLM4	
4.	Analysis of robot configuration and Simulation of Robot with 6 DOF using Robo Analyzer.	3	04-01-2025		TLM4	
5.	D-H parametric representation of various robotic arms using Robo Analyzer	3	18-01-2025		TLM4	
6.	Forward and Inverse Kinematics Analysis of Robot using Robo Analyzer	3	25-01-2025		TLM4	
7.	Simulation of SCARA, PUMA using Robo Aanlyzer	3	01-02-2025		TLM4	
	I Mid Exan		025 to 08-02-2	025		
		Cycle	·II		1	
8.	Introduction to IGUS Software	3	15-02-2025		TLM4	
9.	Introduction to IGUS Software	3	22-02-2025		TLM4	
10.	Program for commands like a line command, circle command, Point to Point (PTP) command	3	01-03-2025		TLM4	
11.	Palletizing	3	15-03-2025		TLM4	
12. Loading / Unloading		3	22-03-2025		TLM4	
13.	Pending work	3	29-03-2025		TLM4	
14.	Internal Exam	3	05-04-2025		TLM4	
		ns:07-04-20	025 to 12-04-2			
No. o	f classes required to complete: 14			No. of classe	es taken:	

Schedule of Experiments (Section - B: B2 Batch): Tuesday

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B2	23765A0312-23765A0338	27

S. No.	1 Classe		Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	3	03-12-2024		TLM4	
		Cycle-I		1		
2.	Study the anatomy of robots.	3	10-12-2024		TLM4	
3.	Analysis of robot configuration and Simulation of Robot with 2 Dof using Robo Analyzer.	3	17-12-2024		TLM4	
4.	Analysis of robot configuration and Simulation of Robot with 6 Dof using Robo Analyzer.	3	24-12-2024		TLM4	
5.	D-H parametric representation of various robotic arms using Robo Analyzer	3	31-12-2024		TLM4	
6.	Forward Kinematics Analysis of Robot using Robo Analyzer	3	07-01-2025		TLM4	
7.	Inverse Kinematics Analysis of Robot using Robo Analyzer	3	21-01-2025		TLM4	
	I Mid Exams	: 03-02-202	5 to 08-02-202	5		
		Cycle-II		1		
8.	Simulation of SCARA, PUMA using Robo Aanlyzer	3	28-01-2025		TLM4	
9.	Introduction to IGUS Software	3	11-02-2025		TLM4	
10.	Program for commands like a line command, circle command	3	18-02-2025		TLM4	
11.	Program for Point to Point (PTP) command	3	25-02-2025		TLM4	
12.	Palletizing, Loading / Unloading	3	04-03-2025		TLM4	
13.	Pending work	3	11-03-2025		TLM4	
14.	Pending work	3	18-03-2025		TLM4	
15.	Pending work	3	25-03-2025		TLM4	
16.	Internal Exam	3	01-04-2025		TLM4	
17.		ns:07-04-20	025 to 12-04-2			
No. o	of classes required to complete: 14			No. of clas	ses taken:	

Teaching	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)							
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)							
TLM3 Tutorial TLM			Group Discussion/Project							

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
$Record = \mathbf{B}$	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination: $A + B + C = 15$	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	$\mathbf{D} = 35$
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

DEO 1	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.						
FEO 1	Mathematics, Science and Mechanical Engineering.						
DEO 3	To inculcate strong ethical values and leadership qualities for graduates to become						
PEU Z	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.						
	To develop inquisitiveness towards good communication and lifelong learning.						

PEO 3	To develop inquisitiveness towards good communication and lifelong learning.							
PROGR	AMME OUTCOMES (POs):							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.							
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.							
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.							
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Signature				
Name of the Faculty	Dr.Siva Sankara Babu Ch / Mr. AK. V. Viswanadh	Mr. J. Subba Reddy	Mr. J. Subba Reddy	Dr.M.B.S.Sreekara Reddy
	Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

Credits: 02

COURSE HANDOUT PART-A

Name of Course Instructor: Mrs. K. Samaikya
Course Name & Code: Soft Skills & 20HSS1

L-T-P Structure : 1-0-2

Program/Sem/Sec : B. Tech- VI SEM MECH-A

Academic Year : 2024-25

PREREQUISITE : NIL

Course Educational Objectives:

The Soft Skills Laboratory course equips students with required behavioral, interpersonal & Intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self-confidence, esteem, and acceptability in professional circles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

Γ		· · · · · · · · · · · · · · · · · · ·	1.0
	CO1	To Develop self-awareness and personality traits for professional growth.	L2
		Work effectively in multi-disciplinary and heterogeneous teams through knowledge of	L3
	CO2	teamwork, Inter-personal relationships, conflict management and leadership quality.	
		Communicate through verbal/oral communication with good listening skills and	L3
	CO3	empathy.	
		Apply skills required to qualify in recruitment tests, Interviews & other professional	L3
	CO4	assignments.	

COURSE ARTICULATION MATRIX (Correlation between COs & POs)

	Programme Outcomes											
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
PO's →										_		
CO1.					2			3	3	3		2
CO2.		2			2			3	3	3		3
CO3.					2			3	3	3		3
CO4.					2			3	3	3		
1 = Slight	t (Low) 2= Moderate (Medium) 3 = Substantial											
				(H	igh)							

List of Activities:

1.Personality Development Skills

Role of language in Personality – How language reflects, impacts Personality – Using gender- neutral language in MNCs – being Culturally-Sensitive-Personality Traits - Grooming & Dress code

Activities: Group Discussion/Role play/Presentations (authentic materials: Newspapers, pamphlets and News Clippings)

2.Impactful Communication

Activities: Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/ Elocution on Interpretation of given quotes/ Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

3. Professional Skills:

Career Planning- job vs. career- goal setting- SWOT Analysis-Time management – self-management – stress-management.

Activities: SWOT analysis of the self/Goal Setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

REFERENCES:

- 1. Edward Holffman, "Ace the Corporate Personality", McGraw Hill,2001
- 2. Adrian Furnham, Personality and Intelligence at Work, Psyc 2. hology Press, 2008.
- 3. M.Ashraf Rizvi, "Effective Technical Communication", 1 st edition, Tata cGrawHill, 2005.
- 4. Ace of Soft skills Gopalaswamy Ramesh, Pearson Education India, 2018
- 5. Soft Skills for the Workplace, Good heart Willcox Publisher · 2020.
- 6. How to Win Friends and Influence People, Dale Carnegie · 2020

Software: Walden InfoTech

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	HOD Sign
1.	Activity-1: Role of language in Personality- How language reflects, impacts Personality/ Using gender Neutral language in MNCs – being Culturally- Sensitive	1+2	05/12/2024		
2.	Personality Traits - Grooming & Dress code & Role-play	1+2	12/12/2024		
3.	Group Discussion	1+2	19/12/2024		
4.	Group Discussion	1+2	26/12/2024		
5.	Presentations	1+2	02/01/2024		
6.	Activity-2: Impactful Communication Extempore - Story Telling	1+2	09/01/2025		
7.	Extempore -Group Discussion	1+2	23/01/2025		
8.	Elocution on Interpretation of given quotes Critical Appreciation and Textual Analysis	1+2	30/01/2025		
9.	Writing Reviews on short story /videos /book/Social Media profiling/ Pronunciation Practice	1+2	13/02/2025		
10.	Activity-3: Professional Skills: Career Planning- job vs. career- goal setting	1+2	20/02/2025		
11.	SWOT Analysis	1+2	27/02/2025		
12.	Time management – Self- management – stress-management.	1+2	06/03/2025		
13.	Presentation/Writing Report/Listening exercises	1+2	13/03/2025		
14.	Effective Resume-Writing and presentation	1+2	20/03/2025		
15.	Interview Skills: Mock interviews/Video samples.	1+2	27/3/2025		
16.	Interview Skills: Mock interviews/Video samples.	1+2	03/04/2025		

No. of classes required to complete Syllabus :48

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty				
Signature	K. Samaikya	Dr Padma Venkat	Dr Padma Venkat	Dr A Rami Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(An Autonomous Institution since 2010)

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT PART-A

Name of Course Instructor : Dr. P. Ravindra Kumar (T507)

Course Name & Code : 20ME17

L-T-P Structure : 3-1-0 Credits : 3 Program/Sem/Sec : B.Tech., Mech Engg., VI-Sem., Section-B A.Y: 2024-25

PRE-REQUISITE: Thermodynamics, Applied Thermodynamics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To learn the physical mechanisms on modes of heat transfer, differential equations in heat transfer applications and the significance of Non-Dimensional Numbers.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to

CO1	Understand the basic heat transfer principles and their practical relevance in Planes,
	Cylinders and Spherical components. (Understanding - L2).
CO2	Analyze steady and unsteady state heat transfer concepts and fins. (Analyzing – L4).
CO3	Formulate the expressions to solve free and forced convection problems related to external
	and internal flows. (Applying -L3).
CO4	Apply the concepts of heat transfer in boiling, condensation, and radiation thermal systems.
	(Applying -L3).
CO5	Design the simple heat exchanger for engineering applications using the data handbook.
	(Analyzing – L4).

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	2	1	-	1
CO2	2	3	2	3	1	-	1	-	-	-	-	2	2	-	-
CO3	3	2	3	2	-	-	-	-	-	-	-	2	3	-	-
CO4	3	2	2	1	-	-	-	-	-	-	-	2	3	-	2
CO5	2	3	3	3	-	-	-	3	-	-	-	3	2	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXTBOOKS

- **T1.** R.C.Sachdeva Fundamentals of Engineering Heat and Mass Transfer -New Age Science Publishers, 3nd Edition, 2009.
- **T2.** Yunus. A. Cengel, Heat & Mass Transfer-A Practical Approach Tata McGraw Hill, 4 edition, 2012.
- T3. P.Holman, Heat transfer Tata McGraw-Hill, 9th Edition, 2010

REFERENCE BOOKS:

1	M.NecatiOzisik, Heat Transfer- A basic Approach, 4thEdition, McGraw-Hill book
	company, 1985.
2	P.K.Nag, Heat and Mass Transfer- TMH 2ndEdition, 2007.
3	P.S.Ghoshdastidar, Heat Transfer - Oxford Higher Education 6th Edition 2011.
4	C.P.Kothandaraman and Subramanian, Heat and Mass Transfer, New Age International
	Publications 7thEdition 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: INTRODUCTION, ONE- DIMENSIONAL STEADY STATE CONDUCTION

	: INTRODUCTION, ONE-DIMEN	No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly
1.	Introduction to Course and Course Outcomes (COs) and POs articulation matrix.	1	02-12-2024		TLM1 TLM2	
2.	Introduction of five Units importance	1	04-12-2024		TLM1 TLM2	
3.	Introduction to heat transfer and its applications, Basic Modes of Heat Transfer	1	05-12-2024		TLM1, TLM2 TLM5	
4.	Numerical problems on Modes of Heat Transfer - Tutorial -I	1	07-12-2024		TLM3	
5.	Basic laws of Heat Transfer-Steady, Unsteady and Periodic Heat Transfer	1	07-12-2024		TLM1, TLM4	
6.	General heat conduction equation in Cartesian coordinate system and its simplifications.	1	09-12-2024		TLM1	
7.	Fourier's law of heat conduction; Thermal conductivity.	1	11-12-2024		TLM1, TLM2	
8.	Numerical problems on plane wall, composite plane wall.	1	12-12-2024		TLM1	
9.	General heat conduction equation in cylindrical coordinate system and its simplifications.	1	16-12-2024		TLM1	
10.	Numerical problems on cylinder and composite cylinder.	1	18-12-2024		TLM1	
11.	General heat conduction equation in spherical coordinate system and its simplifications.	1	19-12-2024		TLM1, TLM2	
12.	Numerical problems on sphere and composite sphere	1	21-12-2024		TLM1	
13.	Heat conduction through plane wall and cylinder with constant thermal conductivity— Numerical Problems. Tutorial -2	1	21-12-2024		TLM3	
14.	Electrical analogy, thermal resistance, and overall heat transfer coefficient.	1	23-12-2024		TLM1, TLM2 TLM5	
15.	Numerical Problems with thermal resistance and overall heat transfer coefficient	1	26-12-2024		TLM1, TLM2	
16.	Heat transfer through composite slab and cylinder, Numerical Problems.	1	28-12-2024		TLM4	
17.	Critical radius of insulation for cylinder, Sphere and Applications. Tutorial-3	1	28-12-2024		TLM3 TLM4	
18.	Numerical Problems on critical radius of insulation	1	30-12-2024		TLM1 TLM2	
No. o	f classes required to complete UNI	T-I: 18		No. of class	ses taken:	

UNIT-II: ONE DIMENSIONAL STEADY AND TRANSIENT STATE HEAT CONDUCTION:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Derivation on heat flow through a plane wall, cylinder with variable thermal conductivity.	1	02-01-2025		TLM1	
2.	Numerical problems on variable thermal conductivity – plane wall and cylinder - Tutorial-4	1	04-01-2025		TLM3	

3.	Derivation on Uniform Internal heat generation in slabs	1	04-01-2025	TLM1
4.	Numerical Problems on Uniform Internal heat generation in slabs.	1	06-01-2025	TLM1
5.	Numerical Problems on Uniform Internal heat generation in cylinders.	1	08-01-2025	TLM1, TLM2
6.	Extended surfaces - Classification	1	09-01-2025	TLM1, TLM2 TLM4
7.	Thermal analysis of long Fins	1	18-01-2025	TLM1, TLM4
8.	Thermal analysis of short fins with insulated tip.	1	18-01-2025	TLM1, TLM2
9.	Numerical Problems on long and short fins.	1	20-01-2025	TLM1
10.	Fin efficiency and effectiveness	1	22-01-2025	TLM1, TLM4
11.	Problems on Fin efficiency and effectiveness	1	23-01-2025	TLM1
12.	Systems with negligible internal Resistance (Lumped Heat Analysis), Significance of Biot and Fourier Numbers	1	25-01-2025	TLM1, TLM2 TLM4
13.	Numerical Problems, Heisler chart solutions Tutorial-5	1	25-01-2025	TLM3
14.	Basics of convective (Forced and Natural) heat transfer and Applications. Dimensional analysis and Buckingham Pi theorem applied to Forced Convection.	1	27-01-2025	TLM1, TLM2
15.	Significance of Non-Dimensional Numbers.	1	29-01-2025	TLM3
16.	Dimensional analysis and Buckingham Pi theorem applied to Natural Convection.	1	30-01-2025	TLM1
17.	Derivation of Buckingham Pi theorem applied to forced convection Tutorial 6	1	01-02-2025	TLM3
18.	Revision of the above two units.	1	01-02-2025	TLM1
No. o	of classes required to complete UN	IT-II: 18	•	No. of classes taken:

UNIT-III: CONVECTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Forced Convection heat transfer – Planes and cylinders, pipes	1	10-02-2025		TLM1, TLM2, TLM4	
2.	Numerical Problems on boundary layers.	1	12-02-2025		TLM1	
3.	Forced convection analysis in external flows (Flow over a Flat Plate): Laminar and turbulent flows.	1	13-02-2025		TLM1, TLM2	
4.	Numerical Problems on flow through pipes. Tutorial -7	1	15-02-2025		TLM3	
5.	Forced convection analysis in internal flows (Flow through circular pipe): Laminar and turbulent flows.	1	15-02-2025		TLM1, TLM2	
6.	Numerical Problems on Forced Convection, Reynolds Colburn	1	17-02-2025		TLM1, TLM2	

	Analogy.				
	Natural convection: heat transfer in			TLM1,	
7.	vertical and horizontal surfaces.	1	19-02-2025	TLM2	
				TLM4	
	Development of Hydrodynamic and			TLM1,	
8.	thermal boundary layer along	1	20-02-2025	TLM2	
	horizontal plate,				
9.	Forced convection in Vertical and	1	22-02-2025	TLM1	
9.	horizontal plates	1	22-02-2023		
10.	Numerical Problems Tutorial -8	1	22-02-2025	TLM3	
11.	Numerical Problems	1	24-02-2025	TLM1	
No. o	f classes required to complete UN	IT-III:11		No. of classes taken:	

UNIT-IV: BOILING AND CONDENSATION, THERMAL RADIATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to boiling heat transfer and applications, Pool Boiling, Different regimes of boiling; Critical heat flux.	1	26-02-2025		TLM1, TLM2	
2.	Numerical problems with nucleating boiling, Critical heat flux conditions.	1	27-02-2025		TLM1, TLM2 TLM5	
3.	Condensation: Film wise and drop wise condensation, Laminar film wise condensation on Vertical plate	1	01-03-2025		TLM1, TLM2	
4.	Numerical Problems - Tutorial-9	1	01-03-2025		TLM3	
5.	Introduction and applications of Thermal Radiation, Emissive Power, Absorption, Reflection and Transmission and	1	24-03-2025		TLM1, TLM2, TLM4	
6.	Definitions related to radiation, Concept of black and non-black bodies, Laws of black body radiation	1	26-03-2025		TLM1, TLM2, TLM4	
7.	Emissivity, Kirchhoff's law, Shape Factors	1	27-03-2025		TLM2, TLM4	
8.	Radiation heat exchange between two black isothermal surfaces, Nonblack infinite parallel plates;	2	29-03-2025		TLM1,	
9.	Numerical Problems - Tutorial-12	1	29-03-2025		TLM3	
No. o	of classes required to complete UNI	T-IV:10		No. of clas	ses taken:	

UNIT-V: HEAT EXCHANGERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction-Classification of heat exchangers - Flow arrangement, Temperature distribution,	1	03-03-2025		TLM1, TLM2 TLM6	
2.	Applications of Heat Exchangers	1	05-03-2025		TLM1, TLM2	
3.	Overall heat transfer coefficient- Fouling factor	1	06-03-2025		TLM1, TLM2	
4.	Derivation on LMTD method of Heat exchanger analysis-	1	10-03-2025		TLM1, TLM2 TLM4	
5.	Parallel flow, Numerical Problems	1	12-03-2025		TLM1,	

6.	Derivation on LMTD method of Heat exchanger analysis- Counter flow,	1	13-03-2025	TLM1, TLM2, TLM4
7.	Numerical Problems – Counter flow HE – Tutorial 10	1	15-03-2025	TLM3
8.	Correction factor for LMTD for use with Multi pass and Cross flow Heat Exchangers	1	15-03-2025	TLM1, TLM2
9.	Derivation - Effectiveness - NTU method of Heat Exchanger Analysis – parallel flow arrangement - Applications	1	17-03-2025	TLM1, TLM2, TLM4
10.	Effectiveness - NTU method of Heat Exchanger Analysis – parallel flow arrangement problems	1	19-03-2025	TLM1, TLM2
11.	Counter flow - Effectiveness - NTU method of Heat Exchanger Analysis-Applications of Heat Exchangers	1	20-03-2025	TLM1, TLM4 TLM5
12.	Cross flow - Effectiveness - NTU method of Heat Exchanger Analysis- Applications of Heat Exchangers-	1	22-03-2025	TLM1
13.	Tutorial-11	1	22-03-2025	TLM3
No. o	of classes required to complete UNI	T-V: 13		No. of classes taken:

S.No.	Revision and recap of the Contents	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	First two and half units	1	31-03-2025		TLM5,6	
2.	Second two and half units	1	02-04-2025		TLM5,6	

S.No.	Content Beyond the Syllabus	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
3.	PCB Cooling	1	03-04-2025		TLM2	
4.	Unsteady state thermal analysis	1	05-04-2025		TLM2	

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

Evaluation Process (R20 Regulations):

availation 1 1000pp (1120 110guitations).	
Evaluation Task	Marks
Assignment- Cycle I	A1=5
I-Mid Examination (Units-I, II half of III unit)	M1=15
I-Quiz Examination (Units-I, II half of III unit)	Q1=10
Assignment- Cycle - II	A3=5
II-Mid Examination (half of Unit-III, IV & V)	M2=15
II-Quiz Examination (half of Unit-III, IV & V)	Q2=10
Mid Marks =80% of Max (M1, M2) +20% of Min (M1, M2)	M=15
Quiz Marks =80% of Max (Q1, Q2) +20% of Min (Q1, Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering problems and							
	design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and the cultural, societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.							
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations							
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice							
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.							
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.							
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.							
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
PO 11	Project management and finance: Demonstrate knowledge and understanding of the							
	engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							
	, , , , , , , , , , , , , , , , , , ,							

PROGRAMME SPECIFC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.									
PSO 2	To apply the principles of manufacturing technology, scientific management towards									
	improvement of quality and optimization of engineering systems in the design, analysis and									
	manufacturability of products.									
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of									
	various systems relating to transmission of motion and power, conservation of energy and other									
	process equipment.									

Course Instructor	Course Coordinator	Module Coordinator	HOD
(Dr.P.Ravindra Kumar)	(Dr.P.Ravindra Kumar)	(Dr.P.Vijay Kumar)	(Dr.M.B.S.S.Reddy)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.K.Venkateswara Reddy, Assistant Professor

Course Name & Code : CAD/CAM & 20ME18 Regulation: R20

L-T-P Structure : **3-0-0 Credits**: 03

Program/Sem/Sec : B.Tech VI Sem (B) A.Y.: 2024-2025

PREREQUISITE: Design of Machine Elements -I, Machine Tools and Metrology

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to familiarize the principles of geometric modeling, numerical control and part programming.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Comprehend the principles of CAD/CAM for design and manufacturing (Understanding -L2)
CO2	Formulate mathematical equations for geometrical entities like curves, surface, and solids. (Applying -L3)
CO3	Write the program for part profiles to accomplish numerical control machining. (Applying -L3)
CO4	Discuss the codes for different parts using GT and apply in automated manufacturing systems. (Understanding -L2)
CO5	Contrast CAQC techniques and comprehend the applications of Computer Integrated Manufacturing. (Understanding -L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	1			2										2	
CO2	1	1	2	2	1							1		3	
CO3	1	1	1		1							1		3	
CO4		2		1										2	
CO5	1				1									3	
1 - Low				2	-Medi	ium			3	- High					

TEXTBOOKS:

- T1 P.N Rao ,CAD/CAM Principle and applications, Tata McGraw Hill Education Private Ltd, New Delhi,8th edition 2013.
- Ibrahim Zeid, Mastering CAD/CAM, TATA McGraw-Hill publishing CO.Ltd, NewDelhi **T2** 2011.

REFERENCE BOOKS:

R1	Mikel P.Groover and Emory W.Zimmers, CAD/CAM-Prentice Hall of India Private Ltd. New									
	Delhi, 20 th edition, May 2010.									
R2	P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM, New Age International									
	Publishers,3 rd edition 2010.									
R3	Mikel P.Groover, Automaiton, Production Systems and Computer Integrated Manufacturing,									
	Prentice Hall of India Private Ltd. New Delhi, 3rd edition, May 2008.									
R4	Ibrahim Zeid and R. Sivasubramanian, CAD/CAM theory and practice, Tata McGraw Hill									
	Publishing Co. Ltd,New Delhi 2009.									
R5	Tien-Chienchang, Richard A.Wysk and HSU-Pin (Ben) Wang, —Computer Aided									
	Manufacturing, 3 rd Edition, 2006									

<u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN): Section - A

UNIT-I: FUNDAMENTALS OF CAD, COMPUTER GRAPHICS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to CAD/CAM	1	03-12-2024		TLM1/TLM2	
2.	Product Cycle Revised with CAD/CAM	1	04-12-2024		TLM1/TLM2	
3.	Reasons for implementing CAD	1	05-12-2024		TLM1/TLM2	
4.	Creating Manufacturing database & Benefits of CAD	1	07-12-2024		TLM1/TLM2	
5.	Computer Graphics- Introduction	1	10-12-2024		TLM1/TLM2	
6.	Database structure	1	11-12-2024		TLM1/TLM2	
7.	Functions of a graphics package	1	12-12-2024		TLM1/TLM2	
8.	Raster scan graphics	1	14-12-2024		TLM1/TLM2	
9.	Concatenated transformations.	1	17-12-2024		TLM1/TLM2	
10.	Translation, scaling,	1	18-12-2024		TLM1/TLM2	
11.	Reflection, rotation	1	19-12-2024		TLM1/TLM2	
12.	Problems on Transformations	1	21-12-2024		TLM1/TLM2	
No.	of classes required to complete U		No. of class	es taken:		

UNIT-II: GEOMETRIC MODELING: REPRESENTATION OF CURVES, REPRESENTATION OF SURFACES AND SOLIDS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
13.	Geometric Modelling: Introduction	1	24-12-2024		TLM1/TLM2	
14.	Wireframe Modelling: Entities wireframe models	1	26-12-2024		TLM1/TLM2	
15.	Parametric representation of analytical curves	1	28-12-2024		TLM1/TLM2	
16.	Parametric representation of	1	31-12-2024		TLM1/TLM2	

No. o	No. of classes required to complete UNIT-II: 12			No. of classe	s taken:	
24.	CSG	1	21-01-2025		TLM1/TLM2	
23.	B-Rep	1	18-01-2025		TLM1/TLM2	
22.	Solid modelling	1	11-01-2025		TLM1/TLM2	
21.	Surface representation, Entities	1	09-01-2025		TLM1/TLM2	
20.	Problems	1	08-01-2025		TLM1/TLM2	
19.	B-spline curves, Characteristics of Curves	1	07-01-2025		TLM1/TLM2	
18.	Bezier curves	1	04-01-2025		TLM1/TLM2	
17.	Hermite cubic spline curve	1	02-01-2025		TLM1/TLM2	
	analytical curves					

UNIT-III: COMPUTER NUMERICAL CONTROL, PART PROGRAMMING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
25.	Numerical control: Introduction	1	22-01-2025		TLM1/TLM2	
26.	NC Modes, NC elements	1	23-01-2025		TLM1/TLM2	
27.	N C Coordinate systems	1	25-01-2025		TLM1/TLM2	
28.	Structure of CNC machine tools	1	28-01-2025		TLM1/TLM2	
29.	Spindle design, spindle drives	1	29-01-2025		TLM1/TLM2	
30.	Feed drives, actuation systems	1	30-01-2025		TLM1/TLM2	
31.	CNC Part programming	1	01-02-2025		TLM1/TLM2	
32.	fundamentals	1	11-02-2025		TLM1/TLM2	
33.	Manual part programming	1	12-02-2025		TLM1/TLM2	
34.	Computer Aided part programming	1	13-02-2025		TLM1/TLM2	
35.	Part programming examples	1	15-02-2025		TLM1/TLM2	
No. of classes required to complete UNIT-III: 11 No. of classes taken:					es taken:	

UNIT-IV: GROUP TECHNOLOGY, FLEXIBLE MANUFACTURING SYSTEM

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Group Technology	1	18-02-2025		TLM1/TLM2	
37.	Coding and classification schemes- OPITZ	1	19-02-2025		TLM1/TLM2	
38.	MICLASS, example for coding	1	20-02-2025		TLM1/TLM2	
39.	CODE Systems, examples for coding	1	22-02-2025		TLM1/TLM2	
40.	Production Flow Analysis	1	22-02-2025		TLM1/TLM2	
41.	Advantages and limitations	1	25-02-2025		TLM1/TLM2	
42.	GT Machine cells, Benefits of GT	1	27-02-2025		TLM1/TLM2	
43.	CAPP- Retrieval and Generative	1	01-03-2025		TLM1/TLM2	
44.	Flexible Manufacturing System: Introduction	1	04-03-2025		TLM1/TLM2	
45.	FMS equipment, FMS layouts, benefits	1	05-03-2025		TLM1/TLM2	
46.	FMS Planning and implementation	1	06-03-2025		TLM1/TLM2	
47.	FMS Planning and implementation	1	08-03-2025		TLM1/TLM2	

UNIT-V: COMPUTER AIDED QUALITY CONTROL, COMPUTER INTEGRATEDMANUFACTURING SYSTEMS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
48.	CAQC: Introduction, The computers in QC	1	11-03-2025		TLM1/TLM2	
49.	Contact inspection methods	1	12-03-2025		TLM1/TLM2	
50.	Non-Contact inspection methods: Optical	1	13-03-2025		TLM1/TLM2	
51.	Non-Contact inspection methods: non optical	1	15-03-2025		TLM1/TLM2	
52.	Computer aided testing,	1	18-03-2025		TLM1/TLM2	
53.	CAQC with CAD/CAM	1	19-03-2025		TLM1/TLM2	
54.	CAQC with CAD/CAM	1	20-03-2025		TLM1/TLM2	
55.	CIM Introduction	1	22-03-2025		TLM1/TLM2	
56.	CIM integration, Implementation	1	25-03-2025		TLM1/TLM2	
57.	Benefits of CIM	1	26-03-2025		TLM1/TLM2	
58.	Lean manufacturing	1	27-03-2025		TLM1/TLM2	
59.	Lean manufacturing	1	29-03-2025		TLM1/TLM2	
No. of classes required to complete UNIT-V: 12 No. of classes taken:						

Content Beyond Syllabus

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
60.	3D printing	1	01-04-2025		TLM1/TLM2	
61.	3D features	1	02-04-2025		TLM1/TLM2	
62.	Generative design	1	03-04-2025		TLM1/TLM2	
63.	Additive manufacturing optimization	1	05-04-2025		TLM1/TLM2	

Teaching	Teaching Learning Methods						
TLM1Chalk and TalkTLM4Demonstration (Lab/Field Visit)							
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10

Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.
	knowledge in Mathematics, Science and Mechanical Engineering.
DEO 3	To inculcate strong ethical values and leadership qualities for graduates to
I EU 2	become successful in multidisciplinary activities.
PEO 3	To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science,
PO 1	engineering fundamentals, and an engineering specialization to the solution
	of complex engineering problems.
	Problem analysis : Identify, formulate, review research literature, and
PO 2	analyse complex engineering problems reaching substantiated conclusions
PUZ	using first principles of mathematics, natural sciences, and engineering
	sciences.
	Design/development of solutions : Design solutions for complex engineering
PO 3	problems and design system components or processes that meet the specified
FUS	needs with appropriate consideration for the public health and safety, and
	the cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based
PO 4	knowledge and research methods including design of experiments, analysis
104	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques,
PO 5	resources, and modern engineering and IT tools including prediction and
103	modelling to complex engineering activities with an understanding of the
	limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability : Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and
	demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities
PO 10	with the engineering community and with society at large, such as, being
	able to comprehend and write effective reports and design documentation,
	make effective presentations, and give and receive clear instructions.
	Project management and finance : Demonstrate knowledge and
PO 11	understanding of the engineering and management principles and apply
	these to one's own work, as a member and leader in a team, to manage

	projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for, and have the preparation and
PO 12	ability to engage in independent and life-long learning in the broadest context
	of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various				
1301	thermal systems.				
	To apply the principles of manufacturing technology, scientific management				
PSO 2	towards improvement of quality and optimization of engineering systems in				
	the design, analysis and manufacturability of products.				
	To apply the basic principles of mechanical engineering design for evaluation of				
PSO 3	performance of various systems relating to transmission of motion and				
	power, conservation of energy and other process equipment.				

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Signature				
Name of the Faculty	Mr.K.Venkateswara Reddy	Dr.A.Nageswara Rao	Mr.J.Subba Reddy	Dr.M.B.S.Sreekara Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. S. Srinivasa Reddy

Course Name & Code : Design of Machine Elements-II & 20 ME19

L-T-P Structure : 2-1-0 Credits: 3
Program/Sem/Sec : B.Tech/VI/B A.Y.: 2024-25

PREREQUISITE: Design of Machine Elements-I

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to understand and apply the standard procedure available for the design of mechanical components and IC engine components.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Select suitable bearings under different load, speed, and life conditions. (Applying - L3)
CO2	Design internal combustion engine components for safe and continuous operation. (Applying -
COZ	L3)
CO ₃	Select the belt and rope drives for elevators, cranes, and hoisting machinery. (Applying - L3)
CO4	Design the springs under static and dynamic loads. (Applying - L3)
CO5	Estimate the performance parameters of the gears for various loading conditions. (Applying -
COS	L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1	1							1	1	1	3
CO2	1	2	3	1	2							1	2		3
CO3	3	2	3		1	1						1		1	3
CO4	3	2	3	2	1				1			1		-	3
CO5	3	2	3	2	2	1			1			1		1	3
			1 - Lo	w				2 –Me	dium			3 -	High		

TEXTBOOKS:

- T1 Bhandari V.B, Design of Machine Elements, 3rd Edition, TataMcGraw-Hill2010. Sundararajamoorthy T. V, Shanmugam. N, "Machine Design", Anuradha Publications,
- **T2** Chennai, 2003.

REFERENCE BOOKS:

- R1 Norton R.L—Design of Machinery, TataMcGraw-Hill Book Co, 2004.
- R2 Shigley J.E and Mischke C.R.—Mechanical Engineering Designl, TataMcGraw-Hill, 2003

HANDBOOKSTOBEALLOWED

Design Data book by PSG College of Technology, Coimbatore.
Design Data Hand book for Mechanical Engineering by Mahadevan.K and K.Balaveera Reddy.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: SLIDING CONTACT BEARINGS & ROLLING CONTACT BEARINGS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion		Teaching Learning Methods	Sign
1.	Introduction to Subject, CEO's and CO's	1	03-12-2024	Completion	TLM1	vvcckiy
2.	Introduction to Unit-1, Bearings –Introduction, Types	1	04-12-2024		TLM1 TLM2	
3.	Lubricating Oils Properties, Materials used for bearings and their properties	1	04-12-2024		TLM1 TLM2	
4.	Journal Bearings –Introduction, Types, Dimensionless parameters	1	07-12-2024		TLM1 TLM2	
5.	Design procedure of journal bearing	1	10-12-2024		TLM1	
6.	Journal bearings - problems	1	11-12-2024		TLM1.2	
7.	Dimensionless parameters used in the bearing design – problem	1	11-12-2024		TLM1.2	
8.	Tutorial-1	1	14-12-2024		TLM3	
9.	Rolling contact bearings-types, bearing life, Materials used and designation of rolling contact bearings	1	17-12-2024		TLM1 TLM2	
10.	Static load and dynamic load capacity	1	18-12-2024		TLM1	
11.	Selection of ball bearing - problems	1	18-12-2024		TLM1.2	
12.	Tutorial-2	1	21-12-2024		TLM3	
13.	Cubic mean load derivation, Reliability of bearings - problems	1	03-12-2024		TLM1.2	
No. of	classes required to complete UNIT-I	13	No. of class	es taken:		

UNIT-II: IC ENGINE COMPONENTS: PISTON, CONNECTING ROD AND CRANK SHAFT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II, Engine Parts and working	1	24-12-2024		TLM1 TLM2	
2.	PISTON: Design procédure of piston	1	28-12-2024		TLM1.2	
3.	Piston design - problems	1	31-12-2024		TLM1.2	
4.	Piston design - problems	1	01-01-2025		TLM1.2	
5.	Cylinder design, cylinder liners-design	1	01-01-2025		TLM1.2	
6.	Cylinder, cylinder liners-design Problems	1	04-01-2025		TLM1.2	
7.	Tutorial-3	1	07-01-2025		TLM3	
8.	CONNECTING ROD : Thrust in C.R, buckling load	1	08-01-2025		TLM1 TLM2	
9.	Design Procedure of Connecting rod	1	08-01-2025		TLM1.2	
10.	Stresses due to whipping action on connecting rod ends- problems	1	11-01-2025		TLM1.2	
11.	CRANK SHAFT: Design of crank and crank shaft	1	18-01-2025		TLM1.2	
12.	Design of center crank shaft -problems	1	21-01-2025		TLM1,2	
13.	Tutorial-4	1	22-01-2025		TLM3	
No. of	classes required to complete UNIT-II	13	No. of class	es taken:		

UNIT-III: FLAT BELTS & PULLEYS &V-BELTS & V-GROOVED PULLEYS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to Unit-III				TIMI	
1.	Flat belts Introduction, Materials and	1			TLM1 TLM2	
	Design Procedure		22-01-2025		112/112	
2.	Design Procedure of flat belts - Problems	1	25-01-2025		TLM1	
3.	PULLEYS: Design of pulleys mild steel &	1			TLM1	
3.	cast iron	1	28-01-2025		I LIVI I	
4.	Design of pulleys mild steel & cast iron	1	29-01-2025		TLM1	
5.	Design of pulleys Problems	1	29-01-2025		TLM1	
6.	Tutorial-5 Revision	1	01-02-2025		TLM3	
7.	Mid-I Examination from	03-02-202	25 to 08-02-202	25		
8.	V-belts –designation, design and selection	1	11-02-2025		TLM1,2	
9.	Design of V belts - problems	1	12-02-2025		TLM1,2	
10.	Design of V belts - problems	1	12-02-2025		TLM1,2	
11.	Design of V- grooved pulley	1	15-02-2025		TLM1	
12.	Design of V- grooved pulley	1	18-02-2025		TLM1,2	
13.	Tutorial-6	1	19-02-2025		TLM3	
No. of	classes required to complete UNIT-III	13	No. of classe	es taken:		

UNIT-IV: SPRINGS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-IV	1			TLM1	
1.	SPRINGS: Introduction, classification	1	19-02-2025		TLM2	
2.	Stresses, deflection and stiffness in springs	1			TLM1	
۷.	and their derivations	1	22-02-2025		TLM2	
3.	Springs for fatigue loading	1	25-02-2025		TLM1,2	
4.	Design of springs-problems	1	01-03-2025		TLM1	
5.	Tutorial-7	1	04-03-2025		TLM3	
6.	Spring failures, design of helical springs	1	05-03-2025		TLM1	
7.	Natural frequency of helical spring	1	05-03-2025		TLM1	
8.	Energy storage capacity in springs	1	08-03-2025		TLM1	
9.	Tension and torsion springs	1	11-03-2025		TLM1	
10.	Co-axial springs design- Problems	1	12-03-2025		TLM1	
11.	Design of leaf springs- Problems	1	12-03-2025		TLM1	
12.	Tutorial-8	1	15-03-2025		TLM3	
lo. of	classes required to complete UNIT-IV	12	No. of classe	es taken:		

UNIT-V: SPUR & HELICAL GEARS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	GEARS : Introduction and terminology, Types of gears, design formulae	1	18-03-2025		TLM1 TLM2	
2.	Design formulae	1	19-03-2025		TLM1 TLM2	
3.	Design Analysis of gears, Estimation of centre distance, module & face width	1	19-03-2025		TLM1 TLM2	
4.	Design procedure of spur gears, Check for dynamic and wear considerations	1	22-03-2025		TLM1 TLM2	
5.	Design of spur gears -Problems	1	25-03-2025		TLM1,2	
6.	Design of spur gears -Problems	1	26-03-2025		TLM1,2	

7.	Tutorial-9	1	26-03-2025	TLM3	
8.	Design procedure of Helical gears, Check	1		TLM1	
0.	for dynamic and wear considerations	1	29-03-2025	I LIVI I	
9.	Design of Helical gears -Problems	1	01-04-2025	TLM1,2	
10.	Design of Helical gears -Problems,	1	02-04-2025	TLM1,2	
11.	Tutorial-10	1	02-04-2025	TLM3	
No. of	classes required to complete UNIT-V	11	No. of classes taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Design of flywheels	1	22-01-2025		TLM1 TLM2	
2.	Design of Worm gear	1	05-04-2025		TLM1 TLM2	
3.	Design of Gear Box	1	05-04-2025		TLM1 TLM2	

Teaching	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.					
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.					
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.					
PO 12	Recognize the need for and have the preparation and ability to engage in independent and life-					
	long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.				
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.				
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.				

Signature				
Name of the Faculty	Mr. S. Srinivasa Reddy	Mr. B. Sudheer Kumar		Dr. M.B.S Sreekara Reddy
Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

COURSE HANDOUT

PROGRAM : B.Tech., VI-Sem., MECH (B)

ACADEMIC YEAR : 2024-25

COURSE NAME & CODE : MODERN MACHING PROCESSES- 20ME21

STRUCTURE : 4-0-0

COURSE CREDITS : 3

COURSE INSTRUCTOR : S.Srinivasa Reddy

COURSE COORDINATOR : Dr. K Muarahari

PRE-REQUISITE: PRODUCTION TECHNOLOGY, MACHINE TOOLS&METAL CUTTING

COURSE OBJECTIVE: The main objective of this course is to familiarize with unconventional machining processes and rapid prototyping.

COURSE OUTCOMES (CO)

CO 1: Assort appropriate unconventional machining processes for machining materials and to develop relevant industrial solutions for machining materials. **(Understanding - L2)**

CO 2: Understand the principles of Electro Chemical Machining Process for machining of materials. **(Understanding - L2)**

CO 3: Comprehend Electrical Discharge Machining principles for machining intricate components. **(Understanding - L2)**

CO 4: Differentiate the basic principles and applications of thermal machining processes like EBM, LBM and PAM. **(Understanding - L2)**

CO 5: Identify the appropriate Rapid Prototyping Processes for manufacturing various components. **(Understanding - L2)**

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	P0 1	P0 2	P0 3	P0 4	P0 5	P0 6	P0 7	P0 8	P0 9	PO 10	P0 11	P0 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2		3									2	
CO2	3	2	3		3									3	
СО3	3	2	3		3								2	3	
CO4	3	2	3		3								2	3	
CO5	3	2	3		3									3	

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Pandey P.C. and shah H.S, Modern machining processes /TMH.
- **T2** Chua C.K, Leong K.F, and Lim C.S, Rapid prototyping principles and applications, second edition, world scientific publishers, and 2003.

BOS APPROVED REFERENCE BOOKS:

- **R1** M K Singh, Unconventional machining process / New age international.
- **R2** V K Jain, Advanced machining processes /Allied publishers.
- **R3** N.Hopkinson ,R.J.MHaque &P.M. Dickens Rapid Manufacturing, John Wiley &sons,2006.

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: INTRODUCTION & MECHANICAL PROCESSES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completio n	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1	Introduction of MMP and Course Co's and Po's	1	2-12-24		TLM1/TLM2	CO1	T1/R1	
2	Need for unconventional machining methods	1	3-12-24		TLM1/TLM2	CO1	T1/R1	
3	Classification of unconventional machining processes	1	4-12-24		TLM1/TLM2	C01	T1/R1	
4	Considerations in process selection	1	6-12-24		TLM1/TLM2	CO1	T1/R1	
5	Basic principle of ultrasonic machining, equipment setup and procedure,	1	9-12-24		TLM1/TLM2	C01	T1/R1	
6	Process variables and applications	1	10-12-24		TLM1/TLM2	CO1	T1/R1	
7	Basic principle of Abrasive jet machining, equipment setup and procedure.	1	11-12-24		TLM3/TLM6	C01	T1/R1	
8	Water jet machining Basic principle, equipment setup and procedure	1	16-12-24		TLM1/TLM2	C01	T1/R1	
9	Process variables and applications	1	17-12-24		TLM1/TLM2	CO1	T1/R1	
10	Rivision	1	18-12-24		TLM1/TLM2	CO1	T1/R1	
11	Assignment & Quiz	1	21-12-24		TLM1/TLM2	CO1	T1/R1	
	classes required to lete UNIT-I	11			No. of classes	taken:		

UNIT-II: ELECTRO CHEMICAL PROCESSES & CHEMICAL MACHINING

S.N o	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Comple tion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
12	Electrochemical Process Introduction	1	23-12-24		TLM1/TLM2	CO2	T1/R1	
13	ECM Process, and principles	1	24-12-24		TLM1/TLM2	CO2	T1/R1	
14	Equipment and material removal rate	1	28-12-24		TLM1/TLM2	CO2	T1/R1	
15	Equipment and material removal rate	1	30-12-24		TLM 3	CO2		
16	Electrochemical machining	1	31-12-24		TLM1/TLM2	CO2	T1/R1	
17	Electrochemical grinding	1	4-01-25		TLM1/TLM2	CO2	T1/R1	
18	Electrochemical deburring, Electrochemical honing	1	6-01-25		TLM1/TLM2	CO2	T1/R1	
19	Chemical machining- principle	1	7-01-25		TLM1/TLM2	CO2	T1/R1	
20	Maskants –Etchants, Advantages and Applications.	1	8-01-25		TLM1/TLM2	CO2	T1/R1	
21	Maskants –Etchants, Advantages and Applications.	1	13-01-25		TLM1/TLM2	CO2	T1/R1	
22	Rivision	1	18-01-25		TLM1/TLM2	CO2	T1/R1	
23	Assignment & Quiz	1	20-01-25		TLM1/TLM2	CO2	T1/R1	
	of classes required to plete UNIT-II	12			No. of classes ta	aken:	1	-

UNIT-III: ELECTRICAL DISCHARGE MACHINING

	UNIT-III; ELECTRICAL DISCHARGE MACHINING									
S.N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Comple tion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly		
24	EDM Principle	1	21-01-25		TLM1/TLM2	CO3	T1/R1			
25	Process	1	22-01-25		TLM1/TLM2	CO3	T1/R1			
26	Power circuits for EDM	1	25-01-25		TLM1/TLM2	CO3	T1/R1			
27	Mechanics of metal removal in EDM	1	27-01-25		TLM1/TLM2	CO3	T1/R1			
28	Process parameters	1	28-01-25		TLM1/TLM2	CO3	T1/R1			
29	selection of tool electrode and dielectric fluid	1	29-01-25		TLM1/TLM2	CO3	T1/R1			
30	Electric discharge wire cutting principle	1	01-02-25		TLM1/TLM2	CO3	T1/R1			

31	Applications of EDM and Wire EDM	1	10-02-25	TLM1/TLM2	CO3	T1/R1	
32	Rivision	1	11-02-25	TLM1/TLM2	CO3	T1/R1	
33	Assignment & Quiz	1	12-02-25	TLM1/TLM2	CO3	T1/R1	
No. of	f classes required to complete -III	10		No. of classes ta	ken:		

UNIT-IV: ELECTRON BEAM, LASER BEAM AND PLASMA ARC MACHINING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
34	Electron Beam Machining, Principle, process	1	15-02-25		TLM1/TLM2	CO4	T2/R3	
35	EBM Applications and Advantages	1	17-02-25		TLM1/TLM2	CO4	T2/R3	
36	laser beam machining, Principle, process	1	18-02-25		TLM1/TLM2	CO4	T2/R3	
37	LBM Applications and Advantages	1	19-02-25		TLM1/TLM2	CO4	T2/R3	
38	Plasma arc machining, Principle, process	1	22-02-25		TLM1/TLM2	CO4	T2/R3	
39	PAM Applications and Advantages	1	24-02-25		TLM1/TLM2	CO4	T2/R3	
40	Hot machining, Process, equipment, applications	1	25-02-25		TLM1/TLM2	CO4	T2/R3	
41	Hot machining, Process, equipment, applications	1	1-03-25		TLM1/TLM2	CO4	T2/R3	
42	revision	1	03-03-25		TLM1/TLM2	CO4	T2/R3	
43	Assignment & Quiz	1	04-03-25					
No. of UNIT-	classes required to complete	10			No. of classes ta	aken:		

UNIT-V: RAPID PROTOTYPING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
44	Introduction to RP fundamentals	1	05-03-25		TLM1/TLM2	CO5	T2/R3	
45	Elements, Advantages of Rapid Prototyping	1	10-03-25		TLM1/TLM2	CO5	T2/R3	
46	historical development, fundamentals of Rapid Prototyping	1	11-03-25		TLM1/TLM2	CO5	T2/R3	
47	classification of Rapid prototyping	1	12-03-25		TLM1/TLM2	CO5	T2/R3	
48	classification of Rapid prototyping	1	15-03-25		TLM3		T2/R2	
49	Rapid Prototyping process chain	1	17-03-25		TLM1/TLM2	CO5	T2/R3	

50	Stereo Lithography Apparatus (SLA)	1	18-03-25	TLM1/TLM2	CO5	T2/R3	
51	solid Ground Curing (SGC)	1	19-03-25	TLM1/TLM2	CO5	T2/R3	
52	EOS's EOSINT Systems	1	22-03-25	TLM3/TLM2	CO5	T2/R3	
53	Applications of Rapid Prototyping	1	24-03-25	TLM3/TLM6	CO5	T2/R3	
54	Rivision	1	25-03-25	TLM3/TLM6	CO5	T2/R3	
55	Assignment & Quiz	1	26-03-25				
No. of UNIT-	classes required to complete V	12		No. of classes ta	ıken:	•	

Contents beyond the Syllabus

S.N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
56	Abrasive water jet aerospace applications	1	29-03-25					
57	EDM process parameters	1	31-03-25					
58	Revision	1	2-04-25					
59	Assignment & Quiz	1	5-04-25					
No. o	f classes required to complete	04						

Teachi	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD				
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo				
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study				

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions	02-12-2024	01-02-2025	8W
I Mid Examinations	03-02-2025	08-02-2025	1W
II Phase of Instructions	10-02-2025	05-04-2025	8W
II Mid Examinations	07-04-2025	12-04-2025	1W
Preparation and Practical's	14-04-2025	19-04-2025	1W
Semester End Examinations	21-04-2025	03-05-2025	2W
Internship	05-05-2025	28-06-2025	8W

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment-1	1	A1=5
Assignment-2	2	A2=5
I-Mid Examination	1,2	B1=20
Online Quiz-Q1	1,2	Q1-10
Assignment – 3	3	A3=5
Assignment- 4	4	A4=5
Assignment – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Online Quiz-Q2	3,4,5	Q2-10
Evaluation of Assignment Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Online Quiz Marks: Q=(Q1+Q2)/2	1,2,3,4,5	Q=10
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Attendance		C= 5
Cumulative Internal Examination : A+Q+B+C	1,2,3,4,5	40
Semester End Examinations	1,2,3,4,5	60
Total Marks: 40+60	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. **PROGRAMME SPECIFIC OUTCOMES (PSOs):**
- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

S.Srinivasa Reddy	Dr. K Muarahari	Mr.J.Subba Reddy	Dr. M.B Srekar Reddy
Course Instructor	Course Coordinator	Module Coordinator	нор

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodads@lbrce.ac.in, ads@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE HANDOUT PART-A

Name of Course Instructor: Ms.G.DIVYA

Course Name & Code : INTRODUCTION TO ARTIFICIAL INTELLIGENCE – 20AD81

L-T-P Structure : 3-0-0 Credits:3

Program/Branch/Sem : B.Tech/ME- A/B/VI A.Y.: 2024-25

PRE-REQUISITE: Basic Engineering Mathematics Knowledge

Course Educational Objective:

The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, reasoning, and learning. Students will implement a small AI system in a team environment. The knowledge of artificial intelligence plays a considerable role in some applications students develop for courses in the program.

Course Outcomes: At the end of this course, the student will be able to

CO1	Enumerate the history and foundations of Artificial Intelligence. (Understand-L2)
CO2	Apply the basic principles of AI in problem solving. (Apply-L3).
CO3	Explain the different searching algorithms to find and optimize the solution for the given Problem. (Understand-L2)
CO4	Illustrate the different gaming algorithms and identify the importance of knowledge Representation in Artificial Intelligence. (Apply-L3)
CO5	Describe the use of predicate logic and rule-based system to represent the knowledge in AI domain. (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO2
CO1	2	3	2	-	3	-	-	-	-	-	-	2	3	-	-
CO2	2	3	3	3	3	-	-	-	-	-	-	2	3	-	-
CO3	2	3	3	-	3	-	-	-	-	-	-	2	3	-	-
CO4	2	3	3	2	3	-	1	-	-	ı	-	2	3	-	-
CO5	2	3	3	2	3	-	ı	-	-	ı	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach",3rd edition, Prentice Hall, 2009. Can also use 2nd Ed., Pearson Education International, 2003.
- T2. Saroj Kaushik, "Artificial Intelligence", Cengage Learning India, 2011

BOS APPROVED REFERENCE BOOKS:

- R1. Nils Nilsson, "Artificial Intelligence: A New Synthesis", Morgan Kaufmann, 1998.
- R2. David Poole, Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge Univ. Press, 2010.
- R3. Ronald Brachman, "Knowledge Representation and Reasoning", Morgan Kaufmann, 2004.
- R4. Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds), "Handbook of Knowledge representation", Elsevier, 2008.
- R5. Ivan Bratko, "Prolog Programming for Artificial Intelligence", 4th Ed., Addison-Wesley, 2011.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: INTRODUCTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
1.	Discussion of CEO's and CO's, Introduction to	1	02-12-2024		-	CO1	-	
2.	Introduction: What Is AI?,	1	04-12-2024		TLM1	CO1	T1,T2	
3.	The Foundations of Artificial Intelligence	1	05-12-2024		TLM1	CO1	T1,T2	
4.	The History of Artificial Intelligence,	1	06-12-2024		TLM1	CO1	T1,T2	
5.	The State of the Art.	1	09-12-2024		TLM1	CO1	T1,T2	
6.	Agents and Environments	1	11-12-2024		TLM1	CO1	T1,T2	
7.	Types of agents	1	12-12-2024		TLM2	CO1	T1,T2	
8.	Types of agents	1	13-12-2024		TLM2	CO1	T1,T2	
9.	Types of agents	1	16-12-2024		TLM2	CO1	T1,T2	
10.	Good Behavior: The Concept of Rationality	1	18-12-2024		TLM1	CO1	T1,T2	
11.	Omniscience vs Rational agent	1	19-12-2024		TLM1	CO1	T1,T2	
12.	The Nature of Environments	1	20-12-2024		TLM1	CO1	T1,T2	
13.	The Structure of Agents	1	23-12-2024		TLM1	CO1	T1,T2	
14.	Assignment/Quiz-2	1	26-12-2024		TLM1	CO1	-	
	No. of classes required to complete UNIT-I: 14				No. of cla	asses taker	n:	

UNIT-II: PROBLEM SOLVING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
15.	Problem-Solving Agents, Example Problems	1	27-12-2024		TLM1	CO2	T1,T2	

16.	searching for Solutions, Uninformed Search Strategies	1	30-07-2024	TLM1	CO2	T1,T2	
17.	Search algorithms terminologies	1	02-01-2025	TLM1	CO2	T1,T2	
18.	Properties of search algorithms	1	03-01-2025	TLM1	CO2	T1,T2	
19.	Types of search algorithms.	1	06-01-2025	TLM1	CO2	T1,T2	
20.	Best first search algorithm	1	08-01-2025	TLM2	CO2	T1,T2	
21.	A* Algorithm	1	09-01-2025	TLM2	CO2	T1,T2	
22.	AO* Algorithm	1	10-01-2025	TLM2	CO2	T1,T2	
23.	Local Search Algorithms	1	16-01-2025	TLM2	CO2	T1,T2	
24.	Local Search Algorithms	1	17-01-2025	TLM2	CO2	T1,T2	
25.	Searching with Nondeterministic Actions.	1	20-01-2025	TLM2	CO2	T1,T2	
26.	Assignment/Quiz-2	1	22-01-2025	TLM1	CO2	T1,R1	
No	o. of classes required to co	omplete U	NIT-II: 12	No. of cla	asses takei	n:	

UNIT-III: SEARCH ALGORITHMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
27.	Introduction	1	23-01-2025		TLM1	CO3	T1,T2	
28.	Uniformed/Blind Search Algorithms:	1	24-01-2025		TLM1	CO3	T1,T2	
29.	Breadth-first Search	1	27-01-2025		TLM2	CO3	T1,T2	
30.	Depth-first Search,	1	29-01-2025		TLM2	CO3	T1,T2	
31.	Depth limited search	1	30-01-2025		TLM2	CO3	T1,T2	
32.	Iterative deepening depth-first search	1	31-01-2024		TLM2	CO3	T1,T2	
33.	Uniform cost search	1	10-02-2025		TLM2	CO3	T1,T2	
34.	Bidirectional Search.	1	12-02-2025		TLM2	CO3	T1,T2	
35.	Assignment/Quiz-3	1	13-02-2025		TLM1	CO3	-	
	No. of classes require	No. of class	ses taken:					

UNIT-IV: ADVERSARIAL SEARCH/ GAME PLAYING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
36.	Introduction	1	14-02-2025		TLM1	CO4	T1,T2	
37.	Minimax algorithm	2	17-02-2025 19-02-2025		TLM2	CO4	T1,T2	
38.	Alpha-Beta pruning	2	20-02-2025 21-02-2025		TLM2	CO4	T1,T2	

	No. of classes required	l to comp		No. of class	ses taken:	
46.	Assignment/Quiz-4	1	12-03-2025	TLM1	CO4	-
45.	issues in knowledge representation	2	07-03-2025 10-03-2025	TLM1	CO4	T1,T2
44.	Approaches of knowledge representation,	1	06-03-2025	TLM1	CO4	T1,T2
43.	Backward chaining/reasoning	1	05-03-2025	TLM1	CO4	T1,T2
42.	Inference Engine:Forward chaining/reasoning	1	03-02-2025	TLM1	CO4	T1,T2
41.	Representation mappings	1	28-03-2025	TLM1	CO4	T1,T2
40.	Knowledge base Levels and types	1	27-02-2025	TLM1	CO4	T1,T2
39.	Knowledge Based Agent, Architecture	2	24-02-2025 26-02-2025	TLM1	CO4	T1,T2

UNIT-V: KNOWLEDGE REPRESENTATION TECHNIQUES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
47.	Introduction	1	13-03-2025		TLM1	CO5	T1,T2	
48.	Logic, Propositional Logic:	1	17-03-2025		TLM1	CO5	T1,T2	
49.	A Very Simple Logic,	1	19-03-2025		TLM1	CO4	T1,T2	
50.	Ontological Engineering	1	20-03-2025		TLM2	CO4	T1,T2	
51.	Categories, Objects and Events	1	21-03-2025		TLM2	CO5	T1,T2	
52.	Mental Events and Mental Objects	1	24-03-2025		TLM1	CO5	T1,T2	
53.	What is reasoning and Types	1	26-03-2025		TLM1	CO4	T1,T2	
54.	Types of reasoning	1	27-03-2025		TLM1	CO4	T1,T2	
55.	Reasoning Systems for Categories	1	28-03-2025		TLM2	CO5	T1,T2	
56.	The Internet Shopping World	1	02-04-2025		TLM1	CO5	T1,T2	
57.	Assignment/Quiz-5	1	03-04-2025		TLM1	CO5	-	
	No. of classes required	No. of cla	sses taken:					

Contents beyond the Syllabus

	<u> </u>							
		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
	_	Required	Completion	Completion	Methods	COs	followed	Weekly
58.	Turing test, Interview Questions	1	04-04-2025		TLM1			

Teachi	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam /MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the fundamental engineering knowledge, computational principles, and								
	methods for extracting knowledge from data to identify, formulate and solve real								
	timeproblems.								
PSO 2	To develop multidisciplinary projects with advanced technologies and tools to								
	address social and environmental issues.								
PSO 3	To provide a concrete foundation and enrich their abilities for Employment and								
	Higher studies in Artificial Intelligence and Data science with ethical values								

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	G.Divya	G.Divya	Dr.V.Surya Narayana	Dr. O. Rama Devi
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I)
An ISO 21001:2018,14001:2015,50001:2018Certified Institution
Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

http://lbrce.ac.in/it/index.php,hodit@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. Ch. Poorna Venkata Srinivasa Rao

Course Name & Code : CYBER SECURITY AND DIGITAL FORENSICS & 201T84
L-T-P Structure : 3-0-0 Credits: 03

Program/Sem/Sec : B.Tech-ME – VI /A&B

A.Y. : 2024-25

PRE-REQUISITE: Understanding of digital logic, operating system concepts, Computer

hardware knowledge.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The Objective of the course is to provide the basic concepts of cyber security and digital Forensics which help to protect ourselves from various kinds of cyber-attacks. Digital forensics is a branch of forensic science encompassing the recovery and investigation of material found in digital devices, often in relaxation to computer crime. It enables students to gain experience to do independent study and research

CO1	Understand the implementation of cybercrime. (Understand - L2)
CO2	Identify key Tools and Methods used in Cybercrime. (Remember- L1)
CO3	Under the Concepts of Cyber Forensics. (Understand- L2)
CO4	Apply Cyber Forensics in collection of digital evidence and sources of evidence (Apply- L3)
CO5	Analyze the cyber forensics tools for present and future(Analyze- L4)

Course Articulation Matrix (Correlation between COs &POs, PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	1	1	-	1	-	-	-	1	-	-	-
CO2	-	1	1	-	3	1	-	-	-	-	-	1	-	-	-
CO3	1	•	-	1	3	1	-	-	•	-	•	1	•	•	-
CO4	1	1	-	3	1	•	-	-	•	-	•	1	•	•	-
CO5	-	•	1	-	3	1	-	1	ı	-	1	1	•	•	-
1 - Low					2 -Medium			3 - High							

TEXT BOOKS:

- 1. Dejey, Dr.Murugan, "cyber Forensics", Oxford University Press, India, 2018
- 2. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY,2011

REFERENCE BOOKS:

- Michael Simpson, Kent Blackman and James e. Corley, "Hands on Ethical Hacking and Network Defense", Cengage, 2019
- 2. Computer Forensics, Computer Crime Investigation by John R.Vacca, Firewall Media, New Delhi
- 3. Alfred Basta, Nadine Basta, Mary Brown and Ravindra Kumar "Cyber Security and Cyber Laws", Cengage, 2018

Part-B
COURSE DELIVERY PLAN (LESSON PLAN): SECTION B

UNIT-I: Introduction to Cybercrime

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
1	Introduction to CSDF	1	02-12-2024		TLM2	CO1	
2	Cybercrime definition and origins of the word	1	04-12-2024		TLM1	CO1	
3	Cybercrime and Information Security	1	05-12-2024		TLM2	CO1	
4	Cybercriminals	1	06-12-2024		TLM7	CO1	
5	Classifications of Cybercrime	1	09-12-2024		TLM2	CO1	
6	Cyberstalking Cybercafé and Cybercrime	2	11-12-2024 12-12-2024		TLM2	CO1	
7	Botnets Security Challenges Posed by Mobile	2	13-12-2024 16-12-2024		TLM2	CO1	
8	Attacks on Mobile/Cell Phones Network and Computer Attacks	2	18-12-2024 19-12-2024		TLM2	CO1	
9	Unit-I Assignment Test	1	20-12-2024		TLM6	CO1	
No. of UNIT	classes required to complete	12	No. of classe	es taken:			

UNIT-II: Tools and Methods

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
10	Proxy Servers and Anonymizers	1	23-12-2024		TLM2	CO2	
11	Phishing, Password Cracking	2	26-12-2024 27-12-2024		TLM7	CO2	
12	Key loggers and Spywares Virus and Worms	1	02-01-2025		TLM2	CO2	
13	Trojan Horses and Backdoors Steganography	1	03-01-2025		TLM2	CO2	
14	Sniffers, Spoofing, session Hijacking Buffer Overflow Identity Theft	2	06-01-2025 08-01-2025		TLM1	CO2	
15	Dos and DDos Attacks SQL Injection Port Scanning	1	09-01-2025		TLM2	CO2	
16	Unit-II Assignment Test	1	10-01-2025		TLM6	CO2	
	f classes required to lete UNIT-2	09	No. of classe	es taken:			

UNIT – III: Cyber Forensics

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
17	Cyber Forensics Definition	1	17-01-2025		TLM2	CO3	
18	Disk Forensics	2	20-01-2025 22-01-2025		TLM1	CO3	
19	Network Forensics	1	23-01-2025		TLM2	CO3	
20	Wireless Forensics	1	24-01-2025		TLM2	CO3	
21	Database Forensics	2	27-01-2025		TLM2	CO3	
22	Malware Forensics	1	29-01-2025		TLM2	CO3	

23	Mobile Forensics	1	30-01-2025	TLM2	CO3	
24	Email Forensics	1	31-01-2025	TLM1	CO3	
25	Unit-III Assignment Test	1	10-02-2025	TLM6	CO3	
No. of classes required to complete UNIT-3		11	No. of classes taken:			

UNIT-IV: Digital Evidence

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
26	Introduction to Digital Evidence and Evidence Collection procedure	2	12-02-2025 13-02-2025		TLM2	CO4	
27	Source of Evidence Operating systems and their Boot Processes	2	14-02-2025 20-02-2025		TLM7	CO4	
28	File System Windows Registry	2	21-02-2025 24-02-2025		TLM1	CO4	
29	Windows Artifacts Browser Artifact	2	27-02-2025 28-02-2025		TLM2	CO4	
30	Linux Artifact	2	03-03-2025 05-03-2025		TLM1	CO4	
31	Digital evidence on the internet	2	06-03-2025 07-03-2025		TLM3	CO4	
32	Impediments to collection of Digital Evidence	1	10-03-2025		TLM1	CO4	
33	Challenges with Digital Evidence	2	12-03-2025 13-03-2025		TLM2	CO4	
34	Unit-IV Assignment Test	1	17-03-2025		TLM6	CO4	
	classes required to ete UNIT-4	16	No. of classe	s taken:			

UNIT-V: Cyber Forensics

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcomes	HOD Sign Weekly
35	The Present and The Future Forensics Tools	1	19-03-2025		TLM2	CO5	
36	Cyber Forensics suite Imaging and Validation Tools				TLM5	CO5	
37	Tools for Integrity Verification and Hashing	1	21-03-2025		TLM2	CO5	
38	Forensics Tools for Data Recovery Encryption/decryption	1	24-03-2025		TLM5		
39	Forensics tools for Password Recovery Analyzing network	2	26-03-2025 27-03-2025		TLM1	CO5	
40	Forensics Tools for Email Analysis	1	02-04-2025		TLM2	CO5	
41	Unit -5 Assignment Test.	1	03-04-2025		TLM6	CO5	
	f classes required to lete UNIT-5	8	No. of classe	s taken:			

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Cloud Security, Using AI/ML to Analyze	1	04-04-2025		TLM2	
2.	Cyber Threats	1	05-04-2025		TLM2	

TLM1	Chalk and Talk - 8	TLM6	Assignment / Quiz - 5
TLM2	PPT - 24	TLM7	Seminar / Group Discussion - 3
TLM3	Tutorial -1	TLM8	Lab Demo
TLM4	Demonstration (Lab/Field Visit)	TLM9	Case Study
TLM5	ICT (NPTEL/Swayam Prabha/MOOCS) - 2		

Part - C

EVALUATION PROCESS:

Evaluation Task	Marks					
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))						
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))						
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))						
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)						
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)						
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10					
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30					
Cumulative Internal Examination (CIE): M	<mark>30</mark>					
Semester End Examination (SEE)	<mark>70</mark>					
Total Marks = CIE + SEE	100					

ACADEMIC CALENDAR:

Description	From	To	Weeks			
Commencement of Class Work	02-12-2024					
I Phase of Instructions	02-12-2024	01-02-2025	9W			
I Mid Examinations	03-02-2025	08-02-2025	1W			
II Phase of Instructions	10-02-2025	05-04-2025	8W			
II Mid Examinations	07-04-2025	12-04-2025	1W			
Preparation and Practical's	14-04-2025	19-04-2025	1W			
Semester End Examinations	21-04-2025	03-05-2025	2W			

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- **PEO 1** Pursue a successful career in the area of Information Technology or its allied fields.
- PEO 2 Exhibit sound knowledge in the fundamentals of Information Technology and apply practical experience with programming techniques to solve real world problems.
- PEO 3 Able to demonstrate self-learning, life-long learning and work in teams on multidisciplinary projects.
- PEO 4 Able to understand the professional code of ethics and demonstrate ethical behavior, effective communication and team work and leadership skills in their job.

PROGRAMME OUTCOMES (POs):

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5 Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solution sin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO1** Organize, Analyze and Interpret the data to extract meaningful conclusions.
- **PSO2** Design, Implement and Evaluate a computer-based system to meet desired needs.
- **PSO3** Develop IT application services with the help of different current engineering tools.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Ch.Poorna Venkata Srinivasa Rao	Mr. Ch.Poorna Venkata Srinivasa Rao	Mr. G.Rajendra	Dr.B.Srinivasa Rao
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited, Accredited by NBA, Certified by ISO 9001:2015)

L B Reddy Nagar, Mylavaram-522 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

Part-A

PROGRAM: B.Tech, VI-Sem., ME, B/S

ACADEMIC YEAR : 2024-25

COURSE NAME & CODE: Heat Transfer Lab & 20ME62

L-T-P STRUCTURE : 0-0-3

COURSE CREDITS : 2

LABORATORY INSTRUCTORS: Dr. P.Ravindra Kumar/ Mr.K.Lakshmi Prasad

LABORATORY INCHARGE: Mr.K.Lakshmi Prasad

PREREQUISITE SUBJECT: Thermodynamics, Applied Thermodynamics

COURSE EDUCATIONAL OBJECTIVES:

The objective of this course is to understand the modes of heat transfer in various heat transfer equipment used for different applications by conducting experiments.

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Estimate the thermal conductivity of different materials and powders. (Applying - L3)

CO2: Estimate the value of heat transfer coefficient in free and forced convection. (Applying - L3)

CO3: Validate the Stefan Boltzmann's constant and estimate emissivity of grey body. (Applying - L3)

CO4: Compare the parallel and counter flow heat exchanger performance characteristics. (Analyzing - L4).

COURSE ARTICULATION MATRIX (Correlation between COs & POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	-	-	-	2	2	1	-	1	3	-	1
CO2	3	2	2	3	-	-	-	2	2	1	-	1	3	-	1
CO3	2	1	2	3	-	-	-	2	2	1	-	1	3	-	1
CO4	1	3	2	3	-	-	-	2	2	1	-	1	3	-	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXTBOOKS:

Lab Manuals, Heat and Mass Transfer Data Book, 6th Edition, New Age International Publishers Part-B

SECTION: B-Sec (Monday) COURSE: B.Tech BRANCH: MECHANICAL ENGG. BATCH: 1 A.Y:2024-25 0 2 4 5 6 7 8 9 12 EXP. No 1 3 10 11 16 10 -17 -24 31 ಬ 23 30 90 20 27 10 17 24 -12 -12 -12 2 ္က ၀ 22 S. No Batch 12 12 2 2 2 2 2 ၀ Date -25 -25 -25 -25 24 24 24 24 24 25 25 25 25 25 Regd. No CYCLE-I CYCLE-2 21761A0349 2 22761A0321 BATCH-I 22761A0322 3 HT-1 HT-2 HT-3 HT-4 HT-5 DEMO HT-1 HT-2 HT-3 HT-4 HT-5 22761A0323 4 5 22761A0324 REPETITION/Experiment beyond 6 22761A0325 22761A0326 7 BATCH-2 8 22761A0327 9 22761A0328 DEMO HT-2 HT-3 HT-4 HT-5 HT-1 HT-2 HT-3 HT-4 HT-5 HT-1 10 22761A0329 INTERNAL LAB 11 22761A0332 Repetition 13 22761A0333 14 22761A0334 BATCH-3 15 22761A0335 DEMO HT-3 HT-4 HT-5 HT-1 HT-2 HT-3 HT-4 HT-5 HT-1 HT-2 16 22761A0337 17 22761A0338 TEST 22761A0339 18 23765A0339 19 20 23765A0340 BATCH-4 23765A0341 22 DEMO HT-4 HT-2 HT-4 HT-1 HT-2 HT-3 HT-5 HT-1 HT-3 HT-5 Syllabus 23765A0342 22 23 23765A0343 24 23765A0344 23765A0345 25 BATCH-5 26 23765A0346 23765A0347 27 HT-1 DEMO HT-5 HT-1 HT-2 HT-3 HT-4 HT-5 HT-2 HT-3 HT-4 28 23765A0348 23765A0349

29

	COURSE	: B.Tech	BRAN	ICH: ME	CHANIC	AL	SEC	TION: B-Se	c (Th	ursday)		BATCH: 2		A.Y:2024	l-25		
		EXP. No	0	1	2	3	4	5		6	7	8	9	10	11		12
S.No	Batch	Date	05 -12 -	12 -12 -	19 -12 -	26 - 12 -	02 - 01 -	09 - 01 -	23 - 01 -	30 - 01 -	13 - 02 -	20 - 02 -	27 - 02 -	06 - 03 -	13 - 03 -	27 - 03 -	03 - 04 -
			24	24	24	24	25	25	25	25	25	25	25	25	25	25	25
		Regd. No			CY	CLE-I						CYCLE-2					
1 2 3 4 5	ватсн-і	23765A0350 23765A0351 23765A0352 23765A0353 23765A0354	DEMO	HT-1	HT-2	НТ-З	HT-4	НТ-5		HT-1	HT-2	НТ-З	HT-4	HT-5			
6 7 8 10 11	ватсн-2	23765A0355 23765A0356 23765A0357 23765A0358 23765A0359	DEMO	HT-2	НТ-3	HT-4	НТ-5	HT-1		HT-2	НТ-3	HT-4	НТ-5	HT-1		Exper	
13 14 15 16	ватсн-з	23765A0360 23765A0361 23765A0362 23765A0363 23765A0364 23765A0365	DEMO	HT-3	HT-4	HT-5	HT-1	HT-2	REPETITION	HT-3	HT-4	НТ-5	HT-1	HT-2	REPETITION	Experiment beyond the	INTERNAL LAB
19 20 22 22 23 24	BATCH-4	23765A0366 23765A0367 23765A0368 23765A0369 23765A0370 23765A0371	DEMO	HT-4	HT-5	HT-1	НТ-2	НТ-3	ON	HT-4	HT-5	HT-1	HT-2	HT-3	ON	the syllabus	B TEST
25 26 27 28 29 30	ватсн-5	23765A0372 23765A0373 23765A0374 23765A0375 23765A0376 23765A0377	DEMO	HT-5	HT-1	НТ-2	НТ-3	HT-4		HT-5	HT-1	НТ-2	НТ-3	HT-4			

LAB INCHARGE

MYLAVARAM DEPARTMENT OF MECHANICAL ENGINEERING HEAT TRANSFER LABORATORY LIST OF EXPERIMENTS

Course, b recht branch, Mech Sem, vi Section, Aub Sec Batch, 2022 A. i.	Course: B Tech	Branch: Mech	Sem: VI	Section: A&B Sec Batch: 2022	A.Y: 2024-25
---	----------------	--------------	---------	------------------------------	--------------

Course	. D I CCII	Dianch, Mech Sem. Vi	Section. Add Sec Daten. 2022 A.1. 2024-25				
S.No	Cycle	Exp Code	Name of the Experiment				
1		DEMONSTRATION	DEMONSTRATION				
2		HT-1	Determination of thermal conductivity of metallic bar (Brass).				
3	CYCLE-I	HT-2	Estimate thermal conductivity of insulating powder (Asbestos).				
4	CICLE-I	HT-3	Find thermal conductivity of lagged pipe (Glass wool).				
5		HT-4	Calculation of Transient Heat Conduction (Unsteady state Heat Conduction).				
6		HT-5	Test on Pin-Fin Apparatus.				
8		HT-1	Determination of Convective Heat Transfer Co-efficient of air in Natural Convection.				
9		HT-2	Estimate the convective heat Transfer coefficient of air in forced convection.				
10	CYCLE-II	HT-3	Heat Pipe Demonstration				
11	CICLE-II	HT-4	Test on Tube in Tube Parallel Flow Heat Exchanger.				
12		HT-5	Test on Tube in Tube Counter Flow Heat Exchanger.				
13		(Content Beyond the Syllabus)	Test on Emissivity Measurement Apparatus.				
14		REPETITION	REPETITION.				
15	_	INTERNAL	INTERNAL LAB TEST.				

LAB INCHARGE

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

Part - C EVALUATION PROCESS:

Evaluation Task	COs	Marks
Day to Day Evaluation	1	A=5

Record	2	B=5
Internal Examination	3	C=5
Cumulative Internal Marks : A+B+C	1,2,3	A+B+C=15
Semester End Examinations	1,2,3	D=35
Total Marks: A+B+C+D	1,2,3	50

PROGRAMME OUTCOMES (POs) & PROGRAM SPECIFIC OUTCOMES:

RAMINE OUTCOMES (POS) & PROGRAM SPECIFIC OUTCOMES:
Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex
engineering problems.
Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.
Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex
engineering activities with an understanding of the limitations
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work,
as a member and leader in a team, to manage projects and in multidisciplinary environments.
Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of
technological change.
To apply the principles of thermal sciences to design and develop various thermal systems.
To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of
engineering systems in the design, analysis and manufacturability of products.
To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to
transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD

AND WORK PAGE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.K.Venkateswara Reddy, Dr.A.Dhanunjay Kumar,

Ms.P.Mounika

Course Name & Code : CAD/CAM LAB & 20ME63 Regulation:R20

L-T-P Structure : 0-0-3 Credits: 1.5
Program/Sem/Sec : B.Tech/VI/B A.Y.: 2024-25

PREREQUISITE: Computer Aided Machine Drawing, CAD/CAM

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to design, assemble, analyze and manufacture engineering components using computer aided tools.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Design and assemble the mechanical components using CAD Software. (Analyzing - L4)
CO2	Apply finite element analysis for components using analysis software. (Applying - L3)
	Develop NC code for different part profiles and perform machining on CNC Machine tools.
CO3	(Applying - L3)
CO4	Simulate part program to perform various operations on CNC machine. (Applying - L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1			2										2	
CO2	1	1	2	2	1							1		3	
CO3	1	1	1		1							1		3	
CO4		2		1										2	
		1	- Low			2	-Medi	ium	•	•	3	- High		•	

SOFTWARE PACKAGES: CATIA /ANSYS / Iron CAD etc.

REFERENCES:

➤ Lab Manuals

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

Schedule of Experiments (Section - B)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B1	22761A0321-339, 23765A0339-377	54

Introduction to CAD/CAM Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory Cycle-I Design and Assembly Modeling of Knuckle joint using CAD software Design and Assembly Modeling 3. of Universal Coupling using CAD software Design and Assembly Modeling 4. of Piston, Connecting Rod parts using CAD software 5. Analysis of trusses using ANSYS 3 03-01-2025 TLM4	
Design and Assembly Modeling 2. of Knuckle joint using CAD 3 13-12-2024 TLM4 Software Design and Assembly Modeling 3. of Universal Coupling using CAD 3 20-12-2024 TLM4 software Design and Assembly Modeling 4. of Piston, Connecting Rod parts using CAD software 3 27-12-2024 TLM4	
2. of Knuckle joint using CAD 3 13-12-2024 TLM4 software Design and Assembly Modeling 3. of Universal Coupling using CAD software Design and Assembly Modeling 4. of Piston, Connecting Rod parts using CAD software 3 13-12-2024 TLM4 TLM4 TLM4	
3. of Universal Coupling using CAD software Design and Assembly Modeling 4. of Piston, Connecting Rod parts using CAD software 3 20-12-2024 TLM4 TLM4 TLM4	
4. of Piston, Connecting Rod parts 3 27-12-2024 TLM4 using CAD software	
T Analysis of truscass using ANCVC 2 02 04 2025	
6. Analysis of Beams using ANSYS 3 10-01-2025 TLM4	
7. Analysis of 3D solids using ANSYS 3 17-01-2025 TLM4	
8. Steady state heat transfer analysis using ANSYS 3 24-01-2025 TLM4	
Cycle-II	
9. Estimation of natural frequencies and mode shapes for simple problems using ANSYS 3 31-01-2025 TLM4	
10. Development of NC code using CAM packages 3 14-02-2025 TLM4	
Machining of simple components on CNC Turning by transferring NC Code from CAM package Machining of simple 21-02-2025	
Additional Experiments: Machining of Simple 12. components on CNC-Mill by 3 28-02-2025 TLM4 transferring NC Code from CAM Package	
13. Robot programming, simulation, and execution 3 07-03-2025 TLM4	
14. Revision 3 21-03-2025 TLM4	
15. Revision 3 28-03-2025 TLM4	
16. Internal Exam 3 04-04-2025 TLM4	
No. of classes required to complete: No. of classes taken	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
$Record = \mathbf{B}$	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination: $A + B + C = 15$	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

DEO 1	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.
PEUI	Mathematics, Science and Mechanical Engineering.
DEO 2	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.
PEU Z	become successful in multidisciplinary activities.
	To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

TTO GILLI	
	Engineering knowledge: Apply the knowledge of mathematics, science,
PO 1	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
	Problem analysis: Identify, formulate, review research literature, and analyze
PO 2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified
PO 3	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge
	and research methods including design of experiments, analysis and
PO 4	
	interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources,
PO 5	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
	Ethics: Apply ethical principles and commit to professional ethics and
PO 8	responsibilities and norms of the engineering practice.
	responsionates and norms of the engineering practice.

PO 9	Individual and team work: Function effectively as an individual, and as a				
	member or leader in diverse teams, and in multidisciplinary settings.				
	Communication: Communicate effectively on complex engineering activities				
PO 10	with the engineering community and with society at large, such as, being able to				
FO 10	comprehend and write effective reports and design documentation, make				
	effective presentations, and give and receive clear instructions.				
	Project management and finance: Demonstrate knowledge and understand				
PO 11	of the engineering and management principles and apply these to one's own				
PU 11	work, as a member and leader in a team, to manage projects and in				
	multidisciplinary environments.				
	Life-long learning: Recognize the need for, and have the preparation and ability				
PO 12	to engage in independent and life-long learning in the broadest context of				
	technological change.				

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
1301	systems.
	To apply the principles of manufacturing technology, scientific management
PSO 2	towards improvement of quality and optimization of engineering systems in the
	design, analysis and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty				
Signature	Mr.K.Venkateswara Reddy Dr.A.Dhanunjay Kumar Ms.P.Mounika	Mr.A.Nageswara Rao	Mr.J.Subba Reddy	Dr.M.B.S.Sreekara Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. J. Subba Reddy, Associate Professor,

Mrs. B. Kamala Priya, Asst. Professor

Course Name & Code : ROBOTICS AND SIMULATION LAB & 20ME64 Regulations : R20

L-T-P Structure : 1-0-2 Credits : 2

Program/Sem/Sec : B.Tech/VI/B Sec A.Y. : 2024-25

PREREQUISITE: Engineering Mechanics, Theory of Machines, Robotics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to demonstrate and analysis of various types of robots.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Simulate forward and inverse kinematic movements of a robot using Robo Analyzer and MATLAB. (Understanding - L2)
CO2	Perform the demo operations on SCARA and PUMA using Robo analyzer software. (Applying - L3)
CO3	Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and Unloading. (Applying - L3)
CO4	Develop Robot Programmes to use to control commands. (Analyzing - L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	1			3							2		3	
CO2	1	2	2		3							2		3	
CO3	3	3		2	3							3			3
CO4	1	1			3							2			3
		1	- Low			2	-Medi	ium			3	- High			

SOFTWARE PACKAGES: ARISTO ROBOT, C Prog, Robo Analyzer, MAT Lab **REFERENCE:**

Lab Manuals, Softwares

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

Schedule of Experiments (Section - B: B1 Batch): Thursday (01.00 PM to 04.00 PM)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B1	22761A0321 - 329, 332 - 335, 337 -339, 23765A0329 - 349	27

S. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	3	05-12-2024		TLM4	
		Cycle				
2.	Study the anatomy of robots	3	12-12-2024		TLM4	
3.	Analysis of robot configuration and Simulation of Robot with 2 DOF using Robo Analyzer.	3	19-12-2024		TLM4	
4.	Analysis of robot configuration and Simulation of Robot with 6 DOF using Robo Analyzer.	3	26-12-2024		TLM4	
5.	D-H parametric representation of various robotic arms using Robo Analyzer	3	02-01-2025		TLM4	
6.	Forward and Inverse Kinematics Analysis of Robot using Robo Analyzer	3	09-01-2025		TLM4	
7.	Simulation of SCARA, PUMA using Robo Analyzer	3	23-01-2025		TLM4	
8.	Introduction to IGUS Software	3	30-01-2025		TLM4	
	I Mid Exan	ns : 03-02-2	025 to 08-02-2	2025		
		Cycle	-II			
9.	Introduction to IGUS Software	3	13-02-2025		TLM4	
10.	Program for commands like a line command, circle command, Point to Point (PTP) command	3	20-02-2025		TLM4	
11.	Palletizing and depalletizing	3	27-02-2025		TLM4	
12.	Loading / Unloading Operations	3	06-03-2025		TLM4	
13.	Gluing, Painting, Polishing operations	3	13-03-2025		TLM4	
14.	Letter writing - Programme	3	20-03-2025		TLM4	
15.	Internal Exam	3	27-03-2025		TLM4	
16.	Internal Exam	3	03-04-2025		TLM4	
	II Mid Exan	ns:07-04-2	025 to 12-04-	2025		
No. o	No. of classes required to complete 14 No. of classes taken:					

Schedule of Experiments (Section - B: B2 Batch): Monday (09.00 AM - 12.00 Noon)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B2	23765A0350 - 373, 375 - 377	27

S. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	3	02-12-2024		TLM4		
		Cycle-I		T			
2.	Study the anatomy of robots.	3	09-12-2024		TLM4		
3.	Analysis of robot configuration and Simulation of Robot with 2 Dof using Robo Analyzer.	3	16-12-2024		TLM4		
4.	Analysis of robot configuration and Simulation of Robot with 6 Dof using Robo Analyzer.	3	23-12-2024		TLM4		
5.	D-H parametric representation of various robotic arms using Robo Analyzer	3	30-12-2024		TLM4		
6.	Forward Kinematics Analysis of Robot using Robo Analyzer	3	06-01-2025		TLM4		
7.	Inverse Kinematics Analysis of Robot using Robo Analyzer	3	20-01-2025		TLM4		
8.	Simulation of SCARA, PUMA using Robo Aanlyzer	3	27-01-2025		TLM4		
	I Mid Exams		25 to 08-02-20	25			
		Cycle-II		T			
9.	Introduction to IGUS Software	3	10-02-2025		TLM4		
10.	Program for commands like a line command, circle command, Point to Point (PTP) command	3	17-02-2025		TLM4		
11.	Palletizing and depalletizing	3	24-02-2025		TLM4		
12.	Loading / Unloading Operations	3	03-03-2025		TLM4		
13.	Gluing, Painting, Polishing operations	3	10-03-2025		TLM4		
14.	Letter writing - Programme	3	17-03-2025		TLM4		
15.	Pending work	3	24-03-2025		TLM4		
16.	Internal Exam	3	31-03-2025		TLM4		
		ns: 07-04-2	2025 to 12-04				
No. o	No. of classes required to complete: 14 No. of classes taken:						

Teaching	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
Record = \mathbf{B}	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination: $A + B + C = 15$	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	$\mathbf{D} = 35$
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	l Science and Mechanical Engineering.
PEO 2	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.
PEO 3	To develop inquisitiveness towards good communication and lifelong learning.

DDOOF	AAMAN OVER (DO.)
PROGR	RAMME OUTCOMES (POs):
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Signature				
Name of the Faculty	Mr. J. Subba Reddy / Mrs. B. Kamala Priya	Mr. J. Subba Reddy	Mr. J. Subba Reddy	Dr.M.B.S.Sreekara Reddy
	Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

Credits: 02

FRESHMAN ENGINEERING DEPARTMENT COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. R. Padma Venkat Course Name & Code : Soft Skills & 20HSS1

L-T-P Structure : 1-0-2 Program/Sem/Sec : B. Tech- VI SEM –MECH B

Program/Sem/Sec : B. Tech- VI SEM –MI
Academic Year : 2024-25

PREREQUISITE: NIL

Course Educational Objectives:

The Soft Skills Laboratory course equips students with required behavioral, interpersonal & Intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self-confidence, esteem, and acceptability in professional circles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

	TABLE OF THE OWNER (COS). THE LINE CHAIN OF LINE COLLEGE, SEARCHE WITH OF LINE LO	
CO1	To Develop self-awareness and personality traits for professional growth.	L2
CO2	Work effectively in multi-disciplinary and heterogeneous teams through knowledge of teamwork, Inter-personal relationships, conflict management and leadership quality.	L3
CO3	Communicate through verbal/oral communication with good listening skills and empathy.	L3
CO4	Apply skills required to qualify in recruitment tests, Interviews & other professional assignments.	L3

COURSE ARTICULATION MATRIX

(Correlation between COs & POs)

	Programme Outcomes											
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
PO's →												
CO1.					2			3	3	3		2
CO2.		2			2			3	3	3		3
CO3.					2			3	3	3		3
CO4.					2			3	3	3		
1 = Slight (ht (Low) 2= Moderate (Medium) 3 = Substantial											
				(Hi	igh)							

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex
	engineering problems.
	Problem analysis : Identify, formulate, review research literature, and analyze
PO 2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO 3	problems and design system components or processes that meet the specified needs
103	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
20.6	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
PO 8	and norms of the engineering practice.
	Individual and team work: Function effectively as an individual, and as a member or
PO 9	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to
PO 10	comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions
	Project management and finance: Demonstrate knowledge and understanding of the
DO 11	engineering and management principles and apply these to one's own work, as a
PO 11	member and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

Soft skills Lab

List of Activities:

1.Personality Development Skills

Role of language in Personality – How language reflects, impacts Personality – Using gender- neutral language in MNCs – being Culturally-Sensitive-Personality Traits - Grooming & Dress code

Activities: Group Discussion/Role play/Presentations (authentic materials: Newspapers, pamphlets and News Clippings)

2.Impactful Communication

Activities: Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/ Elocution on Interpretation of given quotes/ Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

3. Professional Skills:

Career Planning- job vs. career- goal setting- SWOT Analysis-Time management – self-management – stress-management.

Activities: SWOT analysis of the self/Goal Setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

REFERENCES:

- 1. Edward Holffman, "Ace the Corporate Personality", McGraw Hill, 2001
- 2. Adrian Furnham, Personality and Intelligence at Work, Psyc 2. hology Press, 2008.
- 3. M.Ashraf Rizvi, "Effective Technical Communication", 1 st edition, Tata

cGrawHill, 2005.

- 4. Ace of Soft skills Gopalaswamy Ramesh, Pearson Education India, 2018
- 5. Soft Skills for the Workplace, Good heart Willcox Publisher · 2020.
- 6. How to Win Friends and Influence People, Dale Carnegie · 2020

Software: Walden InfoTech

COURSE DELIVERY PLAN (LESSON PLAN)

S. No.	Topics to be covered	No. of Classes Required	Actual Date of Completion	HOD Sign
	Activity-1			
1.	:Role of language in Personality- How language reflects, impacts Personality – Using gender	1+2	3-12-24	
2.	neutral language in MNCs – being Culturally-Sensitive-Personality Traits - Grooming & Dress code& Role-play	1+2	10-12-24	
3.	Group Discussion	1+2	17-12-24	
4.	Group Discussion	1+2	24-12-24	
5.	Presentations	1+2	31-12-24	
	Activity-2:			
6.	Impactful Communication Extempore - Story Telling	1+2	7-1-25	
7.	Extempore -Group Discussion	1+2	21-1-25	
8.	Elocution on Interpretation of given quotes/ Critical Appreciation and Textual Analysis/ Writing. Reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice	1+2	28-1-25	
	Activity-3:			
9.	Professional Skills: Career Planning- job vs. career- goal setting.	1+2	11-2-25	
10.	SWOT Analysis. Time management – self- management – stress-management.	1+2	18-2-25	

11.	Presentation/Writing Report/Listening exercises	1+2	25-2-25	
12.	Effective Resume-Writing and presentation	1+2	4-3-25	
13.	Effective Resume-Writing and presentation	1+2	11-3-25	
14.	Interview Skills: Mock Interviews/Video samples.	1+2	18-3-25	
15.	Interview Skills: Mock Interviews/Video samples.	1+2	25-3-25	
16.	Lab Internal Exam	1+2	1-4-25	

No. of classes required to complete Syllabus: 51

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. R. PadmaVenkat	Dr. R. PadmaVenkat	Dr. R. PadmaVenkat	Dr. A. Rami Reddy
Signature				