

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### FRESHMAN ENGINEERING DEPARTMENT

# **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor : Dr. K.R. Kavitha

Course Name & Code : Numerical Methods & Integral Calculus & 20FE10

L-T-P Structure : 2-1 -0 Credits:3
Program/Sem/Sec : II B.Tech/III sem/ME A A.Y.: 2023 - 24

PREREQUISITE: Nil

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Estimate the best fit polynomial for the given tabulated data using Interpolation.(Understand –   |
|-----|---------------------------------------------------------------------------------------------------|
| COI | L2)                                                                                               |
| CO2 | Apply numerical techniques in solving of equations and evaluation of integrals. (Apply – L3)      |
| CO3 | Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their     |
| C03 | respective applications to areas and volumes. (Apply – L3)                                        |
| CO4 | Generate the single valued functions in the form of Fourier series and obtain Fourier series      |
| CO4 | representation of periodic function. (Apply – L3)                                                 |
| CO5 | Evaluate the directional derivative, divergence and angular velocity of a vector function. (Apply |
| 005 | -L3)                                                                                              |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs     | PO1 | PO2 | PO3 | PO4   | PO5   | PO6 | PO7 | PO8 | PO9            | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|---------|-----|-----|-----|-------|-------|-----|-----|-----|----------------|------|------|------|------|------|------|
| CO1     | 3   | 2   | -   | 2     | -     | -   | -   | -   | -              | -    | -    | 1    |      |      |      |
| CO2     | 3   | 2   | -   | 2     | -     | -   | -   | -   | -              | -    | -    | 1    |      |      |      |
| CO3     | 3   | 2   | -   | 1     | -     | -   | -   | -   | -              | -    | -    | 1    |      |      |      |
| CO4     | 3   | 1   | -   | -     | -     | ı   | •   | -   | -              | -    | •    | 1    |      |      |      |
| CO5     | 3   | 1   | -   | 1     | -     | ı   | ı   | -   | -              | -    | •    | 1    |      |      |      |
| 1 - Low |     |     |     | 2 -Me | edium |     |     |     | <b>3</b> - Hig | h    |      |      |      |      |      |

### **TEXTBOOKS:**

- T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 42<sup>nd</sup>Edition, Khanna Publishers, New Delhi, 2012
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1st Edition, TMH, New Delhi, 2010.
- T3 S. S. Sastry, "Introductory Methods of Numerical Analysis" 5<sup>th</sup> Edition, PHI Learning Private Limited, New Delhi, 2012.

### **REFERENCE BOOKS:**

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

### PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

**UNIT-I: Interpolation and Finite Differences** 

| S.<br>No. | Topics to be covered                         | No. of<br>Classes<br>Required                                        | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|----------------------------------------------|----------------------------------------------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|--|
| 1.        | Introduction to the course, Course Outcomes  | 1                                                                    | 07/08/23                     |                           | TLM1                            |                       |  |
| 2.        | Introduction to UNIT I                       | 1                                                                    | 10/08/23                     |                           | TLM2                            |                       |  |
| 3.        | Forward Differences                          | 1                                                                    | 11/08/23                     |                           | TLM1                            |                       |  |
| 4.        | Backward differences                         | 1                                                                    | 14/08/23                     |                           | TLM1                            |                       |  |
| 5.        | Central Differences                          | 1                                                                    | 17/08/23                     |                           | TLM1                            |                       |  |
| 6.        | Symbolic relations and separation of symbols | 1                                                                    | 18/08/23                     |                           | TLM1                            |                       |  |
| 7.        | Symbolic relations and separation of symbols | 1                                                                    | 19/08/23                     |                           | TLM1                            |                       |  |
| 8.        | Newton's forward formulae for interpolation  | 1                                                                    | 21/08/23                     |                           | TLM1                            |                       |  |
| 9.        | Newton's backward formulae for interpolation | 1                                                                    | 24/08/23                     |                           | TLM1                            |                       |  |
| 10.       | Lagrange's Interpolation                     | 1                                                                    | 25/08/23                     |                           | TLM1                            |                       |  |
| 11.       | Lagrange's Interpolation                     | 1                                                                    | 28/08/23                     |                           | TLM1                            |                       |  |
| 12.       | Tutorial I                                   | 1                                                                    | 26/08/23                     |                           | TLM3                            |                       |  |
| No. o     | of classes required to complete UN           | No. of classes required to complete UNIT-I: 12 No. of classes taken: |                              |                           |                                 |                       |  |

**UNIT-II: Numerical solutions of Equations and Numerical Integration** 

| S.    | -                                      | No. of     | Tentative  | Actual         | Teaching | HOD    |
|-------|----------------------------------------|------------|------------|----------------|----------|--------|
| No.   | Topics to be covered                   | Classes    | Date of    | Date of        | Learning | Sign   |
| 110.  |                                        | Required   | Completion | Completion     | Methods  | Weekly |
| 13.   | Introduction to UNIT II                | 1          | 31/08/23   |                | TLM2     |        |
| 14.   | Algebraic and Transcendental Equations | 1          | 01/09/23   |                | TLM1     |        |
| 15.   | False Position method                  | 1          | 02/09/23   |                | TLM1     |        |
| 16.   | False Position method                  | 1          | 04/09/23   |                | TLM1     |        |
| 17.   | Newton- Raphson Method in one variable | 1          | 08/09/23   |                | TLM1     |        |
| 18.   | Newton- Raphson Method applications    | 1          | 11/09/23   |                | TLM1     |        |
| 19.   | Trapezoidal rule                       | 1          | 14/09/23   |                | TLM1     |        |
| 20.   | Simpson's 1/3 Rule                     | 1          | 15/09/23   |                | TLM1     |        |
| 21.   | Simpson's 3/8 Rule                     | 1          | 18/09/23   |                | TLM1     |        |
| 22.   | Tutorial II                            | 1          | 16/09/23   |                | TLM3     |        |
| No. o | of classes required to complete U      | NIT-II: 10 |            | No. of classes | s taken: |        |

UNIT-III: Multiple Integrals

| S.<br>N<br>o. | Topics to be covered                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------|----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|
| 23.           | Introduction to Unit-III                                       | 1                             | 21/09/23                           |                           | TLM1                            |                       |
| 24.           | Double Integrals -Cartesian coordinates                        | 1                             | 22/09/23                           |                           | TLM1                            |                       |
| 25.           | Double Integrals- Polar co ordinates                           | 1                             | 23/09/23                           |                           | TLM1                            |                       |
| 26.           | Problems                                                       | 1                             | 25/09/23                           |                           | TLM1                            |                       |
| 27.           | Applications to Double integrals (Content Beyond the syllabus) | 1                             | 29/09/23                           |                           | TLM2                            |                       |
| 28.           | Revision for mid exam                                          | 1                             | 30/09/23                           |                           |                                 |                       |
|               | I MID EXAMINAT                                                 | IONS (02-1                    | 0-2023 TO 07-                      | 10-2023)                  |                                 |                       |

| 29. | Triple Integrals - Cartesian coordinates                               | 1 | 09/10/23 | TLM1 |  |  |
|-----|------------------------------------------------------------------------|---|----------|------|--|--|
| 30. | Triple Integrals - Spherical coordinates                               | 1 | 12/10/23 | TLM1 |  |  |
| 31. | Change of order of Integration                                         | 1 | 13/10/23 | TLM1 |  |  |
| 32. | Tutorial III                                                           | 1 | 16/10/23 | TLM3 |  |  |
| 33. | Change of order of Integration                                         | 1 | 19/10/23 | TLM1 |  |  |
|     | No. of classes required to complete UNIT-III: 10 No. of classes taken: |   |          |      |  |  |

No. of classes r
UNIT-IV: Fourier Series

| UNIT  | -1V: Fourier Series                                                   |          | T          | T          | I        |        |  |  |
|-------|-----------------------------------------------------------------------|----------|------------|------------|----------|--------|--|--|
| S.    |                                                                       | No. of   | Tentative  | Actual     | Teaching | HOD    |  |  |
| No.   | Topics to be covered                                                  | Classes  | Date of    | Date of    | Learning | Sign   |  |  |
| 110.  |                                                                       | Required | Completion | Completion | Methods  | Weekly |  |  |
| 34.   | Introduction to UNIT IV                                               | 1        | 26/10/23   |            | TLM1     |        |  |  |
| 35.   | Determination of Fourier coefficients, Even and Odd Functions         | 1        | 27/10/23   |            | TLM1     |        |  |  |
| 36.   | Fourier Series expansion in the interval $[0,2\pi]$                   | 1        | 28/10/23   |            | TLM1     |        |  |  |
| 37.   | Fourier Series expansion in the interval $[-\pi,\pi]$                 | 1        | 30/10/23   |            | TLM1     |        |  |  |
| 38.   | Fourier Series in an arbitrary interval [0, 21]                       | 1        | 02/11/23   |            | TLM1     |        |  |  |
| 39.   | Fourier Series in an arbitrary interval [-1, 1]                       | 1        | 03/11/23   |            | TLM1     |        |  |  |
| 40.   | Fourier series in an arbitrary interval odd and even functions        | 1        | 04/11/23   |            | TLM1     |        |  |  |
| 41.   | Half-range Sine and Cosine series                                     | 1        | 06/11/23   |            | TLM1     |        |  |  |
| 42.   | Half-range Sine and Cosine series                                     |          | 09/11/23   |            | TLM1     |        |  |  |
| 43.   | Tutorial IV                                                           | 1        | 10/11/23   |            | TLM3     |        |  |  |
| 44.   | Introduction to Fourier transforms (Content Beyond the Syllabus)      | 1        | 13/11/23   |            | TLM2     |        |  |  |
| No. o | No. of classes required to complete UNIT-IV: 11 No. of classes taken: |          |            |            |          |        |  |  |
| UNIT  | -V: Vector Differentiation                                            |          |            |            |          |        |  |  |

| S.     |                                  | No. of    | Tentative  | Actual         | Teaching | HOD    |
|--------|----------------------------------|-----------|------------|----------------|----------|--------|
| No.    | Topics to be covered             | Classes   | Date of    | Date of        | Learning | Sign   |
| 110.   |                                  | Required  | Completion | Completion     | Methods  | Weekly |
| 45.    | Introduction to UNIT V           | 1         | 16/11/23   |                | TLM1     |        |
| 46.    | Vector Differentiation           | 1         | 17/11/23   |                | TLM1     |        |
| 47.    | Gradient                         | 1         | 18/11/23   |                | TLM1     |        |
| 48.    | Directional Derivative           | 1         | 20/11/23   |                | TLM1     |        |
| 49.    | Divergence                       | 1         | 23/11/23   |                | TLM1     |        |
| 50.    | Curl                             | 1         | 24/11/23   |                | TLM1     |        |
| 51.    | Solenoidal and Irrotational      | 1         | 25/11/23   |                | TLM1     |        |
| 31.    | functions, potential surfaces    | 1         | 23/11/23   |                | 1 LIVI I |        |
| 52.    | Laplacian and second order       | 1         | 27/11/23   |                | TLM1     |        |
| 32.    | operators                        | 1         | 27/11/25   |                | 1 121/11 |        |
| 53.    | TUTORIAL - V                     | 1         | 30/11/23   |                | TLM3     |        |
| 54.    | Properties                       | 1         | 01/12/23   |                | TLM1     |        |
|        | Introduction to Vector           |           |            |                |          |        |
| 55.    | Integrals (Content Beyond the    | 1         | 02/12/23   |                | TLM1     |        |
|        | Syllabus)                        |           |            |                |          |        |
| No. of | f classes required to complete U | NIT-V: 11 |            | No. of classes | s taken: |        |

| Teaching I | Teaching Learning Methods |      |                                 |  |  |  |  |  |  |
|------------|---------------------------|------|---------------------------------|--|--|--|--|--|--|
| TLM1       | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |
| TLM2       | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3       | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |

## PART-C

### **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30          |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = $CIE + SEE$                                                            | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering                                                                                       |  |  |  |  |
| PO 2  | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and                                                                                 |  |  |  |  |
| 102   | engineering sciences.                                                                                                                                                                    |  |  |  |  |
|       | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system                                                                             |  |  |  |  |
| PO 3  | components or processes that meet the specified needs with appropriate consideration for the public health                                                                               |  |  |  |  |
|       | and safety, and the cultural, societal and environmental considerations.                                                                                                                 |  |  |  |  |
|       | Conduct investigations of complex problems: Use research-based knowledge and research methods                                                                                            |  |  |  |  |
| PO 4  | including design of experiments, analysis and interpretation of data and synthesis of the information to                                                                                 |  |  |  |  |
|       | provide valid conclusions.                                                                                                                                                               |  |  |  |  |
|       | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering                                                                           |  |  |  |  |
| PO 5  | and IT tools including prediction and modeling to complex engineering activities with an                                                                                                 |  |  |  |  |
|       | understanding of the limitations.                                                                                                                                                        |  |  |  |  |
| DO (  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,                                                                                       |  |  |  |  |
| PO 6  | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional                                                                               |  |  |  |  |
|       | engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in                                                                |  |  |  |  |
| PO 7  | societal and environmental contexts, and demonstrate the knowledge of and need for sustainable                                                                                           |  |  |  |  |
| 107   | development.                                                                                                                                                                             |  |  |  |  |
|       | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the                                                                         |  |  |  |  |
| PO 8  | engineering practice.                                                                                                                                                                    |  |  |  |  |
|       | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse                                                                            |  |  |  |  |
| PO 9  | teams, and in multidisciplinary settings.                                                                                                                                                |  |  |  |  |
|       | Communication: Communicate effectively on complex engineering activities with the engineering                                                                                            |  |  |  |  |
| PO 10 | community and with society at large, such as, being able to comprehend and write effective reports and                                                                                   |  |  |  |  |
|       | design documentation, make effective presentations and give and receive clear instructions.                                                                                              |  |  |  |  |
|       | Project management and finance: Demonstrate knowledge and understanding of the engineering and                                                                                           |  |  |  |  |
| PO 11 | management principles and apply these to one's own work, as a member and leader in a team, to manage                                                                                     |  |  |  |  |
|       | projects and in multidisciplinary environments.                                                                                                                                          |  |  |  |  |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent                                                                        |  |  |  |  |
|       | and life-long learning in the broadest context of technological change.                                                                                                                  |  |  |  |  |

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|--------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr. K. R. Kavitha | Dr. K. R. Kavitha  | Dr. A. Rami Reddy     | Dr. A. Rami Reddy         |
| Signature              |                   |                    |                       |                           |

# AREDDY COLLEGE OR THE PROPERTY OF THE PROPERTY

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### DEPARTMENT OF MECHANICAL ENGINEERING

# **COURSE HANDOUT**

## **PART-A**

Name of Course Instructor: S.RAMI REDDY

Program/Sem/Sec : B.Tech/III/A A.Y.: 2023-24

**PREREQUISITE: Engineering physics and Mathematics** 

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** To understand the fundamental concepts of fluid mechanics, various flow measuring devices, boundary layer separation and performance characteristics of hydraulic machines.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Understand the fundamentals of fluid mechanics and dimensional analysis and similarity concepts |
|------------|-------------------------------------------------------------------------------------------------|
| CO2        | Comprehend the kinematics and dynamics of fluid flows                                           |
| CO3        | Analyze boundary layer flow and friction losses in pipes                                        |
| <b>CO4</b> | Apply impulse momentum concept to impact of jet problems                                        |
| CO5        | Evaluate the performance parameters of hydraulic turbines and pumps                             |

## **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | PO10 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 | 3   | 2   | 2     | 3   | -   | -   | -     | -   | -   | 3    | -    | 3      | 2    | -    | 3    |
| CO2 | 3   | 3   | 3     | 2   | -   | -   | -     | -   | -   | -    | -    | 3      | 2    | -    | 2    |
| CO3 | 2   | 1   | 3     | 2   | 1   | -   | •     | •   | •   | -    | •    | 3      | 2    | -    | 3    |
| CO4 | 2   | 1   | 2     | 3   | -   | -   | ı     | ı   | ı   | -    | ı    | 3      | 3    | -    | 3    |
| CO5 | 3   | 2   | 3     | 2   | 1   | -   | ı     | ı   | ı   | -    | ı    | 3      | 2    | -    | 2    |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

### **TEXTBOOKS:**

- T1 P.N.Modi and S.M.Seth, Hydraulics, "Fluid Mechanics and Hydraulic Machinery, 15th Edition, Standard Book House, 2004.
- T2 Philip J, Robert W.fox, Fluid mechanics, 7th edition, John Wiley & sons, 2011.

### REFERENCE BOOKS:

- R1 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", 9th Edition, laxmi publications
- R2 Banga & Sharma, "Hydraulic Machines", Edition, Khanna publishers, 6th Edition, 1999.
- R3 Rama Durgaiah, "Fluid Mechanics and Machinery", Edition, New Age International, 1st edition, 2006
- **R4** D.S.Kumar, "Fluid Mechanics and Fluid power engineering", 5th Edition, S.K.Kataria & Sons.

# PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# UNIT-I: FLUID STATITICS AND DIMENSIONAL ANALYSIS AND SIMILARITY

| S.<br>No. | Topics to be covered                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to FMHM                                          | 1                             | 07/08/2023                         |                                 | TLM1                            |                       |
| 2.        | Physical properties of fluids                                 | 1                             | 09/08/2023                         |                                 | TLM3                            |                       |
| 3.        | Specific gravity, viscosity, surface tension, vapour pressure | 1                             | 11/08/2023                         |                                 | TLM1                            |                       |
| 4.        | Problems on physical properties                               | 1                             | 14/08/2023                         |                                 | TLM1                            |                       |
| 5.        | Manometers, classification                                    | 1                             | 16/08/2023                         |                                 | TLM2                            |                       |
| 6.        | Problems on manometers                                        | 1                             | 18/08/2023                         |                                 | TLM3                            |                       |
| 7.        | Dimensional analysis,rayleigh's method                        | 1                             | 19/08/2023                         |                                 | TLM1                            |                       |
| 8.        | Buckingham's Pi theorem method                                | 1                             | 21/08/2023                         |                                 | TLM1                            |                       |
| No.       | No. of classes required to complete UNIT-I: 8                 |                               |                                    |                                 | ses takei                       | 1:                    |

# **UNIT-II: FLUID STATICS AND FLUID DYNAMICS**

| S.<br>No. | Topics to be covered                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 9.        | Stream line, path line, streak line, stream tube                       | 1                             | 23/08/2023                         |                                 | TLM1                            |                       |
| 10.       | Classification of flows, equation of continuity for 1 dimensional flow | 1                             | 25/08/2023                         |                                 | TLM3                            |                       |
| 11.       | Surface and body forces, Euler's equation, Bernoulli's equation        | 1                             | 26/08/2023                         |                                 | TLM1                            |                       |
| 12.       | Momentum equation and its application on pipe bend                     | 1                             | 28/08/2023                         |                                 | TLM1                            |                       |
| 13.       | Reynold's experiment                                                   | 1                             | 30/08/2023                         |                                 | TLM2                            |                       |
| 14.       | Darcy's formula                                                        | 1                             | 01/09/2023                         |                                 | TLM1                            |                       |
| 15.       | Minor losses in pipes                                                  | 1                             | 02/09/2023                         |                                 | TLM1                            |                       |
| 16.       | Problems on major and minor losses                                     | 1                             | 04/09/2023                         |                                 | TLM3                            |                       |
| 17.       | Pipes in series and parallel                                           | 1                             | 08/09/2023                         |                                 | TLM1                            |                       |
| 18.       | Total energy line and hydraulic gradient line                          | 1                             | 11/09/2023                         |                                 | TLM1                            |                       |
| 19.       | Venturi meter, orifice meter, pitot tube                               | 1                             | 13/09/2023                         |                                 | TLM3                            |                       |
| 20.       | Problems on venturi and orifice meter                                  | 1                             | 15/09/2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complete                                        | 12                            | No. of class                       | ses takei                       | 1:                              |                       |

# UNIT-III: BOUNDARY LAYER FLOW AND IMPACT OF JETS

| S.<br>No. | Topics to be covered                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|--------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 21.       | Laminar and turbulent boundary layer | 1                             | 16/09/2023                         |                                 | TLM2                            |                       |
| 22.       | Boundary layer thickness             | 1                             | 20/09/2023                         |                                 | TLM3                            |                       |
| 23.       | displacement thickness               | 1                             | 22/09/2023                         |                                 | TLM1                            |                       |
| 24.       | momentum thickness                   | 1                             | 23/09/2023                         |                                 | TLM1                            |                       |
| 25.       | energy thickness                     | 1                             | 25/09/2023                         |                                 | TLM1                            |                       |
| 26.       | Energy thickness                     | 1                             | 27/09/2023                         |                                 | TLM3                            |                       |
| 27.       | boundary layer separation            | 1                             | 29/09/2023                         |                                 | TLM1                            |                       |
| 28.       | Problems on boundary layer thickness | 1                             | 30/09/2023                         |                                 | TLM1                            |                       |

| 29. | Hydrodynamic forces of jets on stationary and moving flat, inclined, curved vanes                     | 1 | 11/10/2023 | TLM2 |  |  |
|-----|-------------------------------------------------------------------------------------------------------|---|------------|------|--|--|
| 30. | Jet striking centrally and a tip for<br>symmetrically and unsymmetrically<br>vanes, velocity diagrams | 1 | 13/10/2023 | TLM3 |  |  |
| 31. | Flow over radial vanes                                                                                | 1 | 16/10/2023 | TLM1 |  |  |
| 32. | Problems on stationary plates                                                                         | 1 | 18/10/2023 | TLM1 |  |  |
| 33. | Problems on stationary plates                                                                         | 1 | 25/10/2023 | TLM1 |  |  |
| 34. | Problems on moving plates                                                                             | 1 | 27/10/2023 | TLM3 |  |  |
| 35. | Problems on moving plates                                                                             | 1 | 28/10/2023 | TLM1 |  |  |
| 36. | Problems on moving plates                                                                             | 1 | 30/10/2023 | TLM1 |  |  |
| 37. | Problems on radial vanes                                                                              | 1 | 01/11/2023 | TLM1 |  |  |
| 38. | Problems on radial vanes                                                                              | 1 | 03/11/2023 | TLM3 |  |  |
|     | No. of classes required to complete UNIT-III: 18 No. of classes taken:                                |   |            |      |  |  |

# UNIT-IV: HYDRAULIC TURBINES AND PERFORMANCE OF THE HYDRAULIC TURBINES

| S.<br>No. | Topics to be covered                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 39.       | Classification of hydraulic turbines                     | 1                             | 04/11/2023                         |                                 | TLM2                            |                       |
| 40.       | Pelton wheel, work done, efficiency                      | 1                             | 06/11/2023                         |                                 | TLM2                            |                       |
| 41.       | Francis turbine, work done, efficiency                   | 1                             | 08/11/2023                         |                                 | TLM1                            |                       |
| 42.       | Kaplan turbine, work done, efficiency                    | 1                             | 10/11/2023                         |                                 | TLM3                            |                       |
| 43.       | Specific speed, specific quantities                      | 1                             | 13/11/2023                         |                                 | TLM1                            |                       |
| 44.       | Unit quantities, Draft tube-<br>classification           | 1                             | 15/11/2023                         |                                 | TLM1                            |                       |
| 45.       | Performance characteristic curves, governing of turbines | 1                             | 17/11/2023                         |                                 | TLM3                            |                       |
| 46.       | Problems on hydraulic turbines                           | 1                             | 18/11/2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complete                          |                               |                                    |                                 |                                 |                       |

## UNIT-V: CENTRIFUGAL PUMPS AND RECIPROCATING PUMPS

| S. No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 47.    | Working of centrifugal pump, types                        | 1                             | 20/11/2023                         |                                 | TLM2                            |                       |
| 48.    | Losses and efficiencies, specific speed                   | 1                             | 22/11/2023                         |                                 | TLM2                            |                       |
| 49.    | Pumps in series and pumps in parallel                     | 1                             | 24/11/2023                         |                                 | TLM3                            |                       |
| 50.    | Problems on centrifugal pumps                             | 1                             | 25/11/2023                         |                                 | TLM1                            |                       |
| 51.    | Main components and working of reciprocating pumps, types | 1                             | 27/11/2023                         |                                 | TLM1                            |                       |
| 52.    | Slip, negative slip                                       | 1                             | 29/12/2023                         |                                 | TLM1                            |                       |
| 53.    | Revision                                                  | 1                             | 01/12/2023                         |                                 | TLM1                            |                       |
| 54.    | Revision                                                  | 1                             | 02/12/2023                         |                                 | TLM1                            |                       |
| No. o  | f classes required to complete                            | No. of class                  | ses takei                          | n:                              |                                 |                       |

| Teaching | Teaching Learning Methods |                                      |                                    |  |  |  |  |  |
|----------|---------------------------|--------------------------------------|------------------------------------|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 Demonstration (Lab/Field Visit) |                                    |  |  |  |  |  |
| TLM2     | PPT                       | TLM5                                 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6                                 | Group Discussion/Project           |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = CIE + SEE                                                              | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering          |
|-------|----------------------------------------------------------------------------------------------------|
|       | specialization to the solution of complex engineering problems.                                    |
|       | Identify, formulate, review research literature, and analyze complex engineering problems          |
| PO 2  | reaching substantiated conclusions using first principles of mathematics, natural sciences, and    |
|       | engineering sciences.                                                                              |
|       | Design solutions for complex engineering problems and design system components or processes        |
| PO 3  | that meet the specified needs with appropriate consideration for the public health and safety, and |
|       | the cultural, societal, and environmental considerations.                                          |
| PO 4  | Use research-based knowledge and research methods including design of experiments, analysis        |
| FU4   | and interpretation of data, and synthesis of the information to provide valid conclusions.         |
|       | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools   |
| PO 5  | including prediction and modeling to complex engineering activities with an understanding of the   |
|       | limitations.                                                                                       |
|       | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and |
| PO 6  | cultural issues and the consequent responsibilities relevant to the professional engineering       |
|       | practice.                                                                                          |
| PO 7  | Understand the impact of the professional engineering solutions in societal and environmental      |
| PU /  | contexts, and demonstrate the knowledge of, and need for sustainable development.                  |
| DO O  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the   |
| PO 8  | engineering practice.                                                                              |
| DO O  | Function effectively as an individual, and as a member or leader in diverse teams, and in          |
| PO 9  | multidisciplinary settings.                                                                        |
|       | Communicate effectively on complex engineering activities with the engineering community and       |
| PO 10 | with society at large, such as, being able to comprehend and write effective reports and design    |
|       | documentation, make effective presentations, and give and receive clear instructions.              |
|       | Demonstrate knowledge and understanding of the engineering and management principles and           |
| PO 11 | apply these to one's own work, as a member and leader in a team, to manage projects and in         |
|       | multidisciplinaryenvironments.                                                                     |
|       |                                                                                                    |
| PO 12 | Recognize the need for, and have the preparation and ability to engage in independent and life-    |
|       | long learning in the broadest context of technological change.                                     |
|       | _ 0 0                                                                                              |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.     |
| PSO 3 | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. |

| Title               | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty | S.RAMI REDDY      | S.RAMI REDDY          | Dr.P.VIJAYA<br>KUMAR  | Dr.S.PICHI<br>REDDY       |
| Signature           |                   |                       |                       |                           |

# REDDY COLLEGE OF CALL OF THE PROPERTY OF THE P

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### DEPARTMENT OF MECHANICAL ENGINEERING

# **COURSE HANDOUT**

# **PART-A**

Name of Course Instructor: Dr.P.Ravindra Kumar

**Course Name & Code**: Thermodynamics & 20ME04

L-T-P Structure : 3-1-0 Credits: 3
Program/Sem/Sec : B.Tech III Sem A/S A.Y.: 2023-24

PREREQUISITE: Engineering Physics

## **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

To provide an intuitive understanding of thermodynamics to emphasize on physics of thermodynamic systems and this covers the heat and work interactions. It also provides the insights on laws of thermodynamics and its applications, properties of pure substance, ideal gases and different thermodynamic cycles.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Classify the various thermodynamic systems, properties and processes with examples and temperature scales of a system [Remembering Level -L1]. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                |
| <b>CO2</b> | Differentiate open and closed system and built up the heat and work transfer relations                                                         |
| COZ        | of thermal systems [Understanding Level -L2].                                                                                                  |
| <b>CO3</b> | Apply the laws of thermodynamics to find the thermodynamic properties and                                                                      |
| LUS        | parameters of various thermal systems [Applying Level-L3].                                                                                     |
| <b>CO4</b> | Understand the properties of pure substance and gases to compute the non-reactive                                                              |
| LU4        | mixture parameters [Understanding Level -L2].                                                                                                  |
| CO5        | CO5: Analyze the performance parameters of various thermodynamic cycles                                                                        |
| 603        | [Analyzing Level - L4].                                                                                                                        |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04       | P05 | P06 | P07 | P08             | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----------|-----|-----|-----|-----------------|-----|------|------|------|------|------|------|
| CO1            | 3   | 2   | 1   | -         | -   | -   | -   | -               | -   | -    | -    | 1    | 2    | -    | -    |
| CO2            | 3   | 3   | 2   | 3         | -   | -   | -   | -               | 2   | -    | -    | 2    | 3    | -    | 1    |
| CO3            | 3   | 1   | 1   | 3         | -   | -   | -   | -               | 1   | -    | -    | 2    | 3    | -    | 2    |
| CO4            | 3   | 3   | 2   | 2         | ı   | -   | ı   | 3               | -   | -    | 1    | 2    | 1    | ı    | 3    |
| CO5            | 3   | 3   | -   | 3         | -   |     | -   | -               | 3   | -    |      | 3    | 2    | -    | 3    |
| <b>1</b> - Low |     |     |     | 2 -Medium |     |     |     | <b>3 -</b> High |     |      |      |      |      |      |      |

### **TEXTBOOKS:**

| T1        | P.K.Nag, "Engineering Thermodynamics"- McGraw-Hill. 5th Edition, 2013               |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>T2</b> | Y.A. Cengel, and M.A.Boles, "Thermodynamics: An Engineering Approach", McGraw-Hill, |  |  |  |  |  |  |  |
|           | 7th Edition, 2011.                                                                  |  |  |  |  |  |  |  |

### **REFERENCE BOOKS:**

| R1 | G.J.Van Wylen & Sonntag, "Fundamentals of Thermodynamics", John Wiley& sons,     |
|----|----------------------------------------------------------------------------------|
|    | publications Inc. 5th Edition, 1998.                                             |
| R2 | E.Rathakrishnan, "Fundamentals of Engineering Thermodynamics", PHI, 2nd Edition, |
|    | 2010.                                                                            |

# PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# **UNIT-I: Basic Concepts and Zeroth Law of Thermodynamics**

| S.<br>No. | Topics to be covered                                                                                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.        | Introduction                                                                                                                          | 1                             | 08-8-23                            |                                 | 1                               |                       |  |
| 2.        | Basic Concepts, Classification of systems, Macroscopic & Microscopic approaches                                                       | 1                             | 09-8-23                            |                                 | 1,2                             |                       |  |
| 3.        | System-Types - examples, Control mass and Control volume Properties of system                                                         | 1                             | 11-8-23                            |                                 | 1,2                             |                       |  |
| 4.        | State, Path, Process, Cycle, path and point functions.                                                                                | 1                             | 16-8-23                            |                                 | 1,2                             |                       |  |
| 5.        | Equilibrium, reversible and irreversible processes, Quasistatic process, Applications of TD, Internal Energy, Specific heat, Enthalpy | 1                             | 18-8-23                            |                                 | 1,2                             |                       |  |
| 6.        | Zeroth law of Thermodynamics<br>Temperature scales – Temperature<br>measurement, Comparison of<br>thermometers                        | 1                             | 19-8-23                            |                                 | 1,2                             |                       |  |
| 7.        | Constant volume gas thermometer<br>Numerical Problems on<br>Temperature scales.                                                       | 1                             | 22-8-23                            |                                 | 1,2                             |                       |  |
| 8.        | Advantages of gas thermometers over liquid thermometers                                                                               | 1                             | 23-8-23                            |                                 | 1,2                             |                       |  |
| 9.        | Numerical problems on Internal energy, enthalpy, specific heat and latent heat, Assignement-1                                         | 1                             | 25-8-23                            |                                 | 1                               |                       |  |
| 10        | Tutorial -I                                                                                                                           | 1                             | 26-8-23                            |                                 | 3                               |                       |  |
| No.       | No. of classes required to complete UNIT-I: 10 No. of classes taken:                                                                  |                               |                                    |                                 |                                 |                       |  |

# **UNIT-II: First Law of Thermodynamics**

| S.<br>No. | Topics to be covered                                                                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 11        | <b>First Law Analysis of Closed Systems</b> : Introduction, First law for a closed system undergoing change of state and cycle | 1                             | 29-8-23                            |                                 | 1,2                             |                       |
| 12        | Representation of Thermodynamic processes on P-V planes                                                                        | 1                             | 30-8-23                            |                                 | 1,2                             |                       |
| 13        | First Law Analysis of Closed<br>System undergoing different<br>process.                                                        | 1                             | 05-9-23                            |                                 | 1,2                             |                       |
| 14        | Different forms of stored energy,<br>Forms of energy, Mechanical and<br>Non mechanical forms of Work<br>transfer               | 2                             | 08-9-23                            |                                 | 1,2                             |                       |
| 15        | pdV work and other types of work transfer.                                                                                     | 1                             | 12-9-23                            |                                 | 1,2                             |                       |
| 16        | Applications of first law, PMM1<br>Numerical problems on work and<br>energy.                                                   | 1                             | 13-9-23                            |                                 | 1                               |                       |

|    | of classes required to complete U                                                                                            | MIT-II- 12 |         | No. of clas | _   |  |
|----|------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------------|-----|--|
| 21 | Tutorial -2                                                                                                                  | 1          | 20-9-23 |             | 3   |  |
| 20 | Numerical Problems on SFEE                                                                                                   | 1          | 19-9-23 |             | 1   |  |
| 19 | Turbine, Compressors, Throttling Valves, Heat Exchangers, Limitations on first law of thermodynamics, PMM1.                  | 1          | 16-9-23 |             | 1,2 |  |
| 18 | Steady Flow Energy Equation (SFEE), Steady Flow Engineering Devices-Nozzles, Diffusers.                                      | 1          | 05-9-23 |             | 1,2 |  |
| 17 | <b>First Law Analysis of Open Systems</b> : Thermodynamic analysis of control volume-conservation of mass, energy principle. | 1          | 15-9-23 |             | 1,2 |  |

# **UNIT-III: Second Law of Thermodynamics**

| S.<br>No.                                                      | Topics to be covered                                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 22                                                             | SecondLawAnalysisofThermodynamics:Introduction,EnergyReservoirs,HeatEngines,Refrigerators, Heat Pumps. | 1                             | 22-9-23                            |                                 | 1,2                             |                       |
| 23                                                             | Kelvin-Planks, Clausius statement of second law of thermodynamics.                                     | 1                             | 23-9-23                            |                                 | 1,2                             |                       |
| 24                                                             | Numerical Problems on Second law of TD.                                                                | 1                             | 26-9-23                            |                                 | 1                               |                       |
| 25                                                             | Equivalence of Kelvin -Planck and Clausius statements.                                                 | 1                             | 27-9-23                            |                                 | 1,2                             |                       |
| 26                                                             | Perpetual Motion Machine-II,<br>Carnot cycle.                                                          | 1                             | 29-9-23                            |                                 | 1,2                             |                       |
| 27                                                             | Carnot Theorem – Numerical problem.                                                                    | 1                             | 30-9-23                            |                                 | 1                               |                       |
| 28                                                             | <b>Entropy:</b> Introduction, Clausius inequality, t-s property diagrams.                              | 1                             | 10-10-23                           |                                 | 1,2                             |                       |
| 29                                                             | Entropy change for ideal gases – Derivations.                                                          | 1                             | 11-10-23                           |                                 | 1,2                             |                       |
| 30                                                             | Isentropic relations for ideal gases, Principle of increase of entropy.                                | 1                             | 13-10-23                           |                                 | 1,2                             |                       |
| 31                                                             | Applications of Entropy- Third law of Thermodynamics Numerical Problems on Entropy.                    | 1                             | 14-10-23                           |                                 | 1,2                             |                       |
|                                                                | Numerical Problems, Assignement-3.                                                                     | 1                             | 17-10-23                           | _                               | 1                               |                       |
| 33                                                             | Tutorial -3                                                                                            | 1                             | 18-10-23                           |                                 | 3                               |                       |
| No. of classes required to complete UNIT-III: 12 No. of classe |                                                                                                        |                               |                                    |                                 |                                 | :                     |

# **UNIT-IV: Properties of Pure Substances and Gases**

| S.<br>No. | Topics to be covered                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34        | <b>Properties of Pure Substance:</b> Introduction, Phases of pure substance.           | 1                             | 25-10-23                           |                                 | 1,2                             |                       |
| 35        | <i>p-v, p-T, T-s</i> and <i>h-s</i> diagrams for pure substance, <i>p-v-T</i> Surface. | 1                             | 27-10-23                           |                                 | 1,2                             |                       |
| 36        | Properties of steam, quality or dryness fraction.                                      | 1                             | 28-10-23                           |                                 | 1,2                             |                       |
| 37        | Phase change processes, Mollier diagram for a pure substance.                          | 1                             | 31-10-23                           |                                 | 1,2,4,6                         |                       |

| 38  | Numerical Problems.                                                                                      | 1         | 01-11-23 |             | 1         |    |
|-----|----------------------------------------------------------------------------------------------------------|-----------|----------|-------------|-----------|----|
| 36  | Properties of Ideal Gases: Equation of state of a gas, Avogadro's law, Ideal gas, perfect gas, real gas. | 1         | 03-11-23 |             | 1,2       |    |
| 40  | Properties of mixture of gases –<br>Dalton's law and Amagat's law of<br>partial pressures.               | 1         | 04-11-23 |             | 1,2       |    |
| 41  | Internal energy, enthalpy and specific heats of gas mixtures, Entropy of gas mixtures.                   | 1         | 07-11-23 |             | 1,2       |    |
| 42  | Numerical Problems.                                                                                      | 1         | 08-11-23 |             | 1,2       |    |
| 43  | Tutorial -4                                                                                              | 1         | 10-11-23 |             | 3         |    |
| No. | of classes required to complete U                                                                        | NIT-IV: 1 | 0        | No. of clas | ses taken | ); |

# **UNIT-V: Thermodynamic Cycles**

|                                                                       | -v. Thermodynamic Cycles        |                   |                      | 1                 |                      |             |
|-----------------------------------------------------------------------|---------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|
| S. No.                                                                | Topics to be covered            | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
|                                                                       | 100100 00 00 00 00              | Required          | Completion           | Completion        | Methods              | Weekly      |
|                                                                       | Introduction, working of        |                   | 11-11-23             |                   |                      |             |
| 44.                                                                   | Carnot vapour cycle, working    | 1                 |                      |                   | 1,2                  |             |
|                                                                       | of simple Rankine cycle         |                   |                      |                   |                      |             |
| 45.                                                                   | Problems on Carnot vapour       | 1                 | 14-11-23             |                   | 1,2                  |             |
|                                                                       | cycle                           | -                 |                      |                   |                      |             |
| 46.                                                                   | Problems on simple Rankine      | 1                 | 15-11-23             |                   | 1,2                  |             |
|                                                                       | cycle                           |                   | 15 11 22             |                   |                      |             |
| 47.                                                                   | Gas power cycles -Otto cycle    | 1                 | 17-11-23             |                   | 1,2                  |             |
| 10                                                                    | Numerical Problems on Otto      | 1                 | 18-11-23             |                   | 1.0                  |             |
| 48.                                                                   | cycle                           | 1                 |                      |                   | 1,2                  |             |
| 49.                                                                   | Efficiency of Diesel cycle      | 1                 | 21-11-23             |                   | 1,2                  |             |
| 17.                                                                   | Numerical Problems on Diesel    |                   | 22-11-23             |                   | ,                    |             |
| 50.                                                                   | Cycle                           | 1                 | 22-11-23             |                   | 3                    |             |
| F4                                                                    |                                 | 1                 | 24-11-23             |                   | 1,2                  |             |
| 51.                                                                   | Brayton Cycles and its problems | 1                 |                      |                   | 1,2                  |             |
| 52.                                                                   | Reversed Carnot cycle –         | 1                 | 25-11-23             |                   | 1,2                  |             |
|                                                                       | Refrigeration cycle             |                   |                      |                   |                      |             |
| 53.                                                                   | Reversed Carnot Cycles -        | 1                 | 28-11-23             |                   | 3                    |             |
| 55.                                                                   | Numerical Problems              |                   |                      |                   |                      |             |
|                                                                       | Bell-Coleman cycle and simple   |                   | 29-11-23             |                   |                      |             |
| 54.                                                                   | vapour compression              | 1                 |                      |                   | 1,2                  |             |
|                                                                       | refrigeration Cycle (Theory)    |                   |                      |                   |                      |             |
|                                                                       | Content beyond the syllabus     | 4                 | 01-12-23             |                   | 1.0                  |             |
| 55.                                                                   | Heat pipe thermodynamic cycle   | 1                 |                      |                   | 1,2                  |             |
|                                                                       | Revision on TD, Concluding      |                   | 02-12-23             |                   |                      |             |
| 56.                                                                   | remarks                         | 1                 |                      |                   | 1,2                  |             |
| No. of classes required to complete UNIT-V: 13  No. of classes taken: |                                 |                   |                      |                   |                      |             |
|                                                                       | ent beyond the curriculum       |                   |                      | 1101 01 0100      | 200 tanen            | -           |
|                                                                       | pipe thermodynamic cycle        |                   |                      | 01-12-23          |                      |             |
|                                                                       |                                 |                   |                      |                   |                      |             |

| Teaching | Teaching Learning Methods |      |                                 |  |  |  |  |  |  |  |  |
|----------|---------------------------|------|---------------------------------|--|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | 70              |
| Total Marks = CIE + SEE                                                              | 100             |

# ACADEMIC CALENDER:

| Commencement                | of Class work | 07-8-2023  |         |  |  |
|-----------------------------|---------------|------------|---------|--|--|
| I Phase of Instructions     | 07-8-2023     | 30-9-2023  | 8 Weeks |  |  |
| I Mid Examinations          | 02-10-2023    | 07-10-2023 | 1 Week  |  |  |
| II Phase of Instructions    | 09-10-2023    | 02-12-2023 | 8 Weeks |  |  |
| II Mid Examinations         | 04-12-2023    | 09-12-2023 | 1 Week  |  |  |
| Preparation and Practical's | 11-12-2023    | 16-12-2023 | 1 Week  |  |  |
| Semester End Examinations   | 18-12-2023    | 30-12-2023 | 2 Weeks |  |  |

# **PART-D**

PROGRAMME OUTCOMES (POs):

| I KOUK | Engineering Incomes (FUS).                                                                      |
|--------|-------------------------------------------------------------------------------------------------|
|        | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering         |
| PO 1   | fundamentals, and an engineering specialization to the solution of complex engineering          |
|        | problems.                                                                                       |
|        | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex  |
| PO 2   | engineering problems reaching substantiated conclusions using first principles of               |
|        | mathematics, natural sciences, and engineering sciences                                         |
|        | <b>Design/development of solutions</b> : Design solutions for complex engineering problems      |
| DO 2   | and design system components or processes that meet the specified needs with                    |
| PO 3   | appropriate consideration for the public health and safety, and the cultural, societal,         |
|        | and environmental considerations                                                                |
|        | Conduct investigations of complex problems: Use research-based knowledge and                    |
| PO 4   | research methods including design of experiments, analysis and interpretation of data,          |
|        | and synthesis of the information to provide valid conclusions.                                  |
|        | Modern tool usage: Create, select, and apply appropriate techniques, resources, and             |
| PO 5   | modern engineering and IT tools including prediction and modelling to complex                   |
|        | engineering activities with an understanding of the limitations.                                |
|        | The engineer and society: Apply reasoning informed by the contextual knowledge to               |
| PO 6   | assess societal, health, safety, legal and cultural issues and the consequent                   |
|        | responsibilities relevant to the professional engineering practice.                             |
|        | <b>Environment and sustainability</b> : Understand the impact of the professional               |
| PO 7   | engineering solutions in societal and environmental contexts, and demonstrate the               |
|        | knowledge of, and need for sustainable development.                                             |
|        | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities |
| PO 8   | and norms of the engineering practice.                                                          |
|        | <b>Individual and team work</b> : Function effectively as an individual, and as a member or     |
| PO 9   | leader in diverse teams, and in multidisciplinary settings.                                     |
|        | <b>Communication:</b> Communicate effectively on complex engineering activities with the        |
|        | engineering community and with society at large, such as, being able to comprehend              |
| PO 10  | and write effective reports and design documentation, make effective presentations, and         |
|        | give and receive clear instructions.                                                            |
|        | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the           |
|        | engineering and management principles and apply these to one's own work, as a                   |
| PO 11  | member and leader in a team, to manage projects and in multidisciplinary                        |
|        | environments.                                                                                   |
|        | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to      |
| PO 12  | engage in independent and life-long learning in the broadest context of technological           |
| 1012   | change.                                                                                         |
| I      | ······································                                                          |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.      |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. |

| Title                  | Course Instructor   | Course Coordinator     | Module<br>Coordinator | Head of the<br>Department |
|------------------------|---------------------|------------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr.P.Ravindra Kumar | Dr.P.Ravindra<br>Kumar | Dr.P.Vijay Kumar      | Dr.S.Pichi Reddy          |
| Signature              |                     |                        |                       |                           |

# AT LAVAR INTERPRETATION OF THE PARTY OF THE

## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF MECHANICAL ENGINEERING**

### **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor : Dr. Murahari Kolli
Name Of Course Instructor Dr. Pichi Reddy Seelam

Course Name & Code : Metallurgy and Mateials Science & 20ME05

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech/III/A A.Y.: 2023-24

Prerequisite Subject: Engineering physics, Engineering Chemistry

**Course Educational Objectives:** The objectives of this course are to acquire knowledge on structure of metals and alloys, understand the concept of alloys and equilibrium diagrams; demonstrate the concept of heat treatment process.

Course Outcomes: After completion of the course students will be able to:

| CO1        | Comprehend the structure of materials, alloys and correlated the material properties with structure.(Remembering-L1)                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2        | Illustrate the procedure of drawing the equilibrium diagrams and apply the principle of equilibrium diagrams in evaluating the materials properties.(Understanding-L2) |
| CO3        | Recall the properties, applications of ferrous, non ferrous and composite materials.(Remembering-L1)                                                                   |
| <b>CO4</b> | Apply the principle of mechanical working on metals and heat treatment on materials.(Applying-L3)                                                                      |
| CO5        | Identify the types of composite materials and the manufacturing processes of fiber reinforced composites.(Understanding-L2)                                            |

### **COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):**

| COs | PO | P01 | P01 | P01 | PSO | PS | PS |
|-----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|----|----|
|     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 02 | 03 |
| CO1 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO2 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO3 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO4 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO5 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   | ·   | 1  | 2  |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight (Low), 2 - Moderate (Medium), 3

- Substantial (High).

### **BOS APPROVED TEXT BOOKS:**

**T1** V.D.Kotgire, S.V.Kotgire, Material Science and Metallurgy, Everest Publishing House,

24th Edition, 2008.

**T2** Sidney H. Avener, Introduction to Physical Metallurgy, Tata McGraw-Hill, 3rdEdition,2011.

### **BOS APPROVED REFERENCE BOOKS:**

R1 Richard A.Flinn, Paul Trojan, Engineering Materials and Their Applications, Jaico

Publishing House, 4thEdition, 1999.

- **R2** William and callister, Materials Science and engineering, Wiley India private Ltd., 2011.
- ${\bf R3}\quad \mbox{U.C Jindal}$  and Atish Mozumber, Material since and metallurgy, Pearson education- 2012

# **COURSE DELIVERY PLAN (LESSON PLAN): Section-B**

# UNIT-I: STRUCTURE OF METALS, CONSTITUTION OF ALLOYS

| S.No.  | Topics to be covered                                                                                   | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|--------|--------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 1.     | Introduction to Metallurgy and Materials - Course Educational Objective (CEO) & Course Outcomes (CO's) | 01                                | 8/8/2023                               |                                     | TLM1                                    | CO1                            | T1,R6                        |                           |
| 2.     | Structure of metals Introduction                                                                       | 01                                | 9/8/2023                               |                                     | TLM1                                    | CO1                            | T2,R6                        |                           |
| 3.     | Body centered cubic, Face cantered cubic Structures                                                    | 01                                | 10/8/2023                              |                                     | TLM1                                    | CO1                            | Т2                           |                           |
| 4.     | closed packed hexagonal structure                                                                      | 01                                | 16/8/2023                              |                                     | TLM1                                    | CO1                            | T1                           |                           |
| 5.     | crystallographic planes                                                                                | 01                                | 178/2023                               |                                     | TLM1                                    | CO1                            | T1                           |                           |
| 6.     | Mechanism of crystallization of metals                                                                 | 01                                | 19/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1,R6                     |                           |
| 7.     | Grain and grain boundaries                                                                             | 01                                | 22/8/2023                              |                                     | TLM1                                    | C01                            | T2,R1,R6                     |                           |
| 8.     | Effect of grain boundaries on the properties of metal / alloys                                         | 01                                | 23/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        |                           |
| 9.     | Necessity of alloying, Solid solutions                                                                 | 01                                | 24/8/2023                              |                                     | TLM1                                    | C01                            | T2,R1                        |                           |
| 10.    | Interstitial Solid Solution and Substitution Solid Solution,                                           | 01                                | 26/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        |                           |
| 11.    | Hume Rothery rules.                                                                                    | 01                                | 29/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        | 1                         |
| No. of | classes required to complete UNIT-                                                                     | 11                                |                                        |                                     | No. o                                   | of classes ta                  | ıken:                        |                           |
|        |                                                                                                        | II EQUILIBI                       | RIUM DIAGRAM                           | 1S                                  | L                                       |                                |                              | ]                         |
| 12.    | Experimental methods of construction of equilibrium diagrams                                           | 01                                | 30/8/2023                              |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 13.    | Classification of equilibrium diagrams                                                                 | 01                                | 31/8/2023                              |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 14.    | Isomorphous,eutectic equilibrium diagrams.                                                             | 01                                | 02/09/2023                             |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 15.    | Partial eutectic equilibrium diagrams.                                                                 | 01                                | 05/09/2023                             |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 16.    | Equilibrium cooling and heating of alloys, lever rule                                                  | 01                                | 06/09/2023                             |                                     | TLM1                                    | CO2                            | T2,R1                        | •                         |
| 17.    | coring. Transformations in thesolid state                                                              | 01                                | 07/09/2023                             |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |

| 18.    | Allotropy, Eutectic reaction                    | 01 | 12/09/2023 | TLI | LM1 | CO2          | T2,R1      |  |
|--------|-------------------------------------------------|----|------------|-----|-----|--------------|------------|--|
| 19.    | Eutectoid reaction                              | 01 | 13/09/2023 | TLI | LM1 | CO2          | T2,R1      |  |
| 20.    | Peritectoid reaction                            | 01 | 14/09/2023 | TLI | LM1 | CO2          | T2,R1      |  |
| 21.    | Study of Cu-Ni equilibrium diagrams.            | 01 | 16/09/2023 | TL  | LM1 | CO2          | T2,R1      |  |
| 22.    | Bi-Cd equilibrium diagrams.                     | 01 | 20/09/2023 | TL  | LM1 | CO2          | -          |  |
| 23.    | Study of Iron-Iron carbide equilibrium diagram. | 01 | 21/09/2023 | TL  | LM1 | CO2          | -          |  |
| No. of | No. of classes required to complete<br>UNIT-II  |    |            |     | ]   | No. of Class | ses taken: |  |

# **UNIT-III: STEELS, CAST IRONS**

| S.No.         | Topics to be covered                                                                         | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|---------------|----------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 24.           | Classification of steels,<br>structure, properties and<br>applications of plain carbon steel | 01                                | 23/09/2023                             |                                     | TLM1                                    | CO3                            | T1,R1,R6                     |                           |
| 25.           | Low carbon steel                                                                             | 01                                | 26/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                           |
| 26.           | Medium carbon steel                                                                          | 01                                | 27/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                           |
| 27.           | High carbon steel & applications.                                                            | 01                                | 30/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                           |
| 28.           | Structure, properties and applications of white cast iron                                    | 01                                | 10/10/2023                             |                                     | TLM1                                    | CO3                            | T1,T2,R1                     |                           |
| 29.           | Structure, properties and applications of malleable cast iron.                               | 01                                | 11/10/2023                             |                                     | TLM1                                    | C03                            | T1,T2,R1                     |                           |
| 30.           | Grey cast iron                                                                               | 01                                | 12/10/2023                             |                                     | TLM1                                    | CO3                            | -                            |                           |
| 31.           | Spheroidal graphite cast iron.                                                               | 01                                | 14/10/2023                             |                                     | TLM1                                    | CO3                            | -                            |                           |
| 32.           | Structure, properties and applications of copper                                             | 01                                | 17/10/2023                             |                                     | TLM1                                    | CO3                            | T2,R1                        |                           |
| 33.           | Structure, properties and applications of copper alloys                                      | 01                                | 18/10/2023                             |                                     | TLM1                                    | CO3                            | T2,R1                        |                           |
| 34.           | Aluminium and its alloys                                                                     | 01                                | 19/10/2023                             | _                                   | TLM1                                    | CO3                            | T2,R1                        |                           |
| No. of<br>III | classes required to complete UNIT-                                                           | 11                                |                                        |                                     | No. of clas                             | sses taken:                    |                              |                           |

# UNIT-IV: MECHANICAL WORKING, HEAT TREATMENT OF ALLOYS

| S.No. | Topics to be covered | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teaching<br>Learnin<br>g<br>Method | Learning<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|-------|----------------------|-----------------------------------|----------------------------------------|-------------------------------------|------------------------------------|----------------------------|------------------------------|---------------------------|
|       |                      |                                   |                                        |                                     | S                                  |                            |                              |                           |

| 35.      | Hot working, Cold working,                                               | 01 | 26/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
|----------|--------------------------------------------------------------------------|----|------------|----------|-------------|-------------|--|
| 36.      | Strain hardening                                                         | 01 | 28/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 37.      | Recovery, Recrystallisation                                              | 01 | 31/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 38.      | Grain growth.                                                            | 01 | 01/11/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 39.      | Comparison of properties of cold worked parts                            | 01 | 02/11/2023 | TLM1     | CO4         | T2,R1       |  |
| 40.      | Comparison of properties ofhot worked parts                              | 01 | 04/11/2023 | TLM1     | CO4         | T2,R1       |  |
| 41.      | Annealing, Normalizing                                                   | 01 | 0711/2023  | TLM1     | CO4         | T1,R6       |  |
| 42.      | Hardening.                                                               | 01 | 08/11/2023 | TLM1     | CO4         | T1,R6       |  |
| 43.      | Construction of TTT diagram for eutectoid steel.                         | 01 | 09/11/2023 | TLM1     | CO4         | -           |  |
| 44.      | Harden ability-determination of harden ability by jominy end quench test | 01 | 11/11/2023 | TLM1     | CO4         | T1,T2,R1    |  |
| 45.      | Surface - hardening methods                                              | 01 | 14/11/2023 | TLM1     | CO4         | T1,T2,R1    |  |
| 46.      | Age hardening treatment and application                                  | 01 | 15/11/2023 | <br>TLM1 | CO4         | T1,T2,R1    |  |
| No. of O | classes required to complete UNIT-                                       | 12 |            |          | No. of clas | sses taken: |  |

## UNIT-V: COMPOSITE MATERIALS

| S.No.  | Topics to be covered                                                                             | No. of<br>Classes<br>Require<br>d | Tentative Date of Completio n | Actual<br>Date of<br>Completio<br>n | Teachin g Learnin g Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|--------|--------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------------|-----------------------------|--------------------------------|------------------------------|---------------------------|
| 47.    | Classification of composites                                                                     | 01                                | 16/11/2023                    |                                     | TLM1                        | CO5                            | T1,R6                        |                           |
| 48.    | various methods of component<br>manufacture of fiber reinforced<br>composites-Hand layup process | 01                                | 18/11/2023                    |                                     | TLM1                        | C05                            | T1,R6                        |                           |
| 49.    | ilament winding process, SMC processes                                                           | 01                                | 21/11/2023                    |                                     | TLM1                        | CO5                            | T1,R6                        |                           |
| 50.    | Continuous pultrusion processes, Resin transfer moulding.                                        | 01                                | 22/11/2023                    |                                     | TLM1                        | CO5                            | T1,R6                        |                           |
| 51.    | Introduction to metal ceramic mixtures                                                           | 01                                | 23/11/2023                    |                                     | TLM1                        | CO5                            | T1,R6                        |                           |
| 52.    | Metal – Matrix composites                                                                        | 01                                | 25/11/2023                    |                                     | TLM1                        | CO5                            | -                            |                           |
| 53.    | C–Ccomposites, Applications of Composites                                                        | 01                                | 28/11/2023                    |                                     | TLM1                        | CO5                            | T1,R1,R6                     |                           |
| 54.    | Rule of mixture and numericals                                                                   | 01                                | 29/11/2023                    |                                     | TLM1                        | CO5                            | T2,R1,R6                     |                           |
| No. of | classes required to complete UNIT-                                                               | 8                                 |                               |                                     |                             | No. of clas                    | ses taken:                   |                           |

| S.No. | Topics to be covered  | No. of<br>Classes<br>Require<br>d | Tentative Date of Completio n | Actual<br>Date of<br>Completio<br>n | Teaching<br>Learnin<br>g<br>Method | Learning<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|-------|-----------------------|-----------------------------------|-------------------------------|-------------------------------------|------------------------------------|----------------------------|------------------------------|---------------------------|
|       |                       |                                   |                               |                                     | S                                  |                            |                              | -                         |
| 1.    | Revision for I Phase  | 09                                | 30/11/202<br>3                |                                     | TLM1/<br>TLM4                      | 1                          |                              |                           |
| 2.    | Revision for II Phase | 09                                | 02/12/2023                    |                                     | TLM1/<br>TLM4                      | 1                          |                              |                           |

# **Contents beyond the Syllabus**

| S.No. | Topics to be covered            | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|-------|---------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 3.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |
| 4.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |
| 5.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |

| Teaching Learning Methods |                |      |                    |      |                |  |  |  |
|---------------------------|----------------|------|--------------------|------|----------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Problem Solving    | TLM7 | Seminars or GD |  |  |  |
| TLM2                      | PPT            | TLM5 | Programming        | TLM8 | Lab Demo       |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Assignment or Quiz | TLM9 | Case Study     |  |  |  |

## **ACADEMIC CALENDAR:**

| Description               | From       | То         | Weeks |
|---------------------------|------------|------------|-------|
| I Phase of Instructions-1 | 07/08/2023 | 30/09/2023 | 8     |
| I Mid Examinations        | 02/10/2023 | 07/10/2023 | 1     |
| II Phase of Instructions  | 08/11/2023 | 02/12/2023 | 7     |
| II Mid Examinations       | 04/12/2023 | 09/12/2023 | 1     |
| Preparation and Practical | 11/12/2023 | 16/12/2023 | 1     |
| Semester End Examinations | 18/12/2023 | 30/12/2023 | 2     |

# **EVALUATION PROCESS:**

### **PART-C**

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks |
|--------------------------------------------------------------------------------------|-------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15 |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10 |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15 |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10 |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30  |
| Cumulative Internal Examination (CIE): M                                             | 30    |
| Semester End Examination (SEE)                                                       | 70    |

Total Marks = CIE + SEE

# PART-D

# PROGRAMME OUTCOMES (POs):

|       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                   |
|-------|-------------------------------------------------------------------------------------------------------------------|
| PO 1  | fundamentals, and an engineering specialization to the solution of complex engineering                            |
|       | Problems.                                                                                                         |
|       | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering        |
| PO 2  | problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and          |
|       | engineering sciences.                                                                                             |
|       | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design             |
| PO 3  | system components or processes that meet the specified needs with appropriate consideration for the               |
|       | public health and safety, and the cultural, societal, and environmental considerations.                           |
|       | Conduct investigations of complex problems: Use research-based knowledge and research methods                     |
| PO 4  | including design of experiments, analysis and interpretation of data, and synthesis of the information to         |
|       | provide valid conclusions.                                                                                        |
|       | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering    |
| PO 5  | and IT tools including prediction and modelling to complex engineering activities with an understanding           |
|       | of the limitations.                                                                                               |
|       | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,                |
| PO 6  | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional        |
|       | engineering practice.                                                                                             |
|       | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in        |
| PO 7  | societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable                   |
|       | development.                                                                                                      |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the  |
| 100   | engineering practice.                                                                                             |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse     |
| 10)   | teams, and in multidisciplinary settings.                                                                         |
|       | <b>Communication</b> : Communicate effectively on complex engineering activities with the                         |
| PO 10 | engineering community and with society at large, such as, being able to comprehend and write effective            |
|       | reports and design documentation, make effective presentations, and give and receive clear instructions.          |
|       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the                            |
| PO 11 | Engineering and management principles and apply these to one's own work, as a member and leader in a              |
|       | team, to manage projects and in multidisciplinary environments.                                                   |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent |
| 1012  | and life-long learning in the broadest context of technological change.                                           |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.      |
|-------|-------------------------------------------------------------------------------------------------|
|       | To apply the principles of manufacturing technology, scientific management towards              |
| PSO 2 | Improvement of quality and optimization of engineering systems in the design, analysis and      |
|       | manufacturability of products.                                                                  |
|       | To apply the basic principles of mechanical engineering design for evaluation of performance of |
| PSO 3 | various systems relating to transmission of motion and power, conservation of energy and other  |
|       | process equipment.                                                                              |

| Title                     | Course Instructor  | Course Coordinator    | Module Coordinator | Head of the<br>Department |
|---------------------------|--------------------|-----------------------|--------------------|---------------------------|
| Name of<br>the<br>Faculty | Dr. Murahari Kolli | Dr. Seelam Pici Reddy | Dr.M.B.S.S.Reddy   | Dr. S.Pichi Reddy         |
| Signature                 |                    |                       |                    |                           |

# MEDDY COLLEGE OR COLLE

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### DEPARTMENT OF MECHANICAL ENGINEERING

# **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor : Dr. Shaheda Niloufer

Course Name & Code : Environmental Science & 20MC03

L-T-P Structure : 2-0-0 Credits : 0 Program/Sem/Sec : B.Tech., ME-A., IV-Sem., SEC-A A.Y : 2023-24

### **PRE-REQUISITE:**

**COURSE EDUCATIONAL OBJECTIVES** (**CEOs**): The purpose of this course is to provide a general background on developing an understanding of systems and cycles on the earth and how individual organisms live together in complex communities and how human activities influence our air, water and soil. It also helps in developing an understanding about our use of fossil fuels and effect on climate and sustainable management of natural resources.

COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO 1 | Identify environmental problems arising due to engineering and technological activities |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
|      | that help to be the part of sustainable solutions.                                      |  |  |  |  |  |
| CO 2 | Evaluate local, regional and global environmental issues related to resources and their |  |  |  |  |  |
|      | sustainable management.                                                                 |  |  |  |  |  |
| CO 3 | Realize the importance of ecosystem and biodiversity for maintaining ecological         |  |  |  |  |  |
|      | balance.                                                                                |  |  |  |  |  |
| CO 4 | Acknowledge and prevent the problems related to pollution of air, water and soil.       |  |  |  |  |  |
| CO5  | Identify the significance of implementing environmental laws and abatement devices for  |  |  |  |  |  |
|      | environmental management.                                                               |  |  |  |  |  |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 3   | -   | -   | -   | 3   | 3   | 3   | -   | -    | -    | 3    | -    | -    | -    |
| CO2 | 3   | 3   | 1   | -   | -   | 3   | 3   | -   | -   | -    | -    | 3    | -    | -    | -    |
| CO3 | 3   | -   | 3   | -   | -   | -   | 2   | -   | -   | -    | -    | 2    | -    | -    | -    |
| CO4 | 3   | -   | -   | -   | -   | 2   | 3   | 2   | -   | -    | -    | 3    | -    | -    | -    |
| CO5 | 3   | 3   | 3   | 3   | -   | 3   | 3   | 3   | -   | -    | -    | 3    | -    | -    | -    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

### **TEXT BOOKS:**

- **T1** Anubha Kaushik, C.P.Kaushik, "Perspectives in Environmental Studies", New age international publishers, 5<sup>th</sup> Edition, Delhi, 2016.
- **T2** Mahua Basu, S. Xavier, "Fundamentals of Environmental Studies", Cambridge University Press, 1<sup>st</sup> Edition, Delhi, 2016.

### **REFERENCE BOOKS:**

- **R1** S. Deswal, A. Deswal, "A Basic course in Environmental Studies", Educational & Technical Publishers, 2<sup>nd</sup> Edition, Delhi, 2014.
- R2 R. Rajagopalan, "Environmental Studies (From Crisis to Cure)", Oxford University Press,

- 2<sup>nd</sup> Edition, New Delhi, 2012.
- **R3** De, A.K, "Environmental Chemistry", New Age International (P) Limited, 5<sup>th</sup> Edition, New Delhi, 2003.
- **R4** Dr.K.V.S.G. Murali Krishna, "Environmental Studies", VGS Techno Series, 1<sup>st</sup> Edition, Vijayawada, 2010.
- **R5** G. Tyler Miller, Scott Spoolman, "Introduction to Environmental Studies", Cengage Learning, 13<sup>th</sup> Edition, New Delhi, 2009.

## **PART-B**

## **COURSE DELIVERY PLAN (LESSON PLAN):**

### UNIT-I: NATURE AND SCOPE OF ENVIRONMENTAL PROBLEMS

| S.No.     | Topics to be covered                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.        | Introduction of course and course objectives. Introduction of components of Environment | 1                             | 07-08-2023                         |                           | 2                               |                       |
| 2.        | Population explosion and variations among Nations.                                      | 1                             | 09-08-2023                         |                           | 2                               |                       |
| 3.        | Resettlement and Rehabilitation - Issues and possible solutions                         | 1                             | 14-08-2023                         |                           | 2                               |                       |
| 4.        | Environmental Hazards                                                                   | 1                             | 16-08-2023                         |                           | 2                               |                       |
| 5.        | Role of Information Technology in environmental management and human health.            | 1                             | 21-08-2023                         |                           | 2                               |                       |
| No. of cl | asses required to complete UNIT                                                         | Γ-I: 5                        | 1                                  | No. of clas               | ses taken:                      |                       |

## UNIT-II: NATURAL RESOURCES AND CONSERVATION

| S.No. | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction and classification of<br>Natural resources, Forest<br>Resources, | 1                             | 23-08-2023                         |                                 | 2                               |                       |
| 2.    | Water Resources                                                               | 1                             | 28-08-2023                         |                                 | 2                               |                       |
| 3.    | Mineral Resources                                                             | 1                             | 30-08-2023                         |                                 | 2                               |                       |
| 4.    | Food Resources                                                                | 1                             | 04-09-2023                         |                                 | 2                               |                       |
| 5.    | Food Resources                                                                | 1                             | 06-09-2023                         |                                 | 2                               |                       |
| 6.    | Food Resources                                                                | 1                             | 11-09-2023                         |                                 | 2                               |                       |
| 7.    | Energy Resources                                                              | 1                             | 13-09-2023                         |                                 | 2                               |                       |
| No. o | f classes required to complete UN                                             | No. of clas                   | ses taken:                         |                                 |                                 |                       |

### UNIT-III: ECOLOGY AND BIODIVERSITY

| S.No. | Topics to be covered                                                                                                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Definition, structure and functions of an ecosystem                                                                                                                    | 1                             | 18-09-2023                         |                                 | 2                               |                       |
| 2.    | Food chains and Food webs,<br>Ecological succession, Ecological<br>pyramids,                                                                                           | 1                             | 20-09-2023                         |                                 | 2                               |                       |
| 3.    | Major Types of Ecosystems –<br>Forest, Grassland, Desert Land &<br>aquatic Ecosystem, Ecological<br>Niche and Keystone Species, Bio-<br>geographical classification of | 1                             | 25-09-2023                         |                                 | 2                               |                       |

|       | India. India as a mega diversity nation                                                            |   |            |  |     |  |
|-------|----------------------------------------------------------------------------------------------------|---|------------|--|-----|--|
| 4.    | Bio-geo-chemical cycles                                                                            | 1 | 27-09-2023 |  |     |  |
| 5.    | I MID EXAMINATION                                                                                  | 1 | 04-10-2023 |  |     |  |
| 6.    | Values of biodiversity- Direct and Indirect values. Threats to biodiversity; Assignment in Unit II | 1 | 09-10-2023 |  | 2   |  |
| 7.    | Man and wild life conflicts. Endangered and endemic species of India                               | 1 | 11-10-2023 |  | 2,3 |  |
| 8.    | Conservation of biodiversity: Insitu and Ex-situ conservation methods                              | 1 | 16-10-2023 |  | 2   |  |
| No. o | No. of classes required to complete UNIT-III: 7  No. of classes taken:                             |   |            |  |     |  |

### **UNIT-IV: ENVIRONMENTAL POLLUTION**

| S.No. | Topics to be covered                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Air Pollution                                                                      | 1                             | 18-10-2023                         |                                 | 2                               |                       |
| 2.    | Causes, effects and control measures of: Water Pollution                           | 1                             | 25-10-2023                         |                                 | 2                               |                       |
| 3.    | Causes, effects and control measures of: Soil Pollution,                           | 1                             | 30-10-2023                         |                                 |                                 |                       |
| 4.    | Noise Pollution                                                                    |                               | 01-11-2023                         |                                 |                                 |                       |
| 5.    | Solid Waste Management                                                             | 1                             | 06-11-2023                         |                                 | 2,3                             |                       |
| 6.    | Disaster Management- Floods,<br>Cyclones, Earthquakes,<br>Landslides and Tsunamis. | 1                             | 13-11-2023                         |                                 | 2                               |                       |
| No. o | f classes required to complete UN                                                  | IT-IV: 6                      |                                    | No. of clas                     | ses taken:                      |                       |

# UNIT-V: ENVIRONMENTAL MANAGEMENT

| S.No.         | Topics to be covered                                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------|--------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.            | Sustainable Development                                                              | 1                             | 15-11-2023                         |                                 | 2                               |                       |
| 2.            | Climate disruption-<br>Greenhouse effect, ozone<br>layer depletion and acid<br>rain. | 1                             | 20-11-2023                         |                                 | 2,3                             |                       |
| 3.            | Stockholm conference                                                                 | 1                             | 22-11-2023                         |                                 | 2                               |                       |
| 4.            | Environmental Impact<br>Assessment (EIA)                                             |                               | 27-11-2023                         |                                 | 2                               |                       |
| 5.            | Green building                                                                       | 1                             | 29-11-2023                         |                                 | 2                               |                       |
| 6.            | II MID EXAMINATIONS                                                                  | 1                             | 04-12-2023                         |                                 | 5                               |                       |
| 7.            | II MID EXAMINATIONS                                                                  | 1                             | 06-12-2023                         |                                 | 5                               |                       |
| No. of classe | es required to complete UNI                                                          | IT-V: 07                      |                                    | No. of class                    | ses taken:                      |                       |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         |                 |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                 |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    |                 |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                 |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |  |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |  |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |  |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |  |  |  |  |
| Total Marks = CIE + SEE                                                              | 100             |  |  |  |  |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                              |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                   |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                  |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                              |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                |

| Title               | Course Instructor       | Course<br>Coordinator   | Module<br>Coordinator   | Head of the<br>Department |
|---------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| Name of the Faculty | Dr. Shaheda<br>Niloufer | Dr. Shaheda<br>Niloufer | Dr. Shaheda<br>Niloufer | Dr. A. Rami Reddy         |
| Signature           |                         |                         |                         |                           |

# REDDY COLLEGE OF THE PROPERTY OF THE PROPERTY

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor: Dr. Muraari Kolli, Dr.Ch.Siva Sankar Babu

Course Name & Code : Mechanics of Solids and Metallurgy Lab &20ME56

**Regulation**: R20

L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec :B.Tech/III/A A.Y.: 2023-24

**PREREQUISITE:** Mechanics of solids, Metallurgy and Material science

### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The main objective of the course is to determine various mechanical properties of materials by testing under different load conditions and observe the microstructure of various materials and perform heat treatment of materials.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| GOOREDE    | CO I CO I LO I LIB (COO) I I te time com or time com so, stade it will be able to |  |  |  |  |
|------------|-----------------------------------------------------------------------------------|--|--|--|--|
| <b>CO1</b> | Evaluate the mechanical properties of materials by conducting various tests.      |  |  |  |  |
| COI        | (Applying-L3)                                                                     |  |  |  |  |
| <b>CO2</b> | Estimate the behavior of various materials under different loading.               |  |  |  |  |
| COZ        | (Understanding-L2)                                                                |  |  |  |  |
| CO3        | Identify the material by observing the microstructure. (Remembering-L1)           |  |  |  |  |
| <b>CO4</b> | Perform the hardness test and heat treatment of steels. (Applying-L3)             |  |  |  |  |
|            |                                                                                   |  |  |  |  |

## **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | PO10 | P011 | PO12   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 | 2   | 1   | 2     | 3   | 1   | -   | 2     | -   | -   | -    | -    | 2      | -    | -    | 3    |
| CO2 | 3   | 2   | 2     | 3   | 1   | -   | 2     | -   | -   | -    | -    | 2      | -    | -    | 3    |
| CO3 | 3   | -   | 2     | 3   | 1   | -   | -     | -   | -   |      | -    | 1      | -    | 3    | -    |
| CO4 | 3   | -   | 2     | 3   | 1   | -   | -     | -   | -   | -    | -    | 2      | -    | 3    | -    |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

### **References:**

Lab Manual

### **PART-B**

### **COURSE DELIVERY PLAN (LESSON PLAN):**

### LIST OF EXPERIMENTS

### At least 12 experiments are to be conducted:

### PART-A: MECHANICS OF SOLIDS

Any 6 Experiments are required to be conducted

- 1. Compression test on helical spring. (MOS1)
- 2. Tension test on mild steel rod. (MOS2)
- 3. Double shear test on metals. (MOS3)
- 4. Torsion test on mild steel rod. (MOS4)
- 5. Impact test on metal specimen. (a) Izod Impact Test (b) Charpy Impact Test (MOS5)
- **6.** Hardness test on metals. (a) Rockwell Hardness Test (b) Brinell Hardness Test (**MOS6**)
- 7. Deflection test on beams. (a) Cantilever Beam (b) Simply Supported beam (MOS7)
- **8.** Compression test on brittle materials. (MOS8)

### **PART-B: METALLURGY**

Any 6 Experiments are required to be conducted

- 1. Preparation and study of the microstructure of Cu & Al. (MET1)
- 2. Preparation and study of the microstructure of steels. (MET2)
- 3. Preparation and Study of the microstructures of cast iron. (MET3)
- **4.** Preparation and Study of the microstructures of brass. (MET4)
- **5.** Hardenability of steels by Jominy end quench test. (MET5)
- **6.** Hardness of various treated and untreated steels. (MET6)
- 7. Study of Age hardening of Al-Cu alloy. (MET7)
- **8.** Study of Fe-Fe3C equilibrium diagram. (**MET8**)
- 9. Study of T-T-T diagram for eutectoid steel. (MET9)
- 10. Fabrication of FRP Composite by Hand Lay-up method. (MET10)
- 11. Fabrication of FRP Composite by Vacuum bag moulding. (MET11)

### REFERENCES

Lab Manual (07.08.2023)

### **Batch-I Schedule**

|       |                                                             |                      |                 |                 |                 | Batch-i Sci     | <u>reauie</u>   |                 |                 |                 |                  |
|-------|-------------------------------------------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| S.n   | D-4-                                                        |                      | Batches         |                 |                 |                 |                 |                 |                 |                 |                  |
| 0     | Date                                                        | B1 <sub>1</sub>      | B1 <sub>2</sub> | B1 <sub>3</sub> | B1 <sub>4</sub> | B1 <sub>5</sub> | B1 <sub>6</sub> | B1 <sub>7</sub> | B1 <sub>8</sub> | B1 <sub>9</sub> | B1 <sub>10</sub> |
| 1     | 14/08/2023                                                  |                      |                 | •               | Dem             | onstration o    | f MOS & MI      | <b>VIS Lab</b>  |                 |                 |                  |
| 2     | 21/08/2023                                                  | MET – 1              | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6          |
| 3     | 28/08/2023                                                  | MET – 2              | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7          |
| 4     | 04/09/2023                                                  | MET – 3              | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2          |
| 5     | 11/09/2023                                                  | MOS - 2              | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MET – 5          |
| 6     | 18/09/2023                                                  | MOS - 3              | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6          |
| 7     | 25/09/2023                                                  | MOS - 4              | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1          |
|       | 3-10-2023 to<br>09-10-2023                                  |                      |                 |                 |                 | I Mid Exa       | minations       |                 |                 |                 |                  |
| 8     | 16/11/2023                                                  | MET – 4              | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3          |
| 9     | 23/11/2023                                                  | MET – 5              | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4          |
| 10    | 06/12/2023                                                  | MET – 6              | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5          |
| 11    | 13/12/2023                                                  | MOS - 5              | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2          |
| 12    | 20/12/2023                                                  | MOS - 6              | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3          |
| 13    | 27/12/2023                                                  | MOS - 7              | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4          |
| 14    | 30/12/2023                                                  | Internal Examination |                 |                 |                 |                 |                 |                 |                 |                 |                  |
|       | 04-12-2023 to II Mid Examinations                           |                      |                 |                 |                 |                 |                 |                 |                 |                 |                  |
| No. o | No. of classes required to complete:  No. of classes taken: |                      |                 |                 |                 | ·               |                 |                 |                 |                 |                  |

### **Batches:**

| Duttiles | ••              |                 |       |
|----------|-----------------|-----------------|-------|
| S. No    | Batch           | Registered Nos  | Total |
| 1        | B1 <sub>1</sub> | 22761A0301-303  | 3     |
| 2        | B1 <sub>2</sub> | 22761A0304-306  | 3     |
| 3        | B1 <sub>3</sub> | 22761A0307-309  | 3     |
| 4        | B1 <sub>4</sub> | 22761A0310-312  | 3     |
| 5        | B1 <sub>5</sub> | 22761A0313 -315 | 3     |

| S. No | Batch            | Registered Nos  | Total |
|-------|------------------|-----------------|-------|
| 6     | B1 <sub>6</sub>  | 22761A0316 -318 | 3     |
| 7     | B1 <sub>7</sub>  | 22761A0319 -320 | 3     |
| 8     | B1 <sub>8</sub>  | 23765A0301 -303 | 3     |
| 9     | B1 <sub>9</sub>  | 23765A0304 -306 | 3     |
| 10    | B1 <sub>10</sub> | 23765A0307 -309 | 3     |

# Batch-II Schedule (08.08.2023)

|    |                                                            |                    |                 |                 | <u>Daten i</u>  | i Scrieuu       |                 | .20231          |                 |                 | -                |
|----|------------------------------------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| S. | Date                                                       |                    |                 |                 |                 |                 | ches            |                 |                 |                 |                  |
| no | Date                                                       | B2 <sub>1</sub>    | B2 <sub>2</sub> | B2 <sub>3</sub> | B2 <sub>4</sub> | B2 <sub>5</sub> | B2 <sub>6</sub> | B2 <sub>7</sub> | B2 <sub>8</sub> | B2 <sub>9</sub> | B2 <sub>10</sub> |
| 1  | 08/08/2023                                                 |                    |                 |                 | Demoi           | nstration of    | MOS & MN        | 1S Lab          |                 |                 |                  |
| 2  | 17/08/2023                                                 | MET – 1            | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6          |
| 3  | 24/08/2023                                                 | MET – 2            | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7          |
| 4  | 31/08/2023                                                 | MET – 3            | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2          |
| 5  | 07/09/2023                                                 | MOS - 2            | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MET – 5          |
| 6  | 14/09/2023                                                 | MOS - 3            | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6          |
| 7  | 21/09/2023                                                 | MOS - 4            | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1          |
|    | 3-10-2023 to<br>09-10-2023                                 | I Mid Examinations |                 |                 |                 |                 |                 |                 |                 |                 |                  |
| 8  | 12/10/2023                                                 | MET – 4            | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3          |
| 9  | 19/10/2023                                                 | MET – 5            | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4          |
| 10 | 26/10/2023                                                 | MET – 6            | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5          |
| 11 | 02/11/2023                                                 | MOS - 5            | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2          |
| 12 | 09/11/2023                                                 | MOS - 6            | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3          |
| 13 | 16/11/2023                                                 | MOS - 7            | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4          |
| 14 | 23/11/2023                                                 |                    |                 |                 |                 | Internal Ex     | amination       |                 |                 |                 |                  |
|    | 30.11.2023                                                 |                    |                 |                 |                 |                 |                 |                 |                 |                 |                  |
| _  | 04-12-2023 to<br>09-12-2023 II Mid Examinations            |                    |                 |                 |                 |                 |                 |                 |                 |                 |                  |
|    | No. of classes required to complete: No. of classes taken: |                    |                 |                 |                 |                 | en:             |                 |                 |                 |                  |

### **Batches:**

| S. No | Batch           | Registered Nos  | Total |
|-------|-----------------|-----------------|-------|
| 1     | B2 <sub>1</sub> | 23765A0310 -312 | 3     |
| 2     | B2 <sub>2</sub> | 23765A0313 -315 | 3     |
| 3     | B2 <sub>3</sub> | 23765A0316 -318 | 3     |
| 4     | B2 <sub>4</sub> | 23765A0319 -321 | 3     |
| 5     | B2 <sub>5</sub> | 23765A0324 -327 | 3     |

| S. No | Batch            | Registered Nos  | Total |
|-------|------------------|-----------------|-------|
| 6     | B2 <sub>6</sub>  | 23765A0328 -330 | 3     |
| 7     | B2 <sub>7</sub>  | 23765A0331 -333 | 3     |
| 8     | B2 <sub>8</sub>  | 23765A0334 -336 | 3     |
| 9     | B2 <sub>9</sub>  | 23765A0337 -339 | 3     |
| 10    | B2 <sub>10</sub> | 23765A0340 -342 | 4     |

| Teaching Learning Methods |                |                                      |                                    |  |  |  |
|---------------------------|----------------|--------------------------------------|------------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 Demonstration (Lab/Field Visit) |                                    |  |  |  |
| TLM2                      | PPT            | TLM5                                 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6                                 | Group Discussion/Project           |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                   | Expt. no's      | Marks  |
|---------------------------------------------------|-----------------|--------|
| Day to Day work = $\mathbf{A}$                    | 1,2,3,4,5,6,7,8 | A=05   |
| $Record = \mathbf{B}$                             | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = $\mathbf{C}$                      | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination: $A + B + C = 15$ | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                     | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: $A + B + C + D = 50$                 | 1,2,3,4,5,6,7,8 | 50     |

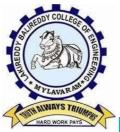
# **PART-D**

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| DEO 1                                            | To build a professional career and pursue higher studies with sound knowledge in                                                |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mathematics, Science and Mechanical Engineering. |                                                                                                                                 |  |  |  |  |
| DEO 2                                            | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities. |  |  |  |  |
| PEO 2                                            | successful in multidisciplinary activities.                                                                                     |  |  |  |  |
| PEO 3                                            | To develop inquisitiveness towards good communication and lifelong learning.                                                    |  |  |  |  |

### **PROGRAMME OUTCOMES (POs):**

| 110 0111 | WINE OUT COMES (1 OS).                                                                                                                              |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering                                                             |  |  |  |  |
| PO 1     | fundamentals, and an engineering specialization to the solution of complex                                                                          |  |  |  |  |
|          | engineering problems.                                                                                                                               |  |  |  |  |
|          | Problem analysis: Identify, formulate, review research literature, and analyse                                                                      |  |  |  |  |
| PO 2     | complex engineering problems reaching substantiated conclusions using first                                                                         |  |  |  |  |
|          | principles of mathematics, natural sciences, and engineering sciences.                                                                              |  |  |  |  |
|          | Design/development of solutions: Design solutions for complex engineering                                                                           |  |  |  |  |
| DO 0     | problems and design system components or processes that meet the specified needs                                                                    |  |  |  |  |
| PO 3     | with appropriate consideration for the public health and safety, and the cultural,                                                                  |  |  |  |  |
|          | societal, and environmental considerations.                                                                                                         |  |  |  |  |
|          | Conduct investigations of complex problems: Use research-based knowledge and                                                                        |  |  |  |  |
| PO 4     | research methods including design of experiments, analysis and interpretation of data,                                                              |  |  |  |  |
|          | and synthesis of the information to provide valid conclusions.                                                                                      |  |  |  |  |
|          | Modern tool usage: Create, select, and apply appropriate techniques, resources, and                                                                 |  |  |  |  |
| PO 5     | modern engineering and IT tools including prediction and modelling to complex                                                                       |  |  |  |  |
|          | engineering activities with an understanding of the limitations.                                                                                    |  |  |  |  |
|          | The engineer and society: Apply reasoning informed by the contextual knowledge to                                                                   |  |  |  |  |
| PO 6     | assess societal, health, safety, legal and cultural issues and the consequent                                                                       |  |  |  |  |
|          | responsibilities relevant to the professional engineering practice.                                                                                 |  |  |  |  |
|          | Environment and sustainability: Understand the impact of the professional                                                                           |  |  |  |  |
| PO 7     | engineering solutions in societal and environmental contexts, and demonstrate the                                                                   |  |  |  |  |
| 10,      |                                                                                                                                                     |  |  |  |  |
|          | knowledge of, and need for sustainable development. <b>Ethics:</b> Apply othical principles and commit to professional othics and responsibilities. |  |  |  |  |
| PO 8     | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities                                                     |  |  |  |  |
|          | and norms of the engineering practice.                                                                                                              |  |  |  |  |


| PO 9  | Individual and team work: Function effectively as an individual, and as a member or       |
|-------|-------------------------------------------------------------------------------------------|
|       | leader in diverse teams, and in multidisciplinary settings.                               |
|       | <b>Communication</b> : Communicate effectively on complex engineering activities with the |
| PO 10 | engineering community and with society at large, such as, being able to comprehend        |
| 1010  | and write effective reports and design documentation, make effective presentations,       |
|       | and give and receive clear instructions.                                                  |
|       | Project management and finance: Demonstrate knowledge and understanding of the            |
| PO 11 | engineering and management principles and apply these to one's own work, as a             |
|       | member and leader in a team, to manage projects and in multidisciplinary                  |
|       | environments.                                                                             |
|       | Life-long learning: Recognize the need for, and have the preparation and ability to       |
| PO 12 | engage in independent and life-long learning in the broadest context of technological     |
|       | change.                                                                                   |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| DCO 4        | To apply the principles of thermal sciences to design and develop various thermal      |
|--------------|----------------------------------------------------------------------------------------|
| PSO 1        | systems.                                                                               |
|              | To apply the principles of manufacturing technology, scientific management towards     |
| <b>PSO 2</b> | improvement of quality and optimization of engineering systems in the design, analysis |
|              | and manufacturability of products.                                                     |
|              | To apply the basic principles of mechanical engineering design for evaluation of       |
| <b>PSO 3</b> | performance of various systems relating to transmission of motion and power,           |
|              | conservation of energy and other process equipment.                                    |

| Title               | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty |                   |                       |                       |                           |
| Signature           |                   |                       |                       |                           |

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### DEPARTMENT OF MECHANICAL ENGINEERING

# COURSE HANDOUT PART-A

Name of Course Instructor : Mr.P.Somaraju

Course Name & Code : Python Programming Lab(20AD53)

L-T-P Structure : 0-0-3 Credits : 2 Program/Sem/Sec: :B.Tech.,MECH., III Sem-A A.Y: 2023-24

**PRE-REQUISITE:** Basic Knowledge of Programming.

**Course Educational Objective:** The Objective of the Python course is to lead the students from the basics of writing and running Python scripts in problem-solving and to design and implement the modules and understands the working of classes and objects in python.

**COURSE OUTCOMES (COs):** At the end of the course, students are able to:

| CO 1 | Identify various programming constructs available in Python and apply them in solving                                   |
|------|-------------------------------------------------------------------------------------------------------------------------|
|      | computational problems. (Apply - L3)                                                                                    |
| CO 2 | Demonstrate data structures available in Python and apply them in solving computational problems. ( <b>Apply - L3</b> ) |
| CO 3 | Implement modular programming, string manipulations, and Python Libraries (Apply - L3)                                  |
| CO 4 | Improve individual/teamwork skills, communication & report writing skills with ethical values.                          |

### **COURSE ARTICULATION MATRIX**(Correlation betindividual/teamwork:

| COs             | PO <sub>1</sub> | PO <sub>2</sub> | PO <sub>3</sub> | PO4 | PO <sub>5</sub> | PO6 | <b>PO</b> 7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO <sub>1</sub> | PSO <sub>2</sub> | PSO <sub>3</sub> |
|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----|-------------|-----|-----|------|------|------|------------------|------------------|------------------|
| CO <sub>1</sub> |                 |                 |                 | 2   | 3               |     |             |     |     |      |      |      |                  |                  |                  |
| CO2             |                 |                 |                 | 2   | 3               |     |             |     |     |      |      |      |                  | 2                |                  |
| CO <sub>3</sub> |                 |                 |                 | 2   | 3               |     |             |     |     |      |      |      |                  | 2                |                  |
| CO <sub>4</sub> |                 |                 |                 |     |                 |     |             |     | 3   | 3    |      |      |                  |                  |                  |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

# **PART-B**

### **COURSE DELIVERY PLAN (LESSON PLAN): Section C**

| S. No. | Topics to be covered                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction: Language basics and example problems ( Two weeks) | 3                             | 8-8-2023                           |                                 | TLM4                            |                       |

| 2.                                  | Introduction: Language basics and example problems ( Two weeks) | 3  | 22-8-2023                   |                               | TLM4 |
|-------------------------------------|-----------------------------------------------------------------|----|-----------------------------|-------------------------------|------|
| 3.                                  | Module 1: Exercise Programs on Lists.                           | 3  | 5-9-2023&<br>12-9-2023      |                               | TLM4 |
| 4.                                  | Module 2: Exercise<br>Programs on Tuples                        | 3  | 19-9-<br>2023&26-9-<br>2023 |                               | TLM4 |
| 5.                                  | Module 3: Exercise Programs on Sets                             | 3  | 9-10-2023                   |                               | TLM4 |
| 6.                                  | Module 4: Exercise Programs on Dictionaries                     | 3  | 16-10-2023                  |                               | TLM4 |
| 7.                                  | Module 5: Exercise Programs on functions and recursion.         | 3  | 30-10-2023                  |                               | TLM4 |
| 8.                                  | Module 6: Exercise programs on Strings                          | 3  | 6-11-2023                   |                               | TLM4 |
| 9.                                  | Module 7:Exercise Programs on Regular Expressions               | 3  | 13-11-2023                  |                               | TLM4 |
| 10.                                 | Module 8:Exercise Programs on Matplot Library                   | 3  | 20-11-2023                  |                               | TLM4 |
| 11.                                 | Lab Internal                                                    | 3  | 27-11-2023                  |                               | TLM4 |
| No. of classes required to complete |                                                                 | 33 |                             | No of<br>classe<br>s<br>taken | 33   |

| Teaching Learning Methods |                |      |                                 |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|
| TLM <sub>1</sub>          | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |

# PART-C

# PROGRAMME OUTCOMES (POs):

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                          |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |

|             | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to            |
|-------------|------------------------------------------------------------------------------------------------------|
| PO 6        | assess societal, health, safety, legal and cultural issues and the consequent responsibilities       |
|             | relevant to the professional engineering practice                                                    |
|             | Environment and sustainability: Understand the impact of the professional engineering                |
| <b>PO</b> 7 | solutions in societal and environmental contexts, and demonstrate the knowledge of, and              |
|             | need for sustainable development.                                                                    |
| PO 8        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and          |
| 100         | norms of the engineering practice.                                                                   |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or                  |
| 109         | leader in diverse teams, and in multidisciplinary settings.                                          |
|             | <b>Communication</b> : Communicate effectively on complex engineering activities with the            |
| PO 10       | engineering community and with society at large, such as being able to comprehend and write          |
| 1010        | effective reports and design documentation, make effective presentations, and give                   |
|             | and receive clear instructions.                                                                      |
|             | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the               |
| PO 11       | engineering and management principles and apply these to one's own work, as a member                 |
|             | and leader in a team, to manage projects and in multidisciplinary environments.                      |
| PO 12       | <b>Life-long learning</b> : Recognize the need for and have the preparation and ability to engage in |
| 1012        | independent and life-long learning in the broadest context of technological change.                  |
|             | Conduct investigations of complex problems: Use research-based knowledge and                         |
| PO 4        | research methods including design of experiments, analysis and interpretation of data, and           |
|             | synthesis of the information to provide valid conclusions.                                           |
|             |                                                                                                      |
|             | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and          |
| PO 5        | modern engineering and IT tools including prediction and modelling to complex                        |
|             | engineering activities with an understanding of the limitations                                      |
|             |                                                                                                      |
|             |                                                                                                      |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

|       | The ability to apply Software Engineering practices and strategies in software project development using an open-source programming environment for the success of the organization. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per society's needs.                                                                  |
|       | To inculcate an ability to analyze, design, and implement database applications.                                                                                                     |

| Course Instructor | Course Coordinator          | Module Coordinator   | HOD                |
|-------------------|-----------------------------|----------------------|--------------------|
| Mr.P.Somaraju     | Dr. Y . Vijay Bhaskar Reddy | Dr. K. Naga Prasnthi | Dr. S. Pichi Reddy |
|                   |                             |                      |                    |



Accredited by NAAC & NBA (Under Tier - I) ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

http://cse.lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

## **DEPARTMENT OF MECHANICAL ENGINEERING**

# COURSE HANDOUT PART-A

Name of Course Instructor : Dr.B.Sudheer Kumar/Mr.K.Venkateswara Reddy

Mr.S.Uma Maheswara Reddy

Course Name & Code : Technical Drawing using Drafting Package Lab (20MES1)
L-T-P Structure : 1-0-2 Credits: 2
Program/Sem/Sec : B.Tech., Mech., III-Sem., A/S A.Y: 2023-24

**PRE-REQUISITE** : Engineering Graphics

## **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The main objective of this course is to improve the skill sets of students in drafting packages (Auto CAD/CATIA) and enable them to draw the diagrams related to mechanical engineering components/applications.

**COURSE OUTCOMES (COs):** At the end of the course, the student shall be able to

| CO 1 | Understand                                                                  | the    | Auto-CAD   | basics    | for  | 2D         | sketches | used             | in    | industries |
|------|-----------------------------------------------------------------------------|--------|------------|-----------|------|------------|----------|------------------|-------|------------|
| COI  | (Understand                                                                 | ling - | L2)        |           |      |            |          |                  |       |            |
| CO 2 | Draw the mad                                                                | chine  | components | s using 3 | D mo | dellin     | g comman | ds. <b>(Ap</b> ) | plyii | ng -L3)    |
| CO 3 | Edit the 3D solid Models using solid editing commands. (Understanding - L2) |        |            |           |      |            |          |                  |       |            |
| CO 4 | Extract the Orthographic views of the models in Wire Frame, Surface & Solid |        |            |           |      | ce & Solid |          |                  |       |            |
| CO 4 | Modelling. (A                                                               | pply   | ing -L3)   |           |      |            |          |                  |       |            |

## **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   |     |     |     | 2   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO2 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO3 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO4 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

PART-B
COURSE DELIVERY PLAN (LESSON PLAN): Section-A

| S.No. | Programs to be covered                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.    | Introduction to Technical Drawing using Drafting Package-CEO&COs  | 04                            | 11.08.2023                         |                                 | TLM2                            | CO-<br>1,2,3,4             |                       |
| 2.    | Demonstration to<br>AutoCAD Software                              | 04                            | 18.08.2023                         |                                 | TLM4                            | CO-<br>1,2,3,4             |                       |
| 3.    | Exercise on Basic Drawing Commands (Exp-1)                        | 04                            | 25.08.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 4.    | Exercise on Modify Commands (Exp-2)                               | 04                            | 01.09.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 5.    | Exercise on isometric views (Exp-3)                               | 04                            | 08.09.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 6.    | Exercise on 3D Modelling Commands-I ( <b>Exp-4</b> )              | 04                            | 15-09-2023                         |                                 | TLM4                            | CO-2                       |                       |
| 7.    | Exercise on 3D Modelling Commands-II ( <b>Exp-5</b> )             | 04                            | 22-09-2023                         |                                 | TLM4                            | CO-2                       |                       |
| 8.    | Exercise on 3D Modelling Commands-III ( <b>Exp-6</b> )            | 04                            | 29-09-2023                         |                                 | TLM4                            | CO-2                       |                       |
|       |                                                                   | MINATIONS                     | S (3-10-23 TC                      | 9-10-23)                        |                                 |                            |                       |
| 9.    | Exercise on 3D Solid Editing Commands-I (Exp-7)                   | 04                            | 13-10-2023                         |                                 | TLM4                            | CO-3                       |                       |
| 10.   | Exercise on 3D Solid Editing Commands-II (Exp-8)                  | 04                            | 20-10-2023                         |                                 | TLM4                            | CO-3                       |                       |
| 11.   | Extraction of Wire-Frame & Solid Models from 3D Models (Exp-9)    | 04                            | 27-10-2023                         |                                 | TLM4                            | CO-4                       |                       |
| 12.   | Extraction of Ortho<br>Graphics Views from 3D<br>model-I (Exp-10) | 01                            | 01-10-2023                         |                                 | TLM4                            | CO-4                       |                       |
| 13.   | Repetition                                                        | 04                            | 03-10-2023                         |                                 | TLM4                            | CO-4                       |                       |

| Teaching Learning Methods |                |      |                                 |  |
|---------------------------|----------------|------|---------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |

# LIST OF EXPERIMENTS:

| Exp. No. | Name of the Experiment                                 | Related CO |
|----------|--------------------------------------------------------|------------|
| MES-1    | Exercise on Basic Drawing Commands                     | CO1        |
| MES2     | Exercise on Modify Commands                            | CO1        |
| MES3     | Exercise on isometric views                            | CO1        |
| MES4     | Exercise on 3D Modelling Commands-I                    | CO2        |
| MES5     | Exercise on 3D Modelling Commands-II                   | CO2        |
| MES6     | Exercise on 3D Modelling Commands-III                  | CO2        |
| MES7     | Exercise on 3D Solid Editing Commands-I                | CO3        |
| MES8     | Exercise on 3D Solid Editing Commands-II               | CO3        |
| MES9     | Extraction of Wire-Frame & Solid Models from 3D Models | CO4        |
| MES10    | Extraction of Ortho Graphics Views from 3D model-I     | CO4        |

# NOTIFICATION OF CYCLES

| Cycle   | Exp. No. | Name of the Experiment                                 | Related CO |
|---------|----------|--------------------------------------------------------|------------|
|         | MES-1    | Exercise on Basic Drawing Commands                     | CO1        |
| Cycle-1 | MES2     | Exercise on Modify Commands                            | CO1        |
|         | MES3     | Exercise on isometric views                            | CO1        |
|         | MES4     | Exercise on 3D Modelling Commands-I                    | CO2        |
| Cycle-2 | MES5     | Exercise on 3D Modelling Commands-II                   | CO2        |
|         | MES6     | Exercise on 3D Modelling Commands-III                  | CO2        |
| Cycle-3 | MES7     | Exercise on 3D Solid Editing Commands-I                | CO3        |
|         | MES8     | Exercise on 3D Solid Editing Commands-II               | CO3        |
| Cycle-4 | MES9     | Extraction of Wire-Frame & Solid Models from 3D Models | CO4        |
| 5,020   | MES10    | Extraction of Ortho Graphics Views from 3D model-I     | CO4        |

# PART-C

PROGRAMME OUTCOMES (POs):

| I NOUN                                                                     | AMME OUTCOMES (POS):                                                                                |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
|                                                                            | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering             |  |  |  |
| P01                                                                        | fundamentals, and an engineering specialization to the solution of complex engineering              |  |  |  |
|                                                                            | problems.                                                                                           |  |  |  |
|                                                                            | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex      |  |  |  |
| P02                                                                        | engineering problems reaching substantiated conclusions using first principles of                   |  |  |  |
|                                                                            | mathematics, natural sciences, and engineering sciences.                                            |  |  |  |
|                                                                            | <b>Design/development of solutions</b> : Design solutions for complex engineering problems          |  |  |  |
| P03                                                                        | and design system components or processes that meet the specified needs with                        |  |  |  |
| PUS                                                                        | appropriate consideration for the public health and safety, and the cultural, societal, and         |  |  |  |
|                                                                            | environmental considerations.                                                                       |  |  |  |
|                                                                            | Conduct investigations of complex problems: Use research-based knowledge and                        |  |  |  |
| P04                                                                        | research methods including design of experiments, analysis and interpretation of data,              |  |  |  |
|                                                                            | and synthesis of the information to provide valid conclusions.                                      |  |  |  |
|                                                                            | Modern tool usage: Create, select, and apply appropriate techniques, resources, and                 |  |  |  |
| P05                                                                        | modern engineering and IT tools including prediction and modelling to complex                       |  |  |  |
|                                                                            | engineering activities with an understanding of the limitations                                     |  |  |  |
|                                                                            | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to           |  |  |  |
| P06                                                                        | assess societal, health, safety, legal and cultural issues and the consequent responsibilities      |  |  |  |
| relevant to the professional engineering practice                          |                                                                                                     |  |  |  |
|                                                                            | <b>Environment and sustainability</b> : Understand the impact of the professional engineering       |  |  |  |
| P07                                                                        | solutions in societal and environmental contexts, and demonstrate the knowledge of, and             |  |  |  |
|                                                                            | need for sustainable development.                                                                   |  |  |  |
| P08                                                                        | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and |  |  |  |
| FUO                                                                        | norms of the engineering practice.                                                                  |  |  |  |
| P09                                                                        | <b>Individual and team work</b> : Function effectively as an individual, and as a member or         |  |  |  |
| 109                                                                        | leader in diverse teams, and in multidisciplinary settings.                                         |  |  |  |
|                                                                            | <b>Communication</b> : Communicate effectively on complex engineering activities with the           |  |  |  |
| PO10                                                                       | engineering community and with society at large, such as, being able to comprehend                  |  |  |  |
| and write effective reports and design documentation, make effective prese |                                                                                                     |  |  |  |
|                                                                            | give and receive clear instructions.                                                                |  |  |  |
|                                                                            | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the              |  |  |  |
| P011                                                                       | engineering and management principles and apply these to one's own work, as a member                |  |  |  |
|                                                                            | and leader in a team, to manage projects and in multidisciplinary environments.                     |  |  |  |
|                                                                            | Life-long learning: Recognize the need for, and have the preparation and ability to                 |  |  |  |
| P012                                                                       | engage in independent and life-long learning in the broadest context of technological               |  |  |  |
|                                                                            | change.                                                                                             |  |  |  |

PROGRAMME SPECIFIC OUTCOMES (PSOs):

|              | To apply the principles of thermal sciences to design and develop various thermal  |
|--------------|------------------------------------------------------------------------------------|
| <b>PSO 1</b> |                                                                                    |
|              | systems.                                                                           |
|              | To apply the principles of manufacturing technology, scientific management towards |
| DCO 2        |                                                                                    |
| <b>PSO 2</b> |                                                                                    |
|              | and manufacturability of products.                                                 |
|              | To apply the basic principles of mechanical engineering design for evaluation of   |
| <b>PSO 3</b> | performance of various systems relating to transmission of motion and power,       |
|              | conservation of energy and other process equipment.                                |

| Course Instructor   | Course Coordinator | Module Coordinator | HOD                |
|---------------------|--------------------|--------------------|--------------------|
| Dr. B.Sudheer Kumar | Mr. K.V.Viswanadh  | Dr.B.Sudheer Kumar | M.B.S.SreekarReddy |



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### DEPARTMENT OF MECHANICAL ENGINEERING

# COURSE HANDOUT PART-A

Name of Course Instructor: Dr. P.V.Chandra Sekhar Rao

**Course Name & Code**: MECHANICS OF SOLIDS &20 ME06

L-T-P Structure : 2-1-0 Credits: 3
Program/Sem/Sec : B.Tech/III/A A.Y.: 2023-24

**PREREQUISITE:** Engineering Mechanics

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The objective of the course is to identify nature of the stress and compute the deformations in mechanical members due to various loads.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Compute the stresses and deformations of a member subjected to various types of loading. <b>(Applying-L3)</b> |
|-----|---------------------------------------------------------------------------------------------------------------|
| CO2 | Construct the shear force and bending moment diagrams along the length of beam.                               |
|     | (Applying-L3)                                                                                                 |
| CO3 | Comprehend the variation of bending and shear stresses across the cross section of the                        |
|     | beams. (Understanding-L2)                                                                                     |
| CO4 | Analyze the structural members subjected to biaxial stresses. (Analyzing-L4)                                  |
| CO5 | Formulate the equations for stresses and deformations due to various loads.                                   |
|     | (Applying-L3)                                                                                                 |

## **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs     | P01 | PO2 | P03 | P04 | PO5   | P06 | P07 | P08 | P09 | PO10   | P011 | PO12 | PSO1 | PSO2 | PSO3 |
|---------|-----|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|
| CO1     | 3   | 2   | -   | -   | -     | -   | -   | -   | -   | -      | -    | 2    | -    | -    | 3    |
| CO2     | 3   | 3   | 1   | -   | -     | -   | -   | -   | -   | -      | -    | 2    | -    | -    | 3    |
| CO3     | 3   | 2   | -   | -   | -     | -   | -   | -   | •   | -      | -    | 2    | -    | -    | 3    |
| CO4     | 3   | 2   | 1   | -   | -     | ı   | ı   | -   | ı   | -      | ı    | 2    | ı    | -    | 3    |
| CO5     | 3   | 2   | -   | -   | -     | •   | -   | -   | 1   | -      |      | 2    |      | -    | 3    |
| 1 - Low |     |     |     | 2   | -Medi | um  |     | •   | 3   | - High | •    |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** E.P. Popov, Engineering Mechanics of Solids, PHI Learning, 2009.
- **T2** Sadhu Singh, Strength of Materials, Khanna Publishers, 2013.

#### **REFERENCE BOOKS:**

- **R1** S. Ramamrutham, Strength of Materials, Dhanpat Rai & Sons, 2011.
- **R2** M.L. Gambhir, Fundamentals of Solid Mechanics, PHI Learning, 2009.
- **R3** M. Chakraborti, "Strength of Materials", S.K.Kataria & Sons.
- **R4** R.Subramanian, "Strength of Materials", Oxford University Press, 2010.
- **R5** R.K.Bansal, "Strength of Materials", Laxmi Publishers, 2013.

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: SIMPLE STRESSES AND STRAINS

| S.<br>No. | Topics to be covered                                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.        | Introduction to Mechanics of Solids - Course Educational Objective (CEO) & Course Outcomes (CO's)       | 1                             | 08-08-2023                         |                                 | TLM1,2                          |                       |  |
| 2.        | Concept of Stress & Strain                                                                              | 1                             | 09-08-2023                         |                                 | TLM2                            |                       |  |
| 3.        | Mechanical properties of Materials                                                                      | 1                             | 10-08-2023                         |                                 | TLM2                            |                       |  |
| 4.        | Stress Strain diagrams for Mild Steel<br>-Hooke's Law<br>Evaluation of Proof stress by Offset<br>method | 1                             | 11-08-2023                         |                                 | TLM2,4                          |                       |  |
| 5.        | Stresses, Strains & Deformations of<br>a body due to axial force<br>Factor of Safety                    | 1                             | 15-08-2023                         |                                 | TLM1                            |                       |  |
| 6.        | Deformation of Stepped bar due to axial loads                                                           | 1                             | 16-08-2023                         |                                 | TLM1                            |                       |  |
| 7.        | Tutorial-I                                                                                              | 1                             | 17-08-2023                         |                                 | TLM3                            |                       |  |
| 8.        | Stresses in composite bars & Problems                                                                   | 1                             | 18-08-2023                         |                                 | TLM1                            |                       |  |
| 9.        | Lateral strain, Poisson's ratio & change in volume; Shear stress & shear strain                         | 1                             | 22-08-2023                         |                                 | TLM1                            |                       |  |
| 10.       | Relation between Young's Modulus and shear Modulus                                                      | 1                             | 23-08-2023                         |                                 | TLM1                            |                       |  |
| 11.       | Relation between Elastic modulii & Problems                                                             | 1                             | 24-08-2023                         |                                 | TLM1                            |                       |  |
| 12.       | Tutorial-II                                                                                             | 1                             | 25-08-2023                         |                                 | TLM3                            |                       |  |
| 13.       | Assignment / Quiz (UNIT-I)                                                                              | 1                             | 29-08-2023                         |                                 | TLM1                            |                       |  |
| No.       | No. of classes required to complete UNIT-I: 13 No. of classes taken:                                    |                               |                                    |                                 |                                 |                       |  |

# UNIT-II: SHEAR FORCE AND BENDING MOMENT

| S.<br>No. | Topics to be covered                                                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 14.       | Introduction to Shear force and bending moment; Relation between Shear Force, Bending Moment & rate of Loading | 1                             | 30-08-2023                         |                                 | TLM1                            |                       |
| 15.       | Shear force & Bending moment Diagrams for cantilever beam subjected to Concentrated loads& UDL.                | 1                             | 31-08-2023                         |                                 | TLM1                            |                       |
| 16.       | Shear force & Bending moment Diagrams for Simply supported beam subjected to Concentrated loads & UDL.         | 1                             | 01-09-2023                         |                                 | TLM1                            |                       |
| 17.       | Estimation of Maximum bending moment for simply supported beam                                                 | 1                             | 05-09-2023                         |                                 | TLM1                            |                       |

| No. of classes required to complete UNIT-II: 11 No. of classes taken: |                                                                                                           |   |            |      |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---|------------|------|--|
| 24.                                                                   | Revision                                                                                                  | 1 | 15-09-2023 | TLM1 |  |
| 23.                                                                   | Assignment / Quiz (UNIT-II)                                                                               | 1 | 14-09-2023 | TLM1 |  |
| 22.                                                                   | Tutorial-IV                                                                                               | 1 | 13-09-2023 | TLM3 |  |
| 21.                                                                   | Tutorial-III                                                                                              | 1 | 12-09-2023 | TLM3 |  |
| 20.                                                                   | Problems on Overhanging Beam                                                                              | 1 | 08-09-2023 | TLM1 |  |
| 19.                                                                   | Estimation of Maximum bending moment & point of contra flexure for Overhanging beams                      | 1 | 07-09-2023 | TLM1 |  |
| 18.                                                                   | Shear force & Bending moment<br>Diagrams for Overhanging beam<br>subjected to Concentrated loads<br>& UDL | 1 | 06-09-2023 | TLM1 |  |

# UNIT-III: STRESSES IN BEAMS AND SHEAR STRESSES

| S.<br>No. | Topics to be covered                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Theory of Simple bending, assumptions                                                                         | 1                             | 19-09-2023                         |                                 | TLM1                            |                       |
| 26.       | Derivation of flexure equation                                                                                | 1                             | 20-09-2023                         |                                 | TLM1                            |                       |
| 27.       | Section modulus and problems                                                                                  | 1                             | 21-09-2023                         |                                 | TLM1                            |                       |
| 28.       | Normal stresses due to flexure applications problems                                                          | 1                             | 22-09-2023                         |                                 | TLM1                            |                       |
| 29.       | Normal stresses due to flexure applications problems                                                          | 1                             | 26-09-2023                         |                                 | TLM1                            |                       |
| 30.       | Tutorial-V                                                                                                    | 1                             | 27-09-2023                         |                                 | TLM3                            |                       |
| 31.       | Revision                                                                                                      | 1                             | 28-09-2023                         |                                 | TLM1                            |                       |
| 32.       | Revision                                                                                                      | 1                             | 29-09-2023                         |                                 | TLM1                            |                       |
| 33.       | Concept of shear stress variation over cross section due to flexural loads Derivation of lateral shear stress | 1                             | 10-10-2023                         |                                 | TLM1                            |                       |
| 34.       | Shear stress distribution across rectangular & circular sections                                              | 1                             | 11-10-2023                         |                                 | TLM1                            |                       |
| 35.       | Problems on distribution of Shear stress                                                                      | 1                             | 12-10-2023                         |                                 | TLM1                            |                       |
| 36.       | Tutorial-V                                                                                                    | 1                             | 13-10-2023                         |                                 | TLM3                            |                       |
| 37.       | Assignment / Quiz (UNIT-III)                                                                                  | 1                             | 17-10-2023                         |                                 | TLM1                            |                       |
| 38.       | Revision                                                                                                      | 1                             | 18-10-2023                         |                                 | TLM1                            |                       |
|           | No. of classes required to complete UNIT-III: 14 No. of                                                       |                               |                                    |                                 |                                 | n:                    |

# UNIT-IV: ANALYSIS OF COMBINED STRESSES

| S.<br>No. | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 39.       | State of stress at a point, normal and tangential stresses on inclined planes | 1                             | 19-10-2023                         |                                 | TLM1                            |                       |
| 40.       | Problem on normal and tangential stresses on inclined planes                  | 1                             | 20-10-2023                         |                                 | TLM1                            |                       |
| 41.       | Principle stresses and their planes, maximum shear stress plane               | 1                             | 24-10-2023                         |                                 | TLM1                            |                       |
| 42.       | Problems                                                                      | 1                             | 25-10-2023                         |                                 | TLM1                            |                       |
| 43.       | Problems                                                                      | 1                             | 26-10-2023                         |                                 | TLM1                            |                       |
| 44.       | Tutorial-VI                                                                   | 1                             | 27-10-2023                         |                                 | TLM3                            |                       |
| 44.       | Mohr's circle diagram                                                         | 1                             | 31-10-2023                         |                                 | TLM1                            |                       |
| 45.       | Problems on Mohr's circle                                                     | 1                             | 01-11-2023                         |                                 | TLM1                            |                       |
| 46.       | Problems on Mohr's circle                                                     | 1                             | 02-11-2023                         |                                 | TLM1                            |                       |
| 47.       | Tutorial-VII                                                                  | 1                             | 03-11-2023                         |                                 | TLM3                            |                       |
| 48.       | Assignment / Quiz (UNIT-IV)                                                   | 1                             | 07-11-2023                         |                                 | TLM1                            |                       |
| 49.       | Revision                                                                      | 1                             | 08-11-2023                         |                                 | TLM1                            |                       |
| 50.       | Videos                                                                        | 1                             | 09-11-2023                         |                                 | TLM5                            |                       |
| No.       | No. of classes required to complete UNIT-IV: 12                               |                               |                                    |                                 | ses taker                       | 1:                    |

UNIT-V: DEFLECTION OF BEAMS & THIN AND THICK CYLINDRICAL SHELLS

| S. No. | Topics to be covered                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|--------|--------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 51.    | Derivation of Differential equation for elastic line (Deflection Equation)     | 1                             | 10-11-2023                         |                                 | TLM1                            |                       |  |
| 52.    | Deflection & Slope equations for cantilever beam                               | 1                             | 14-11-2023                         |                                 | TLM1                            |                       |  |
| 53.    | Deflection & Slope equations for simply supported beam                         | 1                             | 15-11-2023                         |                                 | TLM1                            |                       |  |
| 54.    | Macaulay's method                                                              | 1                             | 16-11-2023                         |                                 | TLM1                            |                       |  |
| 55.    | Tutorial                                                                       | 1                             | 17-11-2023                         |                                 | TLM1                            |                       |  |
| 56.    | Introduction to thin & thick shells                                            | 1                             | 21-11-2023                         |                                 | TLM2                            |                       |  |
| 57.    | Hoop stress and longitudinalstresses for thin cylinders                        | 1                             | 22-11-2023                         |                                 | TLM1                            |                       |  |
| 58.    | Change in volume of thin cylinder                                              | 1                             | 23-11-2023                         |                                 | TLM2                            |                       |  |
| 59.    | Derivation of Lame's equations of Thick cylinders; Problems on thick cylinders | 1                             | 24-11-2023                         |                                 | TLM1                            |                       |  |
| 60.    | Tutorial-VIII                                                                  | 1                             | 28-11-2023                         |                                 | TLM3                            |                       |  |
| 61.    | Assignment / Quiz (UNIT-V)                                                     | 1                             | 29-11-2023                         |                                 | TLM1                            |                       |  |
| 62.    | Beyond Syllabus                                                                | 1                             | 30-11-2023                         |                                 | TLM2                            |                       |  |
| 63.    | Revision                                                                       | 1                             | 01-12-2023                         |                                 | TLM1                            |                       |  |
| No. o  | No. of classes required to complete UNIT-V: 12 No. of classes taken:           |                               |                                    |                                 |                                 |                       |  |

| Teaching | Teaching Learning Methods |      |                                 |  |  |  |  |  |  |
|----------|---------------------------|------|---------------------------------|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | 30              |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = CIE + SEE                                                              | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                    |
| PO 3  | Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.                           |
| PO 4  | Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                             |
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                     |
| PO 6  | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                          |
| PO 7  | Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                                    |
| PO 8  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                             |
| PO 9  | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                              |
| PO 10 | Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.                                                               |
| PO 12 | Recognize the need for and have the preparation and ability to engage in independent and life-                                                                                                                                                                                     |
|       | long learning in the broadest context of technological change.                                                                                                                                                                                                                     |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.     |
| PSO 3 | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. |

| Title               | Course Instructor          | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|----------------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty | Dr. P.V.Chandra Sekhar Rao | K. V. VISWANADH       | B. SUDHEER KUMAR      | Dr. S. PICHI REDDY        |
| Signature           |                            |                       |                       |                           |



(An Autonomous Institution since 2010)









## **DEPARTMENT OF MECHANICAL ENGINEERING**

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : S.RR/MO Course & SEM: B.Tech&III

Branch : ME Section :A

Determine the discharge of various flow measuring devices, estimation of friction factor and performance parameters of hydraulic machines.

#### **COURSE OUTCOMES:**

After completion of the course students are able to:

Identify the need and use of various flow measuring devices.

CO1: (Understanding-L2)

**CO2:** Apply the Bernoulli's equation for energy balance of fluid flow system. (Applying - L3)

Determine the friction losses of fluid flow through different pipes.

CO3:

(Applying-L3)

Evaluate the performance characteristics of hydraulic pumps, turbines and impact of jets.

CO4: (Applying-L3)

## **Course Articulation Matrix:**

| 20ME55 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO 10 | PO 11 | PO 12 | PSO1 | PSO2 | PSO3 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|------|------|------|
| CO1    | 2   | 2   | -   | 3   | -   | -   | -   | -   | 1   | -     | -     | 2     | -    | -    | 3    |
| CO2    | 2   | 2   | 2   | 3   | -   | -   | -   | -   | 1   | -     | -     | 2     | -    | -    | -    |
| CO3    | -   | -   | 1   | 3   | -   | -   | -   | -   | -   |       | -     | 2     | -    | -    | -    |
| CO4    | 2   | 2   | 3   | 1   | -   | -   | -   | -   | 1   | -     | -     | 2     | -    | -    | 3    |

Course Instructor Course Coordinator Module Coordinator HOD

(An Autonomous Institution since 2010)







Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

## **DEPARTMENT OF MECHANICAL ENGINEERING**

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

Academic Year: 2023-24 Course & SEM: B.Tech&III

Branch : ME Section :A

#### LIST OF EXPERIMENTS:

Instructors

#### **PART-A: FLUID MECHANICS**

Any 6 Experiments are required to be conducted

- 1. Verification of Bernoulli's Theorem (FM1)
- 2. Calibration of Venturimeter (FM2)
- 3. Calibration of Orifice meter (FM3)
- 4. Determination of friction factor for a given pipe line (FM4)
- 5. Calibration of V Notch (FM5)

: S.RR/MO

- **6.** Calibration of Mouthpiece apparatus (FM6)
- 7. Impact of jets on Vanes (FM7)

#### **PART-B: HYDRAULIC MACHINERY**

Any 6 Experiments are required to be conducted

- 1. Performance Test on Pelton Wheel (HM1)
- 2. Performance Test on Kaplan Turbine (HM2)
- 3. Performance Test on Single Stage Centrifugal Pump (HM3)
- 4. Performance Test on Reciprocating Pump(HM4)
- 5. Turbine flow meter(HM5)
- 6. Reynolds experiment.(HM6)

#### REFERENCES

Lab Manual

Course Instructor Course Coordinator Module Coordinator HOD

(An Autonomous Institution since 2010)







Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

## **DEPARTMENT OF MECHANICAL ENGINEERING**

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

Course & SEM: B.Tech&III

Academic Year: 2023-24

Instructors : S.RR/MO Branch : ME

Section :A

Batches (Section – B)

Total No. of students: 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 &23765A0301 TO 310

Batch B1 : 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 = 29

Batch B2 : 23765A0311 TO 23765A0338=28

**Sub Batches of B1:** 

| S. No | Batch           | Registered Nos                           | Total |
|-------|-----------------|------------------------------------------|-------|
| 1     | B1 <sub>1</sub> | 21761A0347,361& 22761A0301 TO 22761A0304 | 5     |
| 2     | B1 <sub>2</sub> | 22761A0305-312                           | 5     |
| 3     | B13             | 22761A0313-317                           | 5     |
| 4     | B1 <sub>4</sub> | 22761A0318-330&23765A0301                | 5     |
| 5     | B15             | 23765A0302-306                           | 5     |
| 6     | B16             | 23765A0307-310                           | 4     |
|       |                 | Total                                    | 29    |

#### **Sub Batches of B2:**

| S. No | Batch           | Registered Nos | Total |
|-------|-----------------|----------------|-------|
| 1     | B2 <sub>1</sub> | 23765A0311-314 | 4     |
| 2     | B2 <sub>2</sub> | 23765A0315-318 | 4     |
| 3     | B23             | 23765A0319-323 | 5     |
| 4     | B24             | 23765A0324-328 | 5     |
| 5     | B25             | 23765A0329-333 | 5     |
| 6     | B16             | 23765A0334-338 | 5     |
|       |                 | 28             |       |

Course Instructor Course Coordinator Module Coordinator HOD

**NOTIFICATION OF CYCLES** 



(An Autonomous Institution since 2010)



Academic Year: 2023-24

Course & SEM: B.Tech&III

**:**A





Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

## **DEPARTMENT OF MECHANICAL ENGINEERING**

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

: S.RR/MO

Branch : ME Section

CYCLE-I

1. Verification of Bernoulli's Theorem

2. Calibration of Venturi meter

- 3. Calibration of Orifice meter.
- 4. Determination of friction factor for a given pipe line
- 5. Calibration of mouthpiece apparatus
- 6. Calibration of notch

Instructors

**CYCLE-II** 

- 7. Performance Test on Kaplan Turbine.
- 8. Performance Test on Single Stage Centrifugal Pump.
- 9. Performance Test on Reciprocating Pump.
- 10. Turbine flow meter.
- 11. Impact of jets on Vanes.
- 12. Performance Test on Pelton Wheel.

# Notification of Cycles (Section – B)

| Batches | Laboratory                       | Cycle | Experiment No.s |
|---------|----------------------------------|-------|-----------------|
| B1 &    | FLUID MECHANICS<br>AND HYDRAULIC | I     | FM 1 to FM 6    |
| B2      | MACHINARY LAB                    | II    | HM 7 to HM 12   |

Total No. of students: 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 &23765A0301 TO 310

Batch B1 : 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 = 29

Batch B2 : 23765A0311 TO 23765A0338=28

Course Instructor Course Coordinator Module Coordinator HOD

(An Autonomous Institution since 2010)



L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230



Academic Year: 2023-24





# DEPARTMENT OF MECHANICAL ENGINEERING

#### **VIVA QUESTIONS**

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

**Instructors** : S.RR/MO Course & SEM: B.Tech&III

Branch : ME **Section** :A

- 1. Differentiate between Absolute and gauge pressures.
- 2. Mention two pressure measuring instruments.
- 3. What is the difference weight density and mass density?
- 4. What is the difference between dynamic and kinematic viscosity?
- 5. Differentiate between specific weight and specific volume.
- 6. Define relative density.
- 7. What is vacuum pressure?
- 8. What is absolute zero pressure?
- 9. Write down the value of atmospheric pressure head in terms of water and Hg.
- 10. Differentiate between laminar and turbulent flow.
- 11. How will you classify the flow as laminar and turbulent?
- 12. Mention few discharge measuring devices
- 13. Draw the venturimeter and mention the parts.
- 14. Why the divergent cone is longer than convergent cone in venturimeter?
- 15. Compare the merits and demerits of venturimeter with orifice meter.
- 16. Why Cd value is high in venturimeter than orifice meter?
- 17. What is orifice plate?
- 18. What do you mean by vena contracta?
- 19. Define coefficient of discharge.
- 20. Write down Darcy -weisback's equation.
- 21. What is the difference between friction factor and coefficient of friction?
- 22. What do you mean by major energy loss?
- 23. List down the type of minor energy losses.
- 24. Define turbine
- 25. What are the classifications of turbine
- 26. Define impulse turbine.
- 27. Define reaction turbine.
- 28. Differentiate between impulse and reaction turbine.
- 29. What is the function of draft tube?
- 30. Define specific speed of turbine.
- 31. What are the main parameters in designing a Pelton wheel turbine?

- 32. What is breaking jet in Pelton wheel turbine?
- 33. What is the function of casing in Pelton turbine
- 34. Draw a simple sketch of Pelton wheel bucket.
- 35. What is the function of surge tank fixed to penstock in Pelton turbine?
- 36. How the inlet discharge is controlled in Pelton turbine?
- 37. What is water hammer?
- 38. What do you mean by head race?
- 39. What do you mean by tail race?
- 40. What is the difference between propeller and Kaplan turbine?
- 41. Mention the parts of Kaplan turbine.
- 42. Differentiate between inward and outward flow reaction turbine.
- 43. What is the difference between Francis turbine and Modern Francis turbine?
- 44. What is mixed flow reaction turbine? Give an example.
- 45. Why draft tube is not required in impulse turbine?
- 46. How turbines are classified based on head. Give example.
- 47. How turbines are classified based on flow. Give example
- 48. How turbines are classified based on working principle. Give example. 49. What does velocity triangle indicates?
- 50. Draw the velocity triangle for radial flow reaction turbine.
- 51. Draw the velocity triangle for tangential flow turbine.
- 52. Mention the type of characteristic curves for turbines.
- 53. How performance characteristic curves are drawn for turbine.
- 54. Mention the types of efficiencies calculated for turbine.
- 55. Define pump.
- 56. How pumps are classified?
- 57. Differentiate pump and turbine.
- 58. Define Rotodynamic pump.
- 59. Define Positive displacement pump.
- 60. Differentiate between Rotodynamic and positive displacement pump.
- 61. Define cavitation in pump.
- 62. What is the need for priming in pump?
- 63. Give examples for Rotodynamic pump
- 64. Give examples for Positive displacement pump.
- 65. Mention the parts of centrifugal pump.
- 66. Mention the type of casing used in centrifugal pump.
- 67. Why the foot valve is fitted with strainer?
- 68. Why the foot valve is a non return type valve?
- 69. Differentiate between volute casing and vortex casing.
- 70. What is the function of volute casing?
- 71. What is the function of guide vanes?
- 72. Why the vanes are curved radially backward?
- 73. What is the function of impeller?
- 74. Mention the types of impeller used.
- 75. Define specific speed of pump.
- 76. Mention the type of characteristic curves for pump

- 77. How performance characteristic curves are drawn for pump.
- 78. Mention the parts of reciprocating pump.
- 79. What is the function of air vessel?
- 80. What is slip of reciprocating pump?
- 81. What is negative slip?
- 82. What is the condition for occurrence of negative slip?
- 83. What does indicator diagram indicates?
- 84. What is the difference between actual and ideal indicator diagram?
- 85. Briefly explain Gear pump.
- 86. Differentiate between internal gear pump and external gear pump.
- 87. Briefly explain vane pump.
- 88. What is rotary pump?
- 89. Draw the velocity triangle for centrifugal pump.
- 90. Draw the indicator diagram fro reciprocating pump.
- 91. What is the amount of work saved by air vessel?
- 92. Mention the merits and demerits of centrifugal pump.
- 93. Mention the merits and demerits of reciprocating pump.
- 94. What is separation in reciprocating pump?
- 95. How separation occurs in reciprocating pump?
- 96. Differentiate single acting and double acting reciprocating pump.

Course Instructor Course Coordinator Module Coordinator HOD



L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

(An Autonomous Institution since 2010) Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada







## DEPARTMENT OF MECHANICAL ENGINEERING

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

Academic Year: 2023-24 Course & SEM: B.Tech&III

Instructors : S.RR/MO

: ME

**Branch** 

Section **:**A

# **Notification of Cycles (Section – B)**

| Batches    | Laboratory                       | Cycle | Experiment No.s |
|------------|----------------------------------|-------|-----------------|
| B1 &<br>B2 | FLUID MECHANICS<br>AND HYDRAULIC | I     | FM 1 to FM 6    |
|            | MACHINARY LAB                    | II    | HM 7 to HM 12   |

Total No. of students: 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 &23765A0301 TO 310

Batch B1 : 21761A0347,361& 22761A0301 TO 22761A0320,22761A0330 = 29

Batch B2 : 23765A0311 TO 23765A0338=28

**Course Instructor Course Coordinator Module Coordinator** HOD

(An Autonomous Institution since 2010)







Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

# **DEPARTMENT OF MECHANICAL ENGINEERING**

# Schedule of FLUID MECHANICS AND HYDRAULIC MACHINERY LAB (Section – B)

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24
Instructors : S.RR/MO Course & SEM: B.Tech&III

Branch : ME Section :A

|            |        |                            |                            | Section                    | •/1                        |         |
|------------|--------|----------------------------|----------------------------|----------------------------|----------------------------|---------|
| Date       |        |                            | Experimen                  | t (Batch-1)                |                            |         |
| Cycle-I    | Ex - 1 | $\mathbf{E}\mathbf{x} - 2$ | $\mathbf{E}\mathbf{x} - 3$ | $\mathbf{E}\mathbf{x} - 4$ | $\mathbf{E}\mathbf{x} - 5$ | Ex – 6  |
| 10/08/2023 | Demor  | nstration of all           | l experiments,             | <b>CEOs and CO</b>         | Os of the Labo             | oratory |
| 17/08/2023 | B1     | B2                         | В3                         | B4                         | B5                         | B6      |
| 24/08/2023 | B2     | В3                         | B4                         | B5                         | В6                         | B1      |
| 31/08/2023 | В3     | B4                         | B5                         | В6                         | B1                         | B2      |
| 07/09/2023 | B4     | B5                         | В6                         | B1                         | B2                         | В3      |
| 14/09/2023 | B5     | B6                         | B1                         | B2                         | В3                         | B4      |
| 21/09/2023 | B6     | B1                         | B2                         | В3                         | B4                         | B5      |
| 05/10/2023 |        |                            | I MID EXAN                 | MINATIONS                  |                            |         |
| Cycle-II   | Ex - 7 | $\mathbf{E}\mathbf{x} - 8$ | Ex – 9                     | Ex-10                      | Ex - 11                    | Ex-12   |
| 12/10/2023 | B1     | B2                         | В3                         | B4                         | B5                         | B6      |
| 19/10/2023 | B2     | В3                         | B4                         | B5                         | B6                         | B1      |
| 26/10/2023 | В3     | B4                         | B5                         | B6                         | B1                         | B2      |
| 02/11/2023 | B4     | B5                         | B6                         | B1                         | B2                         | В3      |
| 09/11/2023 | B5     | В6                         | B1                         | B2                         | В3                         | B4      |
| 16/11/2023 | В6     | B1                         | B2                         | В3                         | B4                         | B5      |
| 23/11/2023 |        |                            | REPET                      | TITION                     |                            |         |
| 30/11/2023 |        |                            | NTERNAL EX                 | XAMINATIO                  | N                          |         |

| S. No | Batch | Registered Nos | Total | S.<br>No | Batch | Registered Nos | Total |
|-------|-------|----------------|-------|----------|-------|----------------|-------|
| 1     | B11   | 23765A0311-314 | 4     | 4        | B14   | 23765A0324-328 | 5     |
| 2     | B12   | 23765A0315-318 | 4     | 5        | B15   | 23765A0329-333 | 5     |
| 3     | B13   | 23765A0319-323 | 5     | 6        | B16   | 23765A0334-338 | 5     |

Course Instructor Course Coordinator Module Coordinator HoD

(An Autonomous Institution since 2010)







Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

## **DEPARTMENT OF MECHANICAL ENGINEERING**

Schedule of FLUID MECHANICS AND HYDRAULIC MACHINERY LAB (Section – B)

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24
Instructors : S.RR/MO Course & SEM: B.Tech&III

Branch : ME Section :A

|            |        |                            |                            | Section         | •A            |        |
|------------|--------|----------------------------|----------------------------|-----------------|---------------|--------|
| Date       |        |                            | Experimen                  | t (Batch-2)     |               |        |
| Cycle-I    | Ex - 1 | Ex-2                       | Ex - 3                     | Ex - 4          | Ex-5          | Ex - 6 |
| 07/08/2023 | Demon  | stration of all            | experiments,               | CEOs and CO     | S of the Labo | ratory |
| 14/08/2023 | B1     | B2                         | В3                         | B4              | B5            | B6     |
| 21/08/2023 | B2     | В3                         | B4                         | B5              | B6            | B1     |
| 28/08/2023 | В3     | B4                         | B5                         | B5 B6           |               | B2     |
| 28/08/2023 | B4     | B5                         | В6                         | B1              | B2            | В3     |
| 04/09/2023 | B5     | B6                         | B1                         | B2              | В3            | B4     |
| 04/09/2023 | B6     | B1                         | B2                         | B2 B3 B4        |               | B5     |
| 09/10/2023 |        |                            | I MID EXAM                 | <b>INATIONS</b> |               |        |
|            | Ex - 7 | $\mathbf{E}\mathbf{x} - 8$ | $\mathbf{E}\mathbf{x} - 9$ | Ex - 10         | Ex - 11       | Ex-12  |
| 16/10/2023 | B1     | B2                         | В3                         | B4              | B5            | В6     |
| 16/10/2023 | B2     | В3                         | B4                         | B5              | B6            | B1     |
| 30/10/2023 | В3     | B4                         | B5                         | В6              | B1            | B2     |
| 30/10/2023 | B4     | B5                         | B6                         | B1              | B2            | В3     |
| 06/11/2023 | B5     | В6                         | B1                         | B2              | В3            | B4     |
| 13/11/2023 | B6     | B1                         | B2                         | В3              | B4            | B5     |
| 20/11/2023 |        |                            | REPET                      | TITION          |               |        |
| 27/11/2023 |        | I                          | NTERNAL EX                 | KAMINATIO       | V             |        |

**Batches:** 

| S. No | Batch | Registered Nos                    | Total | S. No | Batch | Registered Nos            | Total |
|-------|-------|-----------------------------------|-------|-------|-------|---------------------------|-------|
| 1     | B21   | 21761A0347,361&<br>22761A0301-304 | 05    | 4     | B24   | 22761A0318-<br>23765A0301 | 04    |
| 2     | B22   | 22761A0305-312                    | 04    | 5     | B25   | 23765A0302-<br>306        | 04    |
| 3     | B23   | 22761A0313-317                    | 04    | 6     | B26   | 23765A0307-<br>310        | 04    |

Course Instructor Course Coordinator Module Coordinator HoD



## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (ASE, CE, CSE, ECE, EEE, IT, ME) (Under Tier - I),

ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### FRESHMAN ENGINEERING DEPARTMENT

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor : Dr. K. Jhansi Rani

Course Name & Code : Numerical Methods & Integral Calculus & 20FE10

L-T-P Structure : 2-1 -0 Credits:3
Program/Sem/Sec : II B.Tech/III sem/ME B A.Y.: 2023 - 24

PREREQUISITE: Nil

**COURSE EDUCATIONAL OBJECTIVES** (**CEOs**): The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

|     | 1 COVIED (COS): It the cha of the course, student will be able to                                 |
|-----|---------------------------------------------------------------------------------------------------|
| CO1 | Estimate the best fit polynomial for the given tabulated data using Interpolation.(Understand –   |
| COI | L2)                                                                                               |
| CO2 | Apply numerical techniques in solving of equations and evaluation of integrals. (Apply – L3)      |
| CO3 | Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their     |
| 003 | respective applications to areas and volumes. (Apply – L3)                                        |
| CO4 | Generate the single valued functions in the form of Fourier series and obtain Fourier series      |
| CO4 | representation of periodic function. (Apply – L3)                                                 |
| CO5 | Evaluate the directional derivative, divergence and angular velocity of a vector function. (Apply |
| 105 | -L3)                                                                                              |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| NOL AI | E ARTICOLATION WATRIX (Concidion between Cos, 1 os & 150s). |     |     |     |     |      |       |     |     |          |      |      |      |      |      |
|--------|-------------------------------------------------------------|-----|-----|-----|-----|------|-------|-----|-----|----------|------|------|------|------|------|
| COs    | PO1                                                         | PO2 | PO3 | PO4 | PO5 | PO6  | PO7   | PO8 | PO9 | PO10     | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1    | 3                                                           | 2   | -   | 2   | -   | -    | -     | -   | -   | -        | -    | 1    |      |      |      |
| CO2    | 3                                                           | 2   | -   | 2   | -   | ı    | -     | -   | -   | -        | -    | 1    |      |      |      |
| CO3    | 3                                                           | 2   | -   | 1   | -   | -    | -     | -   | -   | -        | -    | 1    |      |      |      |
| CO4    | 3                                                           | 1   | -   | -   | -   | -    | -     | -   | -   | -        | -    | 1    |      |      |      |
| CO5    | 3                                                           | 1   | -   | 1   | -   | -    | -     | -   | -   | -        | -    | 1    |      |      |      |
|        | 1 - Low                                                     |     |     |     |     | 2 -M | edium | •   |     | 3 - High |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42<sup>nd</sup>Edition, Khanna Publishers, New Delhi, 2012.
- **T2** Dr. B. V. Ramana, "Higher Engineering Mathematics", 1<sup>st</sup>Edition, TMH, New Delhi, 2010.
- **T3** S. S. Sastry, "Introductory Methods of Numerical Analysis" 5<sup>th</sup> Edition, PHI Learning Private Limited, New Delhi, 2012.

#### **REFERENCE BOOKS:**

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

#### **PART-B**

# ${\bf COURSE\ DELIVERY\ PLAN\ (LESSON\ PLAN):}$

**UNIT-I: Interpolation and Finite Differences** 

| S.<br>No. | Topics to be covered                         | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to the course, Course Outcomes  | 1                             | 07/08/23                     |                           | TLM1                            |                       |
| 2.        | Introduction to UNIT I                       | 1                             | 08/08/23                     |                           | TLM2                            |                       |
| 3.        | Forward Differences                          | 1                             | 10/08/23                     |                           | TLM1                            |                       |
| 4.        | Backward differences                         | 1                             | 11/08/23                     |                           | TLM1                            |                       |
| 5.        | Central Differences                          | 1                             | 14/08/23                     |                           | TLM1                            |                       |
| 6.        | Symbolic relations and separation of symbols | 1                             | 17/08/23                     |                           | TLM1                            |                       |
| 7.        | Symbolic relations and separation of symbols | 1                             | 18/08/23                     |                           | TLM1                            |                       |
| 8.        | Newton's forward formulae for interpolation  | 1                             | 21/08/23                     |                           | TLM1                            |                       |
| 9.        | Newton's backward formulae for interpolation | 1                             | 22/08/23                     |                           | TLM1                            |                       |
| 10.       | Lagrange's Interpolation                     | 1                             | 24/08/23                     |                           | TLM1                            |                       |
| 11.       | Lagrange's Interpolation                     | 1                             | 28/08/23                     |                           | TLM1                            |                       |
| 12.       | Tutorial I                                   | 1                             | 25/08/23                     |                           | TLM3                            |                       |
| No. o     | of classes required to complete UN           | IT-I: 12                      | taken:                       |                           |                                 |                       |

**UNIT-II:** Numerical solutions of Equations and Numerical Integration

| S.  | Topics to be covered                                                   | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |  |  |  |  |
|-----|------------------------------------------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|--|--|--|--|
| No. | -                                                                      | Required          | Completion           | Completion        | Methods              | Weekly      |  |  |  |  |
| 13. | Introduction to UNIT II                                                | 1                 | 29/08/23             |                   | TLM2                 |             |  |  |  |  |
| 14. | Algebraic and Transcendental Equations                                 | 1                 | 31/08/23             |                   | TLM1                 |             |  |  |  |  |
| 15. | False Position method                                                  | 1                 | 01/09/23             |                   | TLM1                 |             |  |  |  |  |
| 16. | False Position method                                                  | 1                 | 04/09/23             |                   | TLM1                 |             |  |  |  |  |
| 17. | Newton- Raphson Method in one variable                                 | 1                 | 05/09/23             |                   | TLM1                 |             |  |  |  |  |
| 18. | Newton- Raphson Method applications                                    | 1                 | 07/09/23             |                   | TLM1                 |             |  |  |  |  |
| 19. | Trapezoidal rule                                                       | 1                 | 08/09/23             |                   | TLM1                 |             |  |  |  |  |
| 20. | Simpson's 1/3 Rule                                                     | 1                 | 11/09/23             |                   | TLM1                 |             |  |  |  |  |
| 21. | Simpson's 3/8 Rule                                                     | 1                 | 12/09/23             |                   | TLM1                 |             |  |  |  |  |
| 22. | Tutorial II                                                            | 1                 | 15/09/23             |                   | TLM3                 |             |  |  |  |  |
| No. | No. of classes required to complete UNIT-II: 10  No. of classes taken: |                   |                      |                   |                      |             |  |  |  |  |

UNIT-III: Multiple Integrals

| -11 | П;  | Multiple integrals                                             |                   |                      |                   |                      |             |
|-----|-----|----------------------------------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|
|     |     | Topics to be covered                                           | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
| (   | ).  |                                                                | Required          | Completion           | Completion        | Methods              | Weekly      |
| 2   | 23. | Introduction to Unit-III                                       | 1                 | 14/09/23             |                   | TLM1                 |             |
| 2   | 24. | Double Integrals -Cartesian coordinates                        | 1                 | 19/09/23             |                   | TLM1                 |             |
| 2   | 25. | Double Integrals- Polar co ordinates                           | 1                 | 21/09/23             |                   | TLM1                 |             |
| 2   | 26. | Problems                                                       | 1                 | 22/09/23             |                   | TLM1                 |             |
| 2   | 27. | Applications to Double integrals (Content Beyond the syllabus) | 1                 | 25/09/23             |                   | TLM1                 |             |
| 2   | 28. | Applications to Double integrals (Content Beyond the syllabus) | 1                 | 26/09/23             |                   | TLM1                 |             |
| 2   | 29. | Revision for mid exam                                          | 1                 | 29/09/23             |                   |                      |             |

|      | I MID EXAMINATIONS (02-10-2023 TO 07-10-2023) |            |           |           |              |  |  |  |  |  |
|------|-----------------------------------------------|------------|-----------|-----------|--------------|--|--|--|--|--|
| 30.  | Triple Integrals - Cartesian coordinates      | 1          | 09/10/23  |           | TLM1         |  |  |  |  |  |
| 31.  | Triple Integrals - Spherical coordinates      | 1          | 10/10/23  |           | TLM1         |  |  |  |  |  |
| 32.  | Change of order of Integration                | 1          | 12/10/23  |           | TLM1         |  |  |  |  |  |
| 33.  | Tutorial III                                  | 1          | 13/10/23  |           | TLM3         |  |  |  |  |  |
| 34.  | Change of order of Integration                | 1          | 16/10/23  |           | TLM1         |  |  |  |  |  |
|      | No. of classes required to con                | nplete UNI | T-III: 12 | No. of cl | asses taken: |  |  |  |  |  |
| -IV: | Fourier Series                                |            |           | <u> </u>  |              |  |  |  |  |  |
|      |                                               | NT C       | TT: 4 4 • | A 4 1     | m ı·         |  |  |  |  |  |

| S.<br>No.                                                                                                         | Topics to be covered                                             | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| 35.                                                                                                               | Introduction to UNIT IV                                          | 1                             | 17/10/23                     |                           | TLM1                            |                       |
| 36.                                                                                                               | Determination of Fourier coefficients, Even and Odd Functions    | 1                             | 27/10/23                     |                           | TLM1                            |                       |
| 37. Fourier Series expansion in the interval $[0,2\pi]$ 38. Fourier Series expansion in the interval $[-\pi,\pi]$ |                                                                  | 1                             | 30/10/23                     |                           | TLM1                            |                       |
|                                                                                                                   |                                                                  | 1                             | 31/10/23                     |                           | TLM1                            |                       |
| 39.                                                                                                               | Fourier Series in an arbitrary interval [0, 21]                  | 1                             | 02/11/23                     |                           | TLM1                            |                       |
| 40.                                                                                                               | Fourier Series in an arbitrary interval [-1, 1]                  | 1                             | 03/11/23                     |                           | TLM1                            |                       |
| 41.                                                                                                               | Fourier series in an arbitrary interval odd and even functions   | 1                             | 06/11/23                     |                           | TLM1                            |                       |
| 42.                                                                                                               | Half-range Sine and Cosine series                                | 1                             | 07/11/23                     |                           | TLM1                            |                       |
| 43.                                                                                                               | Half-range Sine and Cosine series                                |                               | 09/11/23                     |                           | TLM1                            |                       |
| 44.                                                                                                               | Tutorial IV                                                      | 1                             | 10/11/23                     |                           | TLM3                            |                       |
| 45.                                                                                                               | Introduction to Fourier transforms (Content Beyond the Syllabus) | 1                             | 13/11/23                     |                           | TLM2                            |                       |
|                                                                                                                   | of classes required to complete UN                               | IT-IV: 11                     |                              | No. of classe             | s taken:                        |                       |
| '-V: V                                                                                                            | Vector Differentiation                                           |                               |                              |                           |                                 |                       |
|                                                                                                                   |                                                                  | No. of                        | Tontotivo                    | A atrial                  | Facabina                        | HOD                   |

| roduction to UNIT V ctor Differentiation adient rectional Derivative vergence rl | 1<br>1<br>1<br>1<br>1          | 14/11/23<br>16/11/23<br>17/11/23<br>20/11/23<br>21/11/23 |                                                                             | TLM1 TLM1 TLM1 TLM1                                                        | -                                                                                             |
|----------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| adient<br>rectional Derivative<br>vergence                                       | 1<br>1<br>1                    | 17/11/23<br>20/11/23                                     |                                                                             | TLM1                                                                       |                                                                                               |
| rectional Derivative vergence                                                    | 1<br>1<br>1                    | 20/11/23                                                 |                                                                             |                                                                            |                                                                                               |
| vergence                                                                         | 1 1                            |                                                          |                                                                             | TLM1                                                                       |                                                                                               |
|                                                                                  | 1                              | 21/11/22                                                 |                                                                             |                                                                            |                                                                                               |
| rl                                                                               |                                | 21/11/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
|                                                                                  | 1                              | 23/11/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
| lenoidal and Irrotational actions, potential surfaces                            | 1                              | 24/11/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
| placian and second order erators                                                 | 1                              | 27/11/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
| TORIAL - V                                                                       | 1                              | 30/11/23                                                 |                                                                             | TLM3                                                                       |                                                                                               |
| operties                                                                         | 1                              | 28/11/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
| roduction to Vector<br>egrals (Content Beyond the                                | 1                              | 01/12/23                                                 |                                                                             | TLM1                                                                       |                                                                                               |
| 1                                                                                | perties<br>roduction to Vector | roduction to Vector egrals (Content Beyond the labus)    | roduction to Vector egrals (Content Beyond the labus)  1 28/11/23  01/12/23 | roduction to Vector egrals (Content Beyond the labus)  1 28/11/23 01/12/23 | perties 1 28/11/23 TLM1 roduction to Vector egrals (Content Beyond the labus) 1 01/12/23 TLM1 |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30          |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = $CIE + SEE$                                                            | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                              |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                   |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                  |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                              |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                |

| Title               | Course Instructor  | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|--------------------|--------------------|-----------------------|---------------------------|
| Name of the Faculty | Dr. K. Jhansi Rani | Dr. K. R. Kavitha  | Dr. A. Rami Reddy     | Dr. A. Rami Reddy         |
| Signature           |                    |                    |                       |                           |

# RODY COLLEGE OF STREET OF

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

# **PART-A**

Name of Course Instructor: S.RAMI REDDY

**Course Name & Code** : FLUID MECHANICS & HYDRAULIC MACHINERY&20 ME03 **L-T-P Structure** : 2-1-0 **Credits:** 3

Program/Sem/Sec : B.Tech/III/B A.Y.: 2023-24

**PREREQUISITE: Engineering physics and Mathematics** 

COURSE EDUCATIONAL OBJECTIVES (CEOs): To understand the fundamental concepts of fluid mechanics, various

flow measuring devices, boundary layer separation and performance characteristics of hydraulic machines.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Understand the fundamentals of fluid mechanics and dimensional analysis and similarity concepts |
|------------|-------------------------------------------------------------------------------------------------|
| CO2        | Comprehend the kinematics and dynamics of fluid flows                                           |
| CO3        | Analyze boundary layer flow and friction losses in pipes                                        |
| <b>CO4</b> | Apply impulse momentum concept to impact of jet problems                                        |
| CO5        | Evaluate the performance parameters of hydraulic turbines and pumps                             |

# **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04 | P05       | P06 | P07 | P08 | P09             | P010 | P011 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----------|-----|-----|-----|-----------------|------|------|------|------|------|------|
| CO1            | 3   | 2   | 2   | 3   | -         | -   | -   | -   | -               | 3    | -    | 3    | 2    | -    | 3    |
| CO2            | 3   | 3   | 3   | 2   | -         | -   | -   | -   | -               | -    | -    | 3    | 2    | -    | 2    |
| CO3            | 2   | 1   | 3   | 2   | 1         | •   | -   | -   | •               | -    | -    | 3    | 2    | -    | 3    |
| CO4            | 2   | 1   | 2   | 3   | -         | •   | -   | -   | •               | -    | •    | 3    | 3    | •    | 3    |
| CO5            | 3   | 2   | 3   | 2   | 1         | ı   | •   | -   | ı               | -    | ı    | 3    | 2    | ı    | 2    |
| <b>1</b> - Low |     |     |     |     | 2 -Medium |     |     |     | <b>3 -</b> High |      |      |      |      |      |      |

#### **TEXTBOOKS:**

- T1 P.N.Modi and S.M.Seth, Hydraulics, "Fluid Mechanics and Hydraulic Machinery, 15th Edition, Standard Book House, 2004.
- T2 Philip J, Robert W.fox, Fluid mechanics, 7th edition, John Wiley & sons, 2011.

#### **REFERENCE BOOKS:**

- R1 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", 9th Edition, laxmi publications
- R2 Banga & Sharma, "Hydraulic Machines", Edition, Khanna publishers, 6th Edition, 1999.
- R3 Rama Durgaiah, "Fluid Mechanics and Machinery", Edition, New Age International, 1st edition, 2006
- R4 D.S.Kumar, "Fluid Mechanics and Fluid power engineering", 5th Edition, S.K.Kataria & Sons.

# PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# UNIT-I: FLUID STATITICS AND DIMENSIONAL ANALYSIS AND SIMILARITY

| S.<br>No. | Topics to be covered                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to FMHM                                       | 1                             | 09/08/2023                         |                                 | TLM1                            |                       |
| 2.        | Physical properties of fluids                              | 1                             | 10/08/2023                         |                                 | TLM3                            |                       |
| 3.        | Specific gravity,viscosity,surface tension,vapour pressure | 1                             | 11/08/2023                         |                                 | TLM1                            |                       |
| 4.        | Problems on physical properties                            | 1                             | 16/08/2023                         |                                 | TLM1                            |                       |
| 5.        | Manometers, classification                                 | 1                             | 17/08/2023                         |                                 | TLM2                            |                       |
| 6.        | Problems on manometers                                     | 1                             | 18/08/2023                         |                                 | TLM3                            |                       |
| 7.        | Dimensional analysis,rayleigh's method                     | 1                             | 19/08/2023                         |                                 | TLM1                            |                       |
| 8.        | Buckingham's Pi theorem method                             | 1                             | 23/08/2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complete                            | UNIT-I: 8                     | <u>B</u>                           | No. of clas                     | ses takei                       | n:                    |

# **UNIT-II: FLUID STATICS AND FLUID DYNAMICS**

| S.<br>No. | Topics to be covered                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 9.        | Stream line, path line, streak line, stream tube                       | 1                             | 24/08/2023                         |                                 | TLM1                            |                       |
| 10.       | Classification of flows, equation of continuity for 1 dimensional flow | 1                             | 25/08/2023                         |                                 | TLM3                            |                       |
| 11.       | Surface and body forces, Euler's equation, Bernoulli's equation        | 1                             | 26/08/2023                         |                                 | TLM1                            |                       |
| 12.       | Momentum equation and its application on pipe bend                     | 1                             | 30/08/2023                         |                                 | TLM1                            |                       |
| 13.       | Reynold's experiment                                                   | 1                             | 31/08/2023                         |                                 | TLM2                            |                       |
| 14.       | Darcy's formula                                                        | 1                             | 01/09/2023                         |                                 | TLM1                            |                       |
| 15.       | Minor losses in pipes                                                  | 1                             | 02/09/2023                         |                                 | TLM1                            |                       |
| 16.       | Problems on major and minor losses                                     | 1                             | 07/09/2023                         |                                 | TLM3                            |                       |
| 17.       | Pipes in series and parallel                                           | 1                             | 08/09/2023                         |                                 | TLM1                            |                       |
| 18.       | Total energy line and hydraulic gradient line                          | 1                             | 13/09/2023                         |                                 | TLM1                            |                       |
| 19.       | Venturi meter, orifice meter, pitot tube                               | 1                             | 14/09/2023                         |                                 | TLM3                            |                       |
| 20.       | Problems on venturi and orifice meter                                  | 1                             | 15/09/2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complete                                        | 12                            | No. of clas                        | ses takei                       | 1:                              |                       |

# UNIT-III: BOUNDARY LAYER FLOW AND IMPACT OF JETS

| S.<br>No. | Topics to be covered                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 21.       | Laminar and turbulent boundary layer                                              | 1                             | 16/09/2023                         |                                 | TLM2                            |                       |
| 22.       | Boundary layer thickness                                                          | 1                             | 20/09/2023                         |                                 | TLM3                            |                       |
| 23.       | displacement thickness                                                            | 1                             | 21/09/2023                         |                                 | TLM1                            |                       |
| 24.       | momentum thickness                                                                | 1                             | 22/09/2023                         |                                 | TLM1                            |                       |
| 25.       | energy thickness                                                                  | 1                             | 23/09/2023                         |                                 | TLM1                            |                       |
| 26.       | Energy thickness                                                                  | 1                             | 27/09/2023                         |                                 | TLM3                            |                       |
| 27.       | boundary layer separation                                                         | 1                             | 29/09/2023                         |                                 | TLM1                            |                       |
| 28.       | Problems on boundary layer thickness                                              | 1                             | 30/09/2023                         |                                 | TLM1                            |                       |
| 29.       | Hydrodynamic forces of jets on stationary and moving flat, inclined, curved vanes | 1                             | 11/10/2023                         |                                 | TLM2                            |                       |

|     | No. of classes required to complete UNIT-III: 18 No. of classes taken:                                |   |            |      |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------|---|------------|------|--|--|--|--|--|
| 38. | Problems on radial vanes                                                                              | 1 | 28/10/2023 | TLM3 |  |  |  |  |  |
| 37. | Problems on radial vanes                                                                              | 1 | 27/10/2023 | TLM1 |  |  |  |  |  |
| 36. | Problems on moving plates                                                                             | 1 | 26/10/2023 | TLM1 |  |  |  |  |  |
| 35. | Problems on moving plates                                                                             | 1 | 25/10/2023 | TLM1 |  |  |  |  |  |
| 34. | Problems on moving plates                                                                             | 1 | 19/10/2023 | TLM3 |  |  |  |  |  |
| 33. | Problems on stationary plates                                                                         | 1 | 18/10/2023 | TLM1 |  |  |  |  |  |
| 32. | Problems on stationary plates                                                                         | 1 | 14/10/2023 | TLM1 |  |  |  |  |  |
| 31. | Flow over radial vanes                                                                                | 1 | 13/10/2023 | TLM1 |  |  |  |  |  |
| 30. | Jet striking centrally and a tip for<br>symmetrically and unsymmetrically<br>vanes, velocity diagrams | 1 | 12/10/2023 | TLM3 |  |  |  |  |  |

# UNIT-IV: HYDRAULIC TURBINES AND PERFORMANCE OF THE HYDRAULIC TURBINES

| S.<br>No. | Topics to be covered                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 39.       | Classification of hydraulic turbines                     | 1                             | 01/11/2023                         |                                 | TLM2                            |                       |
| 40.       | Pelton wheel, work done, efficiency                      | 1                             | 02/11/2023                         |                                 | TLM2                            |                       |
| 41.       | Francis turbine, work done, efficiency                   | 1                             | 03/11/2023                         |                                 | TLM1                            |                       |
| 42.       | Kaplan turbine, work done, efficiency                    | 1                             | 04/11/2023                         |                                 | TLM3                            |                       |
| 43.       | Specific speed, specific quantities                      | 1                             | 08/11/2023                         |                                 | TLM1                            |                       |
| 44.       | Unit quantities, Draft tube-<br>classification           | 1                             | 09/11/2023                         |                                 | TLM1                            |                       |
| 45.       | Performance characteristic curves, governing of turbines | 1                             | 10/11/2023                         |                                 | TLM3                            |                       |
| 46.       | Problems on hydraulic turbines                           | 1                             | 15/11/2023                         |                                 | TLM1                            |                       |
| 47.       | Problems on hydraulic turbines                           | 1                             | 16/11/2023                         |                                 | TLM1                            |                       |
| 48.       | Problems on hydraulic turbines                           | 1                             | 17/11/2023                         |                                 | TLM1                            |                       |
| 49.       | Problems on hydraulic turbines                           | 1                             | 18/11/2023                         |                                 | TLM3                            |                       |
| 50.       | Problems on hydraulic turbines                           | 1                             | 22/11/2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complete                          |                               |                                    |                                 |                                 |                       |

# **UNIT-V: CENTRIFUGAL PUMPS AND RECIPROCATING PUMPS**

| S. No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 51.    | Working of centrifugal pump, types                        | 1                             | 23/11/2023                         |                                 | TLM2                            |                       |
| 52.    | Losses and efficiencies, specific speed                   | 1                             | 24/11/2023                         |                                 | TLM2                            |                       |
| 53.    | Pumps in series and pumps in parallel                     | 1                             | 25/11/2023                         |                                 | TLM3                            |                       |
| 54.    | Problems on centrifugal pumps                             | 1                             | 29/11/2023                         |                                 | TLM1                            |                       |
| 55.    | Main components and working of reciprocating pumps, types | 1                             | 30/11/2023                         |                                 | TLM1                            |                       |
| 56.    | Slip, negative slip                                       | 1                             | 01/12/2023                         |                                 | TLM1                            |                       |
| 57.    | Revision                                                  | 1                             | 02/12/2023                         |                                 | TLM3                            |                       |
| No. o  | f classes required to complete                            | 7                             | No. of clas                        | ses takei                       | 1:                              |                       |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = CIE + SEE                                                              | 100             |

## **PART-D**

# PROGRAMME OUTCOMES (POs):

| PO 1  | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                    |
| PO 3  | Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.                           |
| PO 4  | Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                             |
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                     |
| PO 6  | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                          |
| PO 7  | Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                                    |
| PO 8  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                             |
| PO 9  | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                              |
| PO 10 | Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinaryenvironments.                                                                 |
| PO 12 | Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.                                                                                                                       |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1</b> | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2        | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.     |
| PSO 3        | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. |

| Title               | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |  |
|---------------------|-------------------|-----------------------|-----------------------|---------------------------|--|
| Name of the Faculty | S.RAMI REDDY      | S.RAMI REDDY          | Dr.P.VIJAYA<br>KUMAR  | Dr.S.PICHI<br>REDDY       |  |
| Signature           |                   |                       |                       |                           |  |



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

## **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

# **PART-A**

Name of Course Instructor: Dr.V.Dhana Raju
Course Name & Code : Thermodynamics

L-T-P Structure : 3-1-0 Credits: 3
Program/Sem/Sec : B.Tech III Sem B/S A.Y.: 2023-24

# **PREREQUISITE: Engineering Physics**

## **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

To provide an intuitive understanding of thermodynamics to emphasize on physics of thermodynamic systems and this covers the heat and work interactions. It also provides the insights on laws of thermodynamics and its applications, properties of pure substance, ideal gases and different thermodynamic cycles.

# **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Classify the various thermodynamic systems, properties and processes with examples and temperature scales of a system [Remembering Level –L1]. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2        | Differentiate open and closed system and built up the heat and work transfer relations of thermal systems [Understanding Level –L2].           |
| CO3        | Apply the laws of thermodynamics to find the thermodynamic properties and parameters of various thermal systems [Applying Level-L3].           |
| <b>CO4</b> | Understand the properties of pure substance and gases to compute the non-reactive mixture parameters [Understanding Level –L2].                |
| CO5        | Analyze the performance parameters of various thermodynamic cycles [Analyzing Level – L4].                                                     |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04   | P05 | P06 | P07 | P08 | P09  | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-------|-----|-----|-----|-----|------|------|------|------|------|------|------|
| CO1            | 3   | 2   | 1   | 1     | -   | -   | -   | -   | -    | -    | -    | 1    | 2    | -    | -    |
| CO2            | 3   | 3   | 2   | 3     | -   | -   | -   | -   | 2    |      | -    | 2    | 3    | -    | 1    |
| CO3            | 3   | 1   | 1   | 3     | ı   | -   | -   | -   | 1    |      | ı    | 2    | 3    | -    | 2    |
| CO4            | 3   | 3   | 2   | 2     | 1   |     | ı   | 3   | ı    | ı    | ı    | 2    | 1    | -    | 3    |
| <b>CO5</b>     | 3   | 3   | -   | 3     | -   | -   | -   | -   | 3    | ı    | 1    | 3    | 2    | -    | 3    |
| 1 - Low 2 - Me |     |     |     | -Medi | ium | •   |     | 3 - | High | •    |      |      |      |      |      |

#### **TEXTBOOKS:**

| <b>T1</b> | P.K.Nag, "Engineering Thermodynamics" - McGraw-Hill. 5th Edition, 2013              |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>T2</b> | Y.A. Cengel, and M.A.Boles, "Thermodynamics: An Engineering Approach", McGraw-Hill, |  |  |  |  |  |
|           | 7th Edition, 2011.                                                                  |  |  |  |  |  |

#### **REFERENCE BOOKS:**

| R1 | G.J.Van Wylen & Sonntag, "Fundamentals of Thermodynamics", John Wiley& sons,           |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------|--|--|--|--|--|
|    | publications Inc. 5th Edition, 1998.                                                   |  |  |  |  |  |
| R2 | E.Rathakrishnan, "Fundamentals of Engineering Thermodynamics", PHI, 2nd Edition, 2010. |  |  |  |  |  |

#### **PART-B**

# COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basic Concepts and Zeroth Law of Thermodynamics

| S.<br>No.                                         | Topics to be covered                                                                                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.                                                | Introduction                                                                                                                          | 1                             | 07-08-23                           |                                 | 1                               |                       |
| 2.                                                | Basic Concepts, Classification of systems, Macroscopic & Microscopic approaches                                                       | 1                             | 08-08-23                           |                                 | 1,2                             |                       |
| 3.                                                | System-Types - examples, Control<br>mass and Control volume<br>Properties of system                                                   | 1                             | 09-08-23                           |                                 | 1,2                             |                       |
| 4.                                                | State, Path, Process, Cycle, path and point functions.                                                                                | 1                             | 10-08-23                           |                                 | 1,2                             |                       |
| 5.                                                | Equilibrium, reversible and irreversible processes, Quasistatic process, Applications of TD, Internal Energy, Specific heat, Enthalpy | 1                             | 14-08-23                           |                                 | 1,2                             |                       |
| 6.                                                | Zeroth law of Thermodynamics Temperature scales – Temperature measurement, Comparison of thermometers                                 | 1                             | 16-08-23                           |                                 | 1,2                             |                       |
| 7.                                                | Constant volume gas thermometer<br>Numerical Problems on<br>Temperature scales.                                                       | 1                             | 17-08-23                           |                                 | 1,2                             |                       |
| 8.                                                | Advantages of gas thermometers over liquid thermometers                                                                               | 1                             | 21-08-23                           |                                 | 1,2                             |                       |
| 9.                                                | Numerical problems on Internal energy, enthalpy, specific heat and latent heat, Assignement-1                                         | 1                             | 22-08-23                           |                                 | 1                               |                       |
| 10.                                               | Tutorial -I                                                                                                                           | 1                             | 23-08-23                           |                                 | 3                               |                       |
| No. of classes required to complete UNIT-I: 10 No |                                                                                                                                       |                               |                                    |                                 | ses taken                       | :                     |

UNIT-II: First Law of Thermodynamics

| S.<br>No. | Topics to be covered                                                                                             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 11.       | <b>Systems</b> : Introduction, First law for a closed system undergoing change of state and cycle                | 1                             | 24-08-23                           |                                 | 1,2                             |                       |
| 12.       | Representation of Thermodynamic processes on P-V planes                                                          | 1                             | 28-08-23                           |                                 | 1,2                             |                       |
| 13.       | First Law Analysis of Closed  System undergoing different process.                                               | 1                             | 29-08-23                           |                                 | 1,2                             |                       |
| 14.       | Different forms of stored energy,<br>Forms of energy, Mechanical and<br>Non mechanical forms of Work<br>transfer | 2                             | 30-08-23                           |                                 | 1,2                             |                       |
| 15.       | pdV work and other types of work transfer.                                                                       | 1                             | 31-08-23                           |                                 | 1,2                             |                       |
| 16.       | Applications of first law, PMM1<br>Numerical problems on work and<br>energy.                                     | 1                             | 04-09-23                           |                                 | 1                               |                       |

| 17. | <b>First Law Analysis of Open Systems</b> : Thermodynamic analysis of control volume-conservation of mass, energy principle. | 1          | 05-09-23 |             | 1,2       |    |
|-----|------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------------|-----------|----|
| 18. | Steady Flow Energy Equation (SFEE), Steady Flow Engineering Devices-Nozzles, Diffusers.                                      | 1          | 07-09-23 |             | 1,2       |    |
| 19. | Turbine, Compressors, Throttling<br>Valves, Heat Exchangers,<br>Limitations on first law of<br>thermodynamics, PMM1.         | 1          | 11-09-23 |             | 1,2       |    |
| 20. | Numerical Problems on SFEE                                                                                                   | 1          | 12-09-23 |             | 1         |    |
| 21. | Tutorial -2                                                                                                                  | 1          | 13-09-23 |             | 3         | -  |
| No. | of classes required to complete U                                                                                            | NIT-II: 11 |          | No. of clas | ses taken | 1: |

UNIT-III: Second Law of Thermodynamics

| S.<br>No. | Topics to be covered                                                                                             | No. of<br>Classes<br>Requir<br>ed | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date<br>of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Method<br>s | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|-----------------------|
| 22.       | Second Law Analysis of Thermodynamics: Introduction, Energy Reservoirs, Heat Engines, Refrigerators, Heat Pumps. | 1                                 | 14-09-23                               |                                        | 1,2                                         |                       |
| 23.       | Kelvin-Planks, Clausius statement of second law of thermodynamics.                                               | 1                                 | 18-09-23                               |                                        | 1,2                                         |                       |
| 24.       | Numerical Problems on Second law of TD.                                                                          | 1                                 | 20-09-23                               |                                        | 1                                           |                       |
| 25.       | Equivalence of Kelvin -Planck and Clausius statements.                                                           | 1                                 | 21-09-23                               |                                        | 1,2                                         |                       |
| 26.       | Perpetual Motion Machine-II,<br>Carnot cycle.                                                                    | 1                                 | 25-09-23                               |                                        | 1,2                                         |                       |
| 27.       | Carnot Theorem – Numerical problem.                                                                              | 1                                 | 26-09-23                               |                                        | 1                                           |                       |
| 28.       | <b>Entropy:</b> Introduction, Clausius inequality, t-s property diagrams.                                        | 1                                 | 27-09-23                               |                                        | 1                                           |                       |
| 29.       | Entropy change for ideal gases – Derivations.                                                                    | 1                                 | 28-09-23                               |                                        | 1                                           |                       |
| 30.       | Isentropic relations for ideal gases,<br>Principle of increase of entropy.                                       | 1                                 | 09-10-23                               |                                        | 1,2                                         |                       |
| 31.       | Applications of Entropy- Third law of Thermodynamics Numerical Problems on Entropy.                              | 1                                 | 10-10-23                               |                                        | 1,2                                         |                       |
| 32.       | Numerical Problems, Assignement-3.                                                                               | 1                                 | 11-10-23                               |                                        | 1                                           |                       |
| 33.       | Tutorial -3                                                                                                      | 1                                 | 12-10-23                               |                                        | 3                                           |                       |
|           | No. of classes required to compl                                                                                 | ete UNIT                          | Γ-III: 12                              | No. of cla                             | sses takei                                  | n:                    |

UNIT-IV: Properties of Pure Substances and Gases

| S.<br>No. | Topics to be covered                                                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34.       | Properties of Pure Substance:<br>Introduction, Phases of pure<br>substance. | 1                             | 16-10-23                           |                                 | 1,2                             |                       |

| No. | of classes required to complete U                                                                                 | NIT-IV: 1 | 12       | No. of clas | ses taken | 1: |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|-----------|----|
| 45. | Tutorial-4                                                                                                        | 1         | 09-11-23 |             | 3         |    |
| 44. | Numerical Problems.                                                                                               | 1         | 08-11-23 |             | 1,2       |    |
| 43. | specific heats of gas mixtures,Entropy of gas mixtures.                                                           | 1         | 07-11-23 |             | 1,2       |    |
| 42. | Internal energy, enthalpy of gas                                                                                  | 1         | 06-11-23 |             | 1,2       |    |
| 41. | Dalton's law and Amagat's law of partial pressures.                                                               | 1         | 02-11-23 |             | 1,2       |    |
| 40. | Properties of mixture of gases –                                                                                  | 1         | 31-10-23 |             | 1,2       |    |
| 39. | Properties of Ideal Gases:<br>Equation of state of a gas,<br>Avogadro's law, Ideal gas, perfect<br>gas, real gas. | 1         | 30-10-23 |             | 1,2       |    |
| 38. | Numerical Problems.                                                                                               | 1         | 26-10-23 |             | 1         |    |
| 37. | Phase change processes, Mollier diagram for a pure substance.                                                     | 1         | 19-10-23 |             | 1,2,4,6   |    |
| 36. | Properties of steam, quality or dryness fraction.                                                                 | 1         | 18-10-23 |             | 1,2       |    |
| 35. | <i>p-v, p-T, T-s</i> and <i>h-s</i> diagrams for pure substance, <i>p-v-T</i> Surface.                            | 1         | 17-10-23 |             | 1,2       |    |

UNIT-V: Thermodynamic Cycles

| S. No. | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 46.    | Introduction, working of Carnot vapour cycle, working of simple Rankine cycle | 1                             | 13-11-23                           |                                 | 1,2                             |                       |
| 47.    | Problems on Carnot vapour cycle and simple Rankine cycle                      | 1                             | 14-11-23                           |                                 | 1,2                             |                       |
| 48.    | Gas power cycles -Otto,<br>Numerical Problems                                 | 1                             | 15-11-23                           |                                 | 1,2                             |                       |
| 49.    | Diesel cycle, Dual cycle -<br>Numerical Problems                              | 1                             | 16-11-23                           |                                 | 1,2                             |                       |
| 50     | Brayton Cycles and its problems                                               | 1                             | 20-11-23                           |                                 | 1,2                             |                       |
| 51.    | Refrigeration Cycles - Reversed Carnot cycle, Numerical Problems              | 1                             | 21-11-23                           |                                 | 1,2                             |                       |
| 52.    | Bell-Coleman cycle and simple                                                 | 1                             | 22-11-23                           |                                 | 1,2                             |                       |
| 53.    | VCR Cycle                                                                     | 1                             | 23-11-23                           |                                 |                                 |                       |
| 54.    | Problems                                                                      | 1                             | 27-11-23                           |                                 |                                 |                       |
| 55.    | Tutorial -5                                                                   | 1                             | 28-11-23                           |                                 | 3                               |                       |
| No. o  | f classes required to complete                                                | UNIT-V: 1                     | 10                                 | No. of clas                     | ses taken                       | :                     |

# **Contents beyond the Syllabus**

| S.No. | Topics to be covered | No. of | Tentative | Actual | Teaching | HOD |
|-------|----------------------|--------|-----------|--------|----------|-----|
|       |                      |        |           |        |          |     |

|    |                       | Classes  | Date of    | Date of    | Learning | Sign   |
|----|-----------------------|----------|------------|------------|----------|--------|
|    |                       | Required | Completion | Completion | Methods  | Weekly |
| 51 | Exergy analysis of    | 1        | 29-11-23   |            | 1,2      |        |
|    | thermodynamic systems |          |            |            |          |        |
| 52 | Fuels and combustion  | 1        | 30-11-23   |            | 2        |        |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |

# ACADEMIC CALENDER:

| Commencement of Class work  |            | 07-08-2023 |         |
|-----------------------------|------------|------------|---------|
| I Phase of Instructions     | 07-08-2023 | 30-09-2023 | 8Weeks  |
| I Mid Examinations          | 02-10-2023 | 07-10-2023 | 1 Week  |
| II Phase of Instructions    | 09-10-2023 | 02-12-2023 | 8 Weeks |
| II Mid Examinations         | 04-12-2023 | 09-12-2023 | 1 Week  |
| Preparation and Practical's | 11-12-2023 | 16-12-2023 | 1 Week  |
| Semester End Examinations   | 18-12-2023 | 30-12-2023 | 2 Weeks |

# PART-C

# EVALUATION PROCESS (R17 Regulation):

| Evaluation Task                                                                   |  |  |
|-----------------------------------------------------------------------------------|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                      |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))         |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                 |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)   |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)           |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A |  |  |
| Cumulative Internal Examination (CIE): M                                          |  |  |
| Semester End Examination (SEE)                                                    |  |  |
| Total Marks = CIE + SEE                                                           |  |  |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                          |
|-------|----------------------------------------------------------------------------------------------------------|
|       | fundamentals, and an engineering specialization to the solution of complex engineering                   |
|       | problems. <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex |
| PO 2  | engineering problems reaching substantiated conclusions using first principles ofmathematics,            |
|       | natural sciences, and engineering sciences                                                               |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and           |
|       | design system components or processes that meet the specified needs with appropriate                     |
|       | consideration for the public health and safety, and the cultural, societal,                              |
|       | and environmental considerations                                                                         |
| PO 4  | Conduct investigations of complex problems: Use research-based knowledge and                             |
|       | research methods including design of experiments, analysis and interpretation of data, and               |
|       | synthesis of the information to provide valid conclusions.                                               |
| PO 5  | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern               |
|       | engineering and IT tools including prediction and modelling to complex                                   |
|       | engineering activities with an understanding of the limitations.                                         |
|       | The engineer and society: Apply reasoning informed by the contextual knowledge to                        |
| PO 6  | assess societal, health, safety, legal and cultural issues and the consequentresponsibilities            |
|       | relevant to the professional engineering practice.                                                       |
|       | Environment and sustainability: Understand the impact of the professional                                |
| PO 7  | engineering solutions in societal and environmental contexts, and demonstrate the                        |
|       | knowledge of, and need for sustainable development.                                                      |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities                  |
|       | and norms of the engineering practice.                                                                   |
| PO 9  | Individual and team work: Function effectively as an individual, and as a member or                      |
|       | leader in diverse teams, and in multidisciplinary settings.                                              |
|       | <b>Communication:</b> Communicate effectively on complex engineering activities with the                 |
| PO 10 | engineering community and with society at large, such as, being able to comprehend and                   |
|       | write effective reports and design documentation, make effective presentations, and                      |
|       | give and receive clear instructions.                                                                     |
|       | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the                    |
| PO 11 | engineering and management principles and apply these to one's own work, as a member and                 |
|       | leader in a team, to manage projects and in multidisciplinary                                            |
|       | environments.  Life-long learning: Recognize the need for, and have the preparation and ability toengage |
| DO 12 | in independent and life-long learning in the broadest context of technological                           |
| PO 12 | change.                                                                                                  |
|       | change.                                                                                                  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| DCO 1       | To apply the principles of thermal sciences to design and develop various thermal           |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| PSO 1 PSO 2 | systems.                                                                                    |  |  |  |  |  |
|             | To apply the principles of manufacturing technology, scientific management towards          |  |  |  |  |  |
|             | improvement of quality and optimization of engineering systems in the design, analysisand   |  |  |  |  |  |
|             | manufacturability of products.                                                              |  |  |  |  |  |
| PSO 3       | To apply the basic principles of mechanical engineering design for evaluation of            |  |  |  |  |  |
|             | performance of various systems relating to transmission of motion and power,conservation of |  |  |  |  |  |
|             | energy and other process equipment.                                                         |  |  |  |  |  |
|             |                                                                                             |  |  |  |  |  |

| Title               | Course Instructor | Course<br>Coordinator  | Module<br>Coordinator | Head of the<br>Department |
|---------------------|-------------------|------------------------|-----------------------|---------------------------|
| Name of the Faculty | Dr.V.Dhana Raju   | Dr.P.Ravindra<br>Kumar | Dr.P.Vijay<br>Kumar   | Dr.S.PichiReddy           |
| Signature           |                   |                        |                       |                           |



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### DEPARTMENT OF MECHANICAL ENGINEERING

#### **COURSE HANDOUT**

#### **PART-A**

Name Of Course Instructor Dr. Pichi Reddy Seelam

Course Name & Code : Metallurgy and Mateials Science & 20ME05L-T-

P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech/III/B A.Y.: 2023-24

Prerequisite Subject: Engineering physics, Engineering Chemistry

**Course Educational Objectives:** The objectives of this course are to acquire knowledge on structure of metals and alloys, understand the concept of alloys and equilibrium diagrams; demonstrate the concept of heat treatment process.

#### Course Outcomes: After completion of the course students will be able to:

| CO2   Illustrate the procedure of drawing the equilibrium diagrams and apply to principle of equilibrium diagrams in evaluating the material properties. (Understanding-L2)    Recall the properties, applications of ferrous, non-ferrous and composite materials. (Remembering-L1)    Apply the principle of mechanical working on metals and heat treatment on | CO1        | Comprehend the structure of materials, alloys and correlated the material          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| co2 principle of equilibrium diagrams in evaluating the materi properties.(Understanding-L2)  Recall the properties, applications of ferrous, non ferrous and composite materials.(Remembering-L1)  Apply the principle of mechanical working on metals and heat treatment on                                                                                     | COI        | properties with structure.(Remembering-L1)                                         |  |  |  |  |  |
| materials.(Remembering-L1)  Apply the principle of mechanical working on metals and heat treatment on                                                                                                                                                                                                                                                             | CO2        |                                                                                    |  |  |  |  |  |
| Apply the principle of mechanical working on metals and heat treatment on                                                                                                                                                                                                                                                                                         | <b>CO3</b> |                                                                                    |  |  |  |  |  |
| materials.(Applying-L3)                                                                                                                                                                                                                                                                                                                                           | <b>CO4</b> |                                                                                    |  |  |  |  |  |
| cos Identify the types of composite materials and the manufacturing processes of filt reinforced composites.(Understanding-L2)                                                                                                                                                                                                                                    | CO5        | Identify the types of composite materials and the manufacturing processes of fiber |  |  |  |  |  |

#### COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

| COs | PO | P01 | P01 | P01 | PSO | PS | PS |
|-----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|----|----|
|     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 02 | 03 |
| CO1 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO2 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO3 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO4 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |
| CO5 | 1  | 2  | 2  | 1  | 1  | 2  | 1  |    |    |     |     | 1   |     | 1  | 2  |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation,

put '-'1- Slight (Low), 2 - Moderate (Medium), 3

- Substantial (High).

#### **BOS APPROVED TEXT BOOKS:**

**T1** V.D.Kotgire, S.V.Kotgire, Material Science and Metallurgy, Everest Publishing House, 24th Edition, 2008.

**T2** Sidney H. Avener, Introduction to Physical Metallurgy, Tata McGraw-Hill, 3rdEdition,2011.

#### **BOS APPROVED REFERENCE BOOKS:**

- **R1** Richard A.Flinn, Paul Trojan, Engineering Materials and Their Applications, Jaico Publishing House, 4thEdition, 1999.
- **R2** William and callister, Materials Science and engineering, Wiley India private Ltd., 2011.
- **R3** U.C Jindal and Atish Mozumber, Material since and metallurgy, Pearson education-2012

#### **COURSE DELIVERY PLAN (LESSON PLAN): Section-B**

#### UNIT-I: STRUCTURE OF METALS, CONSTITUTION OF

| S.No.  | ALLOYS<br>Topics to be covered                                                                                  | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 1.     | Introduction to Metallurgy and<br>Materials - Course Educational<br>Objective (CEO) & Course<br>Outcomes (CO's) | 01                                | 7/8/2023                               |                                     | TLM1                                    | CO1                            | T1,R6                        |                           |
| 2.     | Structure of metals Introduction                                                                                | 01                                | 8/8/2023                               |                                     | TLM1                                    | CO1                            | T2,R6                        |                           |
| 3.     | Body centered cubic, Face cantered cubic Structures                                                             | 01                                | 9/8/2023                               |                                     | TLM1                                    | C01                            | Т2                           |                           |
| 4.     | closed packed hexagonal structure                                                                               | 01                                | 10/8/2023                              |                                     | TLM1                                    | C01                            | T1                           |                           |
| 5.     | crystallographic planes                                                                                         | 01                                | 14/8/2023                              |                                     | TLM1                                    | C01                            | T1                           |                           |
| 6.     | Mechanism of crystallization of metals                                                                          | 01                                | 16/8/2023                              |                                     | TLM1                                    | C01                            | T2,R1,R6                     |                           |
| 7.     | Grain and grain boundaries                                                                                      | 01                                | 17/8/2023                              |                                     | TLM1                                    | C01                            | T2,R1,R6                     |                           |
| 8.     | Effect of grain boundaries on the properties of metal / alloys                                                  | 01                                | 21/8/2023                              |                                     | TLM1                                    | C01                            | T2,R1                        |                           |
| 9.     | Necessity of alloying, Solid solutions                                                                          | 01                                | 22/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        |                           |
| 10.    | Interstitial Solid Solution and Substitution Solid Solution,                                                    | 01                                | 23/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        |                           |
| 11.    | Hume Rothery rules.                                                                                             | 01                                | 24/8/2023                              |                                     | TLM1                                    | CO1                            | T2,R1                        |                           |
| No. of | classes required to complete UNIT-                                                                              | 11                                |                                        |                                     | No. o                                   | of classes ta                  | iken:                        |                           |
|        | UNIT -                                                                                                          | II EQUILIBI                       | RIUM DIAGRAN                           | <b>MS</b>                           | 1                                       |                                |                              |                           |
| 12.    | Experimental methods of construction of equilibrium diagrams                                                    | 01                                | 28/8/2023                              |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 13.    | Classification of equilibrium diagrams                                                                          | 01                                | 29/8/2023                              |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 14.    | Isomorphous,eutectic equilibrium diagrams.                                                                      | 01                                | 30/8/2023                              |                                     | TLM1                                    | CO2                            | T2,R1                        |                           |
| 45     | Partial eutectic equilibrium                                                                                    | 01                                | 31/8/2023                              |                                     | TLM1                                    | 000                            | FIO. D.4                     |                           |

| No. of | f classes required to complete<br>UNIT-II       | 12 |            |      | No. of Class | ses taken: |  |
|--------|-------------------------------------------------|----|------------|------|--------------|------------|--|
| 23.    | Study of Iron-Iron carbide equilibrium diagram. | 01 | 19/09/2023 | TLM1 | CO2          | -          |  |
| 22.    | Bi-Cd equilibrium diagrams.                     | 01 | 14/09/2023 | TLM1 | CO2          | -          |  |
| 21.    | Study of Cu-Ni equilibrium diagrams.            | 01 | 13/09/2023 | TLM1 | CO2          | T2,R1      |  |
| 20.    | Peritectoid reaction                            | 01 | 12/09/2023 | TLM1 | CO2          | T2,R1      |  |
| 19.    | Eutectoid reaction                              | 01 | 11/09/2023 | TLM1 | CO2          | T2,R1      |  |
| 18.    | Allotropy, Eutectic reaction                    | 01 | 07/09/2023 | TLM1 | CO2          | T2,R1      |  |

UNIT-III: STEELS, CAST IRONS

|               |                                                                                              |                                   |                                        |                                     | - 11                                    |                                | <b>.</b>                     | 1105                |
|---------------|----------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------|
| S.No.         | Topics to be covered                                                                         | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Week |
| 24.           | Classification of steels,<br>structure, properties and<br>applications of plain carbon steel | 01                                | 20/09/2023                             |                                     | TLM1                                    | CO3                            | T1,R1,R6                     |                     |
| 25.           | Low carbon steel                                                                             | 01                                | 21/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                     |
| 26.           | Medium carbon steel                                                                          | 01                                | 25/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                     |
| 27.           | High carbon steel & applications.                                                            | 01                                | 26/09/2023                             |                                     | TLM1                                    | CO3                            | T2,R6                        |                     |
| 28.           | Structure, properties and applications of white cast iron                                    | 01                                | 28/09/2023                             |                                     | TLM1                                    | C03                            | T1,T2,R1                     |                     |
| 29.           | Structure, properties and applications of malleable cast iron.                               | 01                                | 09/10/2023                             |                                     | TLM1                                    | CO3                            | T1,T2,R1                     |                     |
| 30.           | Grey cast iron                                                                               | 01                                | 10/10/2023                             |                                     | TLM1                                    | CO3                            | -                            | ·<br>               |
| 31.           | Spheroidal graphite cast iron.                                                               | 01                                | 11/10/2023                             |                                     | TLM1                                    | CO3                            | -                            |                     |
| 32.           | Structure, properties and applications of copper                                             | 01                                | 12/10/2023                             |                                     | TLM1                                    | C03                            | T2,R1                        |                     |
| 33.           | Structure, properties and applications of copper alloys                                      | 01                                | 16/10/2023                             |                                     | TLM1                                    | CO3                            | T2,R1                        |                     |
| 34.           | Aluminium and its alloys                                                                     | 01                                | 17/10/2023                             |                                     | TLM1                                    | CO3                            | T2,R1                        |                     |
| No. of<br>III | classes required to complete UNIT-                                                           | 11                                |                                        |                                     | No. of clas                             | sses taken:                    |                              |                     |

#### UNIT-IV: MECHANICAL WORKING, HEAT TREATMENT OF ALLOYS

|       |                      | No. of  | Tentative | Actual    | Teaching | Learning | Text    | HOD   |
|-------|----------------------|---------|-----------|-----------|----------|----------|---------|-------|
| S.No. | Topics to be covered | Classes | Date of   | Date of   | Learnin  | Outcom   | Book    | Sign  |
|       | •                    | Require | Completio | Completio | g        | eCOs     | followe | Weekl |
|       |                      | d       | n         | n         | Method   |          | d       | v     |
|       |                      |         |           |           | S        |          |         |       |

| 35.    | Hot working, Cold working,                                               | 01 | 18/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
|--------|--------------------------------------------------------------------------|----|------------|----------|-------------|-------------|--|
| 36.    | Strain hardening                                                         | 01 | 19/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 37.    | Recovery, Recrystallisation                                              | 01 | 26/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 38.    | Grain growth.                                                            | 01 | 30/10/2023 | TLM1     | CO4         | T1,R1,R6    |  |
| 39.    | Comparison of properties of cold worked parts                            | 01 | 31/10/2023 | TLM1     | CO4         | T2,R1       |  |
| 40.    | Comparison of properties ofhot worked parts                              | 01 | 01/11/2023 | TLM1     | CO4         | T2,R1       |  |
| 41.    | Annealing, Normalizing                                                   | 01 | 02/11/2023 | TLM1     | CO4         | T1,R6       |  |
| 42.    | Hardening.                                                               | 01 | 06/11/2023 | TLM1     | CO4         | T1,R6       |  |
| 43.    | Construction of TTT diagram for eutectoid steel.                         | 01 | 07/11/2023 | TLM1     | CO4         | -           |  |
| 44.    | Harden ability-determination of harden ability by jominy end quench test | 01 | 08/11/2023 | TLM1     | CO4         | T1,T2,R1    |  |
| 45.    | Surface - hardening methods                                              | 01 | 09/11/2023 | <br>TLM1 | CO4         | T1,T2,R1    |  |
| 46.    | Age hardening treatment and application                                  | 01 | 13/11/2023 | <br>TLM1 | CO4         | T1,T2,R1    |  |
| No. of | classes required to complete UNIT-                                       | 12 |            |          | No. of clas | sses taken: |  |

#### **UNIT-V: COMPOSITE MATERIALS**

| S.No.  | Topics to be covered                                                                             | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|--------|--------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 47.    | Classification of composites                                                                     | 01                                | 14/11/2023                             |                                     | TLM1                                    | CO5                            | T1,R6                        |                           |
| 48.    | various methods of component<br>manufacture of fiber reinforced<br>composites-Hand layup process | 01                                | 15/11/2023                             |                                     | TLM1                                    | C05                            | T1,R6                        |                           |
| 49.    | ilament winding process, SMC processes                                                           | 01                                | 16/11/2023                             |                                     | TLM1                                    | CO5                            | T1,R6                        |                           |
| 50.    | Continuous pultrusion processes, Resin transfer moulding.                                        | 02                                | 20/11/2023<br>21/11/2023               |                                     | TLM1                                    | C05                            | T1,R6                        |                           |
| 51.    | Introduction to metal ceramic mixtures                                                           | 01                                | 22/11/2023                             |                                     | TLM1                                    | CO5                            | T1,R6                        |                           |
| 52.    | Metal – Matrix composites                                                                        | 01                                | 23/11/2023                             |                                     | TLM1                                    | CO5                            | -                            |                           |
| 53.    | C–Ccomposites, Applications of Composites                                                        | 01                                | 27/11/2023                             |                                     | TLM1                                    | CO5                            | T1,R1,R6                     |                           |
| 54.    | Rule of mixture and numericals                                                                   | 01                                | 28/11/2023                             |                                     | TLM1                                    | CO5                            | T2,R1,R6                     | <u> </u><br>-             |
| No. of | classes required to complete UNIT-                                                               | 8                                 |                                        |                                     |                                         | No. of clas                    | ses taken:                   | <u>I</u>                  |

| S.No. | Topics to be covered  | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completi<br>o | Teaching<br>Learnin<br>g<br>Method | Learning<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|-------|-----------------------|-----------------------------------|----------------------------------------|------------------------------------|------------------------------------|----------------------------|------------------------------|---------------------------|
|       |                       |                                   |                                        | n                                  | S                                  |                            |                              |                           |
| 1.    | Revision for I Phase  | 09                                | 29/11/2023                             |                                    | TLM1/<br>TLM4                      | -                          |                              |                           |
| 2.    | Revision for II Phase | 09                                | 30/11/2023                             |                                    | TLM1/<br>TLM4                      | -                          |                              |                           |

#### Contents beyond the Syllabus

| S.No. | Topics to be covered            | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completio<br>n | Actual<br>Date of<br>Completio<br>n | Teachin<br>g<br>Learnin<br>g<br>Methods | Learnin<br>g<br>Outcom<br>eCOs | Text<br>Book<br>followe<br>d | HOD<br>Sign<br>Weekl<br>y |
|-------|---------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|
| 3.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |
| 4.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |
| 5.    | Previous GATE and ESE Questions | 01                                |                                        |                                     | TLM1/<br>TLM4                           | -                              |                              |                           |

| Teaching | Teaching Learning Methods |      |                    |      |                |  |  |  |  |  |
|----------|---------------------------|------|--------------------|------|----------------|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Problem Solving    | TLM7 | Seminars or GD |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | Programming        | TLM8 | Lab Demo       |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Assignment or Quiz | TLM9 | Case Study     |  |  |  |  |  |

#### **ACADEMIC CALENDAR:**

| Description               | From       | То         | Weeks |
|---------------------------|------------|------------|-------|
| I Phase of Instructions-1 | 07/08/2023 | 30/09/2023 | 8     |
| I Mid Examinations        | 02/10/2023 | 07/10/2023 | 1     |
| II Phase of Instructions  | 08/11/2023 | 02/12/2023 | 7     |
| II Mid Examinations       | 04/12/2023 | 09/12/2023 | 1     |
| Preparation and Practical | 11/12/2023 | 16/12/2023 | 1     |
| Semester End Examinations | 18/12/2023 | 30/12/2023 | 2     |

#### **EVALUATION PROCESS:**

**PART-C** 

**EVALUATION PROCESS (R20 Regulation):** 

| Evaluation Task                                                                      | Marks |
|--------------------------------------------------------------------------------------|-------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15 |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10 |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15 |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10 |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30  |
| Cumulative Internal Examination (CIE): M                                             | 30    |
| Semester End Examination (SEE)                                                       | 70    |
| Total Marks = CIE + SEE                                                              | 100   |

# PART-D PROGRAMME OUTCOMES (POs):

| Problems.  Problems.  Problems analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and engineering sciences.  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and I'T tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge  |       |                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| Problems.  Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and engineering sciences.  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understan |       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                |
| Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and engineering sciences.  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Po 9  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding  | PO 1  |                                                                                                                |
| problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and engineering sciences.  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                    |       | Problems.                                                                                                      |
| PO 3  PO 3  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                        |       | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering     |
| PO 3  PO 3  Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                        | PO 2  | problems reaching substantiated conclusions using first principles of mathematics, Natural sciences, and       |
| system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                  |       | engineering sciences.                                                                                          |
| public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Design/development of solutions: Design solutions for complex engineering problems and design                  |
| Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PO 3  | system components or processes that meet the specified needs with appropriate consideration for the            |
| including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | public health and safety, and the cultural, societal, and environmental considerations.                        |
| PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Conduct investigations of complex problems: Use research-based knowledge and research methods                  |
| Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO 4  | including design of experiments, analysis and interpretation of data, and synthesis of the information to      |
| and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                |
| The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering |
| The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO 5  | and IT tools including prediction and modelling to complex engineering activities with an understanding        |
| health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | of the limitations.                                                                                            |
| engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,             |
| PO 7  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO 6  | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional     |
| PO 7 societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.  PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                |
| development.  Bethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  Boy Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                |
| PO 8  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.  PO 9  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO 7  |                                                                                                                |
| PO 9 engineering practice.  Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                |
| PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DΩΩ   |                                                                                                                |
| teams, and in multidisciplinary settings.  Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100   | • • •                                                                                                          |
| Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO 9  | ·                                                                                                              |
| <ul> <li>engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.</li> <li>Project management and finance: Demonstrate knowledge and understanding of the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107   | * * *                                                                                                          |
| reports and design documentation, make effective presentations, and give and receive clear instructions. <b>Project management and finance</b> : Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                |
| Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO 10 |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO 11 | Engineering and management principles and apply these to one's own work, as a member and leader in a           |
| team, to manage projects and in multidisciplinary environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                |
| PO 12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO 12 |                                                                                                                |
| and life-long learning in the broadest context of technological change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1012  | and life-long learning in the broadest context of technological change.                                        |

#### PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.      |
|-------|-------------------------------------------------------------------------------------------------|
|       | To apply the principles of manufacturing technology, scientific management towards              |
| PSO 2 | Improvement of quality and optimization of engineering systems in the design, analysis and      |
|       | manufacturability of products.                                                                  |
|       | To apply the basic principles of mechanical engineering design for evaluation of performance of |
| PSO 3 | various systems relating to transmission of motion and power, conservation of energy and other  |
|       | process equipment.                                                                              |

| Title                     | Course Instructor        | Course Coordinator    | Module Coordinator | Head of the<br>Department |
|---------------------------|--------------------------|-----------------------|--------------------|---------------------------|
| Name of<br>the<br>Faculty | Dr. Seelam Pici<br>Reddy | Dr. Seelam Pici Reddy | Dr.M.B.S.S.Reddy   | Dr. S.Pichi Reddy         |
| Signature                 |                          |                       |                    |                           |

# THEODY COLLEGE ON THE PROPERTY OF THE PROPERTY

#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### DEPARTMENT OF MECHANICAL ENGINEERING

#### **COURSE HANDOUT**

#### **PART-A**

Name of Course Instructor: K.V.Viswanadh

Course Name & Code : MECHANICS OF SOLIDS &20 ME06

L-T-P Structure : 2-1-0 Credits: 3

Program/Sem/Sec : B.Tech/III/B A.Y.: 2023-24

**PREREQUISITE:** Engineering Mechanics

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The objective of the course is to identify nature of the stress and compute the deformations in mechanical members due to various loads.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Compute the stresses and deformations of a member subjected to various types of loading. |
|------------|------------------------------------------------------------------------------------------|
|            | (Applying-L3)                                                                            |
| <b>CO2</b> | Construct the shear force and bending moment diagrams along the length of beam.          |
|            | (Applying-L3)                                                                            |
| CO3        | Comprehend the variation of bending and shear stresses across the cross section of the   |
|            | beams. (Understanding-L2)                                                                |
| CO4        | Analyze the structural members subjected to biaxial stresses. (Analyzing-L4)             |
| CO5        | Formulate the equations for stresses and deformations due to various loads.              |
|            | (Applying-L3)                                                                            |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07  | P08 | P09 | P010 | P011 | PO12   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|------|-----|-----|------|------|--------|------|------|------|
| CO1 | 3   | 2   | -     | -   | -   | -   | -    | -   | -   | -    | -    | 2      | -    | 1    | 3    |
| CO2 | 3   | 3   | 1     | -   | -   | -   | -    | -   | -   | -    | -    | 2      | -    | -    | 3    |
| CO3 | 3   | 2   | -     | -   | -   | 1   | -    | -   | 1   | -    | -    | 2      | -    | -    | 3    |
| CO4 | 3   | 2   | 1     | -   | •   | •   | -    | -   | •   | -    | •    | 2      | -    | -    | 3    |
| CO5 | 3   | 2   | -     | -   | ı   | ı   | -    | -   | ı   | -    | ı    | 2      | -    | ı    | 3    |
|     | •   | 1   | - Low | •   | •   | 2   | -Med | ium |     |      | 3    | - High |      | •    | •    |

#### **TEXTBOOKS:**

- **T1** E.P. Popov, Engineering Mechanics of Solids, PHI Learning, 2009.
- **T2** Sadhu Singh, Strength of Materials, Khanna Publishers, 2013.

#### **REFERENCE BOOKS:**

- **R1** S. Ramamrutham, Strength of Materials, Dhanpat Rai & Sons, 2011.
- **R2** M.L. Gambhir, Fundamentals of Solid Mechanics, PHI Learning, 2009.
- **R3** M. Chakraborti, "Strength of Materials", S.K.Kataria & Sons.
- **R4** R.Subramanian, "Strength of Materials", Oxford University Press, 2010.
- **R5** R.K.Bansal, "Strength of Materials", Laxmi Publishers, 2013.

#### **PART-B**

# COURSE DELIVERY PLAN (LESSON PLAN):

#### **UNIT-I: SIMPLE STRESSES AND STRAINS**

| S.<br>No. | Topics to be covered                                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Mechanics of Solids - Course Educational Objective (CEO) & Course Outcomes (CO's)       | 1                             | 07-08-2023                         |                                 | TLM1,2                          | •                     |
| 2.        | Concept of Stress & Strain                                                                              | 1                             | 08-08-2023                         |                                 | TLM2                            |                       |
| 3.        | Mechanical properties of Materials                                                                      | 1                             | 09-08-2023                         |                                 | TLM2                            |                       |
| 4.        | Stress Strain diagrams for Mild Steel<br>-Hooke's Law<br>Evaluation of Proof stress by Offset<br>method | 1                             | 10-08-2023                         |                                 | TLM2,4                          |                       |
| 5.        | Stresses, Strains & Deformations of<br>a body due to axial force<br>Factor of Safety                    | 1                             | 14-08-2023                         |                                 | TLM1                            |                       |
| 6.        | Deformation of Stepped bar due to axial loads                                                           | 1                             | 15-08-2023                         |                                 | TLM1                            |                       |
| 7.        | Tutorial-I                                                                                              | 1                             | 16-08-2023                         |                                 | TLM3                            |                       |
| 8.        | Stresses in composite bars & Problems                                                                   | 1                             | 17-08-2023                         |                                 | TLM1                            |                       |
| 9.        | Lateral strain, Poisson's ratio & change in volume; Shear stress & shear strain                         | 1                             | 21-08-2023                         |                                 | TLM1                            |                       |
| 10.       | Relation between Young's Modulus and shear Modulus                                                      | 1                             | 22-08-2023                         |                                 | TLM1                            |                       |
| 11.       | Relation between Elastic modulii & Problems                                                             | 1                             | 23-08-2023                         |                                 | TLM1                            |                       |
| 12.       | Tutorial-II                                                                                             | 1                             | 24-08-2023                         |                                 | TLM3                            |                       |
| 13.       | Assignment / Quiz (UNIT-I)                                                                              | 1                             | 28-08-2023                         |                                 | TLM1                            |                       |
| No.       | of classes required to complet                                                                          | 13                            | No. of class                       | ses taken:                      |                                 |                       |

# UNIT-II: SHEAR FORCE AND BENDING MOMENT

| S.<br>No. | Topics to be covered                                                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 14.       | Introduction to Shear force and bending moment; Relation between Shear Force, Bending Moment & rate of Loading | 1                             | 29-08-2023                         |                                 | TLM1                            |                       |
| 15.       | Shear force & Bending moment Diagrams for cantilever beam subjected to Concentrated loads& UDL.                | 1                             | 30-08-2023                         |                                 | TLM1                            |                       |
| 16.       | Shear force & Bending moment Diagrams for Simply supported beam subjected to Concentrated loads & UDL.         | 1                             | 31-08-2023                         |                                 | TLM1                            |                       |
| 17.       | Estimation of Maximum bending moment for simply supported beam                                                 | 1                             | 04-09-2023                         |                                 | TLM1                            |                       |

| No. | of classes required to complete                                                                  | UNIT-II: | 11         | No. of classes taker | <b>1</b> : |
|-----|--------------------------------------------------------------------------------------------------|----------|------------|----------------------|------------|
| 24. | Revision                                                                                         | 1        | 14-09-2023 | TLM1                 |            |
| 23. | Assignment / Quiz (UNIT-II)                                                                      | 1        | 13-09-2023 | TLM1                 |            |
| 22. | Tutorial-IV                                                                                      | 1        | 12-09-2023 | TLM3                 |            |
| 21. | Tutorial-III                                                                                     | 1        | 11-09-2023 | TLM3                 |            |
| 20. | Problems on Overhanging Beam                                                                     | 1        | 07-09-2023 | TLM1                 |            |
| 19. | Estimation of Maximum bending moment & point of contra flexure for Overhanging beams             | 1        | 06-09-2023 | TLM1                 |            |
| 18. | Shear force & Bending moment Diagrams for Overhanging beam subjected to Concentrated loads & UDL | 1        | 05-09-2023 | TLM1                 |            |

#### UNIT-III: STRESSES IN BEAMS AND SHEAR STRESSES

| S.<br>No. | Topics to be covered                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 25.       | Theory of Simple bending, assumptions                                                                         | 1                             | 18-09-2023                         |                                 | TLM1                            |                       |  |  |
| 26.       | Derivation of flexure equation                                                                                | 1                             | 19-09-2023                         |                                 | TLM1                            |                       |  |  |
| 27.       | Section modulus and problems                                                                                  | 1                             | 20-09-2023                         |                                 | TLM1                            |                       |  |  |
| 28.       | Normal stresses due to flexure applications problems                                                          | 1                             | 21-09-2023                         |                                 | TLM1                            |                       |  |  |
| 29.       | Normal stresses due to flexure applications problems                                                          | 1                             | 25-09-2023                         |                                 | TLM1                            |                       |  |  |
| 30.       | Tutorial-V                                                                                                    | 1                             | 26-09-2023                         |                                 | TLM3                            |                       |  |  |
| 31.       | Revision                                                                                                      | 1                             | 27-09-2023                         |                                 | TLM1                            |                       |  |  |
| 32.       | Revision                                                                                                      | 1                             | 28-09-2023                         |                                 | TLM1                            |                       |  |  |
| 33.       | Concept of shear stress variation over cross section due to flexural loads Derivation of lateral shear stress | 1                             | 09-10-2023                         |                                 | TLM1                            |                       |  |  |
| 34.       | Shear stress distribution across rectangular & circular sections                                              | 1                             | 10-10-2023                         |                                 | TLM1                            |                       |  |  |
| 35.       | Problems on distribution of Shear stress                                                                      | 1                             | 11-10-2023                         |                                 | TLM1                            |                       |  |  |
| 36.       | Tutorial-V                                                                                                    | 1                             | 12-10-2023                         |                                 | TLM3                            |                       |  |  |
| 37.       | Assignment / Quiz (UNIT-III)                                                                                  | 1                             | 16-10-2023                         |                                 | TLM1                            |                       |  |  |
| 38.       | Revision                                                                                                      | 1                             | 17-10-2023                         |                                 | TLM1                            |                       |  |  |
|           | No. of classes required to complete UNIT-III: 14 No. of classes taken                                         |                               |                                    |                                 |                                 |                       |  |  |

# UNIT-IV: ANALYSIS OF COMBINED STRESSES

| S.<br>No. | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 39.       | State of stress at a point, normal and tangential stresses on inclined planes | 1                             | 18-10-2023                         |                                 | TLM1                            |                       |
| 40.       | Problem on normal and tangential stresses on inclined planes                  | 1                             | 19-10-2023                         |                                 | TLM1                            |                       |
| 41.       | Principle stresses and their planes, maximum shear stress plane               | 1                             | 23-10-2023                         |                                 | TLM1                            |                       |

| No. | No. of classes required to complete UNIT-IV: 12 No. of classes taken: |   |            |      |  |  |  |  |  |
|-----|-----------------------------------------------------------------------|---|------------|------|--|--|--|--|--|
| 50. | Videos                                                                | 1 | 09-11-2023 | TLM5 |  |  |  |  |  |
| 49. | Revision                                                              | 1 | 08-11-2023 | TLM1 |  |  |  |  |  |
| 48. | Assignment / Quiz (UNIT-IV)                                           | 1 | 07-11-2023 | TLM1 |  |  |  |  |  |
| 47. | Tutorial-VII                                                          | 1 | 06-11-2023 | TLM3 |  |  |  |  |  |
| 46. | Problems on Mohr's circle                                             | 1 | 02-11-2023 | TLM1 |  |  |  |  |  |
| 45. | Problems on Mohr's circle                                             | 1 | 01-11-2023 | TLM1 |  |  |  |  |  |
| 44. | Mohr's circle diagram                                                 | 1 | 31-10-2023 | TLM1 |  |  |  |  |  |
| 44. | Tutorial-VI                                                           | 1 | 30-10-2023 | TLM3 |  |  |  |  |  |
| 43. | Problems                                                              | 1 | 26-10-2023 | TLM1 |  |  |  |  |  |
| 42. | Problems                                                              | 1 | 25-10-2023 | TLM1 |  |  |  |  |  |

# UNIT-V: DEFLECTION OF BEAMS & THIN AND THICK CYLINDRICAL SHELLS

| S. No. | Topics to be covered                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 51.    | Derivation of Differential equation for elastic line (Deflection Equation)     | 1                             | 13-11-2023                         |                                 | TLM1                            |                       |
| 52.    | Deflection & Slope equations for cantilever beam                               | 1                             | 14-11-2023                         |                                 | TLM1                            |                       |
| 53.    | Deflection & Slope equations for simply supported beam                         | 1                             | 15-11-2023                         |                                 | TLM1                            |                       |
| 54.    | Macaulay's method                                                              | 1                             | 16-11-2023                         |                                 | TLM1                            |                       |
| 55.    | Introduction to thin & thick shells                                            | 1                             | 20-11-2023                         |                                 | TLM2                            |                       |
| 56.    | Hoop stress and longitudinalstresses for thin cylinders                        | 1                             | 21-11-2023                         |                                 | TLM1                            |                       |
| 57.    | Change in volume of thin cylinder                                              | 1                             | 22-11-2023                         |                                 | TLM2                            |                       |
| 58.    | Derivation of Lame's equations of Thick cylinders; Problems on thick cylinders | 1                             | 23-11-2023                         |                                 | TLM1                            |                       |
| 59.    | Tutorial-VIII                                                                  | 1                             | 27-11-2023                         |                                 | TLM3                            |                       |
| 60.    | Assignment / Quiz (UNIT-V)                                                     | 1                             | 28-11-2023                         |                                 | TLM1                            |                       |
| 61.    | Beyond Syllabus                                                                | 1                             | 29-11-2023                         |                                 | TLM2                            |                       |
| 62.    | Revision                                                                       | 1                             | 30-11-2023                         |                                 | TLM1                            |                       |
| No. o  | f classes required to complete                                                 | e UNIT-V:                     | 12                                 | No. of class                    | ses taker                       | 1:                    |

| Teaching Learning Methods |                |      |                                 |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |

| TLM2 | PPT      | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |
|------|----------|------|------------------------------------|
| TLM3 | Tutorial | TLM6 | Group Discussion/Project           |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | 30              |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = CIE + SEE                                                              | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | Identify, formulate, review research literature, and analyze complex engineering problemsreaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                     |
| PO 3  | Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, andthe cultural, societal, and environmental considerations.                            |
| PO 4  | Use research-based knowledge and research methods including design of experiments, analysisand interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                              |
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern engineering and IT toolsincluding prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                      |
| P0 6  | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                          |
| PO 7  | Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                                    |
| PO 8  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                             |
| PO 9  | Function effectively as an individual, and as a member or leader in diverse teams, and inmultidisciplinary settings.                                                                                                                                                               |
| PO 10 | Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.                                                               |
| PO 12 | Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                       |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement quality and optimization of engineering systems in the design, analysis and manufacturability of products.       |
| PSO 3 | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and otherprocess equipment. |

| Title               | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty | K.V.VISWANADH     | K. V. VISWANADH       | B. SUDHEER KUMAR      | Dr. S. PICHI REDDY        |
| Signature           |                   |                       |                       |                           |



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### **DEPARTMENT OF MECHANICAL ENGINEERING**

#### **COURSE HANDOUT**

#### **PART-A**

Name of Course Instructor : Dr. Shaheda Niloufer

Course Name & Code : Environmental Science & 20MC03

L-T-P Structure : 2-0-0 Credits : 0
Program/Sem/Sec : B.Tech., ME-B., IV-Sem., SEC-B A.Y : 2023-24

#### PRE-REQUISITE:

**COURSE EDUCATIONAL OBJECTIVES** (**CEOs**): The purpose of this course is to provide a general background on developing an understanding of systems and cycles on the earth and how individual organisms live together in complex communities and how human activities influence our air, water and soil. It also helps in developing an understanding about our use of fossil fuels and effect on climate and sustainable management of natural resources.

**COURSE OUTCOMES (COs):** At the end of the course, students are able to

| CO 1 | Identify environmental problems arising due to engineering and technological activities |
|------|-----------------------------------------------------------------------------------------|
|      | that help to be the part of sustainable solutions.                                      |
| CO 2 | Evaluate local, regional and global environmental issues related to resources and their |
|      | sustainable management.                                                                 |
| CO 3 | Realize the importance of ecosystem and biodiversity for maintaining ecological         |
|      | balance.                                                                                |
| CO 4 | Acknowledge and prevent the problems related to pollution of air, water and soil.       |
| CO5  | Identify the significance of implementing environmental laws and abatement devices for  |
|      | environmental management.                                                               |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 3   | -   | -   | -   | 3   | 3   | 3   | -   | -    | -    | 3    | -    | -    | -    |
| CO2 | 3   | 3   | -   | -   | -   | 3   | 3   | -   | -   | -    | -    | 3    | -    | -    | -    |
| CO3 | 3   | -   | 3   | ı   | 1   | -   | 2   | ı   | ı   | -    | ı    | 2    | ı    | i    | ı    |
| CO4 | 3   | _   | -   |     | -   | 2   | 3   | 2   | -   | -    | -    | 3    | -    | -    |      |
| CO5 | 3   | 3   | 3   | 3   | -   | 3   | 3   | 3   | -   | -    | -    | 3    | -    | -    | -    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

#### **TEXT BOOKS:**

**T1** Anubha Kaushik, C.P.Kaushik, "Perspectives in Environmental Studies", New age international publishers, 5<sup>th</sup> Edition, Delhi, 2016.

**T2** Mahua Basu, S. Xavier, "Fundamentals of Environmental Studies", Cambridge University Press, 1<sup>st</sup> Edition, Delhi, 2016.

#### **REFERENCE BOOKS:**

- **R1** S. Deswal, A. Deswal, "A Basic course in Environmental Studies", Educational & Technical Publishers, 2<sup>nd</sup> Edition, Delhi, 2014.
- R2 R. Rajagopalan, "Environmental Studies (From Crisis to Cure)", Oxford University Press, 2<sup>nd</sup> Edition, New Delhi, 2012.

- **R3** De, A.K, "Environmental Chemistry", New Age International (P) Limited, 5<sup>th</sup> Edition, New Delhi, 2003.
- **R4** Dr.K.V.S.G. Murali Krishna, "Environmental Studies", VGS Techno Series, 1<sup>st</sup> Edition, Vijayawada, 2010.
- **R5** G. Tyler Miller, Scott Spoolman, "Introduction to Environmental Studies", Cengage Learning, 13<sup>th</sup> Edition, New Delhi, 2009.

#### **PART-B**

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

#### UNIT-I: NATURE AND SCOPE OF ENVIRONMENTAL PROBLEMS

| S.No.      | Topics to be covered                                                                    | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.         | Introduction of course and course objectives. Introduction of components of Environment | 1                             | 11-08-2023                   |                           | 2                               |                       |
| 2.         | Population explosion and variations among Nations.                                      | 1                             | 12-08-2023                   |                           | 2                               |                       |
| 3.         | Resettlement and Rehabilitation - Issues and possible solutions                         | 1                             | 18-08-2023                   |                           | 2                               |                       |
| 4.         | Environmental Hazards                                                                   | 1                             | 19-08-2023                   |                           | 2                               |                       |
| 5.         | Role of Information<br>Technology in environmental<br>management and human<br>health.   | 1                             | 25-08-2023                   |                           | 2                               |                       |
| No. of cla | asses required to complete UNIT                                                         | Γ-I: 5                        |                              | No. of clas               | ses taken:                      |                       |

#### UNIT-II: NATURAL RESOURCES AND CONSERVATION

| S.No. | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.    | Introduction and classification of<br>Natural resources, Forest<br>Resources, | 1                             | 26-08-2023                         |                           | 2                               |                       |
| 2.    | Water Resources                                                               | 1                             | 01-09-2023                         |                           | 2                               |                       |
| 3.    | Mineral Resources                                                             | 1                             | 02-09-2023                         |                           | 2                               |                       |
| 4.    | Food Resources                                                                | 1                             | 08-09-2023                         |                           | 2                               |                       |
| 5.    | Food Resources                                                                | 1                             | 15-09-2023                         |                           | 2                               |                       |
| 6.    | Food Resources                                                                | 1                             | 16-09-2023                         |                           | 2                               |                       |
| 7.    | Energy Resources                                                              | 1                             | 22-09-2023                         |                           | 2                               |                       |
| No. o | f classes required to complete UN                                             | IT-II: 7                      |                                    | No. of class              | sses taken:                     |                       |

#### **UNIT-III: ECOLOGY AND BIODIVERSITY**

|       | COLOGI AND BIODIVERSIII                                                                                                                                                                                                   | No. of              | Tentative             | Actual             | Teaching            | HOD            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------|---------------------|----------------|
| S.No. | Topics to be covered                                                                                                                                                                                                      | Classes<br>Required | Date of<br>Completion | Date of Completion | Learning<br>Methods | Sign<br>Weekly |
| 1.    | Definition, structure and functions of an ecosystem                                                                                                                                                                       | 1                   | 23-09-2023            |                    | 2                   |                |
| 2.    | Food chains and Food webs,<br>Ecological succession, Ecological<br>pyramids,                                                                                                                                              | 1                   | 29-09-2023            |                    | 2                   |                |
| 3.    | Major Types of Ecosystems – Forest, Grassland, Desert Land & aquatic Ecosystem, Ecological Niche and Keystone Species, Biogeographical classification of India. India as a mega diversity nation. Bio-geo-chemical cycles | 1                   | 30-09-2023            |                    | 2                   |                |

| 4. I MID EXAMINATION                                                                               | 1         | 06-10-2023 |             |            |
|----------------------------------------------------------------------------------------------------|-----------|------------|-------------|------------|
| 5. I MID EXAMINATION                                                                               | 1         | 07-10-2023 |             |            |
| Values of biodiversity- Direct and Indirect values. Threats to biodiversity; Assignment in Unit II | 1         | 13-10-2023 |             | 2          |
| Man and wild life conflicts.  7. Endangered and endemic species of India                           | 1         | 14-10-2023 |             | 2,3        |
| 8. Conservation of biodiversity: Insitu and Ex-situ conservation methods                           | 1         | 20-10-2023 |             | 2          |
| o. of classes required to complete UNI                                                             | IT-III: 7 |            | No. of clas | ses taken: |

#### **UNIT-IV: ENVIRONMENTAL POLLUTION**

| S.No. | Topics to be covered                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.    | Air Pollution                                                                      | 1                             | 21-10-2023                         |                           | 2                               |                       |
| 2.    | Causes, effects and control measures of: Water Pollution                           | 1                             | 27-10-2023                         |                           | 2                               |                       |
| 3.    | Causes, effects and control measures of: Soil Pollution,                           | 1                             | 28-10-2023                         |                           |                                 |                       |
| 4.    | Noise Pollution                                                                    |                               | 03-11-2023                         |                           |                                 |                       |
| 5.    | Solid Waste Management                                                             | 1                             | 04-11-2023                         |                           | 2,3                             |                       |
| 6.    | Disaster Management- Floods,<br>Cyclones, Earthquakes,<br>Landslides and Tsunamis. | 1                             | 10-11-2023                         |                           | 2                               |                       |
| No. o | f classes required to complete UN                                                  | T-IV: 6                       | •                                  | No. of clas               | ses taken:                      |                       |

#### UNIT-V: ENVIRONMENTAL MANAGEMENT

| S.No.                                                                 | Topics to be covered                                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|
| 1.                                                                    | Sustainable Development                                                              | 1                             | 17-11-2023                         |                           | 2                               |                       |  |
| 2.                                                                    | Climate disruption-<br>Greenhouse effect, ozone<br>layer depletion and acid<br>rain. | 1                             | 18-11-2023                         |                           | 2,3                             |                       |  |
| 3.                                                                    | Stockholm conference                                                                 | 1                             | 24-11-2023                         |                           | 2                               |                       |  |
| 4.                                                                    | Environmental Impact<br>Assessment (EIA)                                             |                               | 25-11-2023                         |                           | 2                               |                       |  |
| 5.                                                                    | Green building                                                                       | 1                             | 01-12-2023                         |                           | 2                               |                       |  |
| 6.                                                                    | Revision                                                                             | 1                             | 02-12-2023                         |                           | 5                               |                       |  |
| 7.                                                                    | II MID EXAMINATIONS                                                                  | 1                             | 08-12-2023                         |                           | 5                               |                       |  |
| No. of classes required to complete UNIT-V: 07  No. of classes taken: |                                                                                      |                               |                                    |                           |                                 |                       |  |

| Teaching Learning Methods |                |      |                                    |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |  |  |  |
|--------------------------------------------------------------------------------------|-----------------|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              |                 |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |  |  |  |
| Semester End Examination (SEE)                                                       | 70              |  |  |  |
| Total Marks = CIE + SEE                                                              | 100             |  |  |  |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                              |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                   |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                  |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                              |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                |

| Title               | Course Instructor       | Course<br>Coordinator   | Module<br>Coordinator   | Head of the<br>Department |
|---------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| Name of the Faculty | Dr. Shaheda<br>Niloufer | Dr. Shaheda<br>Niloufer | Dr. Shaheda<br>Niloufer | Dr. A. Rami Reddy         |
| Signature           |                         |                         |                         |                           |









Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

**Course Objective:** Determine the discharge of various flow measuring devices, estimation of friction factor and performance parameters of hydraulic machines.

#### **COURSE OUTCOMES:**

After completion of the course students are able to:

CO1 Identify the need and use of various flow measuring devices. (Understanding-L2)

Apply the Bernoulli's equation for energy balance of fluid flow system. (Applying - L3)

CO3 Determine the friction losses of fluid flow through different pipes. (Applying-L3)

Evaluate the performance characteristics of hydraulic pumps, turbines and impact of jets.

CO4 (Applying-L3)

#### **Course Articulation Matrix:**

| 20ME5<br>5 | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO 7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PS<br>O2 | PS<br>O3 |
|------------|---------|---------|---------|---------|---------|---------|------|---------|---------|----------|----------|----------|------|----------|----------|
| CO1        | 2       | 2       | -       | 3       | -       | -       | -    | -       | 1       | -        | -        | 2        | -    | -        | 3        |
| CO2        | 2       | 2       | 2       | 3       | -       | -       | -    | -       | 1       | -        | -        | 2        | -    | -        | -        |
| CO3        | -       | -       | 1       | 3       | -       | -       | -    | -       | -       |          | -        | 2        | -    | -        | -        |
| CO4        | 2       | 2       | 3       | 1       | -       | -       | -    | -       | 1       | -        | -        | 2        | -    | ı        | 3        |









Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

#### **LIST OF EXPERIMENTS:**

#### **PART-A: FLUID MECHANICS**

#### Any 5 Experiments are required to be conducted

- 1. Verification of Bernoulli's Theorem (FM1)
- 2. Calibration of Venturimeter (FM2)
- 3. Calibration of Orifice meter (FM3)
- 4. Determination of friction factor for a given pipeline (FM4)
- 5. Calibration of VNotch (FM5)
- 6. Calibration of Mouthpieceapparatus(FM6)
- 7. Impact of jets on Vanes (FM7)

#### PART-B: HYDRAULIC MACHINERY

#### Any 5 Experiments are required to be conducted

- 1. Performance Test on PeltonWheel (HM1)
- 2. Performance Test on KaplanTurbine(HM2)
- 3. Performance Test on Single Stage CentrifugalPump (HM3)
- 4. Performance Test on ReciprocatingPump(HM4)
- 5. Turbine flowmeter(HM5)
- 6. Reynolds experiment.(HM6)

#### REFERENCES

Lab Manual









Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

# Batches (Section – B)

Total No. of students: 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377

Batch B1 : 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377= 28

Batch B2 : 23765A0311 TO 23765A0338=28

#### **Sub Batches of B1:**

| S. No | Batch           | Registered Nos                              | Total |  |  |
|-------|-----------------|---------------------------------------------|-------|--|--|
| 1     | B1 <sub>1</sub> | 22761A0321, 322, 323, 324, 325, 326.        | 6     |  |  |
| 2     | B1 <sub>2</sub> | 22761A0327, 328, 329, 332, 333, 334.        | 6     |  |  |
| 3     | B1 <sub>3</sub> | 22761A0335, 337, 338, 339, 340, 23765A0339. | 6     |  |  |
| 4     | B1 <sub>4</sub> | 23765A0340, 341, 342, 343, 344.             | 5     |  |  |
| 5     | B15             | 23765A0345, 346, 347, 348, 349.             | 5     |  |  |
|       | Total           |                                             |       |  |  |

#### **Sub Batches of B2:**

| S. No | Batch           | Registered Nos                       | Total |  |  |
|-------|-----------------|--------------------------------------|-------|--|--|
| 1     | B2 <sub>1</sub> | 23765A0350, 351, 352, 353, 354, 355. | 6     |  |  |
| 2     | B2 <sub>2</sub> | 23765A0356, 357, 358, 359, 360, 361. | 6     |  |  |
| 3     | B2 <sub>3</sub> | 23765A0362, 363, 364, 365, 366, 367. | 6     |  |  |
| 4     | B2 <sub>4</sub> | 23765A0368, 369, 370, 371, 372.      | 5     |  |  |
| 5     | B25             | 23765A0373, 374, 375, 376, 377.      | 5     |  |  |
|       | Total           |                                      |       |  |  |









Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

#### **NOTIFICATION OF CYCLES**

#### **CYCLE-I**

- 01. Verification of Bernoulli's Theorem
- 02. Calibration of Venturi meter
- 03. Calibration of Orifice meter.
- 04. Determination of friction factor for a given pipe line
- 05. Calibration of mouthpiece apparatus

#### **CYCLE-II**

- 06. Performance Test on Kaplan Turbine.
- 07. Performance Test on Single Stage Centrifugal Pump.
- 08. Turbine flow meter.
- 09. Impact of jets on Vanes.
- 10. Performance Test on Pelton Wheel.

# Notification of Cycles (Section – B)

| Batches | Laboratory                                 | Cycle | Experiment No.s |
|---------|--------------------------------------------|-------|-----------------|
| B1 & B2 | FLUID MECHANICS AND<br>HYDRAULIC MACHINARY | I     | FM 1 to FM 5    |
| D1 & D2 | LAB                                        | II    | HM 6 to HM 10   |

Total No. of students: 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377

Batch B1 : 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377= 28

Batch B2 : 23765A0311 TO 23765A0338=28



L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230







#### **DEPARTMENT OF MECHANICAL ENGINEERING**

#### **VIVA QUESTIONS**

Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

- 1. Differentiate between Absolute and gauge pressures.
- 2. Mention two pressure measuring instruments.
- 3. What is the difference weight density and mass density?
- 4. What is the difference between dynamic and kinematic viscosity?
- 5. Differentiate between specific weight and specific volume.
- 6. Define relative density.
- 7. What is vacuum pressure?
- 8. What is absolute zero pressure?
- 9. Write down the value of atmospheric pressure head in terms of water and Hg.
- 10. Differentiate between laminar and turbulent flow.
- 11. How will you classify the flow as laminar and turbulent?
- 12. Mention few discharge measuring devices
- 13. Draw the venturimeter and mention the parts.
- 14. Why the divergent cone is longer than convergent cone in venturimeter?
- 15. Compare the merits and demerits of venturimeter with orifice meter.
- 16. Why Cd value is high in venturimeter than orifice meter?
- 17. What is orifice plate?
- 18. What do you mean by vena contracta?
- 19. Define coefficient of discharge.
- 20. Write down Darcy -weisback's equation.
- 21. What is the difference between friction factor and coefficient of friction?
- 22. What do you mean by major energy loss?
- 23. List down the type of minor energy losses.
- 24. Define turbine
- 25. What are the classifications of turbine

- 26. Define impulse turbine.
- 27. Define reaction turbine.
- 28. Differentiate between impulse and reaction turbine.
- 29. What is the function of draft tube?
- 30. Define specific speed of turbine.
- 31. What are the main parameters in designing a Pelton wheel turbine?
- 32. What is breaking jet in Pelton wheel turbine?
- 33. What is the function of casing in Pelton turbine
- 34. Draw a simple sketch of Pelton wheel bucket.
- 35. What is the function of surge tank fixed to penstock in Pelton turbine?
- 36. How the inlet discharge is controlled in Pelton turbine?
- 37. What is water hammer?
- 38. What do you mean by head race?
- 39. What do you mean by tail race?
- 40. What is the difference between propeller and Kaplan turbine?
- 41. Mention the parts of Kaplan turbine.
- 42. Differentiate between inward and outward flow reaction turbine.
- 43. What is the difference between Francis turbine and Modern Francis turbine?
- 44. What is mixed flow reaction turbine? Give an example.
- 45. Why draft tube is not required in impulse turbine?
- 46. How turbines are classified based on head. Give example.
- 47. How turbines are classified based on flow. Give example
- 48. How turbines are classified based on working principle. Give example. 49. What does velocity triangle indicates?
- 50. Draw the velocity triangle for radial flow reaction turbine.
- 51. Draw the velocity triangle for tangential flow turbine.
- 52. Mention the type of characteristic curves for turbines.
- 53. How performance characteristic curves are drawn for turbine.
- 54. Mention the types of efficiencies calculated for turbine.
- 55. Define pump.
- 56. How pumps are classified?
- 57. Differentiate pump and turbine.
- 58. Define Rotodynamic pump.
- 59. Define Positive displacement pump.

- 60. Differentiate between Rotodynamic and positive displacement pump.
- 61. Define cavitation in pump.
- 62. What is the need for priming in pump?
- 63. Give examples for Rotodynamic pump
- 64. Give examples for Positive displacement pump.
- 65. Mention the parts of centrifugal pump.
- 66. Mention the type of casing used in centrifugal pump.
- 67. Why the foot valve is fitted with strainer?
- 68. Why the foot valve is a non return type valve?
- 69. Differentiate between volute casing and vortex casing.
- 70. What is the function of volute casing?
- 71. What is the function of guide vanes?
- 72. Why the vanes are curved radially backward?
- 73. What is the function of impeller?
- 74. Mention the types of impeller used.
- 75. Define specific speed of pump.
- 76. Mention the type of characteristic curves for pump
- 77. How performance characteristic curves are drawn for pump.
- 78. Mention the parts of reciprocating pump.
- 79. What is the function of air vessel?
- 80. What is slip of reciprocating pump?
- 81. What is negative slip?
- 82. What is the condition for occurrence of negative slip?
- 83. What does indicator diagram indicates?
- 84. What is the difference between actual and ideal indicator diagram?
- 85. Briefly explain Gear pump.
- 86. Differentiate between internal gear pump and external gear pump.
- 87. Briefly explain vane pump.
- 88. What is rotary pump?
- 89. Draw the velocity triangle for centrifugal pump.
- 90. Draw the indicator diagram fro reciprocating pump.
- 91. What is the amount of work saved by air vessel?
- 92. Mention the merits and demerits of centrifugal pump.

| 93. Mention the merits and den    | nerits of reciprocating pump.                 |                           |     |  |  |  |  |
|-----------------------------------|-----------------------------------------------|---------------------------|-----|--|--|--|--|
| 94. What is separation in recipr  | 94. What is separation in reciprocating pump? |                           |     |  |  |  |  |
| 95. How separation occurs in re   | eciprocating pump?                            |                           |     |  |  |  |  |
| 96. Differentiate single acting a | and double acting reciprocating p             | oump.                     |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
| Course Instructor                 | Course Coordinator                            | <b>Module Coordinator</b> | HoD |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |
|                                   |                                               |                           |     |  |  |  |  |



(An Autonomous Institution since 2010)









#### **DEPARTMENT OF MECHANICAL ENGINEERING**

Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

### Notification of Cycles (Section – B)

| Batches | Laboratory                                 | Cycle | <b>Experiment No.s</b> |
|---------|--------------------------------------------|-------|------------------------|
| B1 & B2 | FLUID MECHANICS AND<br>HYDRAULIC MACHINARY | I     | FM 1 to FM5            |
| β1 & β2 | LAB                                        | II    | HM 6 to HM10           |

Total No. of students: 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377

Batch B1 : 22761A0321 to 22761A0340 & 23765A0339 to 23765A0377= 28

Batch B2 : 23765A0311 TO 23765A0338=28



(An Autonomous Institution since 2010)









#### **DEPARTMENT OF MECHANICAL ENGINEERING**

#### SCHEDULE OF FLUID MECHANICS AND HYDRAULIC MACHINERYLAB(Section – B)

Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

| Date       |                    | Ex                 | xperiment (Batch | <b>1-1</b> )    |           |
|------------|--------------------|--------------------|------------------|-----------------|-----------|
| Cycle-I    | Ex - 1             | Ex – 2             | Ex - 3           | Ex - 4          | Ex - 5    |
| 17/08/2023 | Demonst            | ration of all expe | riments, CEOs a  | nd COs of the L | aboratory |
| 22/08/2023 | <b>23</b> B1 B2 B3 |                    | В3               | B4              | B5        |
| 29/08/2023 | B2                 | В3                 | B4               | B5              | B1        |
| 05/09/2023 | В3                 | B4                 | B5               | B1              | B2        |
| 12/09/2023 | B4                 | B5                 | B1               | B2              | В3        |
| 19/09/2023 | B5                 | B1                 | B2               | В3              | B4        |
| 26/09/2023 |                    | I M                | D EXAMINATI      | ONS             |           |
| Cycle-II   | Ex - 6             | Ex - 7             | Ex - 8           | Ex - 9          | Ex - 10   |
| 10/10/2023 | B1                 | B2                 | В3               | B4              | B5        |
| 17/10/2023 | B2                 | В3                 | B4               | B5              | B1        |
| 24/10/2023 | В3                 | B4                 | B5               | B1              | B2        |
| 31/10/2023 | B4                 | B5                 | B1               | B2              | В3        |
| 07/11/2023 | B5                 | B1                 | B2               | В3              | B4        |
| 14/11/2023 |                    | •                  | REPETITION       | •               | •         |
| 21/11/2023 |                    |                    | REPETITION       |                 |           |
| 28/11/2023 |                    | INTE               | RNAL EXAMINA     | ATION           |           |

#### **Sub Batches of B1:**

| S. No | Batch           | Registered Nos                              | Total |  |  |  |  |  |
|-------|-----------------|---------------------------------------------|-------|--|--|--|--|--|
| 1     | B1 <sub>1</sub> | 22761A0321, 322, 323, 324, 325, 326.        | 6     |  |  |  |  |  |
| 2     | B1 <sub>2</sub> | 22761A0327, 328, 329, 332, 333, 334.        | 6     |  |  |  |  |  |
| 3     | B1 <sub>3</sub> | 22761A0335, 337, 338, 339, 340, 23765A0339. | 6     |  |  |  |  |  |
| 4     | B1 <sub>4</sub> | 23765A0340, 341, 342, 343, 344.             | 5     |  |  |  |  |  |
| 5     | B1 <sub>5</sub> | 23765A0345, 346, 347, 348, 349.             | 5     |  |  |  |  |  |
|       | Total           |                                             |       |  |  |  |  |  |



(An Autonomous Institution since 2010)









#### **DEPARTMENT OF MECHANICAL ENGINEERING**

#### SCHEDULE OF FLUID MECHANICS AND HYDRAULIC MACHINERY LAB (Section – B)

Course Title :FLUID MECHANICS AND HYDRAULIC MACHINERY LAB Academic Year: 2023-24

Instructors : Dr. P. RAVINDRA KUMAR/ Mr. D. MALLIKARJUNA RAO Course & SEM: B.Tech & III

Branch: MECH Section: B

| Date       |         | Ex                                                        | xperiment (Batch | -2)    |         |  |  |  |
|------------|---------|-----------------------------------------------------------|------------------|--------|---------|--|--|--|
| Cycle-I    | Ex - 1  | Ex - 2                                                    | Ex - 3           | Ex – 4 | Ex - 5  |  |  |  |
| 20/08/2023 | Demonst | ration of all experiments, CEOs and COs of the Laboratory |                  |        |         |  |  |  |
| 27/08/2023 | B1      | B2                                                        | В3               | B4     | B5      |  |  |  |
| 0309/2023  | B2      | В3                                                        | B4               | B5     | B1      |  |  |  |
| 17/09/2023 | В3      | B4                                                        | B5               | B1     | B2      |  |  |  |
| 24/09/2023 | B4      | B5                                                        | B1               | B2     | В3      |  |  |  |
| 01/10/2023 | B5      | B1                                                        | B2               | В3     | B4      |  |  |  |
| 15/10/2023 |         | I M                                                       | D EXAMINATI      | ONS    |         |  |  |  |
|            | Ex - 6  | Ex - 7                                                    | Ex - 8           | Ex – 9 | Ex - 10 |  |  |  |
| 22/10/2023 | B1      | B2                                                        | В3               | B4     | B5      |  |  |  |
| 22/102023  | B2      | В3                                                        | B4               | B5     | B1      |  |  |  |
| 05/11/2023 | В3      | B4                                                        | B5               | B1     | B2      |  |  |  |
| 05/11/2023 | B4      | B5                                                        | B1               | B2     | В3      |  |  |  |
| 19/11/2023 | B5      | B1                                                        | B2               | В3     | B4      |  |  |  |
| 26/11/2023 |         |                                                           | REPETITION       |        |         |  |  |  |
| 26/11/2023 |         |                                                           | REPETITION       |        |         |  |  |  |
| 03/12/2023 |         | INTE                                                      | RNAL EXAMINA     | ATION  |         |  |  |  |

#### **Sub Batches of B2:**

| S. No | Batch           | Registered Nos                       | Total |  |  |  |  |  |
|-------|-----------------|--------------------------------------|-------|--|--|--|--|--|
| 1     | B2 <sub>1</sub> | 23765A0350, 351, 352, 353, 354, 355. | 6     |  |  |  |  |  |
| 2     | B2 <sub>2</sub> | 23765A0356, 357, 358, 359, 360, 361. | 6     |  |  |  |  |  |
| 3     | B2 <sub>3</sub> | 23765A0362, 363, 364, 365, 366, 367. | 6     |  |  |  |  |  |
| 4     | B2 <sub>4</sub> | 23765A0368, 369, 370, 371, 372.      | 5     |  |  |  |  |  |
| 5     | B2 <sub>5</sub> | 23765A0373, 374, 375, 376, 377.      | 5     |  |  |  |  |  |
|       | Total           |                                      |       |  |  |  |  |  |

# AN YLAVAR BING

#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor: Dr.S.Pichi Reddy, Mr.K.V.Viswanadh, Mr.K.Venkateswara Reddy

Course Name & Code: Mechanics of Solids and Metallurgy Lab &20ME56

Regulation: R20

L-T-P Structure : 0-0-3

Credits: 1.5

Program/Sem/Sec :B.Tech/III/B

**A.Y.:** 2023-24

PREREQUISITE: Mechanics of solids, Metallurgy and Material science

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The main objective of the course is to determine various mechanical properties of materials by testing under different load conditions and observe the microstructure of various materials and perform heat treatment of materials.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Evaluate the mechanical properties of materials by conducting various tests. |  |  |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| COI | (Applying-L3)                                                                |  |  |  |  |  |  |  |  |  |  |  |
| CO2 | Estimate the behavior of various materials under different loading.          |  |  |  |  |  |  |  |  |  |  |  |
| COZ | (Understanding-L2)                                                           |  |  |  |  |  |  |  |  |  |  |  |
| CO3 | Identify the material by observing the microstructure. (Remembering-L1)      |  |  |  |  |  |  |  |  |  |  |  |
| CO4 | Perform the hardness test and heat treatment of steels. (Applying-L3)        |  |  |  |  |  |  |  |  |  |  |  |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs                | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08  | P09 | PO10 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|--------------------|-----|-----|-----|-----|-----|-----|-----|------|-----|------|------|------|------|------|------|
| CO1                | 2   | 1   | 2   | 3   | -   | -   | 2   | -    | -   | -    | -    | 2    | -    | -    | 3    |
| CO2                | 3   | 2   | 2   | 3   | -   | -   | 2   | -    | -   | -    | -    | 2    | -    | -    | 3    |
| CO3                | 3   | -   | 2   | 3   | -   | -   | -   | -    |     |      | -    | 1    | -    | 3    | -    |
| CO4                | 3   | -   | 2   | 3   | 1   | -   | -   | -    | ı   | -    | -    | 2    | -    | 3    | _    |
| 1 - Low 2 - Medium |     |     |     | n   |     |     | 3 - | High |     | •    |      | •    |      |      |      |

#### References:

Lab Manual

#### **PART-B**

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

#### **LIST OF EXPERIMENTS**

#### At least 12 experiments are to be conducted:

#### **PART-A: MECHANICS OF SOLIDS**

Any 6 Experiments are required to be conducted

- 1. Compression test on helical spring. (MOS1)
- 2. Tension test on mild steel rod. (MOS2)
- 3. Double shear test on metals. (MOS3)
- 4. Torsion test on mild steel rod. (MOS4)
- 5. Impact test on metal specimen. (a) Izod Impact Test (b) Charpy Impact Test (MOS5)
- 6. Hardness test on metals. (a) Rockwell Hardness Test (b) Brinell Hardness Test (MOS6)
- 7. Deflection test on beams. (a) Cantilever Beam (b) Simply Supported beam (MOS7)
- 8. Compression test on brittle materials. (MOS8)

#### **PART-B: METALLURGY**

#### Any 6 Experiments are required to be conducted

- 1. Preparation and study of the microstructure of Cu & Al. (MET1)
- 2. Preparation and study of the microstructure of steels. (MET2)
- 3. Preparation and Study of the microstructures of cast iron. (MET3)
- 4. Preparation and Study of the microstructures of brass. (MET4)
- 5. Hardenability of steels by Jominy end quench test. (MET5)
- 6. Hardness of various treated and untreated steels. (MET6)
- 7. Study of Age hardening of Al-Cu alloy. (MET7)
- 8. Study of Fe-Fe3C equilibrium diagram. (MET8)
- 9. Study of T-T-T diagram for eutectoid steel. (MET9)
- 10. Fabrication of FRP Composite by Hand Lay-up method. (MET10)
- 11. Fabrication of FRP Composite by Vacuum bag moulding. (MET11)

#### **REFERENCES**

Lab Manual

#### **Batch-I Schedule**

| S.n | Date                                   |                 |                 |                 |                 | Bat             | tches           |                 |                 |                 |                  |  |  |
|-----|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|--|--|
| 0   | Date                                   | B1 <sub>1</sub> | B1 <sub>2</sub> | B1 <sub>3</sub> | B1 <sub>4</sub> | B1 <sub>5</sub> | B1 <sub>6</sub> | B1 <sub>7</sub> | B1 <sub>8</sub> | B1 <sub>9</sub> | B1 <sub>10</sub> |  |  |
| 1   | 19/08/2023 <b>Demonstration of MOS</b> |                 |                 |                 |                 |                 |                 | IOS & MMS Lab   |                 |                 |                  |  |  |
| 2   | 26/08/2023                             | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MET – 5          |  |  |
| 3   | 02/09/2023                             | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6          |  |  |
| 4   | 16/09/2023                             | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1          |  |  |
| 5   | 23/09/2023                             | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2          |  |  |
| 6   | 30/09/2023                             | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3          |  |  |
| 7   | 14/10/2023                             | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4          |  |  |
| 02- | 10-2023 to                             |                 |                 |                 |                 | I Mid Ew        | aminations      | 1               |                 |                 |                  |  |  |
| 0'  | 7-10-2023                              |                 |                 |                 |                 | 1 Miu Ex        | ammations       | )               |                 |                 |                  |  |  |
| 8   | 28/10/2023                             | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6          |  |  |
| 9   | 04/11/2023                             | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7          |  |  |
| 10  | 11/11/2023                             | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2          |  |  |
| 11  | 18/11/2023                             | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3          |  |  |
| 12  | 18/11/2023                             | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4          |  |  |
| 13  | 25/11/2023                             | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5          |  |  |

| 14    | 02/12/2023               | Internal Examination                    |
|-------|--------------------------|-----------------------------------------|
|       | -12-2023 to<br>9-12-2023 | II Mid Examinations                     |
| No. o | of classes requ          | red to complete:  No. of classes taken: |

#### **Batches:**

| S. No | Batch           | Registered Nos | Total |
|-------|-----------------|----------------|-------|
| 1     | B1 <sub>1</sub> | 22761A0321-323 | 3     |
| 2     | B1 <sub>2</sub> | 22761A0324-326 | 3     |
| 3     | B1 <sub>3</sub> | 22761A0327-329 | 3     |
| 4     | B1 <sub>4</sub> | 22761A0332-333 | 2     |
| 5     | B1 <sub>5</sub> | 22761A0334-35  | 2     |

| S. No | Batch            | Registered Nos     | Total |
|-------|------------------|--------------------|-------|
| 6     | B1 <sub>6</sub>  | 22761A0337-39      | 3     |
| 7     | B1 <sub>7</sub>  | 22761A0340, Le 3,5 | 3     |
| 8     | B1 <sub>8</sub>  | Le 6,8,11          | 3     |
| 9     | B1 <sub>9</sub>  | Le 13, 14, 16      | 3     |
| 10    | B1 <sub>10</sub> | Le 18, 22          | 2     |

#### **Batch-II Schedule**

| S. | Date                                                        |                 |                                |                 |                 | Bate            | ches            |                 |                 |                 |                  |  |
|----|-------------------------------------------------------------|-----------------|--------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|--|
| no | Date                                                        | B2 <sub>1</sub> | B2 <sub>2</sub>                | B2 <sub>3</sub> | B2 <sub>4</sub> | B2 <sub>5</sub> | B2 <sub>6</sub> | B2 <sub>7</sub> | B2 <sub>8</sub> | B2 <sub>9</sub> | B2 <sub>10</sub> |  |
| 1  | 08/08/2023                                                  |                 | Demonstration of MOS & MMS Lab |                 |                 |                 |                 |                 |                 |                 |                  |  |
| 2  | 22/08/2023                                                  | MOS - 2         | MOS - 3                        | MOS - 4         | MOS - 5         | MOS - 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4         | MET – 5          |  |
| 3  | 29/08/2023                                                  | MOS - 3         | MOS - 4                        | MOS - 5         | MOS - 6         | MOS - 7         | MET – 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6          |  |
| 4  | 05/09/2023                                                  | MOS - 4         | MOS - 5                        | MOS - 6         | MOS - 7         | MOS - 2         | MET – 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1          |  |
| 5  | 12/09/2023                                                  | MOS - 5         | MOS - 6                        | MOS - 7         | MOS - 2         | MOS - 3         | MET – 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2          |  |
| 6  | 26/09/2023                                                  | MOS - 6         | MOS - 7                        | MOS - 2         | MOS - 3         | MOS - 4         | MET – 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3          |  |
| 7  | 10/10/2023                                                  | MOS - 7         | MOS - 2                        | MOS - 3         | MOS - 4         | MOS - 5         | MET – 6         | MET – 1         | MET – 2         | MET – 3         | MET – 4          |  |
| _  | 2-10-2023 to                                                |                 |                                |                 |                 | Mid Fxa         | minations       |                 |                 |                 |                  |  |
|    | 07-10-2023                                                  |                 |                                |                 |                 |                 |                 |                 |                 |                 |                  |  |
| 8  | 17/10/2023                                                  | MET – 1         | MET – 2                        | MET – 3         | MET – 4         | MET – 5         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6          |  |
| 9  | 31/10/2023                                                  | MET – 2         | MET – 3                        | MET – 4         | MET – 5         | MET – 6         | MOS - 3         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7          |  |
| 10 | 07/11/2023                                                  | MET – 3         | MET – 4                        | MET – 5         | MET – 6         | MET – 1         | MOS - 4         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2          |  |
| 11 | 07/11/2023                                                  | MET – 4         | MET – 5                        | MET – 6         | MET – 1         | MET – 2         | MOS - 5         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3          |  |
| 12 | 14/11/2023                                                  | MET – 5         | MET – 6                        | MET – 1         | MET – 2         | MET – 3         | MOS - 6         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4          |  |
| 13 | 21/11/2023                                                  | MET – 6         | MET – 1                        | MET – 2         | MET – 3         | MET – 4         | MOS - 7         | MOS - 2         | MOS - 3         | MOS - 4         | MOS - 5          |  |
| 14 | 28/11/2023                                                  |                 |                                |                 |                 | Internal Ex     | camination      | 1               |                 |                 |                  |  |
| _  | 04-12-2023 to<br>09-12-2023 II Mid Examinations             |                 |                                |                 |                 |                 |                 |                 |                 |                 |                  |  |
| N  | No. of classes required to complete:  No. of classes taken: |                 |                                |                 |                 |                 | aken:           |                 |                 |                 |                  |  |

#### **Batches:**

| S. No | Batch           | Registered Nos | Total |
|-------|-----------------|----------------|-------|
| 1     | B2 <sub>1</sub> | Le 18,22,25    | 3     |
| 2     | B2 <sub>2</sub> | Le 27, 36,39   | 3     |
| 3     | B2 <sub>3</sub> | Le 40, 42, 43  | 3     |
| 4     | B2 <sub>4</sub> | Le 45, 46, 47  | 3     |
| 5     | B2 <sub>5</sub> | Le 50, 54      | 2     |

| S. No | Batch            | Registered Nos    | Total |
|-------|------------------|-------------------|-------|
| 6     | B2 <sub>6</sub>  | Le 55, 56, 57     | 3     |
| 7     | B2 <sub>7</sub>  | Le 61, 64, 66     | 3     |
| 8     | B2 <sub>8</sub>  | Le 67, 69, 71     | 3     |
| 9     | B2 <sub>9</sub>  | Le 72, 74, 75, 78 | 4     |
| 10    | B2 <sub>10</sub> | Le 83, 85, 86, 87 | 4     |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |  |

# PART-C EVALUATION PROCESS (R20 Regulation):

| <b>Evaluation Task</b> | Expt. no's | Marks |
|------------------------|------------|-------|
|------------------------|------------|-------|

| Day to Day work = <b>A</b>                      | 1,2,3,4,5,6,7,8 | A=05   |
|-------------------------------------------------|-----------------|--------|
| $Record = \mathbf{B}$                           | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                               | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination: A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                   | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                 | 1,2,3,4,5,6,7,8 | 50     |

# PART-D PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| PEO 1 | To build a professional career and pursue higher studies with sound          |
|-------|------------------------------------------------------------------------------|
| PEUI  | knowledge in                                                                 |
|       | Mathematics, Science and Mechanical Engineering.                             |
| PEO 2 | To inculcate strong ethical values and leadership qualities for graduates to |
| PEU Z | become                                                                       |
|       | successful in multidisciplinary activities.                                  |
| PEO 3 | To develop inquisitiveness towards good communication and lifelong learning. |

# PROGRAMME OUTCOMES (POs):

|      | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science,             |
|------|-----------------------------------------------------------------------------------------|
| PO 1 | engineering fundamentals, and an engineering specialization to the solution of          |
|      | complex engineering problems.                                                           |
|      | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyse  |
| PO 2 | complex engineering problems reaching substantiated conclusions using first             |
|      | principles of mathematics, natural sciences, and engineering sciences.                  |
|      | Design/development of solutions: Design solutions for complex engineering               |
| PO 3 | problems and design system components or processes that meet the specified              |
| 100  | needs with appropriate consideration for the public health and safety, and the          |
|      | cultural,                                                                               |
|      | societal, and environmental considerations.                                             |
|      | <b>Conduct investigations of complex problems</b> : Use research-based knowledge        |
| PO 4 | and research methods including design of experiments, analysis and                      |
|      | interpretation of data, and synthesis of the information to provide valid               |
|      | conclusions.                                                                            |
|      | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, |
| PO 5 | and modern engineering and IT tools including prediction and modelling to               |
|      | complexengineering activities with an understanding of the limitations.                 |
|      | The engineer and society: Apply reasoning informed by the contextual                    |
| PO 6 | knowledge toassess societal, health, safety, legal and cultural issues and the          |
|      | consequent                                                                              |
|      | responsibilities relevant to the professional engineering practice.                     |
|      | <b>Environment and sustainability</b> : Understand the impact of the professional       |
| PO 7 | engineering solutions in societal and environmental contexts, and demonstrate           |
|      | the knowledge of, and need for sustainable development.                                 |
| PO 8 | Ethics: Apply ethical principles and commit to professional ethics and                  |
| 100  | responsibilities and norms of the engineering practice.                                 |

| PO 9  | Individual and team work: Function effectively as an individual, and as a        |  |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|       | member orleader in diverse teams, and in multidisciplinary settings.             |  |  |  |  |  |  |  |  |  |
|       | <b>Communication</b> : Communicate effectively on complex engineering activities |  |  |  |  |  |  |  |  |  |
| PO 10 | with the engineering community and with society at large, such as, being able t  |  |  |  |  |  |  |  |  |  |
| 1010  | comprehend and write effective reports and design documentation, make            |  |  |  |  |  |  |  |  |  |
|       | effective presentations,                                                         |  |  |  |  |  |  |  |  |  |
|       | and give and receive clear instructions.                                         |  |  |  |  |  |  |  |  |  |
|       | Project management and finance: Demonstrate knowledge and understanding          |  |  |  |  |  |  |  |  |  |
| PO 11 | of the engineering and management principles and apply these to one's own        |  |  |  |  |  |  |  |  |  |
|       | work, as a member and leader in a team, to manage projects and in                |  |  |  |  |  |  |  |  |  |
|       | multidisciplinary                                                                |  |  |  |  |  |  |  |  |  |
|       | environments.                                                                    |  |  |  |  |  |  |  |  |  |
|       | Life-long learning: Recognize the need for, and have the preparation and ability |  |  |  |  |  |  |  |  |  |
| PO 12 | to engage in independent and life-long learning in the broadest context of       |  |  |  |  |  |  |  |  |  |
|       | technological change.                                                            |  |  |  |  |  |  |  |  |  |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1        | To apply the principles of thermal sciences to design and develop various thermal |
|--------------|-----------------------------------------------------------------------------------|
|              |                                                                                   |
|              | systems.                                                                          |
|              | To apply the principles of manufacturing technology, scientific management        |
| PSO 2        | towardsimprovement of quality and optimization of engineering systems in the      |
|              | design, analysis                                                                  |
|              | and manufacturability of products.                                                |
|              | To apply the basic principles of mechanical engineering design for evaluation of  |
| <b>PSO</b> 3 | performance of various systems relating to transmission of motion and power,      |
|              | conservation of energy and other process equipment.                               |

| Title               | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|---------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty |                   |                       |                       |                           |
| Signature           |                   |                       |                       |                           |



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### **DEPARTMENT OF MECHANICAL ENGINEERING**

# COURSE HANDOUT PART-A

Name of Course Instructor : Mr.P.Somaraju

Course Name & Code : Python Programming Lab(20AD53)

L-T-P Structure : 0-0-3 Credits : 2
Program/Sem/Sec: :B.Tech.,MECH., III Sem-B A.Y: 2023-24

PRE-REQUISITE: Basic Knowledge of Programming.

Course Educational Objective: The Objective of the Python course is to lead the students from the basics of writing and running Python scripts in problem-solving and to design and implement the modules and understands the working of classes and objects in python.

COURSE OUTCOMES (COs): At the end of the course, students are able to:

| CO 1 | Identify various programming constructs available in Python and apply them in solving computational problems. ( <b>Apply - L3</b> ) |
|------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO 2 | Demonstrate data structures available in Python and apply them in solving computational problems. ( <b>Apply - L3</b> )             |
| CO 3 | Implement modular programming, string manipulations, and Python Libraries (Apply - L3)                                              |
| CO 4 | Improve individual/teamwork skills, communication & report writing skills with ethical values.                                      |

#### **COURSE ARTICULATION MATRIX**(Correlation betindividual/teamwork:

| COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 |     |     |     | 2   | 3   |     |     |     |     |      |      |      |      |      |      |
| CO2 |     |     |     | 2   | 3   |     |     |     |     |      |      |      |      | 2    |      |
| CO3 |     |     |     | 2   | 3   |     |     |     |     |      |      |      |      | 2    |      |
| CO4 |     |     |     |     |     |     |     |     | 3   | 3    |      |      |      |      |      |

**Note:** Enter Correlation Levels **1** or **2** or **3**. If there is no correlation, **put'-' 1-** Slight (Low), **2** – Moderate (Medium), **3** - Substantial (High).

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): Section B

| S. No. | Topicstobecovered                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction: Language basics and example problems ( Two weeks) | 3                             | 11-8-2023                          |                                 | TLM4                            |                       |

| 2.       | Introduction: Language basics and example problems ( Two weeks) | 3  | 18-8-2023                     |                           | TLM4 |
|----------|-----------------------------------------------------------------|----|-------------------------------|---------------------------|------|
| 3.       | Module 1: Exercise Programs on Lists.                           | 3  | 25-9-2023&<br>1-9-2023        |                           | TLM4 |
| 4.       | Module 2: Exercise Programs on Tuples                           | 3  | 8-9-2023&15-<br>9-2023        |                           | TLM4 |
| 5.       | Module 3: Exercise<br>Programs on Sets                          | 3  | 22-9-2023                     |                           | TLM4 |
| 6.       | Module 4: Exercise Programs on Dictionaries                     | 3  | 29-9-2023                     |                           | TLM4 |
| 7.       | Module 5: Exercise Programs on functions and recursion.         | 3  | 13-10-2023                    |                           | TLM4 |
| 8.       | Module 6: Exercise programs on Strings                          | 3  | 27-10-2023                    |                           | TLM4 |
| 9.       | Module 7:Exercise Programs on Regular Expressions               | 3  | 3-11-2023                     |                           | TLM4 |
| 10.      | Module 8:Exercise Programs on Matplot Library                   | 3  | 10-11-<br>2023&17-11-<br>2023 |                           | TLM4 |
| 11.      | Lab Internal                                                    | 3  | 24-11-2023                    |                           | TLM4 |
| No. of c | lasses required to complete                                     | 33 |                               | No of<br>classes<br>taken | 33   |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |  |

# PART-C

#### PROGRAMME OUTCOMES (POs):

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |

| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                  |
| PO 8  | <b>Ethics</b> : Apply ethical principles and committo professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                  |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                              |
| PO 12 | <b>Life-longlearning</b> : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                  |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                               |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                                |

PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using an open-source programming environment for the success of the organization. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and                                                                                              |
| F30 2 | IoT as per society's needs.                                                                                                                                                          |
| PSO 3 | To inculcate an ability to analyze, design, and implement database applications.                                                                                                     |

| Course Instructor | Course Coordinator          | Module Coordinator   | HOD                |
|-------------------|-----------------------------|----------------------|--------------------|
| Mr.P.Somaraju     | Dr. Y . Vijay Bhaskar Reddy | Dr. K. Naga Prasnthi | Dr. S. Pichi Reddy |
|                   |                             |                      |                    |

# HARD WORK PAYS

#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### DEPARTMENT OF MECHANICAL ENGINEERING

# COURSE HANDOUT PART-A

Name of Course Instructor : Mr.A. NAGESWARA RAO/Mrs.B.Kamala Priya

Mr.M.Oliva

Course Name & Code : Technical Drawing using Drafting Package Lab (20MES1)

L-T-P Structure : 1-0-2 Credits : 2
Program/Sem/Sec : B.Tech., Mech., III-Sem., B/S A.Y : 2023-24

**PRE-REQUISITE** : Engineering Graphics

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The main objective of this course is to improve the skill sets of students in drafting packages (Auto CAD/CATIA) and enable them to draw the diagrams related to mechanical engineering components/applications.

COURSE OUTCOMES (COs): At the end of the course, the student shall be able to

| CO 1 | Understand                                                                  |        |              | basics     | for   | 2D     | sketches   | used     | in  | industries |
|------|-----------------------------------------------------------------------------|--------|--------------|------------|-------|--------|------------|----------|-----|------------|
| COI  | (Understand                                                                 | ding - | L2)          |            |       |        |            |          |     |            |
| CO 2 | Draw the machine components using 3D modelling commands. (Applying -L3)     |        |              |            |       |        |            |          |     |            |
| CO 3 | Edit the 3D solid Models using solid editing commands. (Understanding - L2) |        |              |            |       |        |            |          |     |            |
| CO 4 | Extract the O                                                               | rthog  | raphic views | s of the r | nodel | s in V | Vire Frame | , Surfac | e & | Solid      |
| LU 4 | Modelling. (A                                                               | pply   | ing -L3)     |            |       |        |            |          |     |            |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PS01 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   |     |     |     | 2   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO2 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO3 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |
| CO4 | 2   |     |     |     | 3   |     |     |     |     | 2    |      | 1    |      | 3    | 3    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1-Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): Section-A

| S.No. | Programs to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.    | Introduction to Technical<br>Drawing using Drafting<br>Package-CEO&COs | 04                            | 07.08.2023                         |                                 | TLM2                            | CO-<br>1,2,3,4             |                       |
| 2.    | Demonstration to<br>AutoCAD Software                                   | 04                            | 14.08.2023                         |                                 | TLM4                            | CO-<br>1,2,3,4             |                       |
| 3.    | Exercise on Basic Drawing Commands (Exp-1)                             | 04                            | 21.08.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 4.    | Exercise on Modify<br>Commands (Exp-2)                                 | 04                            | 28.08.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 5.    | Exercise on isometric views (Exp-3)                                    | 04                            | 04.09.2023                         |                                 | TLM4                            | CO-1                       |                       |
| 6.    | Exercise on 3D Modelling<br>Commands-I ( <b>Exp-4</b> )                | 04                            | 11-09-2023                         |                                 | TLM4                            | CO-2                       |                       |
| 7.    | Exercise on 3D Modelling Commands-II (Exp-5)                           | 04                            | 25-09-2023                         |                                 | TLM4                            | CO-2                       |                       |
|       | MID-I EXA                                                              | MINATIONS                     | (3-10-23 TO                        | 9-10-23)                        |                                 |                            |                       |
| 8.    | Exercise on 3D Modelling Commands-III ( <b>Exp-6</b> )                 | 04                            | 16-10-2023                         |                                 | TLM4                            | CO-2                       |                       |
| 9.    | Exercise on 3D Solid Editing Commands-I (Exp-7)                        | 04                            | 30-10-2023                         |                                 | TLM4                            | CO-3                       |                       |
| 10.   | Exercise on 3D Solid Editing Commands-II (Exp-8)                       | 04                            | 20-10-2023                         |                                 | TLM4                            | CO-3                       |                       |
| 11.   | Extraction of Wire-Frame & Solid Models from 3D Models (Exp-9)         | 04                            | 06-11-2023                         |                                 | TLM4                            | CO-4                       |                       |
| 12.   | Extraction of Ortho<br>Graphics Views from 3D<br>model-I (Exp-10)      | 01                            | 13-11-2023                         |                                 | TLM4                            | CO-4                       |                       |
| 13.   | Repetition                                                             | 04                            | 20-11-2023                         |                                 | TLM4                            | CO-4                       |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |

#### LIST OF EXPERIMENTS:

| Exp. No. | Name of the Experiment                                 | Related CO |
|----------|--------------------------------------------------------|------------|
| MES-1    | Exercise on Basic Drawing Commands                     | CO1        |
| MES2     | Exercise on Modify Commands                            | CO1        |
| MES3     | Exercise on isometric views                            | CO1        |
| MES4     | Exercise on 3D Modelling Commands-I                    | CO2        |
| MES5     | Exercise on 3D Modelling Commands-II                   | CO2        |
| MES6     | Exercise on 3D Modelling Commands-III                  | CO2        |
| MES7     | Exercise on 3D Solid Editing Commands-I                | CO3        |
| MES8     | Exercise on 3D Solid Editing Commands-II               | CO3        |
| MES9     | Extraction of Wire-Frame & Solid Models from 3D Models | CO4        |
| MES10    | Extraction of Ortho Graphics Views from 3D model-I     | CO4        |

# NOTIFICATION OF CYCLES

| Cycle   | Exp. No. | Name of the Experiment                                 | Related CO |
|---------|----------|--------------------------------------------------------|------------|
| Cycle-1 | MES-1    | Exercise on Basic Drawing Commands                     | CO1        |
|         | MES2     | Exercise on Modify Commands                            | CO1        |
|         | MES3     | Exercise on isometric views                            | CO1        |
| Cycle-2 | MES4     | Exercise on 3D Modelling Commands-I                    | CO2        |
|         | MES5     | Exercise on 3D Modelling Commands-II                   | CO2        |
|         | MES6     | Exercise on 3D Modelling Commands-III                  | CO2        |
| Cycle-3 | MES7     | Exercise on 3D Solid Editing Commands-I                | CO3        |
|         | MES8     | Exercise on 3D Solid Editing Commands-II               | CO3        |
| Cycle-4 | MES9     | Extraction of Wire-Frame & Solid Models from 3D Models | CO4        |
|         | MES10    | Extraction of Ortho Graphics Views from 3D model-I     | CO4        |

# PART-C

#### PROGRAMME OUTCOMES (POs):

| P01  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PO2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |  |
| P03  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |  |  |  |  |
| P04  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |  |
| PO5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                                 |  |  |  |  |
| P06  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice                                                                |  |  |  |  |
| P07  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |  |
| P08  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |  |
| P09  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |  |
| PO10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |  |
| P011 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |  |  |
| P012 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |  |  |  |  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal      |  |  |
|-------|----------------------------------------------------------------------------------------|--|--|
|       | systems.                                                                               |  |  |
|       | To apply the principles of manufacturing technology, scientific management towards     |  |  |
| PSO 2 | improvement of quality and optimization of engineering systems in the design, analysis |  |  |
|       | and manufacturability of products.                                                     |  |  |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of       |  |  |
|       | performance of various systems relating to transmission of motion and power,           |  |  |
|       | conservation of energy and other process equipment.                                    |  |  |

| Course Instructor   | Course Coordinator | Module Coordinator | HOD                |
|---------------------|--------------------|--------------------|--------------------|
| Mr. A Nageswara Rao | Mr. K.V.Viswanadh  | Dr.B.Sudheer Kumar | M.B.S.SreekarReddy |