

# DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

### PART-A

Name of Course Instructor Course Name & Code L-T-P Structure Program/Sem/Sec 2021-22 : Dr.P.Ravindra Kumar : 20ME17 : 3-1-0 Credits : 3 : B.Tech., Mech Engg., VI-Sem., Sections- A A.Y :

**PRE-REQUISITE:** Thermodynamics, Applied Thermodynamics

### COURSE EDUCATIONAL OBJECTIVES (CEOs):

To learn the physical mechanisms on modes of heat transfer, differential equations in heat transfer applications and the significance of Non-Dimensional Numbers.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to

| CO1        | Understand the basic heat transfer principles and their practical relevance in Planes, |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | Cylinders and Spherical components. (Understanding - L2).                              |  |  |  |  |  |  |
| CO2        | Analyze steady and unsteady state heat transfer concepts and fins. (Analyzing – L4).   |  |  |  |  |  |  |
| CO3        | Formulate the expressions to solve free and forced convection problems related to      |  |  |  |  |  |  |
|            | external and internal flows. (Applying -L3).                                           |  |  |  |  |  |  |
| CO4        | Apply the concepts of heat transfer in boiling, condensation, and radiation thermal    |  |  |  |  |  |  |
|            | systems. (Applying -L3).                                                               |  |  |  |  |  |  |
| <b>CO5</b> | Design the simple heat exchanger for engineering applications using the data           |  |  |  |  |  |  |
|            | handbook. (Analyzing – L4).                                                            |  |  |  |  |  |  |

### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1        | 3   | 2   | 1   | -   | -   | -   | -          | -   | -   | -    | -    | 2    | 1    |      | 1    |
| CO2        | 2   | 3   | 2   | 3   | -   | -   | -          | -   | -   | -    | -    | 2    | 2    |      | -    |
| CO3        | 3   | 2   | 3   | 2   | -   | -   | -          | -   | -   | -    | -    | 2    | 3    |      | -    |
| <b>CO4</b> | 3   | 2   | 2   | 1   | -   | -   | -          | -   | -   | -    | -    | 2    | 3    |      | 2    |
| CO5        | 2   | 3   | 3   | 3   | -   | -   | -          | 3   | -   | -    | -    | 3    | 2    |      | 3    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

### TEXTBOOKS

**T1.** R.C.Sachdeva - Fundamentals of Engineering Heat and Mass Transfer -New Age Science Publishers, 3nd Edition, 2009.

**T2.** Yunus. A. Cengel, Heat & Mass Transfer-A Practical Approach – Tata McGraw Hill, 4 edition, 2012.

T3. P.Holman, Heat transfer - Tata McGraw-Hill, 9th Edition, 2010

#### **REFERENCE BOOKS:**

| 1 | M.NecatiOzisik, Heat Transfer- A basic Approach,4thEdition, McGraw-Hill book     |  |  |  |  |  |  |
|---|----------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | company, 1985.                                                                   |  |  |  |  |  |  |
| 2 | P.K.Nag, Heat and Mass Transfer- TMH 2ndEdition, 2007.                           |  |  |  |  |  |  |
| 3 | P.S.Ghoshdastidar, Heat Transfer - Oxford Higher Education 6th Edition 2011.     |  |  |  |  |  |  |
| 4 | C.P.Kothandaraman and Subramanian, Heat and Mass Transfer, New Age International |  |  |  |  |  |  |
|   | Publications 7thEdition 2010.                                                    |  |  |  |  |  |  |

# PART-B

### COURSE DELIVERY PLAN (LESSON PLAN):

|       | UNIT-I: INTRODUCTION, ONE-                                                                                    |                               | 1                                  | -                               |                                 |                       |
|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| S.No. | Topics to be covered                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
| 1.    | Introduction to Course and Course<br>Outcomes (COs) and POs articulation<br>matrix.                           | 1                             | 26-12-2022                         |                                 | TLM1                            |                       |
| 2.    | Introduction of five Units importance                                                                         | 1                             | 27-12-2022                         |                                 | TLM1                            |                       |
| 3.    | Introduction to heat transfer and its<br>applications, Basic Modes of Heat<br>Transfer                        | 1                             | 28-12-2022                         |                                 | TLM1,<br>TLM2<br>TLM5           |                       |
| 4.    | Basic laws of Heat Transfer-Steady,<br>Unsteady and Periodic Heat Transfer                                    | 1                             | 29-12-2022                         |                                 | TLM1,<br>TLM4                   |                       |
| 5.    | General heat conduction equation in<br>Cartesian coordinate system and its<br>simplifications.                | 1                             | 31-12-2022                         |                                 | TLM1                            |                       |
| 6.    | Fourier's law of heat conduction;<br>Thermal conductivity                                                     | 1                             | 2-01-2023                          |                                 | TLM1,<br>TLM2                   |                       |
| 7.    | General heat conduction equation in cylindrical coordinate system and its simplifications.                    | 1                             | 3-01-2023                          |                                 | TLM1                            |                       |
| 8.    | Tutorial-1                                                                                                    | 1                             | 4-01-2023                          |                                 | TLM3                            |                       |
| 9.    | General heat conduction equation in spherical coordinate system and its simplifications.                      | 1                             | 5-01-2023                          |                                 | TLM1,<br>TLM2                   |                       |
| 10.   | Heat conduction through plane wall<br>and cylinder with constant thermal<br>conductivity– Numerical Problems. | 1                             | 7-01-2023                          |                                 | TLM1,<br>TLM2                   |                       |
| 11.   | Electrical analogy, thermal resistance, and overall heat transfer coefficient.                                | 1                             | 9-01-2023                          |                                 | TLM1,<br>TLM2<br>TLM5           |                       |

### UNIT-I: INTRODUCTION, ONE- DIMENSIONAL STEADY STATE CONDUCTION

| 12.   | Numerical Problems on thermal<br>resistance and overall heat transfer<br>coefficient           | 1       | 10-01-2023 | TLM1,<br>TLM2         |  |
|-------|------------------------------------------------------------------------------------------------|---------|------------|-----------------------|--|
| 13.   | Heat transfer through composite slab<br>and cylinder, Numerical Problems.<br><b>Tutorial-2</b> | 1       | 11-01-2023 | TLM1,<br>TLM2         |  |
| 14.   | Critical radius of insulation for cylinder, Sphere and Applications.                           | 1       | 18-01-2023 | TLM1,<br>TLM2         |  |
| 15.   | Numerical Problems on critical radius<br>of insulation, Assignment-1<br>Questions.             | 1       | 19-01-2023 | TLM1<br>TLM2          |  |
| 16.   | Tutorial-3 – Numerical Problems                                                                | 1       | 21-01-2023 | TLM3                  |  |
| No. o | f classes required to complete UNI                                                             | T-I: 16 |            | No. of classes taken: |  |

### UNIT-II: ONE DIMENSIONAL STEADY AND TRANSIENT STATE HEAT CONDUCTION:

| S.No. | Topics to be covered                                                                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Heat flow through a plane wall with<br>variable thermal conductivity,<br>Numerical Problems.                          | 1                             | 23-01-2023                         |                                 | TLM1                            |                       |
| 2.    | Heat flow through the cylinder with variable thermal conductivity, Numerical Problems.                                | 1                             | 24-01-2023                         |                                 | TLM1                            |                       |
| 3.    | Derivation on Uniform Internal heat generation in slabs and cylinders                                                 | 1                             | 25-01-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 4.    | Numerical Problems on Uniform<br>Internal heat generation in slabs.                                                   | 1                             | 28-01-2023                         |                                 | TLM1                            |                       |
| 5.    | Numerical Problems on Uniform<br>Internal heat generation in cylinders.                                               | 1                             | 29-01-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Tutorial-4                                                                                                            | 1                             | 30-01-2023                         |                                 | TLM3                            |                       |
| 7.    | Extended surfaces and their applications; Thermal analysis of long Fins                                               | 1                             | 31-1-2023                          |                                 | TLM1,<br>TLM4                   |                       |
| 8.    | Thermal analysis of short fins with<br>insulated tip, Fin efficiency and<br>effectiveness                             | 1                             | 01-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 9.    | Numerical Problems                                                                                                    | 1                             | 02-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 10.   | Numerical Problems - Tutorial-5                                                                                       | 1                             | 04-02-2023                         |                                 | TLM3                            |                       |
| 11.   | Systems with negligible internal<br>Resistance (Lumped Heat Analysis),<br>Significance of Biot and Fourier<br>Numbers | 1                             | 06-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 12.   | Numerical Problems                                                                                                    | 1                             | 07-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 13.   | Heisler chart solutions                                                                                               | 1                             | 08-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 14.   | Heisler chart solutions – Numerical Problems <b>Tutorial-6</b>                                                        | 1                             | 09-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 15.   | Basics of convective (Forced and<br>Natural) heat transfer and<br>Applications.                                       | 1                             | 13-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 16.   | Dimensional analysis and<br>Buckingham Pi theorem applied to<br>Forced Convection.                                    | 1                             | 14-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |

| 17.                                                                   | Significance of Non-Dimensional Numbers.                                                             | 1 | 15-02-2023 | TLM1,<br>TLM2 |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|------------|---------------|--|
| 18.                                                                   | Dimensional analysis and<br>Buckingham Pi theorem applied to<br>Natural Convection <b>Tutorial-7</b> | 1 | 16-02-2023 | TLM3          |  |
| No. of classes required to complete UNIT-II: 18 No. of classes taken: |                                                                                                      |   |            |               |  |

#### **UNIT-III: CONVECTION**

| S.No. | Topics to be covered                                                                                                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Forced Convection heat transfer -<br>Introduction The concept of boundary<br>layer; Velocity and Thermal<br>Boundary Layers | 1                             | 27-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 2.    | Numerical Problems.                                                                                                         | 1                             | 28-02-2023                         |                                 | TLM1,                           |                       |
| 3.    | Tutorial-8                                                                                                                  | 1                             | 01-03-2023                         |                                 | TLM3                            |                       |
| 4.    | Forced convection analysis in external<br>flows (Flow over a Flat Plate):<br>Laminar and turbulent flows.                   | 1                             | 02-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 5.    | Forced convection analysis in internal<br>flows (Flow through circular pipe):<br>Laminar and turbulent flows.               | 1                             | 04-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Numerical Problems on Forced Convection.                                                                                    | 1                             | 06-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 7.    | Reynolds Colburn Analogy.                                                                                                   | 1                             | 07-03-2023                         |                                 | TLM1                            |                       |
| 8.    | Tutorial-9                                                                                                                  | 1                             | 8-03-2023                          |                                 | TLM3                            |                       |
| 9.    | Natural convection: Development of<br>Hydrodynamic and thermal boundary<br>layer along vertical plate.                      | 1                             | 9-03-2023                          |                                 | TLM1,<br>TLM2<br>TLM4           |                       |
| 10.   | Development of Hydrodynamic and<br>thermal boundary layer along vertical<br>plate.                                          | 1                             | 11-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 11.   | Numerical Problems                                                                                                          | 1                             | 13-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 12.   | Tutorial-10                                                                                                                 | 1                             | 14-03-2023                         |                                 | TLM3                            |                       |
| No. o | f classes required to complete UN                                                                                           | IT-III:12                     |                                    | No. of class                    | sses taken:                     |                       |

# UNIT-IV: BOILING AND CONDENSATION, THERMAL RADIATION

| S.No. | Topics to be covered                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to boiling heat transfer and applications.         | 1                             | 15-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 2.    | Pool Boiling, Different regimes of boiling; Critical heat flux. | 1                             | 16-03-2023                         |                                 | TLM1,<br>TLM2<br>TLM5           |                       |
| 3.    | Numerical problems on nucleate boiling                          | 1                             | 18-03-2023                         |                                 | TLM1,                           |                       |
| 4.    | Critical heat flux conditions.                                  | 1                             | 20-03-2023                         |                                 | TLM2                            |                       |
| 5.    | Condensation: Film wise and drop wise condensation              | 1                             | 21-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Laminar film wise condensation on Vertical plate                | 1                             | 23-03-2023                         |                                 | TLM1,                           |                       |

| 7.    | Numerical Problems - Tutorial-11                               | 1 | 25-03-2023            | TLM3          |
|-------|----------------------------------------------------------------|---|-----------------------|---------------|
| 8.    | Introduction and applications of Thermal Radiation             | 1 | 27-03-2023            | TLM1,<br>TLM2 |
| 9.    | Emissive Power, Absorption,<br>Reflection and Transmission and | 1 | 28-03-2023            | TLM1,<br>TLM2 |
| 10.   | Definitions related to radiation                               | 1 | 29-03-2023            | TLM2          |
| 11.   | Concept of black and non-black bodies                          | 1 | 1-04-2023             | TLM1,<br>TLM2 |
| 12.   | Laws of black body radiation                                   | 1 | 3-04-2023             | TLM5          |
| 13.   | Emissivity,<br>Kirchhoff's law                                 | 1 | 5-04-2023             | TLM1,         |
| 14.   | Shape Factors                                                  | 1 | 06-04-2023            | TLM2          |
| 15.   | Radiation heat exchange between two black isothermal surfaces, | 1 | 08-04-2023            | TLM1,<br>TLM2 |
| 16.   | Nonblack infinite parallel plates;                             | 1 | 10-04-2023            | TLM1,<br>TLM2 |
| No. o | f classes required to complete UNI                             |   | No. of classes taken: |               |

### **UNIT-V: HEAT EXCHANGERS**

| S.No. | Topics to be covered                                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction-Classification of heat<br>exchangers - Flow arrangement,<br>Temperature distribution,  | 1                             | 11-04-2023                         |                                 | TLM1,<br>TLM2<br>TLM6           |                       |
| 2.    | Applications of Heat Exchangers                                                                     | 1                             | 12-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 3.    | Overall heat transfer coefficient-<br>Fouling factor                                                | 1                             | 13-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 4.    | LMTD method of Heat exchanger<br>analysis- Parallel flow, Numerical<br>Problems                     | 1                             | 15-04-2023                         |                                 | TLM1,<br>TLM2<br>TLM4           |                       |
| 5.    | LMTD method of Heat exchanger<br>analysis- Counter flow, Numerical<br>Problems - <b>Tutorial-12</b> | 1                             | 17-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Correction factor for LMTD for use<br>with Multi pass and Cross flow Heat<br>Exchangers             | 1                             | 18-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 7.    | Effectiveness - NTU method of Heat<br>Exchanger Analysis-Applications of<br>Heat Exchangers         | 1                             | 19-04-2023                         |                                 | TLM3                            |                       |
| 8.    | Effectiveness - NTU method of Heat<br>Exchanger Analysis-Applications of<br>Heat Exchangers         | 1                             | 20-04-2023                         |                                 | TLM1,<br>TLM5                   |                       |
| 9.    | Tutorial-13                                                                                         | 1                             | 22-04-2023                         |                                 | TLM3                            |                       |
| No. o | of classes required to complete UN                                                                  | IT-V: 9                       |                                    | No. of class                    | sses taken:                     |                       |

| Teaching I | Teaching Learning Methods |      |                                 |  |  |  |  |  |
|------------|---------------------------|------|---------------------------------|--|--|--|--|--|
| TLM1       | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |
| TLM2       | РРТ                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |

| TLM3      | Tutorial                                        | TLM6                 | Group Discussion/Project |  |  |  |  |  |
|-----------|-------------------------------------------------|----------------------|--------------------------|--|--|--|--|--|
| EVAL      | PART-C<br>EVALUATION PROCESS (R17 Regulations): |                      |                          |  |  |  |  |  |
| Evaluati  | on Task                                         |                      | Marks                    |  |  |  |  |  |
| Assignme  | Assignment-I (Unit-I)                           |                      |                          |  |  |  |  |  |
| Assignme  | ent-II (Unit-II)                                |                      | A2=5                     |  |  |  |  |  |
| I-Mid Ex  | amination (Units-I & II)                        |                      | M1=20                    |  |  |  |  |  |
| I-Quiz Ex | xamination (Units-I & II)                       |                      | Q1=10                    |  |  |  |  |  |
| Assignme  | ent-III (Unit-III)                              |                      | A3=5                     |  |  |  |  |  |
| Assignme  | Assignment-IV (Unit-IV)                         |                      |                          |  |  |  |  |  |
| Assignme  | Assignment-V (Unit-V)                           |                      |                          |  |  |  |  |  |
| II-Mid E  | xamination (Units-III, IV & V)                  |                      | M2=20                    |  |  |  |  |  |
| II-Quiz E | Examination (Units-III, IV & V)                 |                      | Q2=10                    |  |  |  |  |  |
| Attendan  | ce                                              |                      | B=5                      |  |  |  |  |  |
| Assignme  | ent Marks = Best Four Average of                | of A1, A2, A3, A4, A | 5 A=5                    |  |  |  |  |  |
| Mid Mar   | ks =75% of Max (M1, M2) +25%                    | o of Min (M1, M2)    | M=20                     |  |  |  |  |  |
| Quiz Mar  | rks =75% of Max (Q1, Q2) +25%                   | o of Min(Q1, Q2)     | B=10                     |  |  |  |  |  |
| Cumulati  | Cumulative Internal Examination (CIE): A+B+M+Q  |                      |                          |  |  |  |  |  |
| Semester  | End Examination (SEE)                           |                      | 60                       |  |  |  |  |  |
| Total Ma  | rks = CIE + SEE                                 |                      | 100                      |  |  |  |  |  |

# PART-D

# PROGRAMME OUTCOMES (POs):

| PO 1         | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                                                                           |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|              | fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                          |  |  |  |  |  |  |  |
| PO 2         | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. |  |  |  |  |  |  |  |
| PO 3         | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and                                                                                                                                            |  |  |  |  |  |  |  |
| 105          | design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.                                        |  |  |  |  |  |  |  |
| PO 4         | Conduct investigations of complex problems: Use research-based knowledge and research                                                                                                                                                     |  |  |  |  |  |  |  |
|              | methods including design of experiments, analysis and interpretation of data, and synthesis of the                                                                                                                                        |  |  |  |  |  |  |  |
|              | information to provide valid conclusions.                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| <b>PO 5</b>  | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                                                                                                                                |  |  |  |  |  |  |  |
|              | engineering and IT tools including prediction and modelling to complex engineering activities                                                                                                                                             |  |  |  |  |  |  |  |
|              | with an understanding of the limitations                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <b>PO 6</b>  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                                                                                                                                  |  |  |  |  |  |  |  |
|              | societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to                                                                                                                                      |  |  |  |  |  |  |  |
|              | the professional engineering practice                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| <b>PO 7</b>  | Environment and sustainability: Understand the impact of the professional engineering                                                                                                                                                     |  |  |  |  |  |  |  |
|              | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for                                                                                                                                          |  |  |  |  |  |  |  |
|              | sustainable development.                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <b>PO 8</b>  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms                                                                                                                                         |  |  |  |  |  |  |  |
|              | of the engineering practice.                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| PO 9         | Individual and teamwork: Function effectively as an individual, and as a member or leader in                                                                                                                                              |  |  |  |  |  |  |  |
|              | diverse teams, and in multidisciplinary settings.                                                                                                                                                                                         |  |  |  |  |  |  |  |
| PO 10        | Communication: Communicate effectively on complex engineering activities with the                                                                                                                                                         |  |  |  |  |  |  |  |
|              | engineering community and with society at large, such as, being able to comprehend and write                                                                                                                                              |  |  |  |  |  |  |  |
|              | effective reports and design documentation, make effective presentations, and give and receive                                                                                                                                            |  |  |  |  |  |  |  |
|              | clear instructions.                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| PO 11        | Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                                                            |  |  |  |  |  |  |  |
|              | engineering and management principles and apply these to one's own work, as a member and                                                                                                                                                  |  |  |  |  |  |  |  |
| <b>DO 16</b> | leader in a team, to manage projects and in multidisciplinary environments.                                                                                                                                                               |  |  |  |  |  |  |  |
| PO 12        | Life-long learning: Recognize the need for and have the preparation and ability to engage in                                                                                                                                              |  |  |  |  |  |  |  |
|              | independent and life-long learning in the broadest context of technological change.                                                                                                                                                       |  |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |

### **PROGRAMME SPECIFC OUTCOMES (PSOs):**

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards<br>improvement of quality and optimization of engineering systems in the design, analysis and |
|       |                                                                                                                                                                                  |
|       | manufacturability of products.                                                                                                                                                   |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of                                                                                  |
|       | various systems relating to transmission of motion and power, conservation of energy and other                                                                                   |
|       | process equipment.                                                                                                                                                               |

| Course Instructor     | Course Coordinator    | Module Coordinator | HOD                |
|-----------------------|-----------------------|--------------------|--------------------|
| (Dr.P.Ravindra Kumar) | (Dr.P.Ravindra Kumar) | (Dr.P.Vijay Kumar) | (Dr.S.Pichi Reddy) |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

**DEPARTMENT OF MECHANICAL ENGINEERING** 

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor: Mr.K.Venkateswara Reddy, Assistant Professor

| Course Name & Code | : CAD/CAM & 20ME18  | Regulation: R20        |
|--------------------|---------------------|------------------------|
| L-T-P Structure    | : 3-0-0             | Credits: 03            |
| Program/Sem/Sec    | : B.Tech VI Sem (A) | <b>A.Y.:</b> 2022-2023 |

PREREQUISITE: Design of Machine Elements -I, Machine Tools and Metrology

### COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to familiarize the principles of geometric modeling,

numerical control and part programming.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| C01 | Comprehend the principles of CAD/CAM for design and manufacturing (Understanding -L2)                      |
|-----|------------------------------------------------------------------------------------------------------------|
| CO2 | Formulate mathematical equations for geometrical entities like curves, surface, and solids. (Applying -L3) |
| CO3 | Write the program for part profiles to accomplish numerical control machining.<br>(Applying -L3)           |
| 604 | Discuss the codes for different parts using GT and apply in automated manufacturing                        |
| CO4 | systems. (Understanding -L2)                                                                               |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04   | P05 | P06 | P07 | P08 | P09    | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|------|
| CO1            | 1   |     |     | 2     |     |     |     |     |        |      |      |      |      | 2    |      |
| CO2            | 1   | 1   | 2   | 2     | 1   |     |     |     |        |      |      | 1    |      | 3    |      |
| CO3            | 1   | 1   | 1   |       | 1   |     |     |     |        |      |      | 1    |      | 3    |      |
| CO4            |     | 2   |     | 1     |     |     |     |     |        |      |      |      |      | 2    |      |
| CO5            | 1   |     |     |       | 1   |     |     |     |        |      |      |      |      | 3    |      |
| <b>1</b> - Low |     |     | 2   | -Medi | ium |     |     | 3   | - High |      |      |      |      |      |      |

### **TEXTBOOKS:**

T1P.N Rao ,CAD/CAM Principle and applications, Tata McGraw Hill Education Private Ltd, New<br/>Delhi,8<sup>th</sup> edition 2013.

Ibrahim Zeid, Mastering CAD/CAM, TATA McGraw-Hill publishing CO.Ltd, NewDelhi 2011.

Т2

#### **REFERENCE BOOKS:**

| R1 | Mikel P.Groover and Emory W.Zimmers, CAD/CAM-Prentice Hall of India Private Ltd. New Delhi, 20 <sup>th</sup> |
|----|--------------------------------------------------------------------------------------------------------------|
|    | edition, May 2010.                                                                                           |
| R2 | P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM, New Age International Publishers,3 <sup>rd</sup>           |
|    | edition 2010.                                                                                                |
| R3 | Mikel P.Groover, Automaiton, Production Systems and Computer Integrated Manufacturing,                       |
|    | Prentice Hall of India Private Ltd. New Delhi, 3 <sup>rd</sup> edition, May 2008.                            |
| R4 | Ibrahim Zeid and R. Sivasubramanian, CAD/CAM theory and practice, Tata McGraw Hill Publishing                |
|    | Co. Ltd,New Delhi 2009.                                                                                      |
| R5 | Tien-Chienchang, Richard A.Wysk and HSU-Pin (Ben) Wang, —Computer Aided Manufacturing, 3 <sup>rd</sup>       |
|    | Edition, 2006                                                                                                |

# PART-B

### COURSE DELIVERY PLAN (LESSON PLAN): Section - A

### **UNIT-I: FUNDAMENTALS OF CAD, COMPUTER GRAPHICS**

| S.<br>No. | Topics to be covered                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to CAD/CAM                             | 1                             | 27-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 2.        | Product Cycle Revised with CAD/CAM                  | 1                             | 28-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 3.        | Reasons for implementing CAD                        | 1                             | 29-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 4.        | Creating Manufacturing database & Benefits of CAD   | 1                             | 30-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 5.        | Tutorial-I                                          | 1                             | 31-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 6.        | Computer Graphics- Introduction, Database structure | 1                             | 03-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 7.        | Functions of a graphics package                     | 1                             | 04-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 8.        | Raster scan graphics                                | 1                             | 05-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 9.        | Concatenated transformations.                       | 1                             | 06-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 10.       | Translation, scaling,                               | 1                             | 07-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 11.       | Reflection, rotation                                | 1                             | 10-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 12.       | Problems on Transformations                         | 1                             | 11-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 13.       | Tutorial-II                                         | 1                             | 12-01-2023                         |                                 | TLM1/TLM2                       |                       |

### UNIT-II: GEOMETRIC MODELING: REPRESENTATION OF CURVES, REPRESENTATION OF SURFACES AND SOLIDS

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 14.       | Geometric Modelling: Introduction              | 1                             | 18-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 15.       | Wireframe Modelling: Entities wireframe models | 1                             | 19-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 16.       | Parametric representation of analytical curves | 1                             | 20-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 17.       | Parametric representation of analytical curves | 1                             | 21-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 18.       | Hermite cubic spline curve                     | 1                             | 24-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 19.       | Bezier curves                                  | 1                             | 25-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 20.       | B-spline curves                                | 1                             | 27-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 21.       | Characteristics of Curves,<br>Problems         | 1                             | 28-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 22.       | Tutorial-III                                   | 1                             | 31-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 23.       | Surface representation: Entities               | 1                             | 01-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 24.       | Solid modelling                                | 1                             | 02-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 25.       | B-Rep                                          | 1                             | 03-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 26.       | CSG                                            | 1                             | 04-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 27.       | Tutorial-IV                                    | 1                             | 07-02-2023                         |                                 | TLM1/TLM2                       |                       |
| No.       | of classes required to complete U              | NIT-II: 14                    |                                    | No. of classe                   | s taken:                        |                       |

#### **UNIT-III: COMPUTER NUMERICAL CONTROL, PART PROGRAMMING**

| S.<br>No. | Topics to be covered                         | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 28.       | Numerical control: Introduction,<br>NC Modes | 1                             | 08-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 29.       | NC elements                                  | 1                             | 09-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 30.       | N C Coordinate systems                       | 1                             | 10-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 31.       | Structure of CNC machine tools               | 1                             | 11-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 32.       | Spindle design                               | 1                             | 14-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 33.       | spindle drives,                              | 1                             | 15-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 34.       | Feed drives,                                 | 1                             | 16-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 35.       | actuation systems                            | 1                             | 17-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 36.       | Tutorial-V                                   | 1                             | 28-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 37.       | CNC Part programming: fundamentals           | 1                             | 01-03-2023                         |                                 | TLM1/TLM2                       |                       |

| 38.   | Manual part programming         | 1                     | 02-03-2023 | TLM1/TLM2 |  |
|-------|---------------------------------|-----------------------|------------|-----------|--|
| 39.   | Computer Aided part programming | 1                     | 03-03-2023 | TLM1/TLM2 |  |
| 40.   | Part programming examples       | 1                     | 04-03-2023 | TLM1/TLM2 |  |
| 41.   | examples                        | 1                     | 08-03-2023 | TLM1/TLM2 |  |
| 42.   | Tutorial-VI                     | 1                     | 09-03-2023 | TLM1/TLM2 |  |
| No. o | of classes required to complete | No. of classes taken: |            |           |  |

### UNIT-IV: GROUP TECHNOLOGY, FLEXIBLE MANUFACTURING SYSTEM

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 43.       | Group Technology                               | 1                             | 10-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 44.       | Coding and classification schemes-<br>OPITZ    | 1                             | 11-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 45.       | MICLASS, example for coding                    | 1                             | 14-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 46.       | CODE Systems, examples for coding              | 1                             | 15-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 47.       | Production Flow Analysis                       | 1                             | 16-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 48.       | Advantages and limitations                     | 1                             | 17-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 49.       | GT Machine cells, Benefits of GT               | 1                             | 18-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 50.       | CAPP- Retrieval and Generative                 | 1                             | 21-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 51.       | Tutorial-VII                                   | 1                             | 23-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 52.       | Flexible Manufacturing System:<br>Introduction | 1                             | 24-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 53.       | FMS equipment, FMS layouts, benefits           | 1                             | 25-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 54.       | FMS Planning and implementation                | 1                             | 28-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 55.       | FMS Planning and implementation                | 1                             | 29-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 56.       | Tutorial-VIII                                  | 1                             | 31-03-2023                         |                                 | TLM1/TLM2                       |                       |
| No.       | of classes required to complet                 | te UNIT-IV                    | /: 14                              | No. of classe                   | es taken:                       |                       |

# UNIT-V: COMPUTER AIDED QUALITY CONTROL, COMPUTER INTEGRATED MANUFACTURING SYSTEMS

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 57.       | CAQC: Introduction, The computers in QC        | 1                             | 01-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 58.       | Contact inspection methods                     | 1                             | 04-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 59.       | Non-Contact inspection<br>methods: Optical     | 1                             | 05-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 60.       | Non-Contact inspection<br>methods: non optical | 1                             | 06-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 61.       | Computer aided testing,                        | 1                             | 08-04-2023                         |                                 | TLM1/TLM2                       |                       |

| 62.   | CAQC with CAD/CAM                  | 1                     | 11-04-2023 | TLM1/TLM2 |  |
|-------|------------------------------------|-----------------------|------------|-----------|--|
| 63.   | CAQC with CAD/CAM                  | 1                     | 12-04-2023 | TLM1/TLM2 |  |
| 64.   | Tutorial-IX                        | 1                     | 13-04-2023 | TLM1/TLM2 |  |
| 65.   | CIM Introduction                   | 1                     | 14-04-2023 | TLM1/TLM2 |  |
| 66.   | CIM integration,<br>Implementation | 1                     | 15-04-2023 | TLM1/TLM2 |  |
| 67.   | Benefits of CIM                    | 1                     | 18-04-2023 | TLM1/TLM2 |  |
| 68.   | Lean manufacturing                 | 1                     | 19-04-2023 | TLM1/TLM2 |  |
| 69.   | Lean manufacturing                 | 1                     | 20-04-2023 | TLM1/TLM2 |  |
| 70.   | Tutorial-X                         | 1                     | 21-04-2023 | TLM1/TLM2 |  |
| No. o | f classes required to comp         | No. of classes taken: |            |           |  |

| Teaching | Teaching Learning Methods |                                   |                                    |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------------|------------------------------------|--|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 Demonstration (Lab/Field Vis |                                    |  |  |  |  |  |  |  |  |
| TLM2     | PPT                       |                                   | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6                              | Group Discussion/Project           |  |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks             |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              |                   |  |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |  |
| Semester End Examination (SEE)                                                       |                   |  |  |  |  |
| Total Marks = CIE + SEE                                                              | 100               |  |  |  |  |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| DEO 1                                                                                                                                      | To build a professional career and pursue higher studies with sound knowledge                                                   |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>PEO 1</b> To build a professional career and pursue higher studies with sound known in Mathematics, Science and Mechanical Engineering. |                                                                                                                                 |  |  |  |  |  |  |  |
| DEO 2                                                                                                                                      | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities. |  |  |  |  |  |  |  |
| PEU 2                                                                                                                                      | become successful in multidisciplinary activities.                                                                              |  |  |  |  |  |  |  |
|                                                                                                                                            | To develop inquisitiveness towards good communication and lifelong learning.                                                    |  |  |  |  |  |  |  |

### **PROGRAMME OUTCOMES (POs):**

| IROU  | NAMME OUTCOMES (FOS):                                                                                                                                                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |
| PROG  | RAMME SPECIFIC OUTCOMES (PSOs):                                                                                                                                                                                                                                                                           |
|       | To apply the principles of thermal sciences to design and develop various                                                                                                                                                                                                                                 |

| PSO 1        | To apply the principles of thermal sciences to design and develop various        |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| F30 I        | thermal systems.                                                                 |  |  |  |  |  |  |  |  |
|              | To apply the principles of manufacturing technology, scientific management       |  |  |  |  |  |  |  |  |
| <b>PSO 2</b> | towards improvement of quality and optimization of engineering systems in the    |  |  |  |  |  |  |  |  |
|              | design, analysis and manufacturability of products.                              |  |  |  |  |  |  |  |  |
|              | To apply the basic principles of mechanical engineering design for evaluation of |  |  |  |  |  |  |  |  |
| <b>PSO 3</b> | performance of various systems relating to transmission of motion and power,     |  |  |  |  |  |  |  |  |
|              | conservation of energy and other process equipment.                              |  |  |  |  |  |  |  |  |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty |                   |                       |                       |                           |
| Signature              |                   |                       |                       |                           |



#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

**DEPARTMENT OF MECHANICAL ENGINEERING** 

# COURSE HANDOUT

# PART-A

| Name of Course Instructor   | : Dr. CH. Siva Sankara Babu              |                      |
|-----------------------------|------------------------------------------|----------------------|
| Course Name & Code          | : Design of Machine Elements-II & 20 ME1 | 9                    |
| L-T-P Structure             | : 2-1-0                                  | Credits: 3           |
| Program/Sem/Sec             | : B.Tech/VI/A                            | <b>A.Y.:</b> 2022-23 |
| <b>PREREQUISITE:</b> Design | of Machine Elements-I                    |                      |

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The main objective of this course is to understand and apply the standard procedure available for the design of mechanical components and IC engine components.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Select suitable bearings under different load, speed, and life conditions. (Applying - L3)       |
|-----|--------------------------------------------------------------------------------------------------|
| CO2 | Design internal combustion engine components for safe and continuous operation. (Applying - L3)  |
| CO3 | Select the belt and rope drives for elevators, cranes, and hoisting machinery. (Applying - L3)   |
| CO4 | Design the springs under static and dynamic loads. (Applying - L3)                               |
| CO5 | Estimate the performance parameters of the gears for various loading conditions. (Applying - L3) |

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8   | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----|-----|------------|-------|-----|------|------|------|------|------|------|
| CO1            | 2   | 2   | 3   | 1   | 1   |     |            |       |     |      |      | 1    | 1    | 1    | 3    |
| CO2            | 1   | 2   | 3   | 1   | 2   |     |            |       |     |      |      | 1    | 2    |      | 3    |
| <b>CO3</b>     | 3   | 2   | 3   |     | 1   | 1   |            |       |     |      |      | 1    |      | 1    | 3    |
| <b>CO4</b>     | 3   | 2   | 3   | 2   | 1   |     |            |       | 1   |      |      | 1    |      | •    | 3    |
| <b>CO5</b>     | 3   | 2   | 3   | 2   | 2   | 1   |            |       | 1   |      |      | 1    |      | 1    | 3    |
| <b>1</b> - Low |     |     |     |     |     |     | 2 – Me     | edium |     |      | 3 -  | High |      |      |      |

### **TEXTBOOKS:**

Bhandari V.B, Design of Machine Elements, 3rd Edition, TataMcGraw-Hill2010.
 Sundararajamoorthy T. V, Shanmugam. N, "Machine Design", Anuradha Publications,

**T2** Chennai, 2003.

### **REFERENCE BOOKS:**

- R1 Norton R.L—Design of Machinery, TataMcGraw-Hill Book Co, 2004.
- R2 Shigley J.E and Mischke C.R.—Mechanical Engineering Design<sup>I</sup>, TataMcGraw-Hill, 2003

#### HANDBOOKSTOBEALLOWED

1 Design Data book by PSG College of Technology, Coimbatore. Design Data Hand book for Mechanical Engineering by Mahadevan.K and K.Balaveera Reddy.

### PART-B

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

#### **UNIT-I: SLIDING CONTACT BEARINGS & ROLLING CONTACT BEARINGS**

| S.No.  | Topics to be covered                                                                                             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion |              | HOD<br>Sign<br>Weekly |
|--------|------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|--------------|-----------------------|
| 1.     | Introduction to Subject, CEO's and CO's                                                                          | 1                             | 26-12-2022                         |                                 | TLM1         |                       |
| 2.     | Introduction to Unit-1,<br><b>Bearings</b> –Introduction, Types                                                  | 1                             | 27-12-2022                         |                                 | TLM1<br>TLM2 |                       |
| 3.     | Lubricating Oils Properties, Materials used<br>for bearings and their properties                                 | 1                             | 29-12-2022                         |                                 | TLM1<br>TLM2 |                       |
| 4.     | <b>Journal Bearings</b> –Introduction, Types,<br>Dimensionless parameters                                        | 1                             | 30-12-2022                         |                                 | TLM1<br>TLM2 |                       |
| 5.     | Design procedure of journal bearing                                                                              | 1                             | 31-12-2022                         |                                 | TLM1         |                       |
| 6.     | Journal bearings - problems                                                                                      | 1                             | 02-01-2023                         |                                 | TLM4         |                       |
| 7.     | Dimensionless parameters used in the bearing design – problem                                                    | 1                             | 03-01-2023                         |                                 | TLM4         |                       |
| 8.     | Tutorial-1                                                                                                       | 1                             | 05-01-2023                         |                                 | TLM3         |                       |
| 9.     | <b>Rolling contact bearings-types</b> , bearing life, Materials used and designation of rolling contact bearings | 1                             | 06-01-2023                         |                                 | TLM1<br>TLM2 |                       |
| 10.    | Static load and dynamic load capacity                                                                            | 1                             | 07-01-2023                         |                                 | TLM1         |                       |
| 11.    | Selection of ball bearing - problems                                                                             | 1                             | 09-01-2023                         |                                 | TLM4         |                       |
| 12.    | Selection of roller bearing - problems                                                                           | 1                             | 10-01-2023                         |                                 | TLM4         |                       |
| 13.    | Tutorial-2                                                                                                       | 1                             | 12-01-2023                         |                                 | TLM3         |                       |
| 14.    | Cubic mean load derivation, Reliability of bearings - problems                                                   | 1                             | 16-01-2023                         |                                 | TLM4         |                       |
| 15.    | Assignment -1/ Quiz-1                                                                                            | 1                             | 17-01-2023                         |                                 | TLM6         |                       |
| No. of | classes required to complete UNIT-I                                                                              | 15                            | No. of class                       | ses taken:                      |              |                       |

# UNIT-II: IC ENGINE COMPONENTS: PISTON, CONNECTING ROD AND CRANK SHAFT

| S.No. | Topics to be covered                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to Unit-II, Engine Parts and working    | 1                             | 19-01-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 2.    | PISTON: Design procédure of piston                   | 1                             | 20-01-2023                         |                                 | TLM4                            |                       |
| 3.    | Piston design - problems                             | 1                             | 21-01-2023                         |                                 | TLM4                            |                       |
| 4.    | Piston design - problems                             | 1                             | 23-01-2023                         |                                 | TLM4                            |                       |
| 5.    | Cylinder design, cylinder liners-design              | 1                             | 24-01-2023                         |                                 | TLM1.2                          |                       |
| 6.    | Cylinder, cylinder liners-design Problems            | 1                             | 27-01-2023                         |                                 | TLM1.2                          |                       |
| 7.    | Tutorial-3                                           | 1                             | 28-01-2023                         |                                 | TLM3                            |                       |
| 8.    | <b>CONNECTING ROD</b> : Thrust in C.R, buckling load | 1                             | 30-01-2023                         |                                 | TLM1<br>TLM2                    |                       |

| 9.                                                                  | Design Procedure of Connecting rod                               | 1 | 31-01-2023 | TLM4         |
|---------------------------------------------------------------------|------------------------------------------------------------------|---|------------|--------------|
| 10.                                                                 | Stresses due to whipping action on connecting rod ends- problems | 1 | 02-02-2023 | TLM4         |
| 11.                                                                 | Stresses due to whipping action on connecting rod ends- problems | 1 | 03-02-2023 | TLM4         |
| 12.                                                                 | <b>CRANK SHAFT:</b> Design of crank and crank shaft              | 1 | 04-02-2023 | TLM1<br>TLM2 |
| 13.                                                                 | Design of center crank shaft -problem                            | 1 | 06-02-2023 | TLM4         |
| 14.                                                                 | Tutorial-4                                                       | 1 | 07-02-2023 | TLM3         |
| 15.                                                                 | Assignment-2/Quiz-2                                              | 1 | 09-02-2023 | TLM6         |
| No. of classes required to complete UNIT-I 15 No. of classes taken: |                                                                  |   |            |              |

# UNIT-III: FLAT BELTS & PULLEYS &V-BELTS & V-GROOVED PULLEYS

| S.No.  | Topics to be covered                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1      | Introduction to Unit-III                                       | 1                             | 10.02.2022                         |                                 | TLM1                            |                       |
| 1.     | <b>Flat belts</b> Introduction, Materials and Design Procedure | 1                             | 10-02-2023                         |                                 | TLM2                            |                       |
| 2.     | Design Procedure of flat belts - Problems                      | 1                             | 13-02-2023                         |                                 | TLM1                            |                       |
| 3.     | <b>PULLEYS:</b> Design of pulleys mild steel & cast iron       | 1                             | 14-02-2023                         |                                 | TLM1                            |                       |
| 4.     | Design of pulleys Problems                                     | 1                             | 16-02-2023                         |                                 | TLM1                            |                       |
| 5.     | Tutorial-5                                                     | 1                             | 17-02-2023                         |                                 | TLM3                            |                       |
|        | Mid-I Examination from 20                                      | -2-2023 to                    | 25-02-2023                         |                                 |                                 |                       |
| 6.     | V-belts -designation, design and selection                     | 1                             | 27-02-2023                         |                                 |                                 |                       |
| 7.     | Design of V belts - problems                                   | 1                             | 28-02-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 8.     | Design of V belts - problems                                   | 1                             | 02-03-2023                         |                                 | TLM1                            |                       |
| 9.     | Design of V belts - problems                                   | 1                             | 03-03-2023                         |                                 | TLM4                            |                       |
| 10.    | Design of V- grooved pulley                                    | 1                             | 04-03-2023                         |                                 | TLM1                            |                       |
| 11.    | Design of V- grooved pulley                                    | 1                             | 06-03-2023                         |                                 | TLM1                            |                       |
| 12.    | Tutorial-6                                                     | 1                             | 07-03-2023                         |                                 | TLM1                            |                       |
| 13.    | Assignment-3/Quiz-3                                            | 1                             | 09-03-2023                         |                                 | TLM6                            |                       |
| No. of | classes required to complete UNIT-I                            | 13                            | No. of classe                      | es taken:                       |                                 |                       |

### **UNIT-IV: SPRINGS:**

| S.No. | Topics to be covered                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to Unit-IV<br>SPRINGS: Introduction, classification       | 1                             | 13-03-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 2.    | Stresses, deflection and stiffness in springs<br>and their derivations | 1                             | 14-03-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 3.    | Design of springs-problems                                             | 1                             | 16-03-2023                         |                                 | TLM4                            |                       |
| 4.    | Springs for fatigue loading                                            | 1                             | 17-03-2023                         |                                 | TLM1                            |                       |
| 5.    | Tutorial-7                                                             | 1                             | 18-03-2023                         |                                 | TLM3                            |                       |
| 6.    | Spring failures, design of helical springs                             | 1                             | 20-03-2023                         |                                 | TLM1                            |                       |
| 7.    | Natural frequency of helical spring                                    | 1                             | 21-03-2023                         |                                 | TLM1                            |                       |

| 8.     | Energy storage capacity in springs  | 1  | 23-03-2023            | TLM1 |  |
|--------|-------------------------------------|----|-----------------------|------|--|
| 9.     | Tension and torsion springs         | 1  | 24-03-2023            | TLM1 |  |
| 10.    | Co-axial springs design- Problems   | 1  | 25-03-2023            | TLM1 |  |
| 11.    | Design of leaf springs- Problems    | 1  | 27-03-2023            | TLM1 |  |
| 12.    | Tutorial-8                          | 1  | 28-03-2023            | TLM3 |  |
| 13.    | Assignment-4/Quiz-4                 | 1  | 31-03-2023            | TLM6 |  |
| lo. of | classes required to complete UNIT-I | 13 | No. of classes taken: |      |  |

## **UNIT-V: SPUR & HELICAL GEARS**

| S.No.  | Topics to be covered                                                                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | <b>Introduction to Unit-V</b><br><b>GEARS: Introduction</b> and terminology,<br>Types of gears, design formulae | 1                             | 01-04-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 2.     | Design Analysis of gears, Estimation of<br>centre distance, module & face width                                 | 1                             | 03-04-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 3.     | Design procedure of spur gears, Check for dynamic and wear considerations                                       | 1                             | 04-04-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 4.     | Design of spur gears -Problems                                                                                  | 1                             | 06-04-2023                         |                                 | TLM4                            |                       |
| 5.     | Design of spur gears -Problems                                                                                  | 1                             | 10-04-2023                         |                                 | TLM1                            |                       |
| 6.     | Design of spur gears -Problems                                                                                  | 1                             | 11-04-2023                         |                                 | TLM3                            |                       |
| 7.     | Tutorial-IX                                                                                                     | 1                             | 13-04-2023                         |                                 | TLM1                            |                       |
| 8.     | Design procedure of Helical gears, Check for dynamic and wear considerations                                    | 1                             | 14-04-2023                         |                                 | TLM1                            |                       |
| 9.     | Design of Helical gears -Problems                                                                               | 1                             | 15-04-2023                         |                                 | TLM4                            |                       |
| 10.    | Design of Helical gears -Problems                                                                               | 1                             | 17-04-2023                         |                                 | TLM4                            |                       |
| 11.    | Tutorial-X                                                                                                      | 1                             | 18-04-2023                         |                                 | TLM3                            |                       |
| 12.    | Assignment-V/Quiz-V                                                                                             | 1                             | 22-04-2023                         |                                 | TLM6                            |                       |
| No. of | classes required to complete UNIT-I                                                                             | 13                            | No. of classe                      | es taken:                       |                                 |                       |

# Contents beyond the Syllabus

| S.No. | Topics to be covered   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Design of centre crank | 1                             | 09-02-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 2.    | Design of flywheels    | 1                             | 10-02-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 3.    | Design of Worm gear    | 1                             | 20-04-2023                         |                                 | TLM1<br>TLM2                    |                       |
| 4.    | Design of Gear Box     | 1                             | 21-04-2023                         |                                 | TLM1<br>TLM2                    |                       |

| Teaching Learning Methods |                |      |                                    |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |

TLM3 Tutorial

**TLM6**Group Discussion/Project

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = $CIE + SEE$                                                            | 100               |

# PART-D

# **PROGRAMME OUTCOMES (POs):**

| PO 1  | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                          |
| PO 3  | Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.                                 |
| PO 4  | Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                                   |
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                           |
| PO 6  | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                                |
| PO 7  | Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                                          |
| PO 8  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                   |
| PO 9  | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                    |
| PO 10 | Communicate effectively on complex engineering activities with the engineering community<br>and with society at large, such as, being able to comprehend and write effective reports and<br>design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.                                                                     |
| PO 12 | Recognize the need for and have the preparation and ability to engage in independent and life-<br>long learning in the broadest context of technological change.                                                                                                                         |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.     |
| PSO 3 | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. |

| Signature           |                           |                       |                       |                           |
|---------------------|---------------------------|-----------------------|-----------------------|---------------------------|
| Name of the Faculty | Dr. Ch. Siva Sankara Babu | Mr. B. Suc            | lheer Kumar           | Dr. S. Pichi Reddy        |
| Title               | Course Instructor         | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |





Approved by AICTE and Permanently Affiliated to JNTUK, Kakinada

### **COURSE HANDOUT**

| PROGRAM                       | : B.Tech., VI-Sem., MECH (A)              |
|-------------------------------|-------------------------------------------|
| ACADEMIC YEAR                 | : 2022-23                                 |
| <b>COURSE NAME &amp; CODE</b> | : MODERN MACHING PROCESSES - 20ME21       |
| STRUCTURE                     | : 3-0-0                                   |
| COURSE CREDITS                | : 3                                       |
| <b>COURSE INSTRUCTOR</b>      | : S.Srinivasa Reddy                       |
| COURSE COORDINATOR            | : S.Srinivasa Reddy                       |
| PRE-REQUISITE: PRODUCTIO      | N TECHNOLOGY, MACHINE TOOLS&METAL CUTTING |

**COURSE OBJECTIVE:** The main objective of this course is to familiarize with unconventional machining processes and rapid prototyping.

### **COURSE OUTCOMES (CO)**

CO1: Assort appropriate unconventional machining processes for machining materials and to develop relevant industrial solutions for machining hard materials.

CO2: Understand the principles of Electro Chemical Machining Process for machining of hard materials.

CO3: Apply Electrical Discharge Machining principles for machining intricate components.

CO4: Comprehend the basic principles and applications of thermal machining processes like EBM, LBM and PAM.

CO5: Identify the need of Rapid Prototyping in manufacturing sectors.

| COs | P0<br>1 | P0<br>2 | РО<br>3 | P0<br>4 | РО<br>5 | P0<br>6 | P0<br>7 | РО<br>8 | РО<br>9 | P0<br>10 | P0<br>11 | P0<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| C01 | 2       | 2       | 2       |         | 3       |         |         |         |         |          |          |          |          | 2        |          |
| CO2 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          |          | 3        |          |
| CO3 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          | 2        | 3        |          |
| CO4 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          | 2        | 3        |          |
| CO5 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          |          | 3        |          |

**COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):** 

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

### **BOS APPROVED TEXT BOOKS:**

- **T1** Pandey P.C. and shah H.S, Modern machining processes /TMH.
- **T2** Chua C.K, Leong K.F, and Lim C.S, Rapid prototyping principles and applications, second edition, world scientific publishers, and 2003.

### **BOS APPROVED REFERENCE BOOKS:**

- **R1** M K Singh, Unconventional machining process / New age international.
- **R2** V K Jain, Advanced machining processes /Allied publishers.

**R3** N.Hopkinson ,R.J.MHaque &P.M. Dickens Rapid Manufacturing, John Wiley &sons,2006.

### **COURSE DELIVERY PLAN (LESSON PLAN): Section-A**

|       |                             | No. of   | Tentative  | Actual     | Teaching         | Learning | Text           | HOD    |
|-------|-----------------------------|----------|------------|------------|------------------|----------|----------------|--------|
| S.No. | Topics to be covered        | Classes  | Date of    | Date of    | Learning         | Outcome  | Book           | Sign   |
| 5.NO. | Topics to be covered        |          |            |            | Methods          |          | followed       | Weekly |
|       |                             | Required | Completion | Completion |                  | COs      |                | weekiy |
| 1     | Introduction of MMP and     | 1        | 26.12.2022 |            | TLM1/TLM2        | C01      | T1/R1          |        |
|       | Course Co's and Po's        |          |            |            |                  | 001      | <b>E</b> 4 (D4 |        |
| 2     | Need for unconventional     | 1        | 27.12.2022 |            | TLM1/TLM2        | C01      | T1/R1          |        |
|       | machining methods           |          |            |            |                  |          |                |        |
|       | Classification of           |          |            |            | TLM1/TLM2        | C01      | T1/R1          |        |
| 3     | unconventional machining    | 1        | 28.12.2022 |            |                  |          |                |        |
|       | processes                   |          |            |            |                  |          |                |        |
| 4     | Considerations in process   | 1        | 2812.2022  |            | TLM1/TLM2        | C01      | T1/R1          |        |
| -     | selection                   | *        | 2012.2022  |            |                  |          |                |        |
| 5     | Tutorial -1                 | 1        | 30.12.2023 |            | TLM 3            |          | T1/R1          |        |
| 5     |                             | -        | 50.12.2025 |            |                  |          |                |        |
|       | Basic principle of          |          |            |            | TLM1/TLM2        | C01      | T1/R1          |        |
| 6     | ultrasonic machining,       | 1        | 02.01.2023 |            |                  |          |                |        |
| 0     | equipment setup and         | 1        | 02.01.2025 |            |                  |          |                |        |
|       | procedure,                  |          |            |            |                  |          |                |        |
| 7     | Process variables and       | 1        | 03.01.2023 |            | TLM1/TLM2        | CO1      | T1/R1          |        |
| /     | applications                | 1        | 03.01.2023 |            |                  |          |                |        |
| 8     | Tutorial -2                 | 1        | 04.01.2023 |            |                  |          |                |        |
| 0     | Tutorial -2                 | 1        | 04.01.2023 |            |                  |          |                |        |
|       | Basic principle of Abrasive |          |            |            | TLM3/TLM6        | CO1      | T1/R1          |        |
| 9     | jet machining, equipment    | 1        | 04.01.2023 |            |                  |          | -              |        |
|       | setup and procedure.        |          |            |            |                  |          |                |        |
|       | Water jet machining Basic   |          |            |            | TLM1/TLM2        | C01      | T1/R1          |        |
| 10    | principle, equipment        | 1        | 06.01.2023 |            | ,                |          | ,              |        |
|       | setup and procedure         | _        |            |            |                  |          |                |        |
|       | Process variables and       |          |            |            | TLM1/TLM2        | C01      | T1/R1          |        |
| 11    | applications                | 1        | 09.01.2023 |            | 10111/1011       | 001      |                |        |
| No of | classes required to         |          |            |            | l                | 1        | I              |        |
|       | ete UNIT-I                  | 11       |            |            | No. of classes t | aken:    |                |        |
| compi |                             | 1        | l          |            |                  |          |                |        |

### **UNIT-I: INTRODUCTION & MECHANICAL PROCESSES**

### UNIT-II : ELECTRO CHEMICAL PROCESSES & CHEMICAL MACHINING

|       |                      | No. of   | Tentative  | Actual     | Teaching | Learning | Text     | HOD    |
|-------|----------------------|----------|------------|------------|----------|----------|----------|--------|
| S.No. | Topics to be covered | Classes  | Date of    | Date of    | Learning | Outcome  | Book     | Sign   |
|       |                      | Required | Completion | Completion | Methods  | COs      | followed | Weekly |

| 12 | Electrochemical Process<br>Introduction                 | 1  | 11.01.2023 | TLM | M1/TLM2       | CO2   | T1/R1 |
|----|---------------------------------------------------------|----|------------|-----|---------------|-------|-------|
| 13 | Tutorial -3                                             | 1  | 11.01.2023 | TLN | М З           | CO2   | T1/R1 |
| 14 | ECM Process, and principles                             | 1  | 18.01.2023 | TLN | M1/TLM2       | CO2   | T1/R1 |
| 15 | Equipment and material removal rate                     | 1  | 18.01.2023 | TLM | M1/TLM2       | CO2   | T1/R1 |
| 16 | Tutorial -4                                             | 1  | 20.01.2023 | TLN | М З           | CO2   |       |
| 17 | Electrochemical machining                               | 1  | 23.01.2023 | TLN | M1/TLM2       | CO2   | T1/R1 |
| 18 | Electrochemical grinding                                | 1  | 24.01.2023 | TLM | M1/TLM2       | CO2   | T1/R1 |
| 19 | Electrochemical<br>deburring,<br>Electrochemical honing | 1  | 25.01.2023 | TLN | M1/TLM2       | C02   | T1/R1 |
| 20 | Tutorial -5                                             | 1  | 25.01.2023 | TLN | И З           | CO2   | T1/R1 |
| 21 | Chemical machining-<br>principle                        | 1  | 27.02.2023 | TLN | M1/TLM2       | CO2   | T1/R1 |
| 22 | Maskants –Etchants,<br>Advantages and<br>Applications.  | 1  | 30.02.2023 | TLN | M1/TLM2       | C02   | T1/R1 |
| 23 | Maskants –Etchants,<br>Advantages and<br>Applications.  | 1  | 31.02.2023 | TLM | M1/TLM2       | CO2   | T1/R1 |
| 24 | Rivision                                                | 1  | 01.02.2023 | TLM | M1/TLM2       | CO2   | T1/R1 |
|    | classes required to<br>lete UNIT-II                     | 13 |            | No. | of classes ta | lken: |       |

### UNIT-III: ELECTRICAL DISCHARGE MACHINING

|       |                                                     |          |            |            | - 1.      | · .      | -        |        |
|-------|-----------------------------------------------------|----------|------------|------------|-----------|----------|----------|--------|
|       |                                                     | No. of   | Tentative  | Actual     | Teaching  | Learning | Text     | HOD    |
| S.No. | Topics to be covered                                | Classes  | Date of    | Date of    | Learning  | Outcome  | Book     | Sign   |
|       |                                                     | Required | Completion | Completion | Methods   | Cos      | followed | Weekly |
| 25    | EDM Principle                                       | 1        | 03.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |
| 26    | Process                                             | 1        | 06.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |
| 27    | Tutorial -6                                         | 1        | 07.02.2023 |            | TLM 3     | CO3      |          |        |
| 28    | Power circuits for EDM                              | 1        | 08.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |
| 29    | Mechanics of metal removal in EDM                   | 1        | 08.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |
| 30    | Tutorial -7                                         | 1        | 09.02.2023 |            | TLM 3     | CO3      |          |        |
| 31    | Process parameters                                  | 1        | 13.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |
| 32    | selection of tool electrode<br>and dielectric fluid | 1        | 14.02.2023 |            | TLM1/TLM2 | CO3      | T1/R1    |        |

| 33 | Electric discharge wire cutting principle | 1  | 15.02.2023 | TLM1/TLM2         | CO3   | T1/R1 |  |
|----|-------------------------------------------|----|------------|-------------------|-------|-------|--|
| 34 | Applications of EDM and Wire EDM          | 1  | 15.02.2023 | TLM1/TLM2         | CO3   | T1/R1 |  |
| 35 | Rrivision                                 | 1  | 17.02.2023 | TLM1/TLM2         | CO3   | T1/R1 |  |
|    | classes required to<br>ete UNIT-III       | 11 |            | No. of classes ta | aken: |       |  |

# UNIT-IV : ELECTRON BEAM, LASER BEAM AND PLASMA ARC MACHINING

|       |                                                    | No. of   | Tentative  | Actual     | Teaching          | Learning | Text     | HOD    |
|-------|----------------------------------------------------|----------|------------|------------|-------------------|----------|----------|--------|
| S.No. | Topics to be covered                               | Classes  | Date of    | Date of    | Learning          | Outcome  | Book     | Sign   |
|       | -                                                  | Required | Completion | Completion | Methods           | Cos      | followed | Weekly |
| 36    | Electron Beam<br>Machining,<br>Principle, process  | 1        | 27.022023  |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 37    | EBM Applications and Advantages                    | 1        | 28.02.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 38    | laser beam machining,<br>Principle, process        | 1        | 013.2023   |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 39    | Tutorial -8                                        | 1        | 0303.2023  |            | TLM 3             |          |          |        |
| 40    | LBM Applications and<br>Advantages                 | 1        | 06.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 41    | Plasma arc machining,<br>Principle, process        | 1        | 07.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 42    | PAM Applications and<br>Advantages                 | 1        | 10.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 43    | Tutorial -9                                        | 1        | 13.03.2023 |            | TLM3              |          | T2/R2    |        |
| 44    | Hot machining, Process,<br>equipment, applications | 1        | 14.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 46    | Hot machining, Process, equipment, applications    | 1        | 15.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
| 47    | revision                                           | 1        | 20.03.2023 |            | TLM1/TLM2         | CO4      | T2/R3    |        |
|       | classes required to<br>lete UNIT-IV                | 11       |            |            | No. of classes ta | aken:    |          |        |

# **UNIT-V : RAPID PROTOTYPING**

|       |                      | No. of   | Tentative  | Actual     | Teaching  | Learning | Text     | HOD    |
|-------|----------------------|----------|------------|------------|-----------|----------|----------|--------|
| S.No. | Topics to be covered | Classes  | Date of    | Date of    | Learning  | Outcome  | Book     | Sign   |
|       |                      | Required | Completion | Completion | Methods   | Cos      | followed | Weekly |
| 48    | Introduction to RP   | 1        | 21.03.2023 |            | TLM1/TLM2 | CO5      | T2/R3    |        |
| 40    | fundamentals         | L        | 21.03.2023 |            |           |          |          |        |
| 49    | Elements, Advantages | 1        | 24.03.2023 |            | TLM1/TLM2 | CO5      | T2/R3    |        |
| 49    | of Rapid Prototyping | L        | 24.03.2023 |            |           |          |          |        |

| 50 | historical development,<br>fundamentals of Rapid<br>Prototyping | 1  | 27.03.2023    | TLM1/TLM2        | C05   | T2/R3 |  |
|----|-----------------------------------------------------------------|----|---------------|------------------|-------|-------|--|
| 51 | classification of Rapid<br>prototyping                          | 1  | 28.03.2023    | TLM1/TLM2        | C05   | T2/R3 |  |
| 52 | Tutorial -10                                                    | 2  | 2903.202<br>3 | TLM3             |       | T2/R2 |  |
| 53 | Rapid Prototyping<br>process chain                              | 1  | 31.03.2023    | TLM1/TLM2        | C05   | T2/R3 |  |
| 54 | Stereo Lithography<br>Apparatus (SLA)                           | 1  | 03.04.2023    | TLM1/TLM2        | C05   | T2/R3 |  |
| 55 | solid Ground Curing<br>(SGC)                                    | 1  | 04.04.2023    | TLM1/TLM2        | C05   | T2/R3 |  |
| 56 | EOS's EOSINT Systems                                            | 1  | 10.04.2023    | TLM3/TLM2        | C05   | T2/R3 |  |
| 57 | Applications of Rapid<br>Prototyping                            | 1  | 11.04.2023    | TLM3/TLM6        | C05   | T2/R3 |  |
| 58 | Rivion                                                          | 1  | 12.04.2023    | TLM3/TLM6        | C05   | T2/R3 |  |
|    | classes required to<br>lete UNIT-V                              | 12 |               | No. of classes t | aken: |       |  |

### **Contents beyond the Syllabus**

| S.No. | Topics to be covered                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Text<br>Book<br>followed | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|
| 59    | Abrasive water jet aerospace applications | 1                             | 17.04.2023                         |                                 |                                 |                            |                          |                       |
| 60    | EDM process parameters                    | 1                             | 18.04.2023                         |                                 |                                 |                            |                          |                       |
| 61    | Rapid prototyping case study              | 1                             | 19.04.2023                         |                                 |                                 |                            |                          |                       |
| 62    | Medical case study                        | 1                             | 21.04.2023                         |                                 |                                 |                            |                          |                       |

| Teachi | Teaching Learning Methods |      |                    |      |                |  |  |  |  |
|--------|---------------------------|------|--------------------|------|----------------|--|--|--|--|
| TLM1   | Chalk and Talk            | TLM4 | Problem Solving    | TLM7 | Seminars or GD |  |  |  |  |
| TLM2   | РРТ                       | TLM5 | Programming        | TLM8 | Lab Demo       |  |  |  |  |
| TLM3   | Tutorial                  | TLM6 | Assignment or Quiz | TLM9 | Case Study     |  |  |  |  |

### ACADEMIC CALENDAR:

| Description                | From       | То         | Weeks |
|----------------------------|------------|------------|-------|
| I Phase of Instructions    | 26-12-2022 | 18-02-2023 | 8W    |
| I Mid Examinations         | 20-02-2023 | 25-02-2023 | 1W    |
| II Phase of Instructions   | 27-02-2023 | 22-04-2023 | 8W    |
| II Mid Examinations        | 24-04-2023 | 29-04-2023 | 1W    |
| Preparation and Practicals | 01-05-2023 | 06-05-2023 | 1W    |

| Semester End Examinations | 08-05-2023 | 20-05-2023 | 2W |  |
|---------------------------|------------|------------|----|--|
|---------------------------|------------|------------|----|--|

### **EVALUATION PROCESS:**

| Evaluation Task                                                | COs       | Marks |
|----------------------------------------------------------------|-----------|-------|
| Assignment-1                                                   | 1         | A1=5  |
| Assignment-2                                                   | 2         | A2=5  |
| I-Mid Examination                                              | 1,2       | B1=20 |
| Online Quiz-Q1                                                 | 1,2       | Q1-10 |
| Assignment – 3                                                 | 3         | A3=5  |
| Assignment- 4                                                  | 4         | A4=5  |
| Assignment – 5                                                 | 5         | A5=5  |
| II-Mid Examination                                             | 3,4,5     | B2=20 |
| Online Quiz-Q2                                                 | 3,4,5     | Q2-10 |
| Evaluation of Assignment Marks: A=(A1+A2+A3+A4+A5)/5           | 1,2,3,4,5 | A=5   |
| Evaluation of Online Quiz Marks: Q=(Q1+Q2)/2                   | 1,2,3,4,5 | Q=10  |
| Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2) | 1,2,3,4,5 | B=20  |
| Attendance                                                     |           | C= 5  |
| Cumulative Internal Examination : A+Q+B+C                      | 1,2,3,4,5 | 40    |
| Semester End Examinations                                      | 1,2,3,4,5 | 60    |
| Total Marks: 40+60                                             | 1,2,3,4,5 | 100   |

### **PROGRAMME EDUCATIONAL OBJECTIVES:**

**PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

**PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

**PEO3:** To develop inquisitiveness towards good communication and lifelong learning.

### **PROGRAM OUTCOMES (POs)**

### Engineering Graduates will be able to:

**1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

**2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

**6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. **PROGRAMME SPECIFIC OUTCOMES (PSOs):** 

**1.** To apply the principles of thermal sciences to design and develop various thermal systems.

**2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

**3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

| S.Srinivasa Reddy    | S.Srinivasa Reddy  | J,subba reddy      | Dr. S. Pitchi<br>Reddy |
|----------------------|--------------------|--------------------|------------------------|
| Course<br>Instructor | Course Coordinator | Module Coordinator | HOD                    |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

**DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING** 

# PART-A

Name of Course Instructor:Mr P.Rathnakar KumarCourse Name & Code: Electric Vehicles-20EE84L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech., VI-Sem., MECH –A sectionA.Y: 2022-23

PREREQUISITE: Basic Electrical Engineering

### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

This course enables the student to acquire Knowledge on basic concepts related to mechanics, kinetics and dynamics of electric vehicles, technical characteristics and properties of batteries. It also introduces the concepts of different configurations of drive trains.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Illustrate propulsion system for an electric vehicle. (Understand-L2)    |
|-----|--------------------------------------------------------------------------|
| CO2 | Understand characteristics and properties of batteries. (Understand-L2)  |
| CO3 | Analyze ratings and requirements of electrical machines. (Understand-L2) |
| CO4 | Analyze mechanism of electrical vehicle drive train. (Understand-L2)     |
| CO5 | Understand configuration of hybrid electric vehicles. (Understand-L2)    |

### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO2 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO3 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO4 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO5 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

**TEXTBOOKS:** 

#### Text book(s) and/or required materials

 IqbalHussain, "Electric & Hybrid Vehicles – Design Fundamentals", Second Edition, CRC Press, 2011.

ii. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

#### **Reference Books:**

- i. MehrdadEhsani, YiminGao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.
- ii. SandeepDhameja, "Electric Vehicle Battery Systems", Newnes, 2000 http://nptel.ac.in/courses/108103009/

### PART-B

#### **COURSE DELIVERY PLAN (LESSON PLAN): Section - A**

#### **UNIT-I: ELECTRIC VEHICLES**

| S.No. | Topics to be covered                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to the<br>subject and Course<br>Outcomes | 1                             | 26 12 2022                         |                                 | TLM1                            |                       |
| 2.    | Components                                            | 1                             | 26-12-2022<br>29-12-2022           |                                 | TLM1                            |                       |
| 3.    | Vehicle Mechanics                                     | 1                             | 30-12-2022                         |                                 | TLM1                            |                       |
| 4.    | Roadway<br>Fundamentals                               | 1                             | 31-12-2022                         |                                 | TLM1                            |                       |
| 5.    | Roadway<br>Fundamentals                               | 1                             | 02-01-2023                         |                                 | TLM1                            |                       |
| 6.    | Vehicle Kinetics                                      | 1                             | 05-01-2023                         |                                 | TLM1                            |                       |
| 7.    | Dynamics of vehicle motion                            | 1                             | 06-01-2023                         |                                 | TLM1                            |                       |
| 8.    | Dynamics of vehicle motion                            | 1                             | 07-01-2023                         |                                 | TLM1                            |                       |
| 9.    | Propulsion system design.                             | 1                             | 09-01-2023                         |                                 | TLM1                            |                       |
| 10.   | Propulsion system design.                             | 1                             | 19-01-2023                         |                                 | TLM1                            |                       |
|       | f classes required<br>nplete UNIT-I                   | 10                            |                                    |                                 |                                 |                       |

#### **UNIT-II : BATTERY**

| S.No. | Topics to be covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 11    | Basics-Types         | 1                             | 20-01-2023                         |                                 | TLM1                            |                       |
| 12    | Parameters           | 1                             | 21-01-2023                         |                                 | TLM1                            |                       |
| 13    | Capacity             | 1                             | 23-01-2023                         |                                 | TLM1                            |                       |
| 14    | Discharge Rate       | 1                             | 27-01-2023                         |                                 | TLM1                            |                       |
| 15    | Sate of charge       | 1                             | 28-01-2023                         |                                 | TLM1                            |                       |
| 16    | State of Discharge   | 1                             | 30-01-2023                         |                                 | TLM1                            |                       |

| 17 | Depth od Discharge                          |   | 30-01-2023 | TLM1 |  |
|----|---------------------------------------------|---|------------|------|--|
| 18 | Technical<br>Characteristics                | 1 | 02-02-2023 | TLM1 |  |
| 19 | Battery pack Design                         | 1 | 03-02-2023 | TLM2 |  |
| 20 | Battery pack Design                         | 1 | 04-02-2023 | TLM3 |  |
| 21 | Properties of Batteries                     | 1 | 06-02-2023 | TLM3 |  |
|    | No. of classes required to complete UNIT-II |   |            |      |  |

### **UNIT-III : DC & AC ELECTRICAL MACHINES**

| S.No. | Topics to be covered                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 22    | Motor & Engine<br>rating, requirements | 1                             | 09-02-2023                         |                                 | TLM1                            |                       |
| 23    | Motor & Engine rating, requirements    | 1                             | 10-02-2023                         |                                 | TLM1                            |                       |
| 25    | DC machines                            | 1                             | 11-02-2023                         |                                 | TLM1                            |                       |
| 26.   | DC machines                            | 1                             | 13-02-2023                         |                                 | TLM1                            |                       |
| 27.   | Three phase A.C.<br>Machines           | 1                             | 16-02-2023                         |                                 | TLM1                            |                       |
| 29.   | Three phase A.C.<br>Machines           | 1                             | 17-02-2023                         |                                 | TLM1                            |                       |
| 30.   | Induction Machines                     | 1                             | 27-02-2023                         |                                 | TLM1                            |                       |
| 31    | Permanent magnet machines              | 1                             | 02-03-2023                         |                                 | TLM1                            |                       |
| 32    | Permanent magnet machines              | 1                             | 03-03-2023                         |                                 | TLM1                            |                       |
| 33.   | Switched reluctance machines           | 1                             | 04-03-2023                         |                                 | TLM1                            |                       |
|       | classes required to<br>ete UNIT-III    | 11                            |                                    |                                 |                                 |                       |

## **UNIT-IV : ELECTRIC VEHICLE DRIVE TRAIN**

| S.No. | Topics to be covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34    | Transmission         | 1                             |                                    |                                 | TLM1                            |                       |
| 57    | Configuration        | 1                             | 06-03-2023                         |                                 |                                 |                       |
| 35    | Transmission         | 1                             |                                    |                                 | TLM1                            |                       |
| - 35  | Configuration        | 1                             | 09-03-2023                         |                                 |                                 |                       |
| 36    | Components           | 1                             | 10-03-2023                         |                                 | TLM1                            |                       |
| 37    | gears                | 1                             | 13-03-2023                         |                                 | TLM1                            |                       |
| 38    | differential         | 1                             | 16-03-2023                         |                                 | TLM1                            |                       |

| 39 | clutch                                      | 1 | 17-03-2023 | TLM1 |  |
|----|---------------------------------------------|---|------------|------|--|
| 40 | brakes                                      | 1 | 18-03-2023 | TLM2 |  |
| 41 | Regenerative braking                        | 1 | 20-03-2023 | TLM1 |  |
| 42 | Regenerative braking                        | 1 | 23-03-2023 | TLM1 |  |
| 43 | Motor sizing                                | 1 | 24-03-2023 | TLM1 |  |
| 44 | Motor sizing                                | 1 | 25-03-2023 | TLM3 |  |
|    | No. of classes required to complete UNIT-IV |   |            |      |  |

## **UNIT-V: HYBRID ELECTRIC VEHICLES**

| S.No.                                      | Topics to be covered   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------------------------------------------|------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 45                                         | Types                  | 1                             | 27-03-2023                         |                                 | TLM1                            |                       |
| 46                                         | Series                 | 1                             | 31-03-2023                         |                                 | TLM1                            |                       |
| 47                                         | Parallel and series    | 1                             | 03-04-2023                         |                                 | TLM1                            |                       |
| 48                                         | Parallel configuration | 1                             | 06-04-2023                         |                                 | TLM1                            |                       |
| 49                                         | Design                 | 1                             | 10-04-2023                         |                                 | TLM1                            |                       |
| 50                                         | Drive train            | 1                             | 15-04-2023                         |                                 | TLM2                            |                       |
| 51                                         | Sizing of components   | 1                             | 17-04-2023                         |                                 | TLM2                            |                       |
| 52                                         | Revision               | 1                             | 20-04-2023                         |                                 | TLM2                            |                       |
| 53                                         | Revision               | 1                             | 21-04-2023                         |                                 | TLM2                            |                       |
| No. of classes required to complete UNIT-V |                        | 9                             |                                    |                                 |                                 |                       |

### **CONTENT BEYOND SYLLABUS:**

| S.No. | Topics to be<br>covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods |
|-------|-------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|
| 1     |                         | 1                             | 20-4-23                            |                                 | TLM2                            |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |  |  |

### PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# PROGRAMME OUTCOMES (POs):

|       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                                    |
| PO 2  | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering<br>and IT tools including prediction and modeling to complex engineering activities with an understanding<br>of the limitations.                                                           |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                    |
| PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |

| PO 11 | Project management and finance: Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent<br>and life-long learning in the broadest context of technological change.                                                         |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>PSO 2</b> | Design and analyze electrical machines, modern drive and lighting systems                               |  |  |  |  |  |  |  |
| <b>PSO 3</b> | Specify, design, implement and test analog and embedded signal processing electronic systems            |  |  |  |  |  |  |  |
| PSO4         | Design controllers for electrical and electronic systems to improve their performance.                  |  |  |  |  |  |  |  |

| Title                  | Course Instructor       | Course<br>Coordinator   | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------------|-------------------------|-----------------------|---------------------------|
| Name of<br>the Faculty | Mr P.Rathnakar<br>Kumar | Mr P.Rathnakar<br>Kumar | Dr.G.Nageswara<br>Rao | Dr.J.S.Vara Prasad        |
| Signature              |                         |                         |                       |                           |



### DEPARTMENT OF MECHANICAL ENGINEERING

# COURSE HANDOUT PART-A

Name of Course Instructor: Dr. P.Ravindra Kumar/ Mr. S. Uma Maheswara ReddyCourse Name & Code: Heat Transfer LAB & 20ME62L-T-P Structure: 0-0-2CreditsProgram/Sem/Sec: B.Tech., MECH., VI-Sem., Section- AA.Y: 2022-23

**PRE-REQUISITE:** HEAT TRANSFER

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The objective of this course is to understand the modes of heat transfer for different heat transfer equipment.

COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO 1 | Estimate the thermal conductivity of different materials and powders             |
|------|----------------------------------------------------------------------------------|
| CO 2 | Experiment both free and forced convection to predict heat transfer coefficient. |
| CO 3 | Validate the Stefan Boltzmann Constant and estimate emissivity of grey body.     |
| CO 4 | Compare parallel and counter flow heat exchanger performance characteristics.    |

MATERIAL:T1 Lab Manual

# PART-B

| .Tech |         | BRANCH: ME | ICAL SECTION: A-Sec (Wednesday) |       |       |        |       |       |       |        | BATCH: 2 |       | A.Y:2022 |       |       |
|-------|---------|------------|---------------------------------|-------|-------|--------|-------|-------|-------|--------|----------|-------|----------|-------|-------|
|       |         | EXP. No    | 0                               | 1     | 2     | 3      | 4     | 5     | 6     | 7      | 8        | 9     | 10       | 11    | 12    |
|       |         | Date       | 28/12                           | 04/01 | 11/01 | 18/01  | 25/01 | 01/02 | 08/02 | 15/ 02 | 01/03    | 15/03 | 29/03    | 12/04 | 19/04 |
| S.No  | Batch   | Regd.No    |                                 | •     | . (   | CYCLE- |       |       | •     |        |          | CYCL  | E-2      |       |       |
| 1     |         | 20761A0334 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
| 2     |         | 20761A0335 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
| 3     | BΔ      | 20761A0336 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
| 4     | BATCH-I | 20761A0337 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
| 5     | ÷       | 20761A0338 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
| 6     |         | 20761A0339 | DEMO                            | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1   | HT-2     | HT-3  | HT-4     | HT-5  | HT-6  |
|       |         |            |                                 |       |       |        |       |       |       |        |          |       |          |       |       |
| 7     | ВА      | 20761A0340 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
| 8     |         | 20761A0341 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
| 9     |         | 20761A0342 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
| 10    | BATCH-2 | 20761A0343 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
| 11    | 1-2     | 20761A0344 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
| 12    |         | 20761A0345 | DEMO                            | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2   | HT-3     | HT-4  | HT-5     | HT-6  | HT-1  |
|       |         |            |                                 |       |       |        |       |       |       |        |          |       |          |       |       |
| 13    |         | 20761A0346 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |
| 14    | œ       | 20761A0347 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |
| 15    | ίΑΤ     | 21765A0301 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |
| 16    | BATCH-3 | 21765A0302 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |
| 17    |         | 21765A0303 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |
| 18    |         | 21765A0304 | DEMO                            | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3   | HT-4     | HT-5  | HT-6     | HT-1  | HT-2  |

#### COURSE: B.Tech

#### SECTION: A-Sec (Wednesday)

|      |          | EXP. No    | 0     | 1     | 2     | 3      | 4     | 5     | 6     | 7      | 8     | 9     | 10    | 11    | 12    |
|------|----------|------------|-------|-------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
|      |          | Date       | 28/12 | 04/01 | 11/01 | 18/01  | 25/01 | 01/02 | 08/02 | 15/ 02 | 01/03 | 15/03 | 29/03 | 12/04 | 19/04 |
| S.No | Batch    | Regd.No    |       |       | (     | CYCLE- |       |       |       |        |       | CYCL  | .E-2  |       |       |
| 19   |          | 21765A0305 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |
| 20   |          | 21765A0306 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |
| 21   | BATCH-4  | 21765A0307 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |
| 22   | E H      | 21765A0308 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |
| 23   | 4        | 21765A0309 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |
|      |          |            |       |       |       |        |       |       |       |        |       |       |       |       |       |
| 24   |          | 21765A0310 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |
| 25   |          | 21765A0311 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |
| 26   | BATCH-5  | 21765A0312 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |
| 27   | E E E    | 21765A0313 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |
| 28   | 01       | 21765A0314 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |
|      |          |            |       |       |       |        |       |       |       |        |       |       |       |       |       |
| 29   |          | 21765A0315 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |
| 30   | ВА       | 21765A0316 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |
| 31   | BATCH-6  | 21765A0317 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |
| 32   | -6<br>-6 | 21765A0318 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |
| 33   |          | 21765A0319 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |

#### COURSE: B.Tech

#### SECTION: A-Sec (Thursday)

BATCH: 1 A.Y:2022-23

|      |            | EXP. No    | 0     | 1     | 2     | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13         |
|------|------------|------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|      |            | Date       | 29/12 | 05/01 | 12/01 | 19/01  | 02/02 | 09/02 | 16/02 | 02/03 | 09/03 | 16/03 | 23/03 | 06/04 | 13/04 | 20/04      |
| S.No | Batch      | Regd.No    |       |       | (     | CYCLE- |       |       |       |       |       | CYCL  | .E-2  |       |       |            |
| 1    |            | 20761A0301 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
| 2    |            | 20761A0302 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
| 3    | ВΔ         | 20761A0303 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
| 4    | BATCH-I    | 20761A0304 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
| 5    | Ť          | 20761A0305 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
| 6    |            | 20761A0306 | DEMO  | HT-1  | HT-2  | HT-3   | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  |            |
|      |            |            |       |       |       |        |       |       |       |       |       |       |       |       |       |            |
| 7    |            | 20761A0307 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  |            |
| 8    |            | 20761A0308 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | R          |
| 9    | ВА         | 20761A0309 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | Repetition |
| 10   | BATCH-2    | 20761A0310 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | titic      |
| 11   | <b>-</b> 2 | 20761A0311 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | ň          |
| 12   |            | 20761A0312 | DEMO  | HT-2  | HT-3  | HT-4   | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  |            |
|      |            |            |       |       |       |        |       |       |       |       |       |       |       |       |       |            |
| 13   |            | 20761A0313 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |
| 14   |            | 20761A0314 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |
| 15   | BATCH-3    | 20761A0315 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |
| 16   | СH<br>Ц    | 20761A0316 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |
| 17   | ũ          | 20761A0317 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |
| 18   |            | 20761A0318 | DEMO  | HT-3  | HT-4  | HT-5   | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  |            |

COURSE: B.Tech

|      |         | EXP. No    | 0     | 1     | 2     | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13         |
|------|---------|------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|      |         | Date       | 29/12 | 05/01 | 12/01 | 19/01  | 02/02 | 09/02 | 16/02 | 02/03 | 09/03 | 16/03 | 23/03 | 06/04 | 13/04 | 20/04      |
| S.No | Batch   | Regd.No    |       |       |       | CYCLE- |       | -     |       |       |       | CYCL  | .E-2  |       |       |            |
| 19   |         | 20761A0319 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |            |
| 20   |         | 20761A0320 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |            |
| 21   | BATCH-4 | 20761A0321 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |            |
| 22   | Ę       | 20761A0322 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |            |
| 23   | 4       | 20761A0323 | DEMO  | HT-4  | HT-5  | HT-6   | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  |            |
|      |         |            |       |       |       |        |       |       |       |       |       |       |       |       |       |            |
| 24   |         | 20761A0324 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |            |
| 25   |         | 20761A0325 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | Repetition |
| 26   | BATCH-5 | 20761A0326 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | etit       |
| 27   | ÷.      | 20761A0327 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | ion        |
| 28   | 01      | 20761A0328 | DEMO  | HT-5  | HT-6  | HT-1   | HT-2  | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  |            |
|      |         |            |       |       |       |        |       |       |       |       |       |       |       |       |       |            |
| 29   |         | 20761A0329 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |            |
| 30   | ВА      | 20761A0330 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |            |
| 31   | BATCH-6 | 20761A0331 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |            |
| 32   | <br>-   | 20761A0332 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |            |
| 33   |         | 20761A0333 | DEMO  | HT-6  | HT-1  | HT-2   | HT-3  | HT-4  | HT-5  | HT-6  | HT-1  | HT-2  | HT-3  | HT-4  | HT-5  |            |

# LIST OF EXPERIMENTS

| S.No | Cycle   | Exp Code | Name of the Experiment                                                               |
|------|---------|----------|--------------------------------------------------------------------------------------|
| 1    |         | DEMO     | DEMONSTRATION                                                                        |
| 2    |         | HT-1     | Heat Pipe Demonstration                                                              |
| 3    | CYCLI   | HT-2     | Determination of Thermal Conductivity of Insulating Powder (Asbestos)                |
| 4    | CL      | HT-3     | Study of Transient Heat Conduction (Unsteady Heat Conduction).                       |
| 5    | in<br>' | HT-4     | Determination of Thermal Conductivity of Metal Bar (Brass).                          |
| 6    |         | HT-5     | Determination of Thermal Conductivity of given Liquid                                |
| 7    |         | HT-6     | Determination of Thermal Conductivity of Lagged Pipe (Glass wool).                   |
| 8    |         | HT-1     | Determination of Convective Heat Transfer Co-efficient of air in Natural Convection. |
| 9    | C       | HT-2     | Determination of Convective Heat Transfer Co-efficient of air in Forced Convection.  |
| 10   | СҮС     | HT-3     | Test on Pin-Fin Apparatus.                                                           |
| 11   | Ē       | HT-4     | Test on Emissivity Measurement Apparatus.                                            |
| 12   | ÷       | HT-5     | Test on Tube in Tube Parallel Flow Heat Exchanger.                                   |
| 13   |         | HT-6     | Test on Tube in Tube Counter Flow Heat Exchanger.                                    |
| 14   |         | REP      | REPETITION                                                                           |
| 15   |         | INT      | INTERNAL LAB TEST                                                                    |

LAB INCHARGE

### LAB SCHEDULE

|            | SEC        | CTION: A BAT | CH-I (THURSD | AY)        |            |
|------------|------------|--------------|--------------|------------|------------|
| BATCH-I    | BATCH-2    | BATCH-3      | BATCH-4      | BATCH-5    | BATCH-6    |
| 20761A0301 | 20761A0307 | 20761A0313   | 20761A0319   | 20761A0324 | 20761A0329 |
| 20761A0302 | 20761A0308 | 20761A0314   | 20761A0320   | 20761A0325 | 20761A0330 |
| 20761A0303 | 20761A0309 | 20761A0315   | 20761A0321   | 20761A0326 | 20761A0331 |
| 20761A0304 | 20761A0310 | 20761A0316   | 20761A0322   | 20761A0327 | 20761A0332 |
| 20761A0305 | 20761A0311 | 20761A0317   | 20761A0323   | 20761A0328 | 20761A0333 |
| 20761A0306 | 20761A0312 | 20761A0318   |              |            |            |

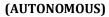
|            | SECT       | TION: A BATC | H-2 (WEDNESI | DAY)       |            |
|------------|------------|--------------|--------------|------------|------------|
| BATCH-I    | BATCH-2    | BATCH-3      | BATCH-4      | BATCH-5    | BATCH-6    |
| 20761A0334 | 20761A0340 | 20761A0346   | 21765A0305   | 21765A0310 | 21765A0315 |
| 20761A0335 | 20761A0341 | 20761A0347   | 21765A0306   | 21765A0311 | 21765A0316 |
| 20761A0336 | 20761A0342 | 21765A0301   | 21765A0307   | 21765A0312 | 21765A0317 |
| 20761A0337 | 20761A0343 | 21765A0302   | 21765A0308   | 21765A0313 | 21765A0318 |
| 20761A0338 | 20761A0344 | 21765A0303   | 21765A0309   | 21765A0314 | 21765A0319 |
| 20761A0339 | 20761A0345 | 21765A0304   |              |            |            |

|      | Teaching Learning Methods |      |                                 |  |  |  |  |  |  |  |  |
|------|---------------------------|------|---------------------------------|--|--|--|--|--|--|--|--|
| TLM1 | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |  |  |
| TLM2 | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |  |  |
| TLM3 | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |  |  |

# PART-C

### PROGRAMME OUTCOMES (POs):

| <b>PO 1</b> | An ability to apply knowledge of Mathematics, Sciences and Engineering fundamentals to  |
|-------------|-----------------------------------------------------------------------------------------|
|             | find the solution to real time Mechanical Engineering problems.                         |
| PO 2        | An ability to identify and formulate mathematical models to analyze complex engineering |
|             | problems.                                                                               |


| <b>PO 3</b> | An ability to design a mechanical systems/ process to meet the desired needs within realistic |
|-------------|-----------------------------------------------------------------------------------------------|
|             | constraints such as economic, environmental, societal, health & safety.                       |
| <b>PO 4</b> | An ability to design and conduct experiments, perform analysis, interpretation of data and    |
|             | synthesis of information to provide valid conclusions.                                        |
| PO 5        | An ability to develop the model and analyze the Mechanical systems using modern software      |
|             | tools.                                                                                        |
| <b>PO 6</b> | An ability to understand societal, health, safety, legal, cultural issues and the consequent  |
|             | responsibilities relevant to engineering practice.                                            |
| <b>PO 7</b> | An ability to understand the impact of engineering solutions in societal, environmental       |
|             | context and demonstrate the knowledge for sustainable development.                            |
| <b>PO 8</b> | An ability to understand the professional ethics to follow the norms of engineering practice. |
| PO 9        | An ability to function effectively as an individual and as a member / leader in diverse       |
|             | technical teams.                                                                              |
| PO 10       | An ability to communicate effectively with the engineering community and society through      |
|             | reports & presentations.                                                                      |
| PO 11       | An ability to apply management principles to organise the multidisciplinary projects.         |
| PO 12       | An ability to understand the need of independent and lifelong learning so as to address day   |
|             | to day technological changes.                                                                 |

### PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal      |  |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1001  |                                                                                        |  |  |  |  |  |  |  |  |  |
|       | systems.                                                                               |  |  |  |  |  |  |  |  |  |
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards     |  |  |  |  |  |  |  |  |  |
|       | improvement of quality and optimization of engineering systems in the design, analysis |  |  |  |  |  |  |  |  |  |
|       | and manufacturability of products.                                                     |  |  |  |  |  |  |  |  |  |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of       |  |  |  |  |  |  |  |  |  |
|       | performance of various systems relating to transmission of motion and power,           |  |  |  |  |  |  |  |  |  |
|       | conservation of energy and other process equipment.                                    |  |  |  |  |  |  |  |  |  |

| Course Instructor                                   | <b>Course Coordinator</b> | Module Coordinator | HOD              |
|-----------------------------------------------------|---------------------------|--------------------|------------------|
| Dr. P.Ravindra Kumar /<br>Mr. S.Uma Maheswara Reddy | Dr. P. Ravindra Kumar     | DR. P. Vijay Kumar | Dr.S.Pichi Reddy |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING





Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

# PART-A

**Name of Course Instructor:** Mr.A.Nageswara Rao, Mr.K.Venkateswara Reddy, Mr.A.Danunjay Kumar

### COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to design, assemble, analyze and manufacture engineering components using computer aided tools.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| C01        | Design and assemble the mechanical components using CAD Software. (Analyzing - L4)      |
|------------|-----------------------------------------------------------------------------------------|
| CO2        | Apply finite element analysis for components using analysis software. (Applying - L3)   |
|            | Develop NC code for different part profiles and perform machining on CNC Machine tools. |
| CO3        | (Applying - L3)                                                                         |
| <b>CO4</b> | Simulate part program to perform various operations on CNC machine. (Applying - L3)     |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04 | P05       | P06 | P07 | P08 | P09             | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----------|-----|-----|-----|-----------------|------|------|------|------|------|------|
| C01            | 1   |     |     | 2   |           |     |     |     |                 |      |      |      |      | 2    |      |
| CO2            | 1   | 1   | 2   | 2   | 1         |     |     |     |                 |      |      | 1    |      | 3    |      |
| CO3            | 1   | 1   | 1   |     | 1         |     |     |     |                 |      |      | 1    |      | 3    |      |
| CO4            |     | 2   |     | 1   |           |     |     |     |                 |      |      |      |      | 2    |      |
| <b>1 -</b> Low |     |     |     |     | 2 –Medium |     |     |     | <b>3 -</b> High |      |      |      |      |      |      |

# **SOFTWARE PACKAGES:** CATIA /ANSYS / Iron CAD etc. **REFERENCES:**

Lab Manuals

## PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

# Schedule of Experiments (Section - A)

| S.No | Batches  | Regd. Nos                                    | Total No. of<br>Students |   |
|------|----------|----------------------------------------------|--------------------------|---|
| 1    | Batch B1 | 20761A0301-20761A0347, 21765A0301-21765A0319 | 66                       | l |

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to CAD/CAM Lab,<br>Demonstration of all<br>experiments, CEOs, and COs of<br>the Laboratory | 3                             | 26-12-2022                         |                                 | TLM4                            |                       |
| Cycle     |                                                                                                         |                               |                                    | •                               |                                 |                       |
| 2.        | Design and Assembly Modeling<br>of Knuckle joint using CAD<br>software                                  | 3                             | 02-01-2023                         |                                 | TLM4                            |                       |
| 3.        | Design and Assembly Modeling<br>of Universal Coupling using CAD<br>software                             | 3                             | 09-01-2023                         |                                 | TLM4                            |                       |
| 4.        | Design and Assembly Modeling<br>of Piston, Connecting Rod parts<br>using CAD software                   | 3                             | 23-01-2023                         |                                 | TLM4                            |                       |
| 5.        | Analysis of trusses using ANSYS                                                                         | 3                             | 30-01-2023                         |                                 | TLM4                            |                       |
| 6.        | Analysis of Beams using ANSYS                                                                           | 3                             | 06-02-2023                         |                                 | TLM4                            |                       |
| Cycle     | e-II                                                                                                    |                               |                                    |                                 |                                 |                       |
| 7.        | Analysis of 3D solids using ANSYS                                                                       | 3                             | 13-02-2023                         |                                 | TLM4                            |                       |
| 8.        | Steady state heat transfer<br>analysis using ANSYS                                                      | 3                             | 27-02-2023                         |                                 | TLM4                            |                       |
| 9.        | Estimation of natural<br>frequencies and mode shapes<br>for simple problems using<br>ANSYS              | 3                             | 06-03-2023                         |                                 | TLM4                            |                       |
| 10.       | Development of NC code using<br>CAM packages                                                            | 3                             | 13-03-2023                         |                                 | TLM4                            |                       |
| 11.       | Machining of simple<br>components on CNC Turning by<br>transferring NC Code from CAM<br>package         | 3                             | 20-03-2023                         |                                 | TLM4                            |                       |
| 12.       | Machining of Simple<br>components on CNC-Mill by<br>transferring NC Code from CAM<br>Package            | 3                             | 27-03-2023                         |                                 | TLM4                            |                       |
| 13.       | Robot programming, simulation, and execution                                                            | 3                             | 03-04-2023                         |                                 | TLM4                            |                       |
| 14.       | Revision                                                                                                | 3                             | 10-04-2023                         |                                 | TLM4                            |                       |
| 15.       | Internal Exam                                                                                           | 3                             | 17-04-2023                         |                                 | TLM4                            |                       |
| No. o     | of classes required to complete                                                                         | :                             |                                    | No. of clas                     | ses taker                       | 1:                    |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |

# PART-C

# EVALUATION PROCESS (R20 Regulation):

| Evaluation Task                                 | Expt. no's      | Marks  |
|-------------------------------------------------|-----------------|--------|
| Day to Day work = $\mathbf{A}$                  | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                               | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = $\mathbf{C}$                    | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination: A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                   | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: $A + B + C + D = 50$               | 1,2,3,4,5,6,7,8 | 50     |

### PART-D

## **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| DEO 1        | To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| I LO I       | Mathematics, Science and Mechanical Engineering.                                                                                  |
|              | To inculcate strong ethical values and leadership qualities for graduates to become                                               |
| PEO 2        | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.   |
| <b>PEO 3</b> | To develop inquisitiveness towards good communication and lifelong learning.                                                      |

# **PROGRAMME OUTCOMES (POs):**

| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |

## **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal |
|-------|-----------------------------------------------------------------------------------|
| 1301  | systems.                                                                          |

| PSO 2        | To apply the principles of manufacturing technology, scientific management<br>towards improvement of quality and optimization of engineering systems in the |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1001         | design, analysis and manufacturability of products.                                                                                                         |  |  |  |  |  |
|              | To apply the basic principles of mechanical engineering design for evaluation of                                                                            |  |  |  |  |  |
| <b>PSO 3</b> |                                                                                                                                                             |  |  |  |  |  |
|              | conservation of energy and other process equipment.                                                                                                         |  |  |  |  |  |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty |                   |                       |                       |                           |
| Signature              |                   |                       |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING





Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor:Mr.K.Venkateswara Reddy, Mr.V.Sankar RaoCourse Name & Code: ROBOTICS AND SIMULATION LAB & 20ME64RegL-T-P Structure: 1-0-2CreationProgram/Sem/Sec: B.Tech/VI/AA.YPREREQUISITE:Engineering Mechanics, Theory of Machines, RoboticsCOURSE EDUCATIONAL OBJECTIVES (CEOs):

Regulation:R20 Credits: 2 A.Y.: 2022-23

The main objective of this course is to demonstrate and analysis of various types of robots.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| C01 | Simulate forward and inverse kinematic movements of a robot using Robo Analyzer and MATLAB. <b>(Understanding - L2)</b>            |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Perform the demo operations on SCARA and PUMA using Robo analyzer software. (Applying - L3)                                        |
| CO3 | Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and Unloading. <b>(Applying - L3)</b> |
| CO4 | Develop Robot Programmes to use to control commands. (Analyzing - L4)                                                              |

### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | P01 | P02       | P03 | P04 | P05             | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----------|-----|-----|-----------------|-----|-----|-----|-----|------|------|------|------|------|------|
| C01            | 2   | 1         |     |     | 3               |     |     |     |     |      |      | 2    |      | 3    |      |
| CO2            | 1   | 2         | 2   |     | 3               |     |     |     |     |      |      | 2    |      | 3    |      |
| CO3            | 3   | 3         |     | 2   | 3               |     |     |     |     |      |      | 3    |      |      | 3    |
| CO4            | 1   | 1         |     |     | 3               |     |     |     |     |      |      | 2    |      |      | 3    |
| <b>1 -</b> Low |     | 2 –Medium |     |     | <b>3 -</b> High |     |     |     |     |      |      |      |      |      |      |

### **SOFTWARE PACKAGES:** ARISTO ROBOT, C Prog, Robo Analyzer, MAT Lab **REFERENCES:**

Lab Manuals

# PART-B

## COURSE DELIVERY PLAN (LESSON PLAN):

## Schedule of Experiments (Section – A: B1 Batch)

| S.No | Batches  | Regd. Nos             | Total No. of<br>Students |  |
|------|----------|-----------------------|--------------------------|--|
| 1    | Batch B1 | 20761A0301-20761A0333 | 33                       |  |

| S.<br>No.                            | Topics to be covered<br>(Experiment Name)                                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 17.                                  | Introduction to Robotics and<br>Simulation Lab, Demonstration of<br>all experiments, CEOs, and COs of<br>the Laboratory | 3                             | 28-12-2022                         |                                 | TLM4                            |                       |
| Cyc                                  | le-I                                                                                                                    |                               |                                    |                                 |                                 |                       |
| 18.                                  | Study the anatomy of robots.                                                                                            | 3                             | 04-01-2023                         |                                 | TLM4                            |                       |
| 19.                                  | Analysis of robot configuration<br>and Simulation of Robot with 2<br>Dof using Robo Analyzer.                           | 3                             | 11-01-2023                         |                                 | TLM4                            |                       |
| 20.                                  | Analysis of robot configuration<br>and Simulation of Robot with 6<br>Dof using Robo Analyzer.                           | 3                             | 18-01-2023                         |                                 | TLM4                            |                       |
| 21.                                  | D-H parametric representation of<br>various robotic arms using Robo<br>Analyzer                                         | 3                             | 25-01-2023                         |                                 | TLM4                            |                       |
| 22.                                  | Forward and Inverse Kinematics<br>Analysis of Robot using Robo<br>Analyzer                                              | 3                             | 01-02-2023                         |                                 | TLM4                            |                       |
| Cyc                                  | le-II                                                                                                                   |                               |                                    |                                 |                                 |                       |
| 23.                                  | Simulation of SCARA, PUMA using<br>Robo Aanlyzer                                                                        | 3                             | 08-02-2023                         |                                 | TLM4                            |                       |
| 24.                                  | Introduction to IGUS Software                                                                                           | 3                             | 15-02-2023                         |                                 | TLM4                            |                       |
| 25.                                  | Introduction to IGUS Software                                                                                           | 3                             | 01-03-2023                         |                                 | TLM4                            |                       |
| 26.                                  | Program for commands like a line command, circle command                                                                | 3                             | 08-03-2023                         |                                 | TLM4                            |                       |
| 27.                                  | Program for Point to Point (PTP) command                                                                                | 3                             | 15-03-2023                         |                                 | TLM4                            |                       |
| 28.                                  | Palletizing, Spray painting                                                                                             | 3                             | 29-03-2023                         |                                 | TLM4                            |                       |
| 29.                                  | Loading / Unloading                                                                                                     | 3                             | 05-04-2023                         |                                 | TLM4                            |                       |
| 30.                                  | Revision                                                                                                                | 3                             | 12-04-2023                         |                                 | TLM4                            |                       |
| 31.                                  | Internal Exam                                                                                                           | 3                             | 19-04-2023                         |                                 | TLM4                            |                       |
| No. of classes required to complete: |                                                                                                                         |                               |                                    | No. of clas                     | sses taken                      | 1:                    |

### Schedule of Experiments (Section - A: B2 Batch)

| 9 | S.No | Batches  | Regd. Nos                                    | Total No. of<br>Students |
|---|------|----------|----------------------------------------------|--------------------------|
|   | 1    | Batch B2 | 20761A0334-20761A0347, 21765A0301-21765A0319 | 33                       |

| S.<br>No. | Topics to be covered<br>(Experiment Name)                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Robotics and Simulation Lab, Demonstration of | 3                             | 29-12-2022                         |                                 | TLM4                            |                       |

|     | all experiments, CEOs, and COs of                                                             |   |            |                       |
|-----|-----------------------------------------------------------------------------------------------|---|------------|-----------------------|
|     | the Laboratory                                                                                |   |            |                       |
| Cyc | le-I                                                                                          |   |            |                       |
| 2.  | Study the anatomy of robots.                                                                  | 3 | 05-01-2023 | TLM4                  |
| 3.  | Analysis of robot configuration<br>and Simulation of Robot with 2<br>Dof using Robo Analyzer. | 3 | 12-01-2023 | TLM4                  |
| 4.  | Analysis of robot configuration<br>and Simulation of Robot with 6<br>Dof using Robo Analyzer. | 3 | 19-01-2023 | TLM4                  |
| 5.  | D-H parametric representation of<br>various robotic arms using Robo<br>Analyzer               | 3 | 02-02-2023 | TLM4                  |
| 6.  | Forward and Inverse Kinematics<br>Analysis of Robot using Robo<br>Analyzer                    | 3 | 09-02-2023 | TLM4                  |
| Cyc | le-II                                                                                         |   |            |                       |
| 7.  | Simulation of SCARA, PUMA using<br>Robo Aanlyzer                                              | 3 | 16-02-2023 | TLM4                  |
| 8.  | Introduction to IGUS Software                                                                 | 3 | 02-03-2023 | TLM4                  |
| 9.  | Program for commands like a line command, circle command                                      | 3 | 09-03-2023 | TLM4                  |
| 10. | Program for Point to Point (PTP) command                                                      | 3 | 16-03-2023 | TLM4                  |
| 11. | Palletizing, Spray painting                                                                   | 3 | 23-03-2023 | TLM4                  |
| 12. | Loading / Unloading                                                                           | 3 | 06-04-2023 | TLM4                  |
| 13. | Revision                                                                                      | 3 | 13-04-2023 | TLM4                  |
| 14. | Internal Exam                                                                                 | 3 | 20-04-2023 | TLM4                  |
| No. | of classes required to complete                                                               | : |            | No. of classes taken: |

| Teaching Learning Methods |                |      |                                    |
|---------------------------|----------------|------|------------------------------------|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |

# PART-C

# EVALUATION PROCESS (R20 Regulation):

| Evaluation Task                                 | Expt. no's      | Marks  |
|-------------------------------------------------|-----------------|--------|
| Day to Day work = $\mathbf{A}$                  | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                               | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = $\mathbf{C}$                    | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination: A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                   | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: $A + B + C + D = 50$               | 1,2,3,4,5,6,7,8 | 50     |

### PART-D

### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| PFO 1        | To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| I LO I       | Mathematics, Science and Mechanical Engineering.                                                                                  |
| DEO 2        | To inculcate strong ethical values and leadership qualities for graduates to become                                               |
| PEO 2        | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.   |
| <b>PEO 3</b> | To develop inquisitiveness towards good communication and lifelong learning.                                                      |

### **PROGRAMME OUTCOMES (POs):**

| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |
| PO 3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |  |  |  |
| PO 4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |
| PO 5  | <b>Modern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                |  |  |  |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |  |
| PO 7  | Environment and sustainability: Understand the impact of the professional                                                                                                                                                                                                                                |  |  |  |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding                                                                                                                                                                                                                           |  |  |  |
| PO 12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |  |  |  |

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

**PSO 1** To apply the principles of thermal sciences to design and develop various thermal systems.

| DGO 0        | To apply the principles of manufacturing technology, scientific management       |
|--------------|----------------------------------------------------------------------------------|
| <b>PSO 2</b> | towards improvement of quality and optimization of engineering systems in the    |
|              | design, analysis and manufacturability of products.                              |
|              | To apply the basic principles of mechanical engineering design for evaluation of |
| <b>PSO 3</b> | performance of various systems relating to transmission of motion and power,     |
|              | conservation of energy and other process equipment.                              |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty |                   |                       |                       |                           |
| Signature              |                   |                       |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

#### DEPARTMENT OF MECHANICAL ENGINEERING

# **COURSE HANDOUT**

| Name of Course Instructor : Dr. Sujith Kumar Rath& Mr. B Sagar |                                     |               |  |  |
|----------------------------------------------------------------|-------------------------------------|---------------|--|--|
| Course Name & Code                                             | : Soft skills & soft skills Laborat | tory (20HSS1) |  |  |
| L-T-P Structure                                                | : 0-0-1+2                           | Credit : 2    |  |  |
| Program/Sem/Sec                                                | : B.Tech.,MECH-A&B , VI-Sem.,       | A.Y: 2022-23  |  |  |

#### **Course Description & Objectives:**

The Soft Skills Laboratory course equips students with required behavioural, interpersonal & Intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self confidence, esteem and acceptability in professional circles.

#### Course Outcomes (COs): At the end of the course, student will be able to

| CO1 | Infer the self awareness and personality (Understand – L2)                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| CO2 |                                                                                                                         |
|     | work, Inter-personal relationships, conflict management and leadership quality.(Apply – L3)                             |
| CO3 | Communicate through verbal/oral communication and improve the listening skills( <b>Apply – L3</b> )                     |
| CO4 | <b>Relate</b> the<br>critical & lateral thinking while dealing with personal/social/professional issues. (Apply $-L3$ ) |

#### **Course Content:**

#### **Personality Development Skills**

Role of language in Personality – How language reflects, impactsPersonality – Using gender-neutral language in MNCs – being culturally-sensitive-Personality Traits- Grooming & Dress code

Activities: Group Discussion/Role play/Presentations (authentic materials: News papers, pamphlets and news clippings)

#### Impactful Communication

Activities: Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/ Elocution on Interpretation of given quotes/Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

#### ProfessionalSkills:

Career Planning- job vs. career- goal setting- SWOT analysis-Timemanagement – self-management – stress-management.

Activities: SWOT analysis of the self/Goal setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

#### **REFERENCEBOOKS**:

- 1. Edward Holffman, "Ace the Corporate Personality", McGraw Hill, 2001
- 2. Adrian Furnham, Personality and Intelligence at Work, Psychology Press, 2008.
- 3. M.Ashraf Rizvi, "Effective Technical Communication", 1 st edition, Tata McGraw Hill, 2005
- 4. Ace of Soft skillsGopalaswamy Ramesh, Pearson Education India, 2018
- 5. Soft Skills for the Workplace, Goodheart-Willcox Publisher · 2020.
- 6. How to Win Friends and Influence People, Dale Carnegie · 2020

|      | No. of |          | MECHA                                                                   |                | HOD            |
|------|--------|----------|-------------------------------------------------------------------------|----------------|----------------|
| S.No |        |          | Planned Topics                                                          | Actual<br>Date | Sign<br>Weekly |
| 1    | 1      | 30-12-22 | Role of language in personality                                         |                |                |
| 2    | 2      | 30-12-22 | Extempore                                                               |                |                |
| 3    | 1      | 06-01-23 | How language reflects, impacts Personality                              |                |                |
| 4    | 2      | 06-01-23 | Story Telling                                                           |                |                |
| 5    | 1      | 20-01-23 | Using gender-neutral language in MNCs                                   |                |                |
| 6    | 2      | 20-01-23 | Case Studies                                                            |                |                |
| 7    | 1      | 27-01-23 | Being culturally-sensitive-Personality<br>Traits- Grooming & Dress code |                |                |
| 8    | 2      | 27-01-23 | Using authentic materials: News papers,<br>pamphlets and news clippings |                |                |
| 9    | 1      | 03-02-23 | Career Planning                                                         |                |                |
| 10   | 2      | 03-02-23 | Public Speaking                                                         |                |                |
| 11   | 1      | 10-02-23 | Job vs. career- goal setting                                            |                |                |
| 12   | 2      | 10-02-23 | Critical Appreciation and Textual Analysis                              |                |                |
| 13   | 1      | 17-02-23 | SWOT analysis                                                           |                |                |
| 14   | 2      | 17-02-23 | Writing a review on a given short<br>story/videos/book                  |                |                |
| 15   | 1      | 03-03-23 | Time management                                                         |                |                |
| 16   | 2      | 03-03-23 | Empathetic speaking                                                     |                |                |

#### MECH-A

| 17 | 1 | 10-03-23 | Self-management                                |  |
|----|---|----------|------------------------------------------------|--|
| 18 | 2 | 10-03-23 | Telephonic conversation                        |  |
| 19 | 1 | 17-03-23 | Stress-management                              |  |
| 20 | 2 | 17-03-23 | Situation based dialogues                      |  |
| 21 | 1 | 24-03-23 | Effective Resume-Writing and presentation      |  |
| 22 | 2 | 24-03-23 | Listening to dialogues and analyzing           |  |
| 23 | 1 | 31-03-23 | Interview Skills                               |  |
| 24 | 2 | 31-03-23 | Pronunciation Practice                         |  |
| 25 | 1 | 21-04-23 | Body Language, Postures, Gestures, Eye contact |  |
| 26 | 2 | 21-04-23 | Mock interviews                                |  |

## MECH-B

| S.No<br>· | No. of<br>Lecture<br>Hours | Date     | Planned Topics                                                          | Actual<br>Date              | HOD<br>Sign<br>Weekly |
|-----------|----------------------------|----------|-------------------------------------------------------------------------|-----------------------------|-----------------------|
| 1         | 1                          | 31-12-22 | Role of language in personality                                         |                             |                       |
| 2         | 2                          | 27-12-22 | Extempore                                                               |                             |                       |
| 3         | 1                          | 07-01-23 | How language reflects, impacts Personality                              |                             |                       |
| 4         | 2                          | 03-01-23 | Story Telling                                                           |                             |                       |
| 5         | 1                          | 21-01-23 | Using gender-neutral language in MNCs                                   |                             |                       |
| 6         | 2                          | 10-01-23 | Case Studies                                                            |                             |                       |
| 7         | 1                          | 28-01-23 | Being culturally-sensitive-Personality<br>Traits- Grooming & Dress code |                             |                       |
| 8         | 2                          | 24-01-23 | Using authentic materials: News papers,<br>pamphlets and news clippings |                             |                       |
| 9         | 1                          | 04-02-23 | Career Planning                                                         |                             |                       |
| 10        | 2                          | 31-01-23 | Public Speaking                                                         |                             |                       |
| 11        | 1                          | 11-02-23 | Job vs. career- goal setting                                            | ob vs. career- goal setting |                       |
| 12        | 2                          | 07-02-23 | Critical Appreciation and Textual Analysis                              |                             |                       |

| 13 | 1 | 04-03-23 | SWOT analysis                                          |  |
|----|---|----------|--------------------------------------------------------|--|
| 14 | 2 | 28-02-23 | Writing a review on a given short<br>story/videos/book |  |
| 15 | 1 | 11-03-23 | Time management                                        |  |
| 16 | 2 | 07-03-23 | Empathetic speaking                                    |  |
| 17 | 1 | 18-03-23 | Self-management                                        |  |
| 18 | 2 | 14-03-23 | Telephonic conversation                                |  |
| 19 | 1 | 25-03-23 | Stress-management                                      |  |
| 20 | 2 | 21-03-23 | Situation based dialogues                              |  |
| 21 | 1 | 01-04-23 | Effective Resume-Writing and presentation              |  |
| 22 | 2 | 04-04-23 | Listening to dialogues and analyzing                   |  |
| 23 | 1 | 08-04-23 | Interview Skills                                       |  |
| 24 | 2 | 11-04-23 | Pronunciation Practice                                 |  |
| 25 | 1 | 15-04-23 | Body Language, Postures, Gestures, Eye contact         |  |
| 26 | 2 | 18-04-23 | Mock interviews                                        |  |

Signature of Faculty

Signature of HOD



### DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

# PART-A

| Name of Course Instructor | : Dr.K.Dilip Kumar                          |              |
|---------------------------|---------------------------------------------|--------------|
| Course Name & Code        | : 20ME17                                    |              |
| L-T-P Structure           | : 3-1-0                                     | Credits : 3  |
| Program/Sem/Sec           | : B.Tech., Mech Engg., VI-Sem., Sections- B | A.Y: 2022-23 |

**PRE-REQUISITE:** Applied Mathematics, Thermodynamics, Thermal Engineering and Fluid Mechanics.

#### COURSE EDUCATIONAL OBJECTIVES (CEOs):

To learn the physical mechanisms on modes of heat transfer, differential equations in heat transfer and the significance of Non Dimensional Numbers in heat transfer applications.

#### **COURSE OUTCOMES (COs):** At the end of the course, students are able to

| CO1 | Understand the basic heat transfer principles and their practical relevance in Planes, Cylinders |
|-----|--------------------------------------------------------------------------------------------------|
|     | and Spherical components. (Understanding - L2)                                                   |
| CO2 | Analyze steady and unsteady state heat transfer concepts and fins. (Analyzing – L4)              |
| CO3 | Formulate the expressions to solve free and forced convection problems related to external and   |
|     | internal flows. (Applying -L3)                                                                   |
| CO4 | Apply the concepts of heat transfer in boiling, condensation and radiation thermal systems.      |
|     | (Applying -L3)                                                                                   |
| CO5 | Design the simple heat exchanger for engineering applications using the data hand book.          |
|     | (Analyzing – L4)                                                                                 |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   | 1   | 2   | 1   | 1   | 1   | -   | -   | -    | -    | 2    | 1    |      | 1    |
| CO2 | 3   | 3   | 2   | 3   | 1   | 1   | 1   | -   | -   | 1    | -    | 2    | 2    |      | 1    |
| CO3 | 3   | 3   | 3   | 2   | 2   |     | 1   | -   | -   | -    | -    | 2    | 3    |      | 1    |
| CO4 | 3   | 2   | 2   | 1   |     | 1   | 2   | -   | -   | -    | -    | 2    | 1    |      | 1    |
| CO5 | 3   | 3   | 3   | 2   | 2   | 2   | 1   | -   | -   | 1    | -    | 3    | 3    |      | 2    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

### **TEXT BOOKS:**

- **T1** R.C.Sachdeva Fundamentals of Engineering Heat and Mass Transfer —New Age Science Publishers, 3<sup>rd</sup> Edition, 2009.
- T2 Yunus. A. Cengel, Heat & Mass Transfer-A Practical Approach Tata McGraw Hill, 4<sup>th</sup> Edition, 2012
- T3 P.Holman, Heat transfer Tata McGraw-Hill, 9th Edition, 2010

#### **REFERENCE BOOKS:**

| <b>R1</b> | M.Necati Ozisik, Heat Transfer- A basic Approach,4th Edition, McGraw-Hill book company, |
|-----------|-----------------------------------------------------------------------------------------|
|           | 1985                                                                                    |
| <b>R2</b> | P.K.Nag, Heat and Mass Transfer- TMH 2nd Edition, 2007                                  |
|           | P.S.Ghoshdastidar Heat Transfer - Oxford Higher Education 6th Edition 2011.             |
|           | C.P.Kothandaraman and Subramanian, Heat and Mass Transfer, New Age International        |
|           | Publications 7th Edition 2010.                                                          |

# PART-B

### COURSE DELIVERY PLAN (LESSON PLAN):

### UNIT-I: INTRODUCTION, ONE- DIMENSIONAL STEADY STATE CONDUCTION

| S.No.  | UNIT-1: INTRODUCTION, ONE-<br>Topics to be covered                                                | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning  | HOD<br>Sign |
|--------|---------------------------------------------------------------------------------------------------|-------------------|----------------------|-------------------|-----------------------|-------------|
| 5.110. | -                                                                                                 | Required          | Completion           | Completion        | Methods               | Weekly      |
| 1.     | Introduction to Course and Course<br>Outcomes (COs) and POs articulation<br>matrix.               | 1                 | 26-12-2022           |                   | TLM1                  |             |
| 2.     | Introduction of five Units importance                                                             | 1                 | 27-12-2022           |                   | TLM1                  |             |
| 3.     | Introduction to heat transfer and its applications,                                               | 1                 | 28-12-2022           |                   | TLM1,<br>TLM2         |             |
| 4.     | Basic modes and its physical mechanisms in heat transfer.                                         | 1                 | 31-12-2022           |                   | TLM5                  |             |
| 5.     | Steady, unsteady and periodic heat transfer                                                       | 1                 | 2-01-2023            |                   | TLM1,<br>TLM4         |             |
| 6.     | Significance of thermal conductivity in heat conduction.                                          | 1                 | 3-01-2023            |                   | TLM1,<br>TLM4         |             |
| 7.     | General heat conduction equation in Cartesian coordinate system                                   | 1                 | 4-01-2023            |                   | TLM1                  |             |
| 8.     | Cartesian coordinate system and its simplifications.                                              | 1                 | 5-01-2023            |                   | TLM1                  |             |
| 9.     | Fourier's law of heat conduction;<br>Numerical Problems.                                          | 1                 | 7-01-2023            |                   | TLM1,<br>TLM2         |             |
| 10.    | General heat conduction equation in cylindrical coordinate system                                 | 1                 | 9-01-2023            |                   | TLM1                  |             |
| 11.    | Cylindrical coordinate system and its simplifications.                                            | 1                 | 10-01-2023           |                   | TLM1                  |             |
| 12.    | Cylindrical coordinate system and its simplifications.                                            | 1                 | 11-01-2023           |                   | TLM3                  |             |
| 13.    | General heat conduction equation in spherical coordinate system and its simplifications.          | 1                 | 18-01-2023           |                   | TLM1,<br>TLM2         |             |
| 14.    | Heat flow through plane wall and cylinder with constant thermal conductivity– Numerical Problems. | 1                 | 19-01-2023           |                   | TLM1,<br>TLM2         |             |
| 15.    | Electrical analogy, thermal resistance<br>and overall heat transfer coefficient.                  | 1                 | 21-01-2023           |                   | TLM1,<br>TLM2<br>TLM5 |             |
| 16.    | Numerical Problems on thermal<br>resistance and overall heat transfer<br>coefficient              | 1                 | 12-01-2023           |                   | TLM1,<br>TLM2         |             |
| 17.    | Heat transfer through composite wall and cylinder, Numerical Problems.                            | 1                 | 23-01-2023           |                   | TLM1,<br>TLM2         |             |
| 18.    | Critical radius of insulation for cylinder and Applications.                                      | 1                 | 24-01-2023           |                   | TLM1,<br>TLM4         |             |
| 19.    | Numerical Problems on critical radius<br>of insulation, Assignment-1<br>Questions.                | 1                 | 25-01-2023           |                   | TLM1<br>TLM6          |             |
| 20.    | Numerical Problems on critical radius<br>of insulation, Assignment-1<br>Questions.                | 1                 | 28-01-2023           |                   | TLM3                  |             |
| No. o  | f classes required to complete UNI                                                                | T-I:              |                      | No. of class      | ses taken:            |             |

| JNIT- | II: ONE DIMENSIONAL STEADY                                                                                           | ' AND TR                      | ANSIENT ST                         | ATE HEAT                        | CONDUC                          | TION:                 |
|-------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| S.No. | Topics to be covered                                                                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
| 1.    | Heat flow through a plane wall with<br>variable thermal conductivity,<br>Numerical Problems.                         | 1                             | 30-01-2023                         |                                 | TLM1                            |                       |
| 2.    | Heat flow through the cylinder with<br>variable thermal conductivity,<br>Numerical Problems.                         | 1                             | 31-1-2023                          |                                 | TLM1                            |                       |
| 3.    | Derivation on Uniform Internal heat generation in slabs and cylinders                                                | 1                             | 01-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 4.    | Numerical Problems on Uniform<br>Internal heat generation in slabs.                                                  | 1                             | 02-02-2023                         |                                 | TLM1                            |                       |
| 5.    | Numerical Problems on Uniform<br>Internal heat generation in cylinders.                                              | 1                             | 04-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Numerical Problems on Uniform<br>Internal heat generation in cylinders.                                              | 1                             | 06-02-2023                         |                                 | TLM3                            |                       |
| 7.    | Extended surfaces and their applications;                                                                            | 1                             | 07-02-2023                         |                                 | TLM1,<br>TLM4                   |                       |
| 8.    | Thermal analysis of long Fins                                                                                        | 1                             | 08-02-2023                         |                                 | TLM1,<br>TLM4                   |                       |
| 9.    | Thermal analysis of short fins with insulated tip,                                                                   | 1                             | 09-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 10.   | Fin efficiency and effectiveness                                                                                     | 1                             | 11-02-2023                         |                                 | TLM1,<br>TLM4                   |                       |
| 11.   | system with negligible internal<br>Resistance (Lumped Heat Analysis),<br>Significance of Biot and Fourier<br>Numbers | 1                             | 13-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 12.   | Biot and Fourier Numbers-systems with finite surface and internal resistance using Heisler Chart.                    | 1                             | 14-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| No. c | of classes required to complete UN                                                                                   | IT-II:                        |                                    | No. of class                    | sses taken:                     |                       |

#### UNIT-II: ONE DIMENSIONAL STEADY AND TRANSIENT STATE HEAT CONDUCTION:

#### **UNIT-III: CONVECTION**

| S.No. | Topics to be covered                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Basics of convective (Forced and<br>Natural) heat transfer and<br>Applications.                               | 1                             | 15-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 2.    | Dimensional analysis                                                                                          | 1                             | 16-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 3.    | Buckingham Pi theorem applied to Forced Convection.                                                           | 1                             | 20-02-2023                         |                                 | TLM1,<br>TLM4                   |                       |
| 4.    | Significance of Non Dimensional Numbers.                                                                      | 1                             | 21-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 5.    | The concept of boundary layer;<br>Velocity                                                                    | 1                             | 22-02-2023                         |                                 | TLM1,                           |                       |
| 6.    | Thermal Boundary Layers                                                                                       | 1                             | 23-02-2023                         |                                 | TLM2                            |                       |
| 7.    | Numerical Problems.                                                                                           | 1                             | 25-02-2023                         |                                 | TLM5                            |                       |
| 8.    | Numerical Problems.                                                                                           | 1                             | 27-02-2023                         |                                 | TLM3                            |                       |
| 9.    | Forced convection analysis in<br>external flows (Flow over a Flat<br>Plate): Laminar and turbulent flows.     | 1                             | 28-02-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 10.   | Forced convection analysis in<br>internal flows (Flow through circular<br>pipe): Laminar and turbulent flows. | 1                             | 1-03-2023                          |                                 | TLM1,<br>TLM2                   |                       |
| 11.   | Numerical Problems on Forced Convection.                                                                      | 1                             | 02-03-2023                         |                                 | TLM1,                           |                       |

|       |                                                                                                        |                       |            | TLM2                  |
|-------|--------------------------------------------------------------------------------------------------------|-----------------------|------------|-----------------------|
| 12.   | Reynolds Colburn Analogy.                                                                              | 1                     | 04-03-2023 | TLM1                  |
| 13.   | Natural convection: Development of<br>Hydrodynamic and thermal boundary<br>layer along vertical plate. | 1                     | 06-03-2023 | TLM1,<br>TLM2<br>TLM4 |
| 14.   | Empirical correlations for Vertical plate,                                                             | 1                     | 07-03-2023 | TLM1,<br>TLM2<br>TLM4 |
| 15.   | Empirical correlations for Vertical,<br>Cylinder                                                       | 1                     | 9-03-2023  | TLM1,<br>TLM2<br>TLM4 |
| 16.   | Empirical correlations for Horizontal<br>Cylinder                                                      | 1                     | 11-03-2023 | TLM1,<br>TLM2<br>TLM4 |
| 17.   | Natural convection cooling in electronic equipment.                                                    | 1                     | 13-03-2023 | TLM1,<br>TLM2<br>TLM4 |
| 18.   | Heat pipe                                                                                              | 1                     | 14-03-2023 | TLM1,<br>TLM2<br>TLM4 |
| No. o | f classes required to complete UNI                                                                     | No. of classes taken: |            |                       |

#### UNIT-IV: BOILING AND CONDENSATION, THERMAL RADIATION

| S.No. | Topics to be covered                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to boiling heat transfer and applications.         | 1                             | 15-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 2.    | Pool Boiling, Different regimes of boiling; Critical heat flux. | 1                             | 16-03-2023                         |                                 | TLM1,<br>TLM2<br>TLM5           |                       |
| 3.    | Numerical problems on nucleate boiling                          | 1                             | 18-03-2023                         |                                 | TLM1,                           |                       |
| 4.    | Critical heat flux conditions.                                  | 1                             | 20-03-2023                         |                                 | TLM2                            |                       |
| 5.    | Condensation: Film wise and Drop wise condensation              | 1                             | 21-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Laminar film wise condensation on Vertical plate                | 1                             | 23-03-2023                         |                                 | TLM1,                           |                       |
| 7.    | Numerical Problems                                              | 1                             | 25-03-2023                         |                                 | TLM2                            |                       |
| 8.    | Introduction and applications of Thermal Radiation              | 1                             | 27-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 9.    | Emissive Power, Absorption,<br>Reflection and Transmission and  | 1                             | 28-03-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 10.   | Definitions related to Radiation                                | 1                             | 29-03-2023                         |                                 | TLM4                            |                       |
| 11.   | Concept of black and non-black bodies                           | 1                             | 1-04-2023                          |                                 | TLM1,<br>TLM2                   |                       |
| 12.   | Laws of black body radiation                                    | 1                             | 3-04-2023                          |                                 | TLM5                            |                       |
| 13.   | Emissivity,<br>Kirchhoff's law                                  | 1                             | 5-04-2023                          |                                 | TLM1,                           |                       |
| 14.   | Shape Factors                                                   | 1                             | 06-04-2023                         |                                 | TLM2                            |                       |
| 15.   | Radiation heat exchange between                                 | 1                             | 08-04-2023                         |                                 | TLM1,                           |                       |

|       | two black isothermal surfaces,      |       |            |              | TLM2          |  |
|-------|-------------------------------------|-------|------------|--------------|---------------|--|
| 16.   | Nonblack infinite parallel plates;  | 1     | 10-04-2023 |              | TLM1,<br>TLM2 |  |
| No. c | of classes required to complete UNI | T-IV: |            | No. of class | ses taken:    |  |

#### **UNIT-V: HEAT EXCHANGERS**

| S.No. | Topics to be covered                                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction-Classification of heat<br>exchangers - Flow arrangement,<br>Temperature distribution, | 1                             | 11-04-2023                         |                                 | TLM1,<br>TLM2<br>TLM6           |                       |
| 2.    | Applications of Heat Exchangers                                                                    | 1                             | 12-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 3.    | Overall heat transfer coefficient-<br>Fouling factor                                               | 1                             | 13-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 4.    | LMTD method of Heat exchanger<br>analysis- Parallel flow, Numerical<br>Problems                    | 1                             | 15-04-2023                         |                                 | TLM1,<br>TLM2<br>TLM4           |                       |
| 5.    | LMTD method of Heat exchanger<br>analysis- Counter flow, Numerical<br>Problems                     | 1                             | 17-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 6.    | Correction factor for LMTD for use<br>with Multi pass and Cross flow Heat<br>Exchangers            | 1                             | 18-04-2023                         |                                 | TLM1,<br>TLM2                   |                       |
| 7.    | Effectiveness - NTU method of Heat<br>Exchanger analysis-Applications of<br>Heat Exchangers        | 1                             | 19-04-2023                         |                                 | TLM3                            |                       |
| 8.    | Effectiveness - NTU method of Heat<br>Exchanger analysis-Applications of<br>Heat Exchangers        | 1                             | 20-04-2023                         |                                 | TLM1,<br>TLM5                   |                       |
| No. c | f classes required to complete UN                                                                  | IT-V:                         |                                    | No. of class                    | sses taken:                     |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |

# PART-C

# EVALUATION PROCESS (R17 Regulations):

| Evaluation Task                        |       |  |  |  |  |  |
|----------------------------------------|-------|--|--|--|--|--|
| Assignment-I (Unit-I)                  |       |  |  |  |  |  |
| Assignment-II (Unit-II)                | A2=5  |  |  |  |  |  |
| I-Mid Examination (Units-I & II)       | M1=15 |  |  |  |  |  |
| I-Quiz Examination (Units-I & II)      | Q1=10 |  |  |  |  |  |
| Assignment-III (Unit-III)              | A3=5  |  |  |  |  |  |
| Assignment-IV (Unit-IV)                | A4=5  |  |  |  |  |  |
| Assignment-V (Unit-V)                  | A5=5  |  |  |  |  |  |
| II-Mid Examination (Units-III, IV & V) | M2=15 |  |  |  |  |  |

| II-Quiz Examination (Units-III, IV & V)                    | Q2=10 |
|------------------------------------------------------------|-------|
| Attendance                                                 | B=5   |
| Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5   |
| Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)             | M=15  |
| Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)            | B=10  |
| Cumulative Internal Examination (CIE) : A+B+M+Q            | 30    |
| Semester End Examination (SEE)                             | 70    |
| Total Marks = CIE + SEE                                    | 100   |

# PART-D

#### **PROGRAMME OUTCOMES (POs):**

| <b>PO 1</b> | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|
|             | fundamentals, and an engineering specialization to the solution of complex engineering                                         |
|             | problems.                                                                                                                      |
| <b>PO 2</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex                                         |
|             | engineering problems reaching substantiated conclusions using first principles of mathematics,                                 |
|             | natural sciences, and engineering sciences.                                                                                    |
| PO 3        | Design/development of solutions: Design solutions for complex engineering problems and                                         |
|             | design system components or processes that meet the specified needs with appropriate                                           |
|             | consideration for the public health and safety, and the cultural, societal, and environmental                                  |
| <b>DO</b> 4 | considerations.                                                                                                                |
| PO 4        | Conduct investigations of complex problems: Use research-based knowledge and research                                          |
|             | methods including design of experiments, analysis and interpretation of data, and synthesis of                                 |
| <b>DO F</b> | the information to provide valid conclusions.                                                                                  |
| PO 5        | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                     |
|             | engineering and IT tools including prediction and modelling to complex engineering activities                                  |
|             | with an understanding of the limitations                                                                                       |
| PO 6        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                       |
|             | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to                            |
| <b>PO 7</b> | the professional engineering practice<br>Environment and sustainability: Understand the impact of the professional engineering |
| PO /        | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need                                   |
|             | for sustainable development.                                                                                                   |
| PO 8        | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and                             |
| 100         | norms of the engineering practice.                                                                                             |
| <b>PO 9</b> | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in                          |
| 107         | diverse teams, and in multidisciplinary settings.                                                                              |
| PO 10       | Communication: Communicate effectively on complex engineering activities with the                                              |
|             | engineering community and with society at large, such as, being able to comprehend and write                                   |
|             | effective reports and design documentation, make effective presentations, and give and receive                                 |
|             | clear instructions.                                                                                                            |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the                                                 |
|             | engineering and management principles and apply these to one's own work, as a member and                                       |
|             | leader in a team, to manage projects and in multidisciplinary environments.                                                    |
| PO 12       | Life-long learning: Recognize the need for, and have the preparation and ability to engage in                                  |
|             | independent and life-long learning in the broadest context of technological change.                                            |
|             |                                                                                                                                |

#### PROGRAMME SPECIFC OUTCOMES (PSOs):

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.      |
|-------|-------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards              |
|       | improvement of quality and optimization of engineering systems in the design, analysis and      |
|       | manufacturability of products.                                                                  |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of |
|       | various systems relating to transmission of motion and power, conservation of energy and other  |
|       | process equipment.                                                                              |

| Course Instructor  | Course Coordinator    | Module Coordinator | HOD                |
|--------------------|-----------------------|--------------------|--------------------|
| (Dr.K.Dilip Kumar) | (Dr.P.Ravindra Kumar) | (Dr.P.Vijay Kumar) | (Dr.S.Pichi Reddy) |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF MECHANICAL ENGINEERING**

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor: Dr M B S Sreekara Reddy, Associate Professor

Course Name & Code: CAD/CAM & 20ME18Regulation: R20L-T-P Structure: 3-0-0Credits: 3Program/Sem/Sec: B.Tech VI Sem (B)A.Y.: 2022-2023

PREREQUISITE: Design of Machine Elements -I, Machine Tools and Metrology

### COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to familiarize the principles of geometric modeling,

numerical control and part programming.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| C01 | Comprehend the principles of CAD/CAM for design and manufacturing <b>(Understanding -L2)</b>                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Formulate mathematical equations for geometrical entities like curves, surface, and solids. <b>(Applying -L3)</b>            |
| СО3 | Write the program for part profiles to accomplish numerical control machining. (Applying -L3)                                |
| CO4 | Discuss the codes for different parts using GT and apply in automated manufacturing systems. <b>(Understanding -L2)</b>      |
| CO5 | Contrast CAQC techniques and comprehend the applications of Computer<br>Integrated Manufacturing. <b>(Understanding -L2)</b> |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01 | 1   |     |       | 2   |     |     |       |     |     |      |      |        |      | 2    |      |
| CO2 | 1   | 1   | 2     | 2   | 1   |     |       |     |     |      |      | 1      |      | 3    |      |
| CO3 | 1   | 1   | 1     |     | 1   |     |       |     |     |      |      | 1      |      | 3    |      |
| CO4 |     | 2   |       | 1   |     |     |       |     |     |      |      |        |      | 2    |      |
| CO5 | 1   |     |       |     | 1   |     |       |     |     |      |      |        |      | 3    |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | um  |     |      | 3    | - High |      |      |      |

### **TEXTBOOKS:**

**T1** P.N Rao ,CAD/CAM Principle and applications, Tata McGraw Hill Education Private Ltd, New Delhi,8<sup>th</sup> edition 2013.

Ibrahim Zeid, Mastering CAD/CAM, TATA McGraw-Hill publishing CO.Ltd, NewDelhi **T2** 2011.

#### **REFERENCE BOOKS:**

| R1 | Mikel P.Groover and Emory W.Zimmers, CAD/CAM-Prentice Hall of India Private Ltd. New   |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Delhi, 20 <sup>th</sup> edition, May 2010.                                             |  |  |  |  |  |
| R2 | P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM, New Age International                |  |  |  |  |  |
|    | Publishers,3 <sup>rd</sup> edition 2010.                                               |  |  |  |  |  |
| R3 | Mikel P.Groover, Automaiton, Production Systems and Computer Integrated Manufacturing, |  |  |  |  |  |
|    | Prentice Hall of India Private Ltd. New Delhi, 3 <sup>rd</sup> edition, May 2008.      |  |  |  |  |  |
| R4 | Ibrahim Zeid and R. Sivasubramanian, CAD/CAM theory and practice, Tata McGraw Hill     |  |  |  |  |  |
|    | Publishing Co. Ltd,New Delhi 2009.                                                     |  |  |  |  |  |
| R5 | Tien-Chienchang, Richard A.Wysk and HSU-Pin (Ben) Wang, -Computer Aided                |  |  |  |  |  |
|    | Manufacturing, 3 <sup>rd</sup> Edition, 2006                                           |  |  |  |  |  |

### PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): Section - A

### UNIT-I: FUNDAMENTALS OF CAD, COMPUTER GRAPHICS

| S.<br>No. | Topics to be covered                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to CAD/CAM                                 | 1                             | 26-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 2.        | Product Cycle Revised with<br>CAD/CAM                   | 1                             | 27-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 3.        | Tutorial 1                                              | 1                             | 28-12-2022                         |                                 | TLM3                            |                       |
| 4.        | Reasons for implementing CAD                            | 1                             | 30-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 5.        | Creating Manufacturing database<br>& Benefits of CAD    | 1                             | 31-12-2022                         |                                 | TLM1/TLM2                       |                       |
| 6.        | Computer Graphics- Introduction ,<br>Database structure | 1                             | 02-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 7.        | Functions of a graphics package                         | 1                             | 03-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 8.        | Tutorial 2                                              | 1                             | 04-01-2023                         |                                 | TLM3                            |                       |
| 9.        | Raster scan graphics                                    | 1                             | 06-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 10.       | Transformations.                                        | 1                             | 07-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 11.       | Translation, scaling,                                   | 1                             | 09-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 12.       | Reflection, rotation                                    | 1                             | 10-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 13.       | Problems on Transformations-<br>Tutorial 3              | 1                             | 11-01-2023                         |                                 | TLM3                            |                       |
| No. o     | of classes required to complete U                       | NIT-I: 13                     |                                    | No. of class                    | es taken:                       |                       |

#### UNIT-II: GEOMETRIC MODELING: REPRESENTATION OF CURVES, REPRESENTATION OF SURFACES AND SOLIDS

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 14.       | Geometric Modelling: Introduction              | 1                             | 18-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 15.       | Wireframe Modelling: Entities wireframe models | 1                             | 20-01-2023                         |                                 | TLM1/TLM2                       |                       |
| 16.       | Parametric representation of analytical curves | 1                             | 21-01-2023                         |                                 | TLM1/TLM2                       |                       |

| 17.   | Parametric representation of analytical curves  | 1 | 23-01-2023 |                | TLM1/TLM2 |  |
|-------|-------------------------------------------------|---|------------|----------------|-----------|--|
| 18.   | Hermite cubic spline curve                      | 1 | 24-01-2023 |                | TLM1/TLM2 |  |
| 19.   | Tutorial 4                                      | 1 | 25-01-2023 |                | TLM3      |  |
| 20.   | Bezier curves                                   | 1 | 27-01-2023 |                | TLM1/TLM2 |  |
| 21.   | B-spline curves                                 | 1 | 28-01-2023 |                | TLM1/TLM2 |  |
| 22.   | Characteristics of Curves,<br>Problems          | 1 | 30-01-2023 |                | TLM1/TLM2 |  |
| 23.   | Surface representation: Entities                | 1 | 31-01-2023 |                | TLM1/TLM2 |  |
| 24.   | Tutorial 5                                      | 1 | 01-02-2023 |                | TLM3      |  |
| 25.   | Solid modelling: Representation                 | 1 | 03-02-2023 |                | TLM1/TLM2 |  |
| 26.   | B-Rep                                           | 1 | 04-02-2023 |                | TLM1/TLM2 |  |
| 27.   | CSG                                             | 1 | 06-02-2023 |                | TLM1/TLM2 |  |
| No. o | No. of classes required to complete UNIT-II: 14 |   |            | No. of classes | staken:   |  |

### **UNIT-III: COMPUTER NUMERICAL CONTROL, PART PROGRAMMING**

| S.<br>No. | Topics to be covered                         | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 28.       | Numerical control: Introduction,<br>NC Modes | 1                             | 07-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 29.       | Tutorial 6                                   | 1                             | 08-02-2023                         |                                 | TLM3                            |                       |
| 30.       | NC elements ,N C Coordinate systems          | 1                             | 10-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 31.       | Structure of CNC machine tools               | 1                             | 13-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 32.       | Spindle design                               | 1                             | 14-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 33.       | Tutorial 7                                   | 1                             | 15-02-2023                         |                                 | TLM3                            |                       |
| 34.       | spindle drives,                              | 1                             | 17-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 35.       | Feed drives,                                 | 1                             | 27-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 36.       | actuation systems                            | 1                             | 28-02-2023                         |                                 | TLM1/TLM2                       |                       |
| 37.       | Tutorial 8                                   | 1                             | 01-03-2023                         |                                 | TLM3                            |                       |
| 38.       | CNC Part programming: fundamentals           | 1                             | 03-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 39.       | Manual part programming                      | 1                             | 04-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 40.       | Computer Aided part programming              | 1                             | 06-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 41.       | Part programming examples                    | 1                             | 07-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 42.       | Examples                                     | 1                             | 10-03-2023                         |                                 | TLM1/TLM2                       |                       |
| No. o     | of classes required to complete              | UNIT-III: 1                   | 5                                  | No. of classe                   | es taken:                       |                       |

## UNIT-IV: GROUP TECHNOLOGY, FLEXIBLE MANUFACTURING SYSTEM

| S.<br>No. | Topics to be covered                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 43.       | Group Technology                            | 1                             | 13-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 44.       | Coding and classification schemes-<br>OPITZ | 1                             | 14-03-2023                         |                                 | TLM1/TLM2                       |                       |
| 45.       | Tutorial 9                                  | 1                             | 15-03-2023                         |                                 | TLM3                            |                       |
| 46.       | MICLASS, example for coding                 | 1                             | 17-03-2023                         |                                 | TLM1/TLM2                       |                       |

| No. | of classes required to complet                 | e UNIT-IV | V: 14      | No. of classes taken: |
|-----|------------------------------------------------|-----------|------------|-----------------------|
| 56. | FMS Planning and implementation                | 1         | 01-04-2023 | TLM1/TLM2             |
| 55. | FMS Planning and implementation                | 1         | 31-03-2023 | TLM1/TLM2             |
| 54. | Tutorial 10                                    | 1         | 29-03-2023 | TLM3                  |
| 53. | FMS equipment, FMS layouts, benefits           | 1         | 28-03-2023 | TLM1/TLM2             |
| 52. | Flexible Manufacturing System:<br>Introduction | 1         | 27-03-2023 | TLM1/TLM2             |
| 51. | CAPP- Retrieval and Generative                 | 1         | 25-03-2023 | TLM1/TLM2             |
| 50. | GT Machine cells, Benefits of GT               | 1         | 24-03-2023 | TLM1/TLM2             |
| 49. | Advantages and limitations                     | 1         | 21-03-2023 | TLM1/TLM2             |
| 48. | Production Flow Analysis                       | 1         | 20-03-2023 | TLM1/TLM2             |
| 47. | CODE Systems, examples for coding              | 1         | 18-03-2023 | TLM1/TLM2             |

# UNIT-V: COMPUTER AIDED QUALITY CONTROL, COMPUTER INTEGRATED MANUFACTURING SYSTEMS

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 57.       | CAQC: Introduction, The computers in QC        | 1                             | 03-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 58.       | Contact inspection methods                     | 1                             | 04-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 59.       | Non-Contact inspection<br>methods: Optical     | 1                             | 10-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 60.       | Non-Contact inspection<br>methods: non optical | 1                             | 11-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 61.       | Tutorial 11                                    | 1                             | 12-04-2023                         |                                 | TLM3                            |                       |
| 62.       | Computer aided testing,                        | 1                             | 15-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 63.       | CAQC with CAD/CAM                              | 1                             | 17-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 64.       | CIM Introduction                               | 1                             | 18-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 65.       | CIM integration,<br>Implementation             | 1                             | 19-04-2023                         |                                 | TLM1/TLM2                       |                       |
| 66.       | Benefits of CIM, Lean<br>manufacturing         | 1                             | 21-04-2023                         |                                 | TLM1/TLM2                       |                       |
| No. o     | of classes required to com                     | plete UNI                     | Γ-V: 10                            | No. of clas                     | sses taken:                     |                       |

| Teaching Learning Methods |                |      |                                    |  |
|---------------------------|----------------|------|------------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |

# PART-C

## **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                           | Marks |
|---------------------------------------------------------------------------|-------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))              | A1=5  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | M1=15 |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))        | Q1=10 |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)         | A2=5  |

| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
|--------------------------------------------------------------------------------------|-------------------|
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| PEO 1                                                     | To build a professional career and pursue higher studies with sound                                                                 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                           | knowledge in Mathematics, Science and Mechanical Engineering.                                                                       |  |  |  |  |
| PEO 2                                                     | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.     |  |  |  |  |
| PEO 3                                                     | To develop inquisitiveness towards good communication and lifelong learning.                                                        |  |  |  |  |
| L                                                         | MME OUTCOMES (POs):                                                                                                                 |  |  |  |  |
|                                                           | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science,                                                         |  |  |  |  |
| PO 1                                                      | engineering fundamentals, and an engineering specialization to the solution                                                         |  |  |  |  |
| 101                                                       | of complex engineering problems.                                                                                                    |  |  |  |  |
|                                                           | <b>Problem analysis</b> : Identify, formulate, review research literature, and                                                      |  |  |  |  |
|                                                           | analyse complex engineering problems reaching substantiated conclusions                                                             |  |  |  |  |
| PO 2                                                      | using first principles of mathematics, natural sciences, and engineering                                                            |  |  |  |  |
|                                                           | sciences.                                                                                                                           |  |  |  |  |
|                                                           | <b>Design/development of solutions</b> : Design solutions for complex engineering                                                   |  |  |  |  |
| <b>DO 3</b>                                               | problems and design system components or processes that meet the specified                                                          |  |  |  |  |
| PO 3                                                      | needs with appropriate consideration for the public health and safety, and                                                          |  |  |  |  |
| the cultural, societal, and environmental considerations. |                                                                                                                                     |  |  |  |  |
|                                                           | <b>Conduct investigations of complex problems</b> : Use research-based                                                              |  |  |  |  |
| PO 4                                                      | knowledge and research methods including design of experiments, analysis                                                            |  |  |  |  |
| 101                                                       | and interpretation of data, and synthesis of the information to provide valid                                                       |  |  |  |  |
|                                                           | conclusions.                                                                                                                        |  |  |  |  |
|                                                           | Modern tool usage: Create, select, and apply appropriate techniques,                                                                |  |  |  |  |
| PO 5                                                      | resources, and modern engineering and IT tools including prediction and                                                             |  |  |  |  |
|                                                           | modelling to complex engineering activities with an understanding of the                                                            |  |  |  |  |
|                                                           | limitations.<br><b>The engineer and society</b> : Apply reasoning informed by the contextual                                        |  |  |  |  |
| PO 6                                                      | knowledge to assess societal, health, safety, legal and cultural issues and the                                                     |  |  |  |  |
| 100                                                       | consequent responsibilities relevant to the professional engineering practice.                                                      |  |  |  |  |
|                                                           | <b>Environment and sustainability</b> : Understand the impact of the professional                                                   |  |  |  |  |
| PO 7                                                      | engineering solutions in societal and environmental contexts, and                                                                   |  |  |  |  |
| _                                                         | demonstrate the knowledge of, and need for sustainable development.                                                                 |  |  |  |  |
|                                                           | Ethics: Apply ethical principles and commit to professional ethics and                                                              |  |  |  |  |
| PO 8                                                      | responsibilities and norms of the engineering practice.                                                                             |  |  |  |  |
| PO 9                                                      | Individual and team work: Function effectively as an individual, and as a                                                           |  |  |  |  |
| 109                                                       | member or leader in diverse teams, and in multidisciplinary settings.                                                               |  |  |  |  |
|                                                           | <b>Communication</b> : Communicate effectively on complex engineering activities                                                    |  |  |  |  |
| PO 10                                                     | with the engineering community and with society at large, such as, being                                                            |  |  |  |  |
| 1010                                                      | able to comprehend and write effective reports and design documentation,                                                            |  |  |  |  |
|                                                           | make effective presentations, and give and receive clear instructions.                                                              |  |  |  |  |
|                                                           | <b>Project management and finance</b> : Demonstrate knowledge and                                                                   |  |  |  |  |
| PO 11                                                     | understanding of the engineering and management principles and apply                                                                |  |  |  |  |
| PU 11                                                     | these to one's own work, as a member and leader in a team, to manage                                                                |  |  |  |  |
|                                                           | projects and in multidisciplinary environments.<br><b>Life-long learning</b> : Recognize the need for, and have the preparation and |  |  |  |  |
| PO 12                                                     | ability to engage in independent and life-long learning in the broadest context                                                     |  |  |  |  |
|                                                           | a builty to engage in independent and me-fong rearning in the broadest context                                                      |  |  |  |  |

of technological change.

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO        | To apply the principles of thermal sciences to design and develop various         |
|------------|-----------------------------------------------------------------------------------|
| 130        | thermal systems.                                                                  |
|            | To apply the principles of manufacturing technology, scientific management        |
| <b>PSO</b> | 2 towards improvement of quality and optimization of engineering systems in       |
|            | the design, analysis and manufacturability of products.                           |
|            | To apply the basic principles of mechanical engineering design for evaluation     |
| <b>PSO</b> | <b>3</b> of performance of various systems relating to transmission of motion and |
|            | power, conservation of energy and other process equipment.                        |

| Title                  | Course Instructor          | Course<br>Coordinator | Module<br>Coordinator      | Head of the<br>Department |
|------------------------|----------------------------|-----------------------|----------------------------|---------------------------|
| Name of<br>the Faculty | Dr M B S Sreekara<br>Reddy |                       | Dr M B S<br>Sreekara Reddy | Dr S Pichi Reddy          |
| Signature              |                            |                       |                            |                           |



**DEPARTMENT OF MECHANICAL ENGINEERING** 

### COURSE HANDOUT

### PART-A

| Name of Course Instructor | : Mr.B.Sudheer Kumar                    |              |
|---------------------------|-----------------------------------------|--------------|
| Course Name & Code        | : 20ME19, Design of Machine Elements-II |              |
| L-T-P Structure           | : 2-1-0                                 | Credits: 3   |
| Program/Sem/Sec           | : B.Tech., ME., VI-Sem., Section- B     | A.Y: 2022-23 |

**PRE-REQUISITE:** Mechanics of Solids, Mechanical Engineering Design-I, Dynamics of Machines.

#### COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to understand and apply the standard procedure available for the design of machine elements and components of IC engine.

COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO1 | Select suitable bearings under different load, speed, and life conditions.     |
|-----|--------------------------------------------------------------------------------|
|     | (Applying - L3)                                                                |
| CO2 | Design internal combustion engine components for safe and continuous           |
|     | operation. (Applying - L3)                                                     |
| CO3 | Select the belt and rope drives for elevators, cranes, and hoisting machinery. |
|     | (Applying - L3)                                                                |
| CO4 | Design the springs under static and dynamic loads. (Applying - L3)             |
| CO5 | Estimate the performance parameters of the gears for various loading           |
|     | conditions. (Applying - L3)                                                    |

#### COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

| COa | PO | PSO | PSO | PSO |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COs | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO1 | 3  | 2  | 3  |    |    |    |    |    |    |    |    | 1  |     |     | 3   |
| CO2 | 3  | 2  | 3  |    | 1  |    |    |    |    |    |    | 1  |     |     | 3   |
| CO3 | 3  | 2  | 3  |    |    |    |    |    |    |    |    | 1  |     |     | 3   |
| CO4 | 3  | 3  | 3  |    |    |    |    |    |    |    |    | 1  |     |     | 3   |
| CO5 | 3  | 2  | 3  |    |    |    |    |    |    |    |    | 1  |     |     | 3   |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

#### **BOS APPROVED TEXT BOOKS:**

- T1 Bhandari V.B., Design of Machine Elements, 3<sup>rd</sup> edition, TMG 2010
- T2 Sundarajamoorthy T.V, Shanmugam N., Machine Design, Anuradha Publications

#### **BOS APPROVED REFERENCE BOOKS:**

- **R1** Norton R.L, Design of Machinery, TMG-2004
- R2 Shigley J.E. and Mischke C.R., Mechanical Engineering Design, TMG-2003
- R3 Ugural A.C, Mechanical Design-An Integral Approach, TMG-2004

### PART-B

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

#### UNIT-I:

| S.No. | Topics to be covered                                                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1     | Introduction to Subject, Pos,<br>PEOs and CO's of the course                                         | 1                             | 27/12/2022                         |                                 | TLM1                            |                       |
| 2     | Introduction to Unit-1,<br><b>Bearings</b> –Introduction, theory<br>of lubrication, Types, materials | 1                             | 28/12/2022                         |                                 | TLM1                            |                       |
| 3     | <b>Journal Bearings</b> – Types,<br>Important dimensionless<br>parameters,                           | 1                             | 29/12/2022                         |                                 | TLM1                            |                       |
| 4     | Design procedure of journal<br>bearing                                                               | 1                             | 30/12/2022                         |                                 | TLM1                            |                       |
| 5     | Journal bearings - problems                                                                          | 1                             | 31/12/2022                         |                                 | TLM1                            |                       |
| 6     | Heat generated and heat<br>dissipated in the bearing design –<br>problems                            | 1                             | 03/01/2023                         |                                 | TLM1                            |                       |
| 7     | Tutorial-I                                                                                           | 1                             | 04/01/2023                         |                                 | TLM3                            |                       |
| 8     | <b>Rolling contact bearings-</b> types,<br>bearing life, Materials and<br>designation                | 1                             | 05/01/2023                         |                                 | TLM1                            |                       |
| 9     | Static load and dynamic load capacity, equivalent bearing load                                       | 1                             | 06/01/2023                         |                                 | TLM1                            |                       |
| 10    | Selection of ball bearing -<br>problems                                                              | 1                             | 07/01/2023                         |                                 | TLM1                            |                       |
| 11    | Selection of roller bearing -<br>problems                                                            | 1                             | 09/01/2023                         |                                 | TLM1                            |                       |
| 12    | Tutorial-II                                                                                          | 1                             | 10/01/2023                         |                                 | TLM3                            |                       |
| 13    | Cubic mean load derivation,<br>Reliability of bearings - problems                                    | 1                             | 11/01/2023                         |                                 | TLM1                            |                       |
| 14    | Problem on roller bearings                                                                           | 1                             | 12/01/2023                         |                                 | TLM1                            |                       |

| 15 A                                           | Assignment -I/ Quiz-I | 1 | 18/01/2023    |          | TLM6 |  |
|------------------------------------------------|-----------------------|---|---------------|----------|------|--|
| No. of classes required to complete UNIT-I: 15 |                       |   | No. of classe | s taken: |      |  |

### **UNIT-II:**

|        |                                  | No. of     | Tentative     | Actual     | Teaching | HOD    |
|--------|----------------------------------|------------|---------------|------------|----------|--------|
| S.No.  | Topics to be covered             | Classes    | Date of       | Date of    | Learning | Sign   |
|        |                                  | Required   |               | Completion | Methods  | Weekly |
|        | Introduction to Unit-II,         |            | 19/01/2023    |            |          |        |
| 1      | Cylinder:Cylinder liners,        | 1          |               |            | TLM1     |        |
|        | Design Procedure of Cylinder     |            |               |            |          |        |
| 2      | Cylinder design - problems       | 1          | 20/01/2023    |            | TLM1     |        |
| 3      | Problems on cylinder design      | 1          | 21/01/2023    |            | TLM1     |        |
| 4      | <b>PISTON</b> : Piston design, - | 1          | 24/01/2023    |            | TLM1     |        |
| 4      | design                           | 1          |               |            |          |        |
| 5      | Problems on piston design        | 1          | 25/01/2023    |            | TLM1     |        |
| 6      | Problems on Piston               | 1          | 27/01/2023    |            | TLM1     |        |
| 7      | Tutorial-III                     | 1          | 28/01/2023    |            | TLM3     |        |
| 8      | CONNECTING ROD: Thrust           | 1          | 31/01/2023    |            | TLM1     |        |
| 0      | in C.R, buckling load            | 1          |               |            | I LIVII  |        |
|        | Stresses due to whipping         |            |               |            |          |        |
| 9      | action on connecting rod ends-   | 1          | 01/02/2023    |            | TLM1     |        |
|        | problems                         |            |               |            |          |        |
| 10     | CRANK SHAFT: Design of           | 1          | 02/02/2023    |            | TLM1     |        |
| 10     | crank and crank shaft            | 1          |               |            |          |        |
| 11     | Strength of center crank shaft - | 1          | 02/02/2023    |            | TLM1     |        |
| 11     | problem                          | 1          |               |            |          |        |
| 12     | Tutorial-IV                      | 1          | 04/02/2023    |            | TLM3     |        |
| 13     | Assignment-II/Quiz-2             | 1          | 07/02/2023    |            | TLM6     |        |
| No. of | f classes required to complete U | NIT-II: 13 | No. of classe | s taken:   | ·        |        |

### UNIT-III:

| S.No. | Topics to be covered                                                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods |  |
|-------|-------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|--|
| 1     | Introduction to Unit-III<br>Flat belts Introduction,<br>Materials and Design<br>Procedure | 1                             | 08/02/2023                         |                                 | TLM1                            |  |
| 2     | Design Procedure of flat<br>belts - Problems                                              | 1                             | 09/02/2023                         |                                 | TLM1                            |  |
|       | <b>PULLEYS:</b> Design of pulleys mild steel & cast iron                                  | 1                             | 10/02/2023                         |                                 | TLM1                            |  |

| 4                                                                      | Design of pulleys Problems                 | 1 | 11/02/2023 | TLM1 |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------|---|------------|------|--|--|--|
| 5                                                                      | Tutorial-V                                 | 1 | 14/02/2023 | TLM1 |  |  |  |
| 6                                                                      | V-belts –designation, design and selection | 1 | 15/02/2023 | TLM1 |  |  |  |
| 7                                                                      | Design of V belts - problems               | 1 | 16/02/2023 | TLM3 |  |  |  |
| 8                                                                      | Design of V belts - problem                | 1 | 17/02/2023 | TLM1 |  |  |  |
| Mid-I Examination from 20-2-2023 to 25-02-2023                         |                                            |   |            |      |  |  |  |
| 9                                                                      | Design of V- grooved pulley                | 1 | 28/02/2023 | TLM1 |  |  |  |
| 10                                                                     | Design of V- grooved pulley                | 1 | 01/03/2023 | TLM1 |  |  |  |
| 11                                                                     | V-belts –designation, design and selection |   | 02/03/2023 | TLM1 |  |  |  |
| 12                                                                     | Tutorial-VI                                | 1 | 03/03/2023 | TLM3 |  |  |  |
| 13                                                                     | Assignment-III/Quiz-III                    | 1 | 04/03/2023 | TLM6 |  |  |  |
| No. of classes required to complete UNIT-III: 13 No. of classes taken: |                                            |   |            |      |  |  |  |

# UNIT-IV:

| S.No. | Topics to be covered                       | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning |        |
|-------|--------------------------------------------|-------------------|----------------------|-------------------|----------------------|--------|
|       |                                            | Required          | Completion           | Completion        | Methods              | Weekly |
|       | Introduction to Unit-IV                    | 1                 | 07/03/2023           |                   | TLM1                 |        |
| 1     | SPRINGS: Introduction, classification      | 1                 |                      |                   |                      |        |
|       | Stresses, deflection and                   |                   | 09/03/2023           |                   | TLM1                 |        |
| 2     | stiffness in springs and their derivations | 1                 |                      |                   |                      |        |
| 3     | Design of springs-problems                 | 1                 | 10/03/2023           |                   | TLM1                 |        |
| 4     | Design of springs-problems                 | 1                 | 11/03/2023           |                   | TLM1                 |        |
| 5     | Design of springs-problems                 | 1                 | 01/03/2023           |                   | TLM1                 |        |
| 6     | Springs for fatigue loading                | 1                 | 14/03/2023           |                   | TLM1                 |        |
| 7     | Tutorial-VII                               | 1                 | 15/03/2023           |                   | TLM3                 |        |
| 8     | Spring failures, design of helical springs | 1                 | 16/03/2023           |                   | TLM1                 |        |
| 9     | Natural frequency of helical spring        | 1                 | 17/03/2023           |                   | TLM1                 |        |
| 10    | Energy storage capacity in springs         | 1                 | 18/03/2023           |                   | TLM1                 |        |
| 11    | Tension and torsion springs                | 1                 | 21/03/2023           |                   | TLM1                 |        |
| 12    | Co-axial springs design-<br>Problems       | 1                 | 23/03/2023           |                   | TLM1                 |        |
| 13    | Co-axial springs design-<br>Problems       | 1                 | 24/03/2023           |                   | TLM1                 |        |

| 14                                                                   | Design of leaf springs-<br>Problems | 1 | 25/03/2023 | TLM1 |  |  |  |
|----------------------------------------------------------------------|-------------------------------------|---|------------|------|--|--|--|
| 15                                                                   | Tutorial-VIII                       | 1 | 28/03/2023 | TLM3 |  |  |  |
| 16                                                                   | Assignment-IV/Quiz-IV               | 1 | 29/03/2023 | TLM6 |  |  |  |
| No. of classes required to complete UNIT-V: 16 No. of classes taken: |                                     |   |            |      |  |  |  |

### **UNIT-V:**

| S.No.                                                                   | Topics to be covered                                                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 1                                                                       | <b>Introduction to Unit-V</b><br><b>GEARS</b> : Introduction and<br>terminology, Types of gears,<br>design formulae | 1                             | 31/03/2023                         | compiction                      | TLM1                            | Weekly                |  |  |
| 2                                                                       | Design Analysis of gears,<br>Estimation of centre distance,<br>module & face width                                  | 1                             | 01/04/2023                         |                                 | TLM1                            |                       |  |  |
| 3                                                                       | Design procedure of spur<br>gears, Check for dynamic<br>and wear considerations                                     | 1                             | 04/04/2023                         |                                 | TLM1                            |                       |  |  |
| 4                                                                       | Design of spur gears -<br>Problems                                                                                  | 1                             | 06/04/2023                         |                                 | TLM1                            |                       |  |  |
| 5                                                                       | Design of spur gears -<br>Problems                                                                                  | 1                             | 08/04/2023                         |                                 | TLM1                            |                       |  |  |
| 6                                                                       | Design of spur gears -<br>Problems                                                                                  | 1                             | 11/04/2023                         |                                 | TLM1                            |                       |  |  |
| 7                                                                       | Tutorial-IX                                                                                                         | 1                             | 12/04/2023                         |                                 | TLM3                            |                       |  |  |
| 8                                                                       | Design procedure of Helical<br>gears, Check for dynamic<br>and wear considerations                                  | 1                             | 13/04/2023                         |                                 | TLM1                            |                       |  |  |
| 9                                                                       | Design of Helical gears -<br>Problems                                                                               | 1                             | 15/04/2023                         |                                 | TLM1                            |                       |  |  |
| 10                                                                      | Design of Helical gears -<br>Problems                                                                               | 1                             | 18/04/2023                         |                                 | TLM4                            |                       |  |  |
| 11                                                                      | Tutorial-X                                                                                                          | 1                             | 19/04/2020                         |                                 | TLM3                            |                       |  |  |
| 12                                                                      | Assignment-V/Quiz-V                                                                                                 | 1                             | 20/04/2023                         |                                 | TLM6                            |                       |  |  |
| No. of classes required to complete UNIT-V:<br>12 No. of classes taken: |                                                                                                                     |                               |                                    |                                 |                                 |                       |  |  |

# Contents beyond the Syllabus:

| S.No. | Topics to be covered |   | Tentative<br>Date of<br>Completion | Date of | 0            | Outcome |  |
|-------|----------------------|---|------------------------------------|---------|--------------|---------|--|
| 1     | Design of flywheels  | 1 | 21/04/2023                         |         | TLM1<br>TLM2 |         |  |

| 2 Design of epicycle | 21/04/2022 | TLM1 |  |
|----------------------|------------|------|--|
| $^2$ gear train      | 21/04/2023 | TLM2 |  |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |  |

### PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks             |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |  |  |  |
| Total Marks = $CIE + SEE$                                                            | 100               |  |  |  |

### PART-D

### **PROGRAM OUTCOMES:**

| <b>PO 1</b> | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2        | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                  |
| PO 3        | <b>Design/development of solutions</b> : Design solutions for complex engineering problems<br>and design system components or processes that meet the specified needs with<br>appropriate consideration for the public health and safety, and the cultural, societal, and<br>environmental considerations. |

| <b>PO 4</b> | Conduct investigations of complex problems: Use research-based knowledge and                   |
|-------------|------------------------------------------------------------------------------------------------|
|             | research methods including design of experiments, analysis and interpretation of data,         |
|             | and synthesis of the information to provide valid conclusions.                                 |
| <b>PO 5</b> | Modern tool usage: Create, select, and apply appropriate techniques, resources, and            |
|             | modern engineering and IT tools including prediction and modelling to complex                  |
|             | engineering activities with an understanding of the limitations                                |
| <b>PO 6</b> | The engineer and society: Apply reasoning informed by the contextual knowledge to              |
|             | assess societal, health, safety, legal and cultural issues and the consequent responsibilities |
|             | relevant to the professional engineering practice                                              |
| <b>PO 7</b> | <b>Environment and sustainability</b> : Understand the impact of the professional engineering  |
|             | solutions in societal and environmental contexts, and demonstrate the knowledge of, and        |
|             | need for sustainable development.                                                              |
| <b>PO 8</b> | Ethics: Apply ethical principles and commit to professional ethics and responsibilities        |
|             | and norms of the engineering practice.                                                         |
| <b>PO 9</b> | Individual and team work: Function effectively as an individual, and as a member or            |
|             | leader in diverse teams, and in multidisciplinary settings.                                    |
| PO 10       | <b>Communication</b> : Communicate effectively on complex engineering activities with the      |
|             | engineering community and with society at large, such as, being able to comprehend             |
|             | and write effective reports and design documentation, make effective presentations, and        |
|             | give and receive clear instructions.                                                           |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the                 |
|             | engineering and management principles and apply these to one's own work, as a member           |
|             | and leader in a team, to manage projects and in multidisciplinary environments.                |
| PO 12       | Life-long learning: Recognize the need for, and have the preparation and ability to            |
|             | engage in independent and life-long learning in the broadest context of technological          |
|             | change.                                                                                        |

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

- 1. To apply the principles of thermal sciences to design and develop various thermal systems.
- 2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

| Course Instructor  | <b>Course Coordinator</b> | Module Coordinator | HoD              |
|--------------------|---------------------------|--------------------|------------------|
| Mr.B.Sudheer Kumar | Mr.B.Sudheer Kumar        | Mr.B.Sudheer Kumar | Dr.S.Pichi Reddy |



### **COURSE HANDOUT**

| PROGRAM                       | : B.Tech., VI-Sem., MECH (B)              |
|-------------------------------|-------------------------------------------|
| ACADEMIC YEAR                 | : 2022-23                                 |
| <b>COURSE NAME &amp; CODE</b> | : MODERN MACHING PROCESSES - 17ME26       |
| STRUCTURE                     | : 3-0-0                                   |
| COURSE CREDITS                | : 3                                       |
| <b>COURSE INSTRUCTOR</b>      | : A.Dhanunjay Kumar                       |
| COURSE COORDINATOR            | : S.Srinivasa Reddy                       |
| PRE-REQUISITE: PRODUCTIO      | N TECHNOLOGY, MACHINE TOOLS&METAL CUTTING |

**COURSE OBJECTIVE:** The main objective of this course is to familiarize with unconventional machining processes and rapid prototyping.

### **COURSE OUTCOMES (CO)**

- CO1: Assort appropriate unconventional machining processes for machining materials and to develop relevant industrial solutions for machining hard materials.
- CO2: Understand the principles of Electro Chemical Machining Process for machining of hard materials.
- CO3: Apply Electrical Discharge Machining principles for machining intricate components.
- CO4: Comprehend the basic principles and applications of thermal machining processes like EBM, LBM and PAM.
- CO5: Identify the need of Rapid Prototyping in manufacturing sectors.

| COs | РО<br>1 | РО<br>2 | РО<br>3 | РО<br>4 | РО<br>5 | РО<br>6 | РО<br>7 | РО<br>8 | РО<br>9 | P0<br>10 | РО<br>11 | P0<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| C01 | 2       | 2       | 2       |         | 3       |         |         |         |         |          |          |          |          | 2        |          |
| CO2 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          |          | 3        |          |
| CO3 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          | 2        | 3        |          |
| CO4 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          | 2        | 3        |          |
| CO5 | 3       | 2       | 3       |         | 3       |         |         |         |         |          |          |          |          | 3        |          |

### COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

### **BOS APPROVED TEXT BOOKS:**

- T1 Pandey P.C. and shah H.S, Modern machining processes /TMH.
- **T2** Chua C.K, Leong K.F, and Lim C.S, Rapid prototyping principles and applications, second edition, world scientific publishers, and 2003.

### **BOS APPROVED REFERENCE BOOKS:**

- **R1** M K Singh, Unconventional machining process / New age international.
- **R2** V K Jain, Advanced machining processes /Allied publishers.
- **R3** N.Hopkinson ,R.J.MHaque &P.M. Dickens Rapid Manufacturing, John Wiley &sons,2006.

### **COURSE DELIVERY PLAN (LESSON PLAN): Section-A**

### **UNIT-I: INTRODUCTION & MECHANICAL PROCESSES**

|                                                                      |                                                                                  | N C      |            | A + 1      | <b>m</b> 1 · | т.       |          | HOD    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|------------|------------|--------------|----------|----------|--------|
|                                                                      |                                                                                  | No. of   | Tentative  | Actual     | Teaching     | Learning | Text     | HOD    |
| S.No.                                                                | Topics to be covered                                                             | Classes  | Date of    | Date of    | Learning     | Outcome  | Book     | Sign   |
|                                                                      |                                                                                  | Required | Completion | Completion | Methods      | COs      | followed | Weekly |
| 1.                                                                   | Introduction of MMP and<br>Course Co's and Po's                                  | 1        | 26.12.2022 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 2.                                                                   | Need for unconventional machining methods                                        | 1        | 27.12.2022 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 3.                                                                   | Classification of<br>unconventional machining<br>processes                       | 1        | 28.12.2022 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 4.                                                                   | Considerations in process selection                                              | 1        | 29.12.2022 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 5.                                                                   | Tutorial -1                                                                      | 1        | 02.01.2023 |            | TLM 3        |          |          |        |
| 6.                                                                   | Basic principle of<br>ultrasonic machining,<br>equipment setup and<br>procedure, | 2        | 05.01.2023 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 7.                                                                   | Process variables and applications                                               | 1        | 06.01.2023 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 8.                                                                   | Tutorial -2                                                                      | 1        | 09.01.2023 |            |              |          |          |        |
| 9.                                                                   | Basic principle of Abrasive<br>jet machining, equipment<br>setup and procedure.  | 2        | 11.01.2023 |            | TLM3/TLM6    | C01      | T1/R1    |        |
| 10.                                                                  | Water jet machining Basic<br>principle, equipment<br>setup and procedure         | 2        | 18.01.2023 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| 11.                                                                  | Process variables and applications                                               | 1        | 19.01.2023 |            | TLM1/TLM2    | C01      | T1/R1    |        |
| No. of classes required to<br>complete UNIT-I12No. of classes taken: |                                                                                  |          |            |            |              |          |          |        |

### UNIT-II : ELECTRO CHEMICAL PROCESSES & CHEMICAL MACHINING

|       |                                         | No. of   | Tentative  | Actual     | Teaching  | Learning | Text     | HOD    |
|-------|-----------------------------------------|----------|------------|------------|-----------|----------|----------|--------|
| S.No. | Topics to be covered                    | Classes  | Date of    | Date of    | Learning  | Outcome  | Book     | Sign   |
|       |                                         | Required | Completion | Completion | Methods   | COs      | followed | Weekly |
| 12.   | Electrochemical Process<br>Introduction | 1        | 20.01.2023 |            | TLM1/TLM2 | CO2      | T1/R1    |        |
| 13.   | Tutorial -3                             | 1        | 23.01.2023 |            | TLM 3     | CO2      |          |        |
| 14.   | ECM Process, and principles             | 2        | 25.01.2023 |            | TLM1/TLM2 | CO2      | T1/R1    |        |
| 15.   | Equipment and material removal rate     | 1        | 27.01.2023 |            | TLM1/TLM2 | CO2      | T1/R1    |        |
| 16.   | Tutorial -4                             | 1        | 30.01.2023 |            | TLM 3     | CO2      |          |        |

| 17. | Electrochemical machining                               | 1  | 31.01.2023 | TLM1/TLM2         | CO2   | T1/R1 |  |
|-----|---------------------------------------------------------|----|------------|-------------------|-------|-------|--|
| 18. | Electrochemical grinding                                | 1  | 01.02.2023 | TLM1/TLM2         | CO2   | T1/R1 |  |
| 19. | Electrochemical<br>deburring,<br>Electrochemical honing | 2  | 03.02.2023 | TLM1/TLM2         | C02   | T1/R1 |  |
| 20. | Tutorial -5                                             | 1  | 06.02.2023 | TLM 3             | CO2   |       |  |
| 21. | Chemical machining-<br>principle                        | 1  | 07.02.2023 | TLM1/TLM2         | CO2   | T1/R1 |  |
| 22. | Maskants –Etchants,<br>Advantages and<br>Applications.  | 1  | 08.02.2023 | TLM1/TLM2         | C02   | T1/R1 |  |
|     | classes required to<br>ete UNIT-II                      | 10 |            | No. of classes ta | aken: |       |  |

### UNIT-III: ELECTRICAL DISCHARGE MACHINING

|       |                                                     | No. of   | Tentative  | Actual     | Teaching         | Learning | Text     | HOD    |
|-------|-----------------------------------------------------|----------|------------|------------|------------------|----------|----------|--------|
| S.No. | Topics to be covered                                | Classes  | Date of    | Date of    | Learning         | Outcome  | Book     | Sign   |
|       |                                                     | Required | Completion | Completion | Methods          | Cos      | followed | Weekly |
| 23.   | EDM Principle                                       | 1        | 09.02.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 24.   | Process                                             | 1        | 10.02.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 25.   | Tutorial -6                                         | 1        | 13.02.2023 |            | TLM 3            | C03      |          |        |
| 26.   | Power circuits for EDM                              | 2        | 15.02.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 27.   | Mechanics of metal removal in EDM                   | 1        | 16.02.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 28.   | Tutorial -7                                         | 1        | 13.02.2023 |            | TLM 3            | CO3      |          |        |
| 29.   | Process parameters                                  | 2        | 28.02.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 30.   | selection of tool electrode<br>and dielectric fluid | 1        | 01.03.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 31.   | Electric discharge wire<br>cutting principle        | 1        | 02.03.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
| 32.   | Applications of EDM and<br>Wire EDM                 | 1        | 03.03.2023 |            | TLM1/TLM2        | CO3      | T1/R1    |        |
|       | classes required to<br>ete UNIT-III                 | 10       |            |            | No. of classes t | aken:    |          |        |

# UNIT-IV : ELECTRON BEAM, LASER BEAM AND PLASMA ARC MACHINING

| S.No. | Topics to be covered                              | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | Learning<br>Outcome | Text<br>Book | HOD<br>Sign |
|-------|---------------------------------------------------|-------------------|----------------------|-------------------|----------------------|---------------------|--------------|-------------|
|       | -                                                 | Required          | Completion           | Completion        | Methods              | Cos                 | followed     | Weekly      |
| 33.   | Electron Beam<br>Machining,<br>Principle, process | 2                 | 07.03.2023           |                   | TLM1/TLM2            | CO4                 | T2/R3        |             |
| 34.   | EBM Applications and Advantages                   | 1                 | 08.03.2023           |                   | TLM1/TLM2            | C04                 | T2/R3        |             |
| 35.   | laser beam machining,<br>Principle, process       | 2                 | 10.03.2023           |                   | TLM1/TLM2            | CO4                 | T2/R3        |             |
| 36.   | Tutorial -8                                       | 1                 | 13.03.2023           |                   | TLM 3                |                     |              |             |

| 37. | LBM Applications and Advantages                 | 1  | 14.03.2023 | TLM1/TLM2             | CO4 | T2/R3 |  |
|-----|-------------------------------------------------|----|------------|-----------------------|-----|-------|--|
| 38. | Plasma arc machining,<br>Principle, process     | 2  | 16.03.2023 | TLM1/TLM2             | CO4 | T2/R3 |  |
| 39. | PAM Applications and Advantages                 | 1  | 17.03.2023 | TLM1/TLM2             | CO4 | T2/R3 |  |
| 40. | Tutorial -9                                     | 1  | 20.03.2023 | TLM3                  |     |       |  |
| 41. | Hot machining, Process, equipment, applications | 2  | 23.03.2023 | TLM1/TLM2             | CO4 | T2/R3 |  |
|     | classes required to<br>lete UNIT-IV             | 11 |            | No. of classes taken: |     |       |  |

### **UNIT-V : RAPID PROTOTYPING**

|       |                                                                 | No. of   | Tentative  | Actual     | Teaching              | Learning | Text     | HOD    |
|-------|-----------------------------------------------------------------|----------|------------|------------|-----------------------|----------|----------|--------|
| S.No. | Topics to be covered                                            | Classes  | Date of    | Date of    | Learning              | Outcome  | Book     | Sign   |
|       |                                                                 | Required | Completion | Completion | Methods               | Cos      | followed | Weekly |
| 42.   | Introduction to RP fundamentals                                 | 1        | 24.03.2023 |            | TLM1/TLM2             | C05      | T2/R3    |        |
| 43.   | Elements, Advantages<br>of Rapid Prototyping                    | 1        | 27.03.2023 |            | TLM1/TLM2             | C05      | T2/R3    |        |
| 44.   | historical development,<br>fundamentals of Rapid<br>Prototyping | 1        | 28.03.2023 |            | TLM1/TLM2             | CO5      | T2/R3    |        |
| 45.   | classification of Rapid<br>prototyping                          | 2        | 31.03.2023 |            | TLM1/TLM2             | CO5      | T2/R3    |        |
| 46.   | Tutorial -10                                                    | 1        | 03.04.2023 |            | TLM3                  |          |          |        |
| 47.   | Rapid Prototyping<br>process chain                              | 2        | 06.04.2023 |            | TLM1/TLM2             | C05      | T2/R3    |        |
| 48.   | Stereo Lithography<br>Apparatus (SLA)                           | 1        | 10.04.2023 |            | TLM1/TLM2             | C05      | T2/R3    |        |
| 49.   | solid Ground Curing<br>(SGC)                                    | 1        | 11.04.2023 |            | TLM1/TLM2             | C05      | T2/R3    |        |
| 50.   | EOS's EOSINT Systems                                            | 2        | 13.04.2023 |            | TLM3/TLM2             | C05      | T2/R3    |        |
| 51.   | Applications of Rapid<br>Prototyping                            | 1        | 17.04.2023 |            | TLM3/TLM6             |          |          |        |
|       | classes required to<br>ete UNIT-V                               | 12       |            |            | No. of classes taken: |          |          |        |

# Contents beyond the Syllabus

| S.No. | Topics to be covered                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Text<br>Book<br>followed | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|
| 52.   | Abrasive water jet aerospace applications | 1                             | 18.04.2023                         |                                 |                                 |                            |                          |                       |
| 53.   | EDM process parameters                    | 1                             | 19.04.2023                         |                                 |                                 |                            |                          |                       |
| 54.   | Rapid prototyping case study              | 1                             | 20.04.2023                         |                                 |                                 |                            |                          |                       |
| 55.   | Medical case study                        | 1                             | 21.04.2023                         |                                 |                                 |                            |                          |                       |

| Teaching Learning Methods |                |      |                    |      |                |  |  |
|---------------------------|----------------|------|--------------------|------|----------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Problem Solving    | TLM7 | Seminars or GD |  |  |
| TLM2                      | РРТ            | TLM5 | Programming        | TLM8 | Lab Demo       |  |  |
| TLM3                      | Tutorial       | TLM6 | Assignment or Quiz | TLM9 | Case Study     |  |  |

### ACADEMIC CALENDAR:

| Description                | From       | То         | Weeks |
|----------------------------|------------|------------|-------|
| I Phase of Instructions    | 26-12-2022 | 18-02-2023 | 8W    |
| I Mid Examinations         | 20-02-2023 | 25-02-2023 | 1W    |
| II Phase of Instructions   | 27-02-2023 | 22-04-2023 | 8W    |
| II Mid Examinations        | 24-04-2023 | 29-04-2023 | 1W    |
| Preparation and Practicals | 01-05-2023 | 06-05-2023 | 1W    |
| Semester End Examinations  | 08-05-2023 | 20-05-2023 | 2W    |

### **EVALUATION PROCESS:**

| Evaluation Task                                                | COs       | Marks |
|----------------------------------------------------------------|-----------|-------|
| Assignment-1                                                   | 1         | A1=5  |
| Assignment-2                                                   | 2         | A2=5  |
| I-Mid Examination                                              | 1,2       | B1=20 |
| Online Quiz-Q1                                                 | 1,2       | Q1-10 |
| Assignment – 3                                                 | 3         | A3=5  |
| Assignment– 4                                                  | 4         | A4=5  |
| Assignment – 5                                                 | 5         | A5=5  |
| II-Mid Examination                                             | 3,4,5     | B2=20 |
| Online Quiz-Q2                                                 | 3,4,5     | Q2-10 |
| Evaluation of Assignment Marks: A=(A1+A2+A3+A4+A5)/5           | 1,2,3,4,5 | A=5   |
| Evaluation of Online Quiz Marks: Q=(Q1+Q2)/2                   | 1,2,3,4,5 | Q=10  |
| Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2) | 1,2,3,4,5 | B=20  |
| Attendance                                                     |           | C= 5  |
| Cumulative Internal Examination : A+Q+B+C                      | 1,2,3,4,5 | 40    |
| Semester End Examinations                                      | 1,2,3,4,5 | 60    |
| Total Marks: 40+60                                             | 1,2,3,4,5 | 100   |

#### **PROGRAMME EDUCATIONAL OBJECTIVES:**

**PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

**PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

**PEO3:** To develop inquisitiveness towards good communication and lifelong learning.

### **PROGRAM OUTCOMES (POs)**

### Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

| Course<br>Instructor | Course Coordinator | Module Coordinator | HOD |
|----------------------|--------------------|--------------------|-----|



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING**

# PART-A

| Name of Course Instructor: Mr P.Rathnakar Kumar |                                     |                      |  |  |  |  |
|-------------------------------------------------|-------------------------------------|----------------------|--|--|--|--|
| Course Name & Code                              | : Electric Vehicles-20EE84          |                      |  |  |  |  |
| L-T-P Structure                                 | : 3-0-0                             | Credits: 3           |  |  |  |  |
| Program/Sem/Sec                                 | : B.Tech., VI-Sem., MECH –B section | <b>A.Y</b> : 2022-23 |  |  |  |  |

#### **PREREQUISITE:** Basic Electrical Engineering

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

This course enables the student to acquire Knowledge on basic concepts related to mechanics, kinetics and dynamics of electric vehicles, technical characteristics and properties of batteries. It also introduces the concepts of different configurations of drive trains.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Illustrate propulsion system for an electric vehicle. (Understand-L2)    |
|-----|--------------------------------------------------------------------------|
| CO2 | Understand characteristics and properties of batteries. (Understand-L2)  |
| CO3 | Analyze ratings and requirements of electrical machines. (Understand-L2) |
| CO4 | Analyze mechanism of electrical vehicle drive train. (Understand-L2)     |
| CO5 | Understand configuration of hybrid electric vehicles. (Understand-L2)    |

### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO2 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO3 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO4 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
| CO5 |     |     |       |     |     |     |       |     |     |      |      |        |      |      |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | um  |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

Text book(s) and/or required materials

- IqbalHussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press, 2011.
- ii. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003. Reference Books:
  - i. MehrdadEhsani, YiminGao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.
  - SandeepDhameja, "Electric Vehicle Battery Systems", Newnes, 2000 http://nptel.ac.in/courses/108103009/

### PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): Section - A

### **UNIT-I: ELECTRIC VEHICLES**

| S.No. | Topics to be covered                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to the subject and Course | 1                             | 26 12 2022                         |                                 | TLM1                            |                       |
| 2.    | Outcomes<br>Components                 | 1                             | 26-12-2022<br>27-12-2022           |                                 | TLM1                            |                       |
| 3.    | Vehicle Mechanics                      | 1                             | 29-12-2022                         |                                 | TLM1                            |                       |
| 4.    | Roadway<br>Fundamentals                | 1                             | 30-12-2022                         |                                 | TLM1                            |                       |
| 5.    | Roadway<br>Fundamentals                | 1                             | 02-01-2023                         |                                 | TLM1                            |                       |
| 6.    | Vehicle Kinetics                       | 1                             | 03-01-2023                         |                                 | TLM1                            |                       |
| 7.    | Dynamics of vehicle motion             | 1                             | 06-01-2023                         |                                 | TLM1                            |                       |
| 8.    | Dynamics of vehicle motion             | 1                             | 09-01-2023                         |                                 | TLM1                            |                       |
| 9.    | Propulsion system design.              | 1                             | 10-01-2023                         |                                 | TLM1                            |                       |
| 10.   | Propulsion system design.              | 1                             | 19-01-2023                         |                                 | TLM1                            |                       |
|       | f classes required<br>nplete UNIT-I    | 10                            |                                    |                                 |                                 |                       |

### **UNIT-II : BATTERY**

| S.No.                                          | Topics to be covered         | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|------------------------------------------------|------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 11                                             | Basics-Types                 | 1                             | 20-01-2023                         |                                 | TLM1                            |                       |
| 12                                             | Parameters                   | 1                             | 23-01-2023                         |                                 | TLM1                            |                       |
| 13                                             | Capacity                     | 1                             | 24-01-2023                         |                                 | TLM1                            |                       |
| 14                                             | Discharge Rate               | 1                             | 27-01-2023                         |                                 | TLM1                            |                       |
| 15                                             | Sate of charge               | 1                             | 30-01-2023                         |                                 | TLM1                            |                       |
| 16                                             | State of Discharge           | 1                             | 31-01-2023                         |                                 | TLM1                            |                       |
| 17                                             | Depth od Discharge           | 1                             | 31-01-2023                         |                                 | TLM1                            |                       |
| 18                                             | Technical<br>Characteristics | 1                             | 02-02-2023                         |                                 | TLM1                            |                       |
| 19                                             | Battery pack Design          | 1                             | 03-02-2023                         |                                 | TLM2                            |                       |
| 20                                             | Battery pack Design          | 1                             | 06-02-2023                         |                                 | TLM2                            |                       |
| 21                                             | Properties of<br>Batteries   | 1                             | 07-02-2023                         |                                 | TLM2                            |                       |
| No. of classes required to<br>complete UNIT-II |                              | 10                            |                                    |                                 |                                 |                       |

# UNIT-III : DC & AC ELECTRICAL MACHINES

| S.No. | Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 22    | Motor & Engine rating, requirements | 1                             | 09-02-2023                         |                                 | TLM1                            |                       |

| 23  | Motor & Engine<br>rating, requirements | 1  | 10-02-2023 | TLM | A1         |
|-----|----------------------------------------|----|------------|-----|------------|
| 25  | DC machines                            | 1  | 13-02-2023 | TLN | <b>A</b> 1 |
| 26. | DC machines                            | 1  | 14-02-2023 | TLN | <b>A</b> 1 |
| 27. | Three phase A.C.<br>Machines           | 1  | 16-02-2023 | TLM | <b>A</b> 1 |
| 29. | Three phase A.C.<br>Machines           | 1  | 17-02-2023 | TLM | <b>A</b> 1 |
| 30. | Induction Machines                     | 1  | 27-02-2023 | TLN | <b>A</b> 1 |
| 31  | Permanent magnet machines              | 1  | 28-02-2023 | TLM | <b>A</b> 1 |
| 32  | Permanent magnet machines              | 1  | 02-03-2023 | TLM | <b>A</b> 1 |
| 33. | Switched reluctance machines           | 1  | 03-03-2023 | TLN | A1         |
|     | classes required to<br>ete UNIT-III    | 11 |            |     |            |

### **UNIT-IV : ELECTRIC VEHICLE DRIVE TRAIN**

| S.No. | Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34    | Transmission<br>Configuration       | 1                             | 06-03-2023                         |                                 | TLM1                            |                       |
| 35    | Transmission<br>Configuration       | 1                             | 07-03-2023                         |                                 | TLM1                            |                       |
| 36    | Components                          | 1                             | 09-03-2023                         |                                 | TLM1                            |                       |
| 37    | gears                               | 1                             | 10-03-2023                         |                                 | TLM1                            |                       |
| 38    | differential                        | 1                             | 13-03-2023                         |                                 | TLM1                            |                       |
| 39    | clutch                              | 1                             | 14-03-2023                         |                                 | TLM1                            |                       |
| 40    | brakes                              | 1                             | 16-03-2023                         |                                 | TLM2                            |                       |
| 41    | Regenerative braking                | 1                             | 17-03-2023                         |                                 | TLM1                            |                       |
| 42    | Regenerative braking                | 1                             | 20-03-2023                         |                                 | TLM1                            |                       |
| 43    | Motor sizing                        | 1                             | 21-03-2023                         |                                 | TLM1                            |                       |
| 44    | Motor sizing                        | 1                             | 23-03-2023                         |                                 | TLM2                            |                       |
|       | classes required to<br>lete UNIT-IV | 11                            |                                    |                                 |                                 |                       |

### **UNIT-V: HYBRID ELECTRIC VEHICLES**

| S.No. | Topics to be covered   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 45    | Types                  | 1                             | 24-03-2023                         |                                 | TLM1                            |                       |
| 46    | Series                 | 1                             | 27-03-2023                         |                                 | TLM1                            |                       |
| 47    | Parallel and series    | 1                             | 28-03-2023                         |                                 | TLM1                            |                       |
| 48    | Parallel configuration | 1                             | 31-03-2023                         |                                 | TLM1                            |                       |
| 49    | Design                 | 1                             | 03-04-2023                         |                                 | TLM1                            |                       |

| 50                                         | Drive train          | 1  | 04-04-2023 | TLM2 |  |
|--------------------------------------------|----------------------|----|------------|------|--|
| 51                                         | Sizing of components | 1  | 06-04-2023 | TLM2 |  |
| 52                                         | Revision             | 1  | 10-04-2023 | TLM2 |  |
| 53                                         | Revision unit-I      | 1  | 11-04-2023 | TLM2 |  |
| 54                                         | Revision unit-II     | 1  | 13-04-2023 | TLM2 |  |
| 55                                         | Revision unit-III    | 1  | 17-04-2023 | TLM2 |  |
| 56                                         | Revision unit-IV     | 1  | 18-04-2023 | TLM2 |  |
| 57                                         | Revision unit-V      | 1  | 21-04-2023 | TLM2 |  |
| No. of classes required to complete UNIT-V |                      | 13 |            |      |  |

# CONTENT BEYOND SYLLABUS:

| S.No. | Topics to be<br>covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods |
|-------|-------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|
| 1     |                         | 1                             | 20-4-23                            |                                 | TLM2                            |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# **PROGRAMME OUTCOMES (POs):**

|       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                                    |
| PO 2  | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                    |
| PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Project management and finance: Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                                      |
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent<br>and life-long learning in the broadest context of technological change.                                                                                                              |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power |
|--------------|---------------------------------------------------------------------------------------------------------|
| <b>PSO 2</b> | Design and analyze electrical machines, modern drive and lighting systems                               |
| <b>PSO 3</b> | Specify, design, implement and test analog and embedded signal processing electronic systems            |
| PSO4         | Design controllers for electrical and electronic systems to improve their performance.                  |

| Title                  | Course Instructor       | Course<br>Coordinator   | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------------|-------------------------|-----------------------|---------------------------|
| Name of<br>the Faculty | Mr P.Rathnakar<br>Kumar | Mr P.Rathnakar<br>Kumar | Dr.G.Nageswara<br>Rao | Dr.J.S.Vara Prasad        |
| Signature              |                         |                         |                       |                           |

### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

# **COURSE HANDOUT**

Part-A

PROGRAM: B.Tech, VI-Sem., ME, B/SACADEMIC YEAR: 2022-23COURSE NAME & CODE: Heat Transfer Lab & 20ME62L-T-P STRUCTURE: 0-0-3COURSE CREDITS: 2LABORATORY INSTRUCTORS: Dr. K.Dilip Kumar/A.PratyushLABORATORY INCHARGE: K.Lakshmi PrasadPREREQUISITE SUBJECT: Thermodynamics, Thermal EngineeringCOURSE EDUCATIONAL OBJECTIVES:

To learn the physical mechanisms on modes of heat transfer, differential equations in heat transfer applications and the significance of Non Dimensional Numbers.

#### **Course Outcomes:**

At the end of the course, the student will be able to:

**CO1:** Estimate the thermal conductivity of different materials and powders

**CO2:** Experiment both free and forced convection to predict heat transfer coefficient.

**CO3:** Validate the Stefan Boltzmann Constant and estimate emissivity of grey body.

**CO4:** Compare parallel and counter flow heat exchanger performance characteristics.

### COURSE ARTICULATION MATRIX (Correlation between COs & POs, PSOs):

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 1   | 2   | 2   | 3   | 2   | -   | 1   | -   | 2   | 3    | 2    | 1    | 3    | -    | 1    |
| CO2 | 1   | 2   | 2   | 3   | 2   | -   | 1   | -   | 2   | -    | 2    | 1    | 3    | -    | 1    |
| CO3 | 2   | 1   | 2   | 3   | 2   | -   | 1   | -   | 2   | -    | 1    | 1    | 3    | -    | 1    |
| CO4 | 1   | 2   | 2   | 3   | 1   | -   | 1   | -   | 3   | 1    | 1    | 1    | 3    | -    | 1    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

**BOS APPROVED TEXT BOOKS:** 

Lab Manuals, Heat and Mass Transfer Data Book, 6th Edition, New Age International Publishers

| COUF     | RSE: B                   | .Tech BRA  | ANCH: N    | IECHANI  | CAL EN   | GG. S     | ECTION: I | B-Sec (Mo | onday)    |           | BAT      | CH: 2     | A.Y       | 2:2022     | -23               |
|----------|--------------------------|------------|------------|----------|----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|------------|-------------------|
|          |                          | EXP. No    | 0          | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8        | 9         | 10        | 11         | 12                |
| S. No    | Batch                    | Date       | 26-12-2022 | 2-1-2023 | 9-1-2023 | 23-1-2023 | 30-1-2023 | 6-2-2023  | 13-2-2023 | 27-2-2023 | 6-3-2023 | 13-3-2023 | 20-3-2023 | 27-3-2023  | 10-4-2023         |
|          |                          | Regd. No   |            |          | CYC      | CLE-I     |           |           |           | •         | CYCLE-   | 2         |           |            |                   |
| 1        |                          | 20761A0383 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 2        |                          | 20761A0384 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 3        | BATCH-I                  | 20761A0385 | DEMO       | HT-1     | HT-2     | HT-3      | HT-4      | HT-5      | HT-1      | HT-2      | HT-3     | HT-4      | HT-5      |            |                   |
| 4        | CH-J                     | 20761A0386 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 5        |                          | 20761A0387 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 6        |                          | 20761A0388 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 7        |                          | 20761A0389 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 8        |                          | 20761A0390 |            |          |          |           |           |           |           |           |          |           |           |            | INTE              |
| 9        | BAT                      | 20761A0391 | DEMO       | HT-2     | HT-3     | HT-4      | HT-5      | HT-1      | HT-2      | HT-3      | HT-4     | HT-5      | HT-1      | REP        | ERN/              |
| 10       | BATCH-2                  | 20761A0392 |            |          |          |           |           |           |           |           |          |           |           | REPETITION | AL L              |
| 11       |                          | 20761A0393 |            |          |          |           |           |           |           |           |          |           |           | ION        | AB 1              |
| 12       |                          | 20761A0394 |            |          |          |           |           |           |           |           |          |           |           |            | INTERNAL LAB TEST |
| 13       |                          | 20761A0395 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 14       |                          | 20761A0396 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 15       | BA                       | 20761A0397 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 16       | BATCH-3                  | 20761A0398 | DEMO       | HT-3     | HT-4     | HT-5      | HT-1      | HT-2      | HT-3      | HT-4      | HT-5     | HT-1      | HT-2      |            |                   |
| 17       | <b>I-3</b>               | 20761A0399 |            |          |          |           |           |           |           |           |          |           |           |            |                   |
| 18<br>19 | 20761A03A0<br>21765A0320 |            |            |          |          |           |           |           |           |           |          |           |           |            |                   |
|          |                          |            |            |          |          |           |           |           |           |           |          |           |           |            |                   |

Part-B

| 20       |         | 21765A0321 |      |      |      |      |      |      |      |      |      |      |      |            |                   |
|----------|---------|------------|------|------|------|------|------|------|------|------|------|------|------|------------|-------------------|
| 21       | -       | 21765A0322 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
| 22       |         | 21765A0323 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
|          | BATCH-4 | 21765A0324 | DEMO | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 |            |                   |
| 23       | H-4     | 21765A0325 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
| 24       | -       | 21765A0326 | -    |      |      |      |      |      |      |      |      |      |      |            | INI               |
| 25       | -       | 21765A0327 | -    |      |      |      |      |      |      |      |      |      |      | REPI       | INTERNAL LAB TEST |
| 26       |         | 21765A0328 |      |      |      |      |      |      |      |      |      |      |      | REPETITION | AL LAI            |
| 27       | -       | 21765A0329 | -    |      |      |      |      |      |      |      |      |      |      | NC         | B TES             |
| 28       | -       | 21765A0330 | -    |      |      |      |      |      |      |      |      |      |      |            | Г                 |
| 29       | BATCH-5 | 21765A0331 | DEMO | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 |            |                   |
| 30<br>31 | CH-5    | 21765A0332 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
|          | -       | 21765A0333 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
| 32       | -       | 21765A0334 | -    |      |      |      |      |      |      |      |      |      |      |            |                   |
| 33       |         |            |      |      |      |      |      |      |      |      |      |      |      |            |                   |

#### COURSE: B.Tech

A.Y:2022-23

|          |         | EXP. No                  | 0          | 1        | 2         | 3         | 4         | 5        | 6        | 7         | 8        | 9         | 10        | 11         | 12                |
|----------|---------|--------------------------|------------|----------|-----------|-----------|-----------|----------|----------|-----------|----------|-----------|-----------|------------|-------------------|
| S.No     | Batch   | Date                     | 28-12-2022 | 4-1-2023 | 11-1-2023 | 18-1-2023 | 25-1-2023 | 1-2-2023 | 8-2-2023 | 15-2-2023 | 1-3-2023 | 15-3-2023 | 29-3-2023 | 12-4-2023  | 19-4-2023         |
|          |         | Regd. No                 |            | 1        | СУС       | LE-I      |           |          |          |           | CYCLE-   | 2         |           |            |                   |
| 1        |         | 20761A0348               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 2        |         | 20761A0349               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 3        | BA      | 20761A0350               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 4        | BATCH-I | 20761A0351               | DEMO       | HT-1     | HT-2      | HT-3      | HT-4      | HT-5     | HT-1     | HT-2      | HT-3     | HT-4      | HT-5      |            |                   |
| 5        | H-I     | 20761A0352               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 6        |         | 20761A0353               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 7        |         | 20761A0354               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 8        |         | 20761A0355               |            |          |           |           |           |          |          |           |          |           |           |            | IN                |
| 9        |         | 20761A0356               |            |          |           |           |           |          |          |           |          |           |           | R          | INTERNAL LAB TEST |
| 10       | BA      | 20761A0357               |            |          |           |           |           |          |          |           |          |           |           | REPETITION | RNA               |
| 11       | BATCH-2 | 20761A0358               | DEMO       | HT-2     | HT-3      | HT-4      | HT-5      | HT-1     | HT-2     | HT-3      | HT-4     | HT-5      | HT-1      | TIT        | L L               |
| 12       | I-2     | 20761A0359               |            |          |           |           |           |          |          |           |          |           |           | IOI        | AB 1              |
| 13<br>14 |         | 20761A0360               |            |          |           |           |           |          |          |           |          |           |           | 4          | res               |
|          |         | 20761A0361               |            |          |           |           |           |          |          |           |          |           |           |            | Т                 |
| 15       |         | 20761A0362               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 16       |         | 20761A0363               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 17       | BA      | 20761A0364               |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 18       | BATCH-3 | 20761A0365               | DEMO       | HT-3     | HT-4      | HT-5      | HT-1      | HT-2     | HT-3     | HT-4      | HT-5     | HT-1      | HT-2      |            |                   |
| 19<br>20 | I-3     | 20761A0366<br>20761A0367 |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 20       |         |                          |            |          |           |           |           |          |          |           |          |           |           |            |                   |
| 21       |         | 20761A0368               |            |          |           |           |           |          |          |           |          |           |           |            |                   |

| 22 |        | 20761A0369 |      |      |      |      |      |      |      |      |      |      |      |            |          |
|----|--------|------------|------|------|------|------|------|------|------|------|------|------|------|------------|----------|
| 23 |        | 20761A0370 |      |      |      |      |      |      |      |      |      |      |      |            |          |
| 24 | BA'    | 20761A0371 |      |      |      |      |      |      |      |      |      |      |      |            |          |
| 25 | BATCH- | 20761A0372 | DEMO | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 |            | INI      |
| 26 | -<br>4 | 20761A0373 |      |      |      |      |      |      |      |      |      |      |      | RI         | INTERNAL |
| 27 |        | 20761A0374 |      |      |      |      |      |      |      |      |      |      |      | REPETITION | IAN      |
| 28 |        | 20761A0375 |      |      |      |      |      |      |      |      |      |      |      | 1          |          |
| 29 |        | 20761A0377 |      |      |      |      |      |      |      |      |      |      |      | TIC        | LAB      |
| 30 | ω      | 20761A0378 |      |      |      |      |      |      |      |      |      |      |      | Ň          | TE       |
| 31 | BAT    | 20761A0379 | DEMO | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 | HT-5 | HT-1 | HT-2 | HT-3 | HT-4 |            | TEST     |
| 32 | ĊH-    | 20761A0380 |      |      |      |      |      |      |      |      |      |      |      |            |          |
| 33 | ίπ     | 20761A0381 |      |      |      |      |      |      |      |      |      |      |      |            |          |
| 34 |        | 20761A0382 |      |      |      |      |      |      |      |      |      |      |      |            |          |

LAB INCHARGE

#### LAKIREDDY BALIREDDY COLLEGE OF ENGINEERING (AUTONOMOUS) MYLAVARAM DEPARTMENT OF MECHANICAL ENGINEERING <u>HEAT TRANSFER LABORATORY</u> <u>LIST OF EXPERIMENTS</u>

| _    | Cou   | rse: B.Tech | Branch: Mech. Sem: VI Section: B Sec Batch: 2020 A.Y: 2022-23                                                                          |
|------|-------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|
| S.No | Cycle | Exp. Code   | Name of the Experiment                                                                                                                 |
| 1    |       | DEMO        | DEMONSTRATION                                                                                                                          |
| 2    | C     | HT-1        | Determination of Thermal Conductivity of Lagged Pipe (Glass wool).                                                                     |
| 3    | YC    | HT-2        | Determination of Thermal Conductivity of Insulating Powder(Asbestos)                                                                   |
| 4    | CLE   | HT-3        | Determination of Thermal Conductivity of Metal Bar (Brass).                                                                            |
| 5    | Ц     | HT-4        | Study of Transient Heat Conduction (Unsteady Heat Conduction).                                                                         |
| 6    |       | HT-5        | Determination of Thermal Conductivity of given Liquid                                                                                  |
| 7    |       | HT-1        | Heat Pipe Demonstration.                                                                                                               |
| 8    | Q     | HT-2        | Test on Pin-Fin Apparatus.                                                                                                             |
| 9    | YC    | HT-3        | Determination of Convective Heat Transfer Co-efficient of air in Natural Convection.                                                   |
| 10   | YCLE  | HT-4        | Test on Emissivity Measurement Apparatus.                                                                                              |
| 11   |       | HT-5        | <ul><li>(A) Test on Tube in Tube Parallel Flow Heat Exchanger.</li><li>(B) Test on Tube in Tube Counter Flow Heat Exchanger.</li></ul> |
| 12   |       | REP         | REPETITION                                                                                                                             |
| 13   |       | INT         | INTERNAL LAB TEST                                                                                                                      |

| Teaching | Teaching Learning Methods |      |                                 |  |  |  |  |  |
|----------|---------------------------|------|---------------------------------|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |  |

| Evaluation Task                   | COs   | Marks    |
|-----------------------------------|-------|----------|
| Day to Day Evaluation             | 1     | A=5      |
| Record                            | 2     | B=5      |
| Internal Examination              | 3     | C=5      |
| Cumulative Internal Marks : A+B+C | 1,2,3 | A+B+C=15 |
| Semester End Examinations         | 1,2,3 | D=35     |
| Total Marks: A+B+C+D              | 1,2,3 | 50       |

### Part - C EVALUATION PROCESS:

### PROGRAMME OUTCOMES (POs) & PROGRAM SPECIFIC OUTCOMES:

| <b>DO 1</b> |                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of                |
|             | complex engineering problems.                                                                                                                                     |
| <b>PO 2</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first        |
|             | principles of mathematics, natural sciences, and engineering sciences.                                                                                            |
| PO 3        | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified              |
|             | needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.                              |
| PO 4        | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and                       |
|             | interpretation of data, and synthesis of the information to provide valid conclusions.                                                                            |
| <b>PO 5</b> | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to         |
|             | complex engineering activities with an understanding of the limitations                                                                                           |
| <b>PO 6</b> | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the              |
|             | consequent responsibilities relevant to the professional engineering practice                                                                                     |
| <b>PO 7</b> | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the       |
|             | knowledge of, and need for sustainable development.                                                                                                               |
| PO 8        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                    |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                   |
| PO 10       | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to |
|             | comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.                           |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own                 |
|             | work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                                                 |
|             |                                                                                                                                                                   |

| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | technological change.                                                                                                                                       |
| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                  |
| PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of                               |
|       | engineering systems in the design, analysis and manufacturability of products.                                                                              |
| PSO 3 | To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to                                  |
|       | transmission of motion and power, conservation of energy and other process equipment.                                                                       |

| Course Instructor | Course Coordinator | Module Coordinator | HOD |
|-------------------|--------------------|--------------------|-----|



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF MECHANICAL ENGINEERING**

### **COURSE HANDOUT**

### PART-A

Name of Course Instructor: Dr.M.B.Satya Sreekara Reddy, Mr.A.Nageswara Rao,

Ms P.Mounika Reddy

**Course Name & Code** : CAD/CAM LAB & 20ME63 :0-0-3

**L-T-P Structure** 

: B.Tech/VI/AB **Program/Sem/Sec** 

Regulation:R20 **Credits:** 1.5 **A.Y.:** 2022-23

**PREREQUISITE:** Computer Aided Machine Drawing, CAD/CAM

### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The main objective of this course is to design, assemble, analyze and manufacture engineering components using computer aided tools.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

|     | Design and assemble the mechanical components using CAD Software. (Analyzing -        |
|-----|---------------------------------------------------------------------------------------|
| C01 | L4)                                                                                   |
| CO2 | Apply finite element analysis for components using analysis software. (Applying - L3) |
|     | Develop NC code for different part profiles and perform machining on CNC Machine      |
| CO3 | tools. (Applying - L3)                                                                |
|     | Simulate part program to perform various operations on CNC machine. (Applying -       |
| CO4 | L3)                                                                                   |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 | 1   |     |       | 2   |     |     |       |     |     |      |      |        |      | 2    |      |
| CO2 | 1   | 1   | 2     | 2   | 1   |     |       |     |     |      |      | 1      |      | 3    |      |
| CO3 | 1   | 1   | 1     |     | 1   |     |       |     |     |      |      | 1      |      | 3    |      |
| CO4 |     | 2   |       | 1   |     |     |       |     |     |      |      |        |      | 2    |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

**SOFTWARE PACKAGES:** CATIA /ANSYS / Iron CAD etc. **REFERENCES:** 

Lab Manuals

# PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# Schedule of Experiments (Section – A)

| S.No | Batches  | Regd. Nos                                    | Total No.<br>of Students |
|------|----------|----------------------------------------------|--------------------------|
| 1    | Batch B1 | 20761A0348-20761A03A0, 21765A0320-21765A0334 | 67                       |

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to CAD/CAM Lab,<br>Demonstration of all<br>experiments, CEOs, and COs of<br>the Laboratory | 3                             | 26-12-2022                         |                                 | TLM4                            |                       |
| Cycle     | •                                                                                                       | I                             |                                    | L                               | l.                              |                       |
| 2.        | Design and Assembly Modeling<br>of Knuckle joint using CAD<br>software                                  | 3                             | 02-01-2023                         |                                 | TLM4                            |                       |
| 3.        | Design and Assembly Modeling<br>of Universal Coupling using CAD<br>software                             | 3                             | 09-01-2023                         |                                 | TLM4                            |                       |
| 4.        | Design and Assembly Modeling<br>of Piston, Connecting Rod parts<br>using CAD software                   | 3                             | 23-01-2023                         |                                 | TLM4                            |                       |
| 5.        | Analysis of trusses using ANSYS                                                                         | 3                             | 30-01-2023                         |                                 | TLM4                            |                       |
| 6.        | Analysis of Beams using ANSYS                                                                           | 3                             | 06-02-2023                         |                                 | TLM4                            |                       |
| Cycle     | e-II                                                                                                    |                               |                                    |                                 |                                 |                       |
| 7.        | Analysis of 3D solids using ANSYS                                                                       | 3                             | 13-02-2023                         |                                 | TLM4                            |                       |
| 8.        | Steady state heat transfer<br>analysis using ANSYS                                                      | 3                             | 27-02-2023                         |                                 | TLM4                            |                       |
| 9.        | Estimation of natural<br>frequencies and mode shapes<br>for simple problems using<br>ANSYS              | 3                             | 06-03-2023                         |                                 | TLM4                            |                       |
| 10.       | Development of NC code using<br>CAM packages                                                            | 3                             | 13-03-2023                         |                                 | TLM4                            |                       |
| 11.       | Machining of simple<br>components on CNC Turning by                                                     | 3                             | 20-03-2023                         |                                 | TLM4                            |                       |

|       | transferring NC Code from CAM package                                                        |   |            |  |      |  |
|-------|----------------------------------------------------------------------------------------------|---|------------|--|------|--|
| 12.   | Machining of Simple<br>components on CNC-Mill by<br>transferring NC Code from CAM<br>Package | 3 | 27-03-2023 |  | TLM4 |  |
| 13.   | Robot programming, simulation, and execution                                                 | 3 | 03-04-2023 |  | TLM4 |  |
| 14.   | Revision                                                                                     | 3 | 10-04-2023 |  | TLM4 |  |
| 15.   | Internal Exam                                                                                | 3 | 17-04-2023 |  | TLM4 |  |
| No. o | No. of classes required to complete: No. of classes taken:                                   |   |            |  | 1:   |  |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                 | Expt. no's      | Marks  |
|-------------------------------------------------|-----------------|--------|
| Day to Day work = $\mathbf{A}$                  | 1,2,3,4,5,6,7,8 | A=05   |
| Record = $\mathbf{B}$                           | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = $\mathbf{C}$                    | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination: A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                   | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: $A + B + C + D = 50$               | 1,2,3,4,5,6,7,8 | 50     |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| PEO 1 | To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| PEO 2 | To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.   |
| PEO 3 | To develop inquisitiveness towards good communication and lifelong learning.                                                      |

# **PROGRAMME OUTCOMES (POs):**

|             | Engineering knowledge: Apply the knowledge of mathematics, science,                   |
|-------------|---------------------------------------------------------------------------------------|
| PO 1        | engineering fundamentals, and an engineering specialization to the solution of        |
| 101         | complex engineering problems.                                                         |
|             |                                                                                       |
| PO 2        | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze |
| PU Z        | complex engineering problems reaching substantiated conclusions using first           |
|             | principles of mathematics, natural sciences, and engineering sciences.                |
|             | <b>Design/development of solutions:</b> Design solutions for complex engineering      |
| PO 3        | problems and design system components or processes that meet the specified            |
|             | needs with appropriate consideration for the public health and safety, and the        |
|             | cultural, societal, and environmental considerations.                                 |
| <b>DO 4</b> | <b>Conduct investigations of complex problems:</b> Use research-based knowledge       |
| PO 4        | and research methods including design of experiments, analysis and interpretation     |
|             | of data, and synthesis of the information to provide valid conclusions.               |
|             | Modern tool usage: Create, select, and apply appropriate techniques, resources,       |
| PO 5        | and modern engineering and IT tools including prediction and modelling to             |
|             | complex engineering activities with an understanding of the limitations.              |
| <b>DO</b> ( | The engineer and society: Apply reasoning informed by the contextual                  |
| PO 6        | knowledge to assess societal, health, safety, legal and cultural issues and the       |
|             | consequent responsibilities relevant to the professional engineering practice.        |
|             | Environment and sustainability: Understand the impact of the professional             |
| PO 7        | engineering solutions in societal and environmental contexts, and demonstrate the     |
|             | knowledge of, and need for sustainable development.                                   |
| PO 8        | Ethics: Apply ethical principles and commit to professional ethics and                |
|             | responsibilities and norms of the engineering practice.                               |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member      |
|             | or leader in diverse teams, and in multidisciplinary settings.                        |
|             | <b>Communication:</b> Communicate effectively on complex engineering activities with  |
| PO 10       | the engineering community and with society at large, such as, being able to           |
|             | comprehend and write effective reports and design documentation, make effective       |
|             | presentations, and give and receive clear instructions.                               |
|             | <b>Project management and finance:</b> Demonstrate knowledge and understanding        |
| PO 11       | of the engineering and management principles and apply these to one's own work,       |
|             | as a member and leader in a team, to manage projects and in multidisciplinary         |
|             | environments.                                                                         |
| DO 12       | Life-long learning: Recognize the need for, and have the preparation and ability      |
| PO 12       | to engage in independent and life-long learning in the broadest context of            |
|             | technological change.                                                                 |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems.                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To apply the principles of manufacturing technology, scientific management<br>towards improvement of quality and optimization of engineering systems in the<br>design, analysis and manufacturability of products. |
| PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.  |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty |                   |                       |                       |                           |
| Signature              |                   |                       |                       |                           |



(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

### DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     | : 20ME64 (R 20 Reg)                                                                | Lab: Robotics and Simulation Lab           |  |  |
|---------------------|------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| A.Y.                | : 2022-2023                                                                        | Class: B. Tech – VI Semester (Section – B) |  |  |
| Lab/Practicals      | : 3 hrs/ Week                                                                      | Continuous Internal Assessment : 15        |  |  |
| Credits             | : 02                                                                               | Semester End Examination : 35              |  |  |
| Name of the Faculty | :Dr.Ch.Siva Sankara Babu(Sr.Assistant Professor)/Mr.K.Karthik(Assistant Professor) |                                            |  |  |

### COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

**PRE-REQUISITES**: Engineering Mechanics, Theory of Machines, Robotics.

### **COURSE EDUCATIONAL OBJECTIVES:**

The main objective of this course is to demonstrate and analysis of various types of robots.

COURSE OUTCOMES: After completion of the laboratory, students will be able to

**CO 1:** Simulate forward and inverse kinematic movements of a robot using Robo Analyzer and MATLAB. (Understanding - L2)

**CO 2:** Perform the demo operations on SCARA and PUMA using Robo analyzer software.(Applying - L3)

**CO 3:** Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and Unloading. (Applying - L3)

**CO 4:** Develop Robot Programmes to use to control commands. (Analyzing - L4) **Mapping of COs with POs and PSOs:** 

# LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs –<br>Robotics and SimulationLab (20ME64) |                                                            |   |   |   |   |   |      |   |   |   |    |    |    |       |       |       |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---|---|---|---|---|------|---|---|---|----|----|----|-------|-------|-------|
|                                                                                                                | POs                                                        |   |   |   |   |   | PSOs |   |   |   |    |    |    |       |       |       |
|                                                                                                                |                                                            | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 | PSO 1 | PSO 2 | PSO 3 |
|                                                                                                                | CO1                                                        | 2 | 1 |   |   | 3 |      |   |   |   |    |    | 2  |       | 3     |       |
| COs                                                                                                            | CO2                                                        | 1 | 2 | 2 |   | 3 |      |   |   |   |    |    | 2  |       | 3     |       |
| ŭ                                                                                                              | CO3                                                        | 3 | 3 |   | 2 | 3 |      |   |   |   |    |    | 3  |       |       | 3     |
|                                                                                                                | CO4                                                        | 1 | 1 |   |   | 3 |      |   |   |   |    |    | 2  |       |       | 3     |
|                                                                                                                | 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) |   |   |   |   |   |      |   |   |   |    |    |    |       |       |       |



(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

### DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     | : 20ME64 (R 20 Reg)             | Lab: Robotics and Simulatio             | n Lab           |
|---------------------|---------------------------------|-----------------------------------------|-----------------|
| A.Y.                | : 2022-2023                     | Class: B. Tech – VI Semester (S         | ection – B)     |
| Lab/Practicals      | : 3 hrs/ Week                   | <b>Continuous Internal Assessment</b>   | : 15            |
| Credits             | : 02                            | Semester End Examination                | : 35            |
| Name of the Faculty | : Dr.Ch.Siva Sankara Babu(Sr.As | ssistant Professor)/Mr.K.Karthik(Assist | tant Professor) |

#### **PROGRAM OUTCOMES (POs):**

#### Engineering Graduates will be able to:

**1.Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

**2.Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**3.Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**4.Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**5.Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

**6.The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**7.Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**8.Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**9.Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**11.Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

**PSO1**: To apply the principles of thermal sciences to design and develop various thermal systems.

**PSO2**: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

**PSO3**: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Lab instructor (s)



| Laboratory Code     | : 20ME64 (R 20 Reg)Lab: Robotics and Simulation Lab |                                                    |  |  |
|---------------------|-----------------------------------------------------|----------------------------------------------------|--|--|
| A.Y.                | : 2022-2023                                         | Class: B. Tech – VI Semester (Section – B)         |  |  |
| Lab/Practicals      | : 3 hrs/ Week                                       | Continuous Internal Assessment : 15                |  |  |
| Credits             | : 02                                                | Semester End Examination : 35                      |  |  |
| Name of the Faculty | : Dr.Ch.Siva Sankara Babu(Sr.Assi                   | stant Professor)/Mr.K.Karthik(Assistant Professor) |  |  |

### LIST OF EXPERIMENTS

At least 10 Experiments from 16 overall should be conducted

### LIST OF EXPERIMENTS:

- 1. Study the anatomy of robots.
- 2. Analysis of robot configuration and Simulation of Robot with 2 Dof, to6 Dof using Robo Analyzer.
- 3. Forward and Inverse Kinematics Analysis of Robot using Robo Analyzer.
- 4. D-H parametric representation of various robotic arms using Robo Analyzer.
- 5. Dynamic analysis of robot using Robo Analyzer.
- 6. Simulation of SCARA, PUMA using Robo Aanlyzer.
- 7. Program for commands like a line command, circle command.
- 8. Program for commands SPLINE command (continues path).
- 9. Program for Point to Point (PTP) command.
- 10. Palletizing.
- 11. Loading/Unloading.
- 12. Gluing.
- 13. Spray painting.
- 14. Polishing.
- 15. Simulate forward and inverse kinematics RR Manipulator using MATLAB.
- 16. Simulate forward and inverse kinematics RP Manipulator using MATLAB. SOFTWARE
- PACKAGES: ARISTO ROBOT, C Prog, Robo Analyzer, MAT Lab

#### SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB, C Prog

#### **REFERENCE:** Robotics and Simulation Lab Manual

Lab instructor (s)



| Laboratory Code<br>A.Y. | : 20ME64 (R 20 Reg)<br>: 2022-2023 | Lab: Robotics and Simulation Lab<br>Class: B. Tech – VI Semester (Section – B) |
|-------------------------|------------------------------------|--------------------------------------------------------------------------------|
| Lab/Practicals          | : 3 hrs/ Week                      | Continuous Internal Assessment : 15                                            |
| Credits                 | : 02                               | Semester End Examination : 35                                                  |
| Name of the Faculty     | : Dr.Ch.Siva Sankara Babu          | (Sr.Assistant Professor)/Mr.K.Karthik(Assistant Professor)                     |

### Notification of Cycles (Section -A)

#### At least TEN experiments may be conducted.

### Cycle – I

1. Study the anatomy of robots.

- 2. Analysis of robot configuration and Simulation of Robot with 2 Dof, to6 Dof using Robo Analyzer.
- 3. Forward and Inverse Kinematics Analysis of Robot using Robo Analyzer.
- 4. D-H parametric representation of various robotic arms using Robo Analyzer.
- 5. Dynamic analysis of robot using Robo Analyzer.
- 6. Simulation of SCARA, PUMA using Robo Aanlyzer.
- 7. Program for commands like a line command, circle command.
- 8. Program for commands SPLINE command (continues path).

### Cycle – II

- 9. Program for Point to Point (PTP) command.
- 10. Palletizing.
- 11. Loading/Unloading.
- 12. Gluing.
- 13. Spray painting.
- 14. Polishing.
- 15. Simulate forward and inverse kinematics RR Manipulator using MATLAB.
- 16. Simulate forward and inverse kinematics RP Manipulator using MATLAB. SOFTWARE

### SOFTWARE PACKAGES ARISTO ROBOT, ROBOANALYZER, MATLAB

Lab instructor (s)



### DEPARTMENT OF MECHANICAL ENGINEERING

| : 20ME64 (R 20 Reg)              | Lab: Robotics and Simulation Lab                    |
|----------------------------------|-----------------------------------------------------|
| : 2022-2023                      | Class: B. Tech – VI Semester (Section – B)          |
| : 3 hrs/ Week                    | Continuous Internal Assessment : 15                 |
| : 02                             | Semester End Examination : 35                       |
| : Dr.Ch.Siva Sankara Babu(Sr.Ass | istant Professor)/Mr.K.Karthik(Assistant Professor) |
|                                  | : 2022-2023<br>: 3 hrs/ Week<br>: 02                |

### Lab Occupancy Time Table (B.Tech Mech Engg- VI Sem:Section – B/S)

| ↓Day/Date<br>→ | 9.00<br>-<br>9.50 | 9.50-<br>10.40 | 10.50-<br>11.40 | 11.40-<br>12.30- | 12.30-<br>1.30 | 1.30-<br>2.20 | 2.20-<br>3.10 | 3.10-<br>4.00 |
|----------------|-------------------|----------------|-----------------|------------------|----------------|---------------|---------------|---------------|
| Monday         | R/S LAB VI-B SEC  |                |                 |                  |                |               |               |               |
| Tuesday        |                   |                |                 |                  |                |               |               |               |
| Wednesday      |                   |                |                 |                  | LUNCH          | R/S           | LAB VI-B      | SEC           |
| Thursday       |                   |                |                 |                  | BREAK          |               |               |               |
| Friday         |                   |                |                 |                  |                |               |               |               |
| saturday       |                   |                |                 |                  |                |               |               |               |

Faculty – In Charges:

| S.No | Class                | Section | Lab Assistant            | Faculty – In Charge                        |
|------|----------------------|---------|--------------------------|--------------------------------------------|
| 1    | B.Tech – VI Semester | B / S   | Mr. P. Guna Sundar Reddy | Dr.Ch.Siva Sankara<br>Babu<br>Mr.K.Karthik |

Lab instructor (s)



(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     | : 20ME64 (R 20 Reg)Lab: Robotics and Simulation Lab |                                                    |  |  |  |
|---------------------|-----------------------------------------------------|----------------------------------------------------|--|--|--|
| A.Y.                | : 2022-2023                                         | Class: B. Tech – VI Semester (Section – B)         |  |  |  |
| Lab/Practicals      | : 3 hrs/ Week                                       | Continuous Internal Assessment : 15                |  |  |  |
| Credits             | : 02                                                | Semester End Examination : 35                      |  |  |  |
| Name of the Faculty | : Dr.Ch.Siva Sankara Babu(Sr.Assi                   | stant Professor)/Mr.K.Karthik(Assistant Professor) |  |  |  |

### Batches (Section – B)

| S.No | Batches                  | Regd.Nos                             | Total No. of<br>Students |
|------|--------------------------|--------------------------------------|--------------------------|
| 1    | B. Tech –VI<br>Sem - B/S | 20761A0348 to 21765A0334             | 67                       |
| 2    | Batch B1                 | 20761A0348-364,20761A0365-382        | 34                       |
| 3    | Batch B2                 | 20761A0383-398,20761A0399-21765A0334 | 33                       |

# Sub Batch of B11:

20761A0348-364 (17)

| S.<br>No | Batch | <b>Registered</b> Nos | Total |
|----------|-------|-----------------------|-------|
| 1        | B111  | 20761A0348-350        | 03    |
| 2        | B112  | 20761A0351-353        | 03    |
| 3        | B113  | 20761A0354-356        | 03    |
| 4        | B114  | 20761A0357-359        | 03    |
| 5        | B115  | 20761A0360-362        | 03    |
| 6        | B116  | 20761A0363-364        | 02    |
|          |       | Total (B11)           | 17    |

# Sub Batch of B12: 20761A0365-381 (17)

| S. No | Batch | Registered Nos | Total |
|-------|-------|----------------|-------|
| 1     | B121  | 20761A0365-367 | 03    |
| 2     | B122  | 20761A0368-370 | 03    |
| 3     | B123  | 20761A0371-373 | 03    |
| 4     | B124  | 20761A0374-376 | 03    |
| 5     | B125  | 20761A0377-379 | 03    |
| 6     | B126  | 20761A0380-381 | 02    |
|       | ]     | Total (B12)    | 17    |

# Sub Batches of B21: 20761A0383-398 (16)

# Sub Batches of B22: 20761A0399-21765A0334 (17)

| S.<br>No | Batch | Registered Nos | Total |
|----------|-------|----------------|-------|
| 1        | B211  | 20761A0382-384 | 03    |
| 2        | B212  | 20761A0385-387 | 03    |
| 3        | B213  | 20761A0388-390 | 03    |
| 4        | B214  | 20761A0391-393 | 03    |
| 5        | B215  | 20761A0394-396 | 02    |
| 6        | B216  | 20761A0397-398 | 02    |
|          |       | Total (B21)    | 16    |

| S. No | Batch | <b>Registered Nos</b> | Total |
|-------|-------|-----------------------|-------|
| 1     | B221  | 20761A0399-21-320     | 03    |
| 2     | B222  | 21765A0321-323        | 03    |
| 3     | B223  | 21765A0324-326        | 03    |
| 4     | B224  | 21765A0327-329        | 03    |
| 5     | B225  | 21765A0330-332        | 03    |
| 6     | B226  | 21765A0333-334        | 02    |
|       | ]     | <b>Fotal (B22)</b>    | 17    |

#### Lab instructor (s)



(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     |
|---------------------|
| A.Y.                |
| Lab/Practicals      |
| Credits             |
| Name of the Faculty |

: 20ME64 (R 20 Reg)Lab: Robotics and Simulation Lab: 2022-2023Class: B. Tech – VI Semester (Section – B): 3 hrs/ WeekContinuous Internal Assessment : 15: 02Semester End Examination : 35: Dr.Ch.Siva Sankara Babu(Sr.Assistant Professor)/Mr.K.Karthik(Assistant Professor)Schedule of Experiments (Section – B: B1 Batch)

| S.No  | Batches                                     | Regd. Nos                                                                   |                               |                                   |        | otal No. of<br>Students         |
|-------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-----------------------------------|--------|---------------------------------|
| 1     | Batch B1                                    | 20761A0348-364,20761A0365-382                                               |                               |                                   |        | 34                              |
| S.No. |                                             | Name of the experiment                                                      | No. of<br>Classes<br>Required | Tentativ<br>Date of<br>Completion |        | Teaching<br>Learning<br>Methods |
| 1     | Introduction<br>Demonstration<br>Laboratory | to Robotics and Simulation Lab,<br>of all experiments, CEOs, and COs of the | 3                             | 26-12-202                         | 22     | TLM4                            |
| Cycle | I                                           |                                                                             |                               |                                   |        |                                 |
| 2     | Program for con<br>command                  | nmands like joint command, circle                                           | 3                             | 2-01-202                          | 3      | TLM4                            |
| 3     | Program for con path)                       | nmands SPLINE command (continues                                            | 3                             | 9-01-202                          | .3     | TLM4                            |
| 4     | Program for PT                              | P command                                                                   | 3                             | 11-01-202                         |        | TLM4                            |
| 5     | Palletizing                                 |                                                                             | 3                             | 30-01-202                         |        | TLM4                            |
| 6     | Loading / Unloa                             | ading                                                                       | 3                             | 6-02-202                          | 3      | TLM4                            |
| Cycle | II                                          |                                                                             |                               |                                   |        |                                 |
| 7     | Gluing                                      |                                                                             | 3                             | 13-02-202                         | 23     | TLM4                            |
| 8     | Spray painting,                             | Polishing                                                                   | 3                             | 27-02-202                         | 23     | TLM4                            |
|       | I Mid Exams                                 |                                                                             | 20-02                         | 2-2023 to 25                      | -02-2  | 2023                            |
| 9     | ROBOANALY                                   |                                                                             | 3                             | 6-03-202                          | -      | TLM4                            |
| 10    |                                             | CARA, PUMA using ROBOANALYZER                                               | 3                             | 13-03-202                         | 23     | TLM4                            |
| 11    | using MATLAI                                |                                                                             | 3                             | 20-03-202                         | 23     | TLM4                            |
| 12    | using MATLAI                                |                                                                             | 3                             | 27-03-202                         | 23     | TLM4                            |
| 13    | Design of Robo                              |                                                                             | 3                             | 3-04-202                          | 3      | TLM4                            |
| 14    | Revision                                    |                                                                             | 3                             | 10-04-202                         | 23     | TLM4                            |
| 15    | Internal Exam                               |                                                                             | 3                             | 17-04-202                         | 23     | TLM4                            |
|       | II Mid Exams                                |                                                                             | 24-04                         | 4-2023 to 29                      | -04-2  | 2023                            |
|       | Preparation ar                              | nd Practicals                                                               | 01-0                          | 5-2023 to 06                      | 5-05-2 | 2023                            |
|       | Semester End                                | Exams                                                                       | 08-0                          | 5-2023 to 20                      | -05-2  | 2023                            |

Lab instructor (s)



(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     | : 20ME64 (R 20 Reg)         | Lab: Robotics and Simulation Lab                         |
|---------------------|-----------------------------|----------------------------------------------------------|
| A.Y.                | : 2022-2023                 | Class: B. Tech – VI Semester (Section – B)               |
| Lab/Practicals      | : 3 hrs/ Week               | Continuous Internal Assessment : 15                      |
| Credits             | : 02                        | Semester End Examination : 35                            |
| Name of the Faculty | : Dr.Ch.Siva Sankara Babu(S | r.Assistant Professor)/Mr.K.Karthik(Assistant Professor) |

| S.No  | Batches                                     | Regd.Nos                                                                    |                              | Total No. of S     | tudents                         |  |
|-------|---------------------------------------------|-----------------------------------------------------------------------------|------------------------------|--------------------|---------------------------------|--|
| 1     | Batch B2                                    | 20761A0383-398,20761A0399-21765A033                                         | 34                           | 33                 |                                 |  |
| S.No. |                                             | Name of the experiment                                                      | No. of<br>Classes<br>Require |                    | Teaching<br>Learning<br>Methods |  |
| 1     | Introduction<br>Demonstration<br>Laboratory | to Robotics and Simulation Lab,<br>of all experiments, CEOs, and COs of the | 3                            | 29-12-2022         | TLM4                            |  |
| Cycle | I                                           |                                                                             |                              |                    |                                 |  |
| 2     | Program for concommand                      | mmands like joint command, circle                                           | 3                            | 4-01-2023          | TLM4                            |  |
| 3     | Program for compath)                        | mmands SPLINE command (continues                                            | 3                            | 11-01-2023         | TLM4                            |  |
| 4     | Program for PT                              | 'P command                                                                  | 3                            | 18-01-2023         | TLM4                            |  |
| 5     | Palletizing                                 |                                                                             | 3                            | 25-01-2023         | TLM4                            |  |
| 6     | Loading / Unlo                              | ading                                                                       |                              | 1-02-2023          | TLM4                            |  |
| 7     | Gluing                                      |                                                                             | 3                            | 8-02-2023          | TLM4                            |  |
| 8     | Circular Motion                             | 1                                                                           | 3                            | 15-02-2023         | TLM4                            |  |
| Cycle | II                                          |                                                                             |                              |                    |                                 |  |
| 9     | Spray painting,                             | Polishing                                                                   | 3                            | 1-03-2023          | TLM4                            |  |
| 10    | Simulation of R<br>ROBOANALY                | cobot with 2 Dof, 3 Dof, 4 Dof using ZER                                    | 3                            | 8-03-2023          | TLM4                            |  |
|       | •                                           | I Mid Exams                                                                 | 20                           | -02-2023 to 25-02- | 02-2023 to 25-02-2023           |  |
| 11    | Simulation of S                             | CARA, PUMA using ROBOANALYZER                                               | 3                            | 15-03-2023         | TLM4                            |  |
| 12    | Simulate forwa<br>using MATLA               | rd and inverse kinematics RR Manipulator<br>B                               | 3                            | 22-03-2023         | TLM4                            |  |
| 13    | Simulate forwa<br>using MATLA               | rd and inverse kinematics RP Manipulator<br>B                               | 3                            | 29-03-2023         | TLM4                            |  |
| 14    | Welding Applie                              |                                                                             | 3                            | 5-04-2023          | TLM4                            |  |
| 15    | Collaboration of                            | f Robots                                                                    | 3                            | 12-04-2023         | TLM4                            |  |
| 16    | Revision                                    |                                                                             | 3                            | 12-04-2023         | TLM4                            |  |
| 17    | Internal Exam                               |                                                                             | 3                            | 19-04-2023         | TLM4                            |  |
|       | II Mid Exams                                |                                                                             | 24                           | -04-2023 to 29-04- | 2023                            |  |
|       | Preparation a                               | nd Practicals                                                               | 01                           | -05-2023 to 06-05- | 2023                            |  |
|       | Semester End                                |                                                                             | 08                           | -05-2023 to 20-05- | 2023                            |  |

### Schedule of Experiments (Section – B: B2 Batch)

Lab instructor (s)



### DEPARTMENT OF MECHANICAL ENGINEERING

| Laboratory Code     | : 20ME64 (R 20 Reg)             | Lab: Robotics and Simulation Lab                     |
|---------------------|---------------------------------|------------------------------------------------------|
| A.Y.                | : 2022-2023                     | Class: B. Tech – VI Semester (Section – B)           |
| Lab/Practicals      | : 3 hrs/ Week                   | Continuous Internal Assessment : 15                  |
| Credits             | : 02                            | Semester End Examination : 35                        |
| Name of the Faculty | : Dr.Ch.Siva Sankara Babu(Sr.As | sistant Professor)/Mr.K.Karthik(Assistant Professor) |

### **Evaluation Criterion for Laboratory**

### **EVALUATION PROCESS:**

| Evaluation Task                                                                                                                                         | COs     | Max. Marks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| Day – to – Day Evaluation                                                                                                                               | 1,2,3,4 | A=5        |
| Mid Examination                                                                                                                                         | 1,2,3,4 | B=5        |
| Viva-Voce                                                                                                                                               | 1,2,3,4 | C=5        |
| Attendance: D<br>(≥95% = <b>5M</b> ; 90%≤A<95%= <b>4M</b> ; 85%≤A<90%= <b>3M</b> ; 80%≤A<85%= <b>2M</b> ;<br>75%≤A<80%= <b>1M</b> ; <b>&lt;75%=0M</b> ) | -       | -          |
| Cumulative Internal Examination (CIE): A+B+C                                                                                                            | 1,2,3,4 | A+B+C=15   |
| Semester End Examinations (SEE): D                                                                                                                      | 1,2,3,4 | D=35       |
| Total Marks: CIE + SEE = A+B+C+D                                                                                                                        | 1,2,3,4 | 50         |

Lab instructor (s)

(AUTONOMOUS)



Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

### DEPARTMENT OF MECHANICAL ENGINEERING

# **COURSE HANDOUT**

| Name of Course Instructor | : Dr. Sujith Kumar Rath& Mr. B Sagar |               |
|---------------------------|--------------------------------------|---------------|
| Course Name & Code        | : Soft skills & soft skills Laborat  | tory (20HSS1) |
| L-T-P Structure           | : 0-0-1+2                            | Credit : 2    |
| Program/Sem/Sec           | : B.Tech.,MECH-A&B , VI-Sem.,        | A.Y: 2022-23  |

#### **Course Description & Objectives:**

The Soft Skills Laboratory course equips students with required behavioural, interpersonal & Intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self confidence, esteem and acceptability in professional circles.

### Course Outcomes (COs): At the end of the course, student will be able to

| C | 201 | Infer the self awareness and personality (Understand – L2)                                                         |
|---|-----|--------------------------------------------------------------------------------------------------------------------|
| C | 202 | Work effectively in multi-disciplinary and heterogeneous teams through the knowledge of team                       |
|   |     | work, Inter-personal relationships, conflict management and leadership quality.(Apply – L3)                        |
| C | 203 | Communicate through verbal/oral communication and improve the listening skills( <b>Apply – L3</b> )                |
| C | CO4 | <b>Relate</b> the critical & lateral thinking while dealing with personal/social/professional issues. (Apply – L3) |

#### **Course Content:**

### **Personality Development Skills**

Role of language in Personality – How language reflects, impactsPersonality – Using gender-neutral language in MNCs – being culturally-sensitive-Personality Traits- Grooming & Dress code

Activities: Group Discussion/Role play/Presentations (authentic materials: News papers, pamphlets and news clippings)

### Impactful Communication

Activities: Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/ Elocution on Interpretation of given quotes/Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

### ProfessionalSkills:

Career Planning- job vs. career- goal setting- SWOT analysis-Timemanagement – self-management – stress-management.

Activities: SWOT analysis of the self/Goal setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

### **REFERENCEBOOKS**:

- 1. Edward Holffman, "Ace the Corporate Personality", McGraw Hill, 2001
- 2. Adrian Furnham, Personality and Intelligence at Work, Psychology Press, 2008.
- 3. M.Ashraf Rizvi, "Effective Technical Communication", 1 st edition, Tata McGraw Hill, 2005
- 4. Ace of Soft skillsGopalaswamy Ramesh, Pearson Education India, 2018
- 5. Soft Skills for the Workplace, Goodheart-Willcox Publisher · 2020.
- 6. How to Win Friends and Influence People, Dale Carnegie · 2020

|      | No. of           |          |                                                                         |                | HOD            |
|------|------------------|----------|-------------------------------------------------------------------------|----------------|----------------|
| S.No | Lecture<br>Hours | Date     | Planned Topics                                                          | Actual<br>Date | Sign<br>Weekly |
| 1    | 1                | 30-12-22 | Role of language in personality                                         |                |                |
| 2    | 2                | 30-12-22 | Extempore                                                               |                |                |
| 3    | 1                | 06-01-23 | How language reflects, impacts Personality                              |                |                |
| 4    | 2                | 06-01-23 | Story Telling                                                           |                |                |
| 5    | 1                | 20-01-23 | Using gender-neutral language in MNCs                                   |                |                |
| 6    | 2                | 20-01-23 | Case Studies                                                            |                |                |
| 7    | 1                | 27-01-23 | Being culturally-sensitive-Personality<br>Traits- Grooming & Dress code |                |                |
| 8    | 2                | 27-01-23 | Using authentic materials: News papers,<br>pamphlets and news clippings |                |                |
| 9    | 1                | 03-02-23 | Career Planning                                                         |                |                |
| 10   | 2                | 03-02-23 | Public Speaking                                                         |                |                |
| 11   | 1                | 10-02-23 | Job vs. career- goal setting                                            |                |                |
| 12   | 2                | 10-02-23 | Critical Appreciation and Textual Analysis                              |                |                |
| 13   | 1                | 17-02-23 | SWOT analysis                                                           |                |                |
| 14   | 2                | 17-02-23 | Writing a review on a given short<br>story/videos/book                  |                |                |
| 15   | 1                | 03-03-23 | Time management                                                         |                |                |
| 16   | 2                | 03-03-23 | Empathetic speaking                                                     |                |                |

### MECH-A

| 17 | 1 | 10-03-23 | Self-management                                |  |
|----|---|----------|------------------------------------------------|--|
| 18 | 2 | 10-03-23 | Telephonic conversation                        |  |
| 19 | 1 | 17-03-23 | Stress-management                              |  |
| 20 | 2 | 17-03-23 | Situation based dialogues                      |  |
| 21 | 1 | 24-03-23 | Effective Resume-Writing and presentation      |  |
| 22 | 2 | 24-03-23 | Listening to dialogues and analyzing           |  |
| 23 | 1 | 31-03-23 | Interview Skills                               |  |
| 24 | 2 | 31-03-23 | Pronunciation Practice                         |  |
| 25 | 1 | 21-04-23 | Body Language, Postures, Gestures, Eye contact |  |
| 26 | 2 | 21-04-23 | Mock interviews                                |  |

# MECH-B

| S.No<br>· | No. of<br>Lecture<br>Hours | Date     | Planned Topics                                                          | Actual<br>Date | HOD<br>Sign<br>Weekly |
|-----------|----------------------------|----------|-------------------------------------------------------------------------|----------------|-----------------------|
| 1         | 1                          | 31-12-22 | Role of language in personality                                         |                |                       |
| 2         | 2                          | 27-12-22 | Extempore                                                               |                |                       |
| 3         | 1                          | 07-01-23 | How language reflects, impacts Personality                              |                |                       |
| 4         | 2                          | 03-01-23 | Story Telling                                                           |                |                       |
| 5         | 1                          | 21-01-23 | Using gender-neutral language in MNCs                                   |                |                       |
| 6         | 2                          | 10-01-23 | Case Studies                                                            |                |                       |
| 7         | 1                          | 28-01-23 | Being culturally-sensitive-Personality<br>Traits- Grooming & Dress code |                |                       |
| 8         | 2                          | 24-01-23 | Using authentic materials: News papers,<br>pamphlets and news clippings |                |                       |
| 9         | 1                          | 04-02-23 | Career Planning                                                         |                |                       |
| 10        | 2                          | 31-01-23 | Public Speaking                                                         |                |                       |
| 11        | 1                          | 11-02-23 | Job vs. career- goal setting                                            |                |                       |
| 12        | 2                          | 07-02-23 | Critical Appreciation and Textual Analysis                              |                |                       |

| 13 | 1 | 04-03-23 | SWOT analysis                                          |  |
|----|---|----------|--------------------------------------------------------|--|
| 14 | 2 | 28-02-23 | Writing a review on a given short<br>story/videos/book |  |
| 15 | 1 | 11-03-23 | Time management                                        |  |
| 16 | 2 | 07-03-23 | Empathetic speaking                                    |  |
| 17 | 1 | 18-03-23 | Self-management                                        |  |
| 18 | 2 | 14-03-23 | Telephonic conversation                                |  |
| 19 | 1 | 25-03-23 | Stress-management                                      |  |
| 20 | 2 | 21-03-23 | Situation based dialogues                              |  |
| 21 | 1 | 01-04-23 | Effective Resume-Writing and presentation              |  |
| 22 | 2 | 04-04-23 | Listening to dialogues and analyzing                   |  |
| 23 | 1 | 08-04-23 | Interview Skills                                       |  |
| 24 | 2 | 11-04-23 | Pronunciation Practice                                 |  |
| 25 | 1 | 15-04-23 | Body Language, Postures, Gestures, Eye contact         |  |
| 26 | 2 | 18-04-23 | Mock interviews                                        |  |

Signature of Faculty

Signature of HOD