

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code L-T-P Structure Program/Sem/Sec 2022-23 C.Rajamallu
BASIC CIVIL ENGINEERING&17CE80
3-0-0
B.Tech., ME., VII-Sem., Sections- A-B-C-

Credits : 3 A.Y :

PRE-REQUISITE:Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course deals withthe importance of building planning, properties and applications of various building materials, soil classification and different types of foundations, important aspects of surveying, levelling operations and identify the terminology in roadway and railway networks, principles of water resources and environmental engineering

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Recognize the importance of building planning for construction					
CO 2	Identify appropriate building materials for construction purposes					
CO 3	Distinguish the different types of soils and foundations required for specific usage					
CO 4	Evaluate the basics of surveying and levelling operations for field application and					
	categorize the important elements of roadway and railway networks					
CO 5	Discriminate the importance of quantity and quality aspects of water in the society and					
	priorities for sanitation management.					

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3
CO1				2		2	1				2		2	1	3
CO2				2		2	1				2		2	1	3
CO3		1	1	2		2	1				2		2	1	3
CO4		1	1	2		2	1				2		2	1	3
CO5		1	1	2	2	2	1				2		2	1	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 1. M.S Palanichamy "Basic Civil Engineering", Tata McGraw Hill Publishing 2000.

REFERENCE BOOKS:

- **R1** 1. S SBhavikatti "Basic Civil Engineering", New age International Publications, 2010
- **R2** C P Kaushik& S SBhavikatti "Basic Civil Engineering ", New age International Publications 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Building Planning

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Building Planning-Role of a Civil Engineer	1	11-07-2022		TLM2		
2.	Inter connection among specializations in Civil Engineering	1	13-07-2022		TLM2		
3.	Elements of a Building, Basic Requirements of a Building	1	14-07-2022		TLM2		
4.	Planning- Hot and dry climates	1	15-07-2022		TLM1		
5.	Hot and wet climates, Cold climatic conditions	1	18-07-2022		TLM1		
6.	Aspect and Prospect, Roominess- Grouping, Privacy, circulation	1	20-07-2022		TLM1		
7.	Sanitation and ventilation	1	21-07-2022		TLM2		
8.	Orientation, Economy, Role of Bye-laws	1	22-07-2022		TLM2		
No. o	No. of classes required to complete UNIT-I: No. of classes taken:						

UNIT-II: Building Materials

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Building Materials - Classification	1	25-07-2022		TLM1	
2.	Rocks, Bricks Classification, Composition, Properties, Commercial forms, Uses	1	27-07-2022		TLM2	
3.	Timber, Ply wood Classification, Composition, Properties, Commercial forms	1	28-07-2022		TLM2	
4.	Glass, Bitumen Classification, Composition, Properties,	1	29-07-2022		TLM1	

	Commercial forms,					
	Aluminium, Cement			TLM1		
5.	Classification, Composition,	1	01-08-2022			
	Properties, Commercial forms,					
	Steel, Concrete Classification,			TLM2		
6.	Composition, Properties,	1	03-08-2022			
	Commercial forms, Uses					
	Mortar Classification,			TLM2		
7.	Composition, Properties,	1	04-08-2022			
	Commercial forms, Uses					
8.	Concept of eco-friendly	1	05-08-2022	TLM1		
0.	materials, examples	1	03-08-2022			
No. o	No. of classes required to complete UNIT-II: No. of classes taken:					

UNIT-III:SOIL CLASSIFICATION AND FOUNDATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Types of soils, soil classification	1	8-08-2022		TLM1		
2.	Engineering properties	1	10-08-2022		TLM1		
3.	Bearing Capacity of soil, purpose and methods of improving bearing capacity	1	12-08-2022		TLM2		
4.	Foundations – Requirements	1	17-08-2022		TLM2		
5.	Loads, Types	1	22-08-2022		TLM1		
6.	for special structures-water tanks-	1	24-08-2022		TLM2		
7.	for special structures- silos, chimneys- transmission line towers- cooling towers, telecommunication towers	1	25-08-2022		TLM1		
No. of	No. of classes required to complete UNIT-III:07No. of classes taken:						

UNIT-IV :SURVEYING, LEVELLING & HIGHWAY NETWORK

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Objective of surveying– Principles, applications and uses of - chain surveying	1	26-08-2022		TLM2	
2.	theodolite, levelling, contour maps, Planimeter, EDM concept	1	29-08-2022		TLM2	
3.	linear distance and area measurement	1	1-09-2022		TLM1	
4.	Total station- GIS-Concept and applications in civil engineering.	1	2-09-2022		TLM2	
5.	CRT Classes	5-9-2022	to 17-09-2022			
6.	MID-1 Examinations:19-09-2022 to 24-09-2022					
7.	Indian highways- Basic terminology- Classification of roads - PIEV theory - Traffic	1	26-09-2022		TLM1	

	signs - IRC Code provisions						
8.	Indian railways –Permanent way and components of railway track	1	28-09-2022		TLM2		
9.	Gauges – Rails -Sleepers – Ballast.	1	29-09-2022		TLM2		
No. o	No. of classes required to complete UNIT-IV:07 No. of classes taken:						

UNIT-V :WATER RESOURCES AND ENVIRONMENTAL ENGINEERING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Objectives of water supply		•	-		*
1.	system-Sources of water	1	30-09-2022		TLM1	
	supply-Hydrologic cycle					
_	Rainfall measurement -					
2.	Purpose of dams, reservoirs,	1	10-10-2022		TLM1	
	intakes, infiltration galleries					
2	Water demands – Water quality	1	10, 10, 2022			
3.	parameters and their impacts -	1	12-10-2022		TLM2	
	Principles of water treatment					
4.	Objectives of water	1	13-10-2022		TLM2	
	distribution systems Wastewater characteristics and					
5.	their impacts	1	14-10-2022		TLM1	
6.	Principles of sewage treatment	1	17-10-2022		TLM2	
7.	Disposal of sewage	1	19-10-2022		TLM2 TLM2	
7.	Water quality standards for –	1	1)-10-2022		I LIVIZ	
8.	drinking purpose,	1	20-10-2022		TLM2	
					TLM1	
9.	irrigation, -making	1	21-10-2022		1 121011	
10.	curing of concrete	1	26-10-2022		TLM1	
11.	methods of water distribution	1	27-10-2022		TLM2	
	systems				TLM2	
12.	Sewage generation in a society	1	28-10-2022		1 LIVI2	
13.	Revision of Unit-1	1	2-11-2022		TLM2	
14.	Revision of Unit-1	1	3-11-2022		TLM2	
15.	Revision of Unit-2	1	4-11-2022		TLM1	
16.	Revision of Unit-2	1	7-11-2022		TLM1	
17.	Revision of Unit-3	1	9-11-2022		TLM1	
18.	Revision of Unit-3	1	10-11-2022		TLM1	
10.			10 11 2022			
19.	Revision of Unit-4	1	11-11-2022		TLM2	
20.	Revision of Unit-4	1	14-11-2022		TLM2	
21.	Revision of Unit-5	1	16-11-2022		TLM2	

22.	Revision of Unit-5	1	17-11-2022		TLM1	
No. of	f classes required to complete UNI	T-V:12		No. of clas	sses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	6W
CRT Classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	7W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practicals	28-11-2022	03-12-2022	1W
Semester End Examinations	05-12-2022	17-12-2022	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and
	software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the
	professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil
	engineering domain

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.T.Nagadurga	
Course Name & Code	: Utilization of Electrical Energy & 17EE81	
L-T-P Structure	: 4-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ME., VII-Sem., Sections- A&B	A.Y:2022-
23		

PRE-REQUISITES:-

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to familiarize with characteristics of various drives, comprehend the different issues related to heating, welding and illumination.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Choose a drive for particular application
CO 2	Identify a heating /welding scheme for a given application
CO 3	Illustrate the different schemes of traction and its main components
CO 4	Develop a lighting scheme for a given practical case
CO5	Assess the economic aspects in utilization of electrical energy

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	-	2	-	-	-	-	-	-	1	-	-	-	
CO2	3	2	1	2	-	-	-	I	I	-	-	1	-	-	-	
CO3	3	1	3	-	3	-	-	-	-	-	-	2	-	-	-	
CO4	3	2	2	2	-	-	-	-	-	-	-	1	-	-	-	
CO5	2		1		-	-		-				1				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 C.L.Wadhwa "Generation,Distribution and Utilization of Electrical energy, New Age International Publishers,3rd Edition,2015.
- **T2** N.V.Suryanarayana"Utilization of electric power including electric drives and electric traction,New age international publishers New Delhi,2nd edition 2014.

REFERENCE BOOKS:

- **R1** Art & Science of Utilization of electrical Energy, Partab, DhanpatRai& Co., 2004.
- **R2** Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
9.	Introduction, CEO's &CO's	1	11/7/22		TLM1/TLM2	
10.	Advantages & applications of Electric heating	1	13/7/22		TLM1/TLM2	
11.	Classification of electric heating	1	14/7/22		TLM1/TLM2	
12.	Classification of electric heating	1	15/7/22		TLM1/TLM2	
13.	Requirement of good heating material	1	18/7/22		TLM1/TLM2	
14.	Electric Arc Furnace	1	20/7/22		TLM1/TLM2	
15.	Induction heating	1	21/7/22		TLM1/TLM2	
16.	Dielectric heating	1	22/7/22		TLM1/TLM2	
17.	Electric welding	1	25/7/22		TLM1/TLM2	
18.	Resistance welding	1	27/7/22		TLM1/TLM2	
19.	Arc welding	1	28/7/22		TLM1/TLM2	
No. o	f classes required to complete U	NIT-I:11		No. of classes	s taken:	

UNIT-I: ELECTRIC HEATING AND WELDING:

UNIT-II: ILLUMINATION ENGINEERING:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
9.	Introduction	1	29/7/22		TLM1/TLM2	
10.	Nature of light &Laws of illumination	1	1/8/22		TLM1/TLM2	
11.	Lighting schemes, sources of light	1	3/8/22		TLM1/TLM2	
12.	Fluorescent Lamps	1	4/8/22		TLM1/TLM2	
13.	Compact Fluorescent Lamps	1	5/8/22		TLM1/TLM2	
14.	LED Lamps discharge lamps	1	8/8/22		TLM1/TLM2	
15.	Sodium Vapour Lamp	1	10/8/22		TLM1/TLM2	
16.	mercury vapour lamps	1	11/8/22		TLM1/TLM2	
17.	Neon lamps	1	12/8/22		TLM1/TLM2	
18.	Comparison between tungsten &fluorescent tubes	1	17/8/22		TLM1/TLM2	

19.	Requirements of good lighting	1	18/8/22	TLM1/TLM2
20.	Street lighting	1	19/8/22	TLM1/TLM2
21.	Mid-I Exams	1	20/9/22	
22.	Mid-I Exams	1	21/9/22	
23.	Mid-I Exams	1	23/9/22	
24.	Mid-I Exams	1	24/9/22	
No. o	f classes required to complete I	No. of classes taken:		

UNIT-III: ELECTRIC DRIVES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
8.	Introduction	1	22/8/22		TLM1/TLM2		
9.	Factors affecting selection of motor	1	24/8/22		TLM1/TLM2		
10.	Types of loads	1	25/8/22		TLM1/TLM2		
11.	Elements of electric drive	1	26/8/22		TLM1/TLM2		
12.	Steady state characteristics of drives	1	29/8/22		TLM1/TLM2		
13.	Transient characteristics of drives	1	31/8/22		TLM1/TLM2		
14.	Size of motor	1	1/9/22		TLM1/TLM2		
15.	Load equalization	1	2/9/22		TLM1/TLM2		
16.	Industrial applications	1	26/9/22		TLM1/TLM2		
No. of	No. of classes required to complete UNIT-III:10 No. of classes take						

UNIT-IV: ELECTRIC TRACTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
10.	Introduction	1	28/9/22		TLM1/TLM2	
11.	Requirement of an ideal traction system	1	3/10/22		TLM1/TLM2	
12.	Supply system for electric traction	1	7/10/22		TLM1/TLM2	
13.	Supply system for electric traction	1	13/10/22		TLM1/TLM2	
14.	Train movement	1	17/10/22		TLM1/TLM2	
15.	Mechanism of train movement	1	19/10/22		TLM1/TLM2	
16.	Traction motors	1	20/10/22		TLM1/TLM2	
17.	Modern trends in electric traction	1	21/10/22		TLM1/TLM2	
18.	Automation in electric traction	1	24/10/22		TLM1/TLM2	
19.	problems	1	26/10/22		TLM1/TLM2	
No. of	f classes required to complete U	0	No. of class	ses taken:		

S.No.	T-V: REFRIGERATION AND Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
23.	Introduction	1	27/10/22	-	TLM1/TLM2	- ·
24.	Types of refrigeration	1	28/10/22		TLM1/TLM2	
25.	Compression refrigeration	1	1/11/22		TLM1/TLM2	
26.	Basic vapour compression cycle	1	3/11/22		TLM1/TLM2	
27.	Absorption refrigeration system	1	4/11/22		TLM1/TLM2	
28.	Operational features	1	7/11/22		TLM1/TLM2	
29.	household refrigerator	1	9/11/22		TLM1/TLM2	
30.	Air-conditioning	1	10/11/22		TLM1/TLM2	
31.	Types of air conditioning system	1	11/11/22		TLM1/TLM2	
32.	Room air conditioner	1	14/11/22		TLM1/TLM2	
33.	Summer & winter air conditioning systems	1	16/11/22		TLM1/TLM2	
34.	Cooling capacity of an air conditioner	1	17/11/22		TLM1/TLM2	
35.	Working of electrical system	1	18/11/22		TLM1/TLM2	
36.	Revision	1	18-11-2022		TLM1/TLM2	
37.	Mid-II Exams	1	22-11-2022			
38.	Mid-II Exams	1	23-11-2022			
39.	Mid-II Exams	1	25-11-2022			
40.	Mid-II Exams	1	26-11-2022			
No. of	f classes required to complete U	INIT-V:		No. of class	sses taken:	

UNIT-V: REFRIGERATION AND AIRCONDITIONING

Contents beyond the Syllabus:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Economicaspects inutilization of electrical energy	1	28-09- 2022		TLM1/TLM2	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

<u>PART-C</u> (EVALUATION PROCESS (R17 Regulations):)

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5

I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	8W
CRT classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	8W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practicals	28-11-2022	03-12-2022	1W
Semester End Examinations	5-12-2022	17-12-2022	2W

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Course Instructor	Course Coordinator	Module Coordinator	HOD
T.Nagadurga	MrsT.Naga Durga		Dr. J.SivaVara Prasad

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OFMECHANICAL ENGINEERING (Autonomous &Affiliated to JNTUK, Kakinada& Approved by AICTE, New Delhi, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

PROGRAM	: B.Tech., VII-Sem.,(A/S)ME
ACADEMIC YEAR	: 2022-2023
COURSE NAME & CODE	: Refrigeration and Air-Conditioning -17ME28
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Dr. V. DHANA RAJU
COURSE COORDINATOR	: Dr. V. DHANA RAJU

PRE-REQUISITE: Thermodynamics

COURSE OBJECTIVE: In a broader way, this course provides the simple understanding of refrigeration and air conditioning fundamentals. First, it covers the different refrigeration cycles and its analysis. Then the concepts of psychrometry and psychrometry processes used for air conditioning are imparted. Finally, the concepts of comfort air conditioning, cooling load design and its estimation are addressed.

COURSE OUTCOMES (CO)

CO1: Describe the basic concepts of refrigeration and its applications.

CO2: Evaluate the performance parameters of refrigeration systems.

CO3:Identify the desirable refrigerants and its use in various refrigeration systems.

CO4: Analyze the psychrometric properties and processes used in Air Conditioning systems.

CO5: Design of Air Conditioning systems for thermal comfort conditions.

000	COURSE ARTICULATION MATRIX (Correlation between Cosaros, FSOS).														
COs	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	2	1		2	2					1	3		
CO2	3	3	3	1		2	2					1	3		
CO3	2	2	2	2		3	3					2	2		
CO4	3	3	2	2		2	2					2	2		
CO5	3	3	3	2		2	2					2	3		

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, **put '-'** 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

T1 C. P. Arora. , Refrigeration and air conditioning - TMH, 2nd Edition, 2000.

T2 R. Dossat, Principles of Refrigeration - - Pearson 4th Edition 2001.

BOS APPROVED REFERENCE BOOKS:

- **R1** S. C. Arora, Domkundwar, A course in refrigeration and air conditioning-Dhanapat Rai& sons 5th Edition 1997.
- **R2** Wilbert F.Stoecker, Jerold W. J.Jones, MGH, 1986.
- **R3** Manohar Prasad, Refrigeration and Air conditioning, New Age international, 2003

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I FUNDAMENTALS OF REFRIGERATION									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Textbook followed	HOD Sign Weekly	
20.	Introduction: Refrigeration, CEOs, Course Outcomes, POs and PSOs	1	11-07-22		TLM2	CO1	T1		
21.	Applications of refrigeration	1	12-07-22		TLM2	CO2	T1		
22.	Unit of refrigeration and COP	1	14-07-22		TLM2	CO1	T1		
23.	Heat Engine, Refrigerator and Heat pump	1	15-07-22		TLM2	CO1	T1		
24.	Types of Refrigeration systems	1	16-07-22		TLM2, TLM 4	CO2	T1		
25.	Problems on refrigeration basics	1	18-07-22		TLM2, TLM 4	CO2	T1		
26.	Refrigerant: Desirable characteristics of ideal refrigerant	1	19-07-22		TLM2	CO3	T1		
27.	Classification of refrigerants- Desirable Properties-Nomenclature, Refrigerant Designation	1	21-07-22		TLM 1	CO3	T1		
28.	Commonly used refrigerants, Alternate refrigerants, Green House effect& Global	1	22-07-22		TLM 1	CO3	T1		
29.	Air refrigeration system: working on Reversed Carnot cycle	1	23-07-22		TLM 1	CO2	T1		
30.	Air refrigeration system working on Bell Coleman cycle	1	25-07-22		TLM 1	CO2	T1		
31.	Air refrigeration Problems	1	26-07-22		TLM 1	CO2	T1		
32.	COP- Open and Dense air systems Problems	1	28-07-22		TLM 1	CO2	T1		
33.	Tutorial	1	29-07-22		TLM 1	CO2	T1		
No. o	f classes required to complete UN	IIT-I = 14		N	o. of classes	s taken:	·		

UNIT-I FUNDAMENTALS OF REFRIGERATION

UNIT-II VAPOUR COMPRESSION REFRIGERATION SYSTEM&COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
15	Introduction to VCR system: Essential components of the VCR plant	1	30-07-22		TLM 1	CO1	T1	
16	, Simple vapour compression refrigeration cycle, COP	1	01-08-22		TLM 1	CO1	T2	
17	Representation of cycle on T-S and p-h Charts	1	02-08-22		TLM 1	CO1	T2	

18	VCR numerical problems	1	04-08-22	Т	LM 1	CO1	T2	
	-							
19	Tutorial	1	05-08-22	T.	LM 1	CO1	T2	
20	Effect of sub cooling and superheating,	1	06-08-22	T	LM 1	CO1	T2	
21	Effect of condenser and evaporator pressure	1	08-08-22	T	LM 1	CO1	T2	
22	Actual VCR and theoretical VCR, Tutorial	1	11-08-22	T	LM 1	CO1	Т2	
	VCR-System							
23	Components : Compressors -Classification-Working Principles	1	12-08-22	T	LM 1	CO1	R1	
24	Work expression for the reciprocating compressor	1	17-08-22	Т	LM 1	CO1	R1	
25	Rotary compressors, Problems	1	19-08-22	T	LM 1	CO1	R1	
26	Condensers – Classification-working principle,	1	20-08-22	T	LM 1	CO1	R1	
27	Evaporators-Classification- working principle	1	22-08-22	Т	LM 1	CO1	R1	
28	Expansion valve – Classification-working principle-	1	23-08-22	Т	LM 1	CO1	R1	
No. of	No. of classes required to complete UNIT-II = 14 No. of classes taken:							
UNIT-III VAPOUR ABSORPTION, STEAM JET &NON-CONVENTIONAL								

REFRIGERATION SYSTEM

S.No.	Topics to be covered	No. of Classes Required	GERATION Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
29	Introduction to VAR system and its working principle,	1	25-08-22		TLM 1	CO1	T2	
30	Max. COP derivation for the VAR system and VAR problems	1	26-08-22		TLM 1	CO1	T2	
31	Description and working of NH ₃ -Water system, Refrigerant-Absorbent solution requirements	1	27-08-22		TLM 1	CO1	Т2	
32	LiBr-Water(Two shell & Four shell) System, Tutorial	1	29-08-22		TLM 1	CO1	T2	
33	Principle of operation of Three fluid absorption systems, Salient features	1	30-08-22		TLM 1	CO1	T2	
34	Steam Jet Refrigeration System: Working Principle, Basic Analysis- Applications	1	01-09-22		TLM 1	CO1	Т2	
35	. Non-Conventional Refrigeration Systems: Thermo electric refrigeration,	1	02-09-22		TLM 1	CO1	T2	
36	Vortex tube refrigeration, Adiabatic Demagnetization refrigeration	1	03-09-22		TLM 1	CO1	T2	
	CRT Classes	10		05-09	-2022 to 17	-09-2022		

	I Mid Examinations	5	19-09-2022 to 24-09-2022
No. o	f classes required to complete UNI	Γ -III = 08	No. of classes taken:

UNIT-IV PSYCHROMETRY & HUMAN COMFORT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
37	Psychrometry: Introduction,	1	26-09-22		TLM 1	CO4	T1	
38	Psychometric properties and relations	1	27-09-22		TLM 1	CO4	T1	
39	Psychometric problems	1	29-09-22		TLM 1	CO4	T1	
40	Psychometric problems		30-09-22		TLM 1	CO4	T1	
41	Psychometric chart and its analysis,	1	01-10-22		TLM 1	CO4	T 1	
42	Psychometric processes and its analysis	1	06-10-22		TLM 1	CO4	T1	
43	Tutorial	1	07-10-22		TLM 1	CO4	T1	
44	Psychometric processes and its analysis	1	10-10-22		TLM 1	CO4	T1	
45	Sensible, Latent and Total heat,	1	11-10-22		TLM 1	CO4	T1	
46	Sensible Heat Factor and Bypass Factor,	1	13-10-22		TLM 1	CO4	T1	
47	Solving Problems	1	14-10-22		TLM 1	CO4	T1	
48	Human Comfort: Thermodynamics of human body	1	15-10-22		TLM 1	CO4	T1	
49	Factors affecting the human comfort and its analysis.	1	17-10-22		TLM 1	CO4	T1	
50	Effective temperature –	1	18-10-22		TLM 1	CO4	T1	
51	Comfort chart	1	20-10-22		TLM 1	CO4	T1	
52	Tutorial	1	21-10-22		TLM 1	CO4	T1	
No. c	of classes required to complete UNIT	Γ-IV = 16		No	o. of classes	taken:	-	

UNIT-V AIR CONDITIONING SYSTEMS AND DESIGN

r	UNII-V AIK						1	1
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
53	Introduction : Air Conditioning Systems,	1	22-10-22		TLM 1	CO5	T1	
54	Components of Air conditioning	1	25-10-22		TLM 1	CO5	T1	
55	Classification of air conditioning system	1	27-10-22		TLM 1	CO5	T1	
56	Central and Unitary systems, Winter and Year-round systems	1	28-10-22		TLM 1	CO5	T1	
57	Cooling load estimation and its procedure	1	29-10-22		TLM 1	CO5	T1	
58	Cooling load components	1	31-10-22		TLM 1	CO5	R1	
59	Infiltration load, Design of Air Condition Systems,	1	03-11-22		TLM 1	CO5	R1	
60	Bypass factor-circulated air	1	04-11-22		TLM 1	CO5	T1	

	with ADP, System with Ventilated and re-circulation,						
61	RSHF, GSHF and ESHF, Solving cooling load Problems	1	05-11-22	TLM 1	CO5	R1	
62	Solving cooling load Problems	1	07-11-22	TLM 1	CO5	R1	
63	Solving cooling load Problems	1	08-11-22	TLM 1	CO5	R1	
64	Solving cooling load Problems	1	10-11-22	TLM 1	CO5	R1	
65	Solving cooling load Problems	1	11-11-22	TLM 1	CO5	R1	
66	Solving cooling load Problems	1	14-11-22	TLM 1	CO5	R1	
67	Tutorial	1	15-11-22	TLM 1	CO5	R1	
No. of classes required to complete UNIT-V = 15				No. of classe	s taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
68	Air craft Refrigeration System and Cryogenics	1	17-11-22		TLM2	CO1,CO4	R3	
69	Eco friendly refrigerants	1	18-11-22		TLM2	CO4	R3	
70	Advanced refrigeration methods	1	19-11-22		TLM2	CO5	R3	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD	
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo	
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study	

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022			
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks		
CRT Classes	05-09-2022	17-09-2022	2 weeks		
I Mid Examinations	19-09-2022	24-09-2022	1 Week		
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks		
II Mid Examinations	21-11-2022	26-11-2022	1 Week		
Preparation and Practical's	28-11-2022	03-12-2022	1 Week		
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks		

EVALUATION PROCESS (R17 Regulations):	
Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-C

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO -	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
PO 6	with an understanding of the limitations The engineer and society : Apply reasoning informed by the contextual knowledge to assess
FU 0	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
DO 11	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
PO 12	leader in a team, to manage projects and in multidisciplinary environments. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
ru 12	independent and life-long learning in the broadest context of technological change.
	Independent and me-tong rearning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Dr.V.Dhana Raju Course Coordinator Dr.V.Dhana Raju Module Coordinator Dr. P.Vijay Kumar HOD Dr. S. Pichi Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

	<u> PARI - A</u>
PROGRAM	: B.Tech VII-Sem MechanicalEngineering – ASection
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: ROBOTICS–17ME29
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: J. Subba Reddy, Associate Professor
COURSE COORDINATOR	: J.Subba Reddy, Associate Professor
PER-REQUISITE	: Engineering Mechanics & Kinematics of Machines

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to cultivate the interest and ability to develop robotic systems for social and industrial development.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1:Understand the basics of robots, end effectors and its applications.

CO2:Familiarize the working of actuators and sensors for robotic application.

CO3:Formulate D-H matrices for different kinematics problems.

CO4:Model the dynamic behavior of robot.

CO5:Analyze the trajectory of robotic motion.

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

<u> </u>	РО	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					2						2		2	3
CO2	3	3	2									2		2	3
CO3	3	3	2									2		2	3
CO4	3	2	1				2					2		2	2
CO5	2					3	3					1	2	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

Saeed B.Niku, Introduction to robotics- analysis ,systems &application, Second **T1** Edition,

Willy India Private Limited, New Delhi,2011.

T2 R.K.Mittal and IJ Nagrath, Robotics and Control, Tata McGraw–Hill publishing company Limited, New Delhi,2003.

BOS APPROVED REFERENCE BOOKS:

MikellP.Groover, Mitchell Weiss, Roger N. Nagel&Nicholas G. Odrey, Ashish Dutta,

- **R1** Industrial Robotics, Second Edition McGraw- Hill Education(India) Private Limited, 2012
- **R2** Robert J.Schilling, Fundamentals of robotics analysis & control, PHI learning private limited, New Delhi,4thEdition 2002
- R3 John.JCriag, Introduction to Robotics-Mechanics and Control, Third Edition,Pearson Education,Inc.,2008

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29)

PART - B

UNIT-I:INTRODUCTION TO ROBOTICS, ANATOMY, ROBOT END EFFECTORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
34.	Introduction to Robotics	1	11-07-2022		TLM2	CO1	T1, T2, R1, R2	
35.	CEOs, Course Outcomes, POs and PSOs	1	13-07-2022		TLM2	-	-	
36.	Basic concepts – Robot anatomy	1	14-07-2022		TLM2	CO1	T1, T2, R1, R2	
37.	Components of robots, Tutorial	1	15-07-2022		TLM2	CO1	T1, T2, R1, R2	
38.	Robot motions	1	15-07-2022		TLM2	CO1	T1, T2, R1, R2	
39.	Number of D.O.F – Work volume	1	18-07-2022		TLM2	CO1	T1, T2, R1, R2	
40.	Robot applications in Material transfer and machine loading / unloading applications	1	20-07-2022		TLM2	C01	T1, T2, R1, R2	
41.	Robot applications in Processing operations – Assembly and inspection – Future applications	1	21-07-2022		TLM2	CO1	T1, T2, R1, R2	
42.	Robot End Effectors –Introduction, Tutorial	1	22-07-2022		TLM3	CO1	T1, T2, R1, R2	
43.	Types of end effectors – Mechanical grippers	1	22-07-2022		TLM2	CO1	T1, T2, R1, R2	
44.	Vacuum cups, magnetic grippers, adhesive gripers and others	1	25-07-2022		TLM2	C01	T1, T2, R1, R2	
45.	Robot / End effectors interface	1	27-07-2022		TLM2	CO1	T1, T2, R1, R2	
46.	Considerations in gripper selection and design	1	28-07-2022		TLM2	CO1	T1, T2, R1, R2	
47.	Case Studies, Numericals, Tutorial	1	29-07-2022		TLM2	CO1	T1, T2, R1, R2	
48.	Numericals	1	29-07-2022		TLM3	C01	T1, T2, R1, R2	
No. of	classes required to complete UNIT-I:	15			No. of class	es taken:		

UNIT-II: ROBOT ACTUATORS AND SENSORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
49.	Introduction to Actuators	1	01-08-2022		TLM2	CO2	T1,R1	
50.	Characteristics of Actuating System	1	03-08-2022		TLM2	CO2	T1,R1	
51.	Pneumatic Actuators	1	04-08-2022		TLM2	CO2	T1,R1	
52.	Hydraulic Actuators, Tutorial	1	05-08-2022		TLM2	CO2	T1,R1	
53.	Electric Motors	1	05-08-2022		TLM2	CO2	T1,R1	
54.	Introduction to Sensors	1	08-08-2022		TLM3	CO2	T1,R1	
55.	Sensor characteristics	1	10-08-2022		TLM1	CO2	T1,R1	
56.	Position sensors: Potentiometers, LVDT	1	11-08-2022		TLM1	CO2	T1,R1	-
57.	Resolvers, Encoders, Tutorial	1	12-08-2022		TLM1	CO2	T1,R1	-
58.	Magnetostrictive Displacement Transducers (MDT)	1	12-08-2022		TLM1	CO2	T1,R1	
59.	Velocity Sensors: Encoders	1	17-08-2022		TLM1	CO2	T1,R1	
60.	Tachometers	1	18-08-2022		TLM1	CO2	T1,R1	
61.	Industrial Applications, Tutorial	1	19-08-2022		TLM2	CO2	T1,R1	
62.	Case Studies	1	19-08-2022		TLM2	CO2	T1,R1	
No. of	classes required to complete UNIT-II	14		No. of classes	taken:		1	1

UNIT-III:MANIPULATOR KINEMATICS

		No. of	Tentative	Actual	Teaching	Learning Outcome		HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	COs	Text Book followed	Sign
		Required	Completion	Completion	Methods	COS		Weekly
63.	Introduction to Manipulator Kinematics	1	22-08-2022		TLM2	CO3	T1,R1	
64.	Coordinate Frames	1	24-08-2022		TLM2	CO3	T1,R1	
65.	Description of Objects in space	1	25-08-2022		TLM2	CO3	T1,R1	
66.	Transformation of vectors, Tutorial	1	26-08-2022		TLM2	CO3	T1,R1	
67.	Numericals	1	26-08-2022		TLM1	CO3	T1,R1	
68.	Inverting a Homogeneous Transform	1	29-08-2022		TLM3	CO3	T1,R1	
69.	Numericals	1	31-08-2022		TLM2	CO3	T1,R1	
70.	Fundamental Rotation Matrices	1	01-09-2022		TLM2	CO3	T1,R1	
71.	Numericals, Tutorial	1	02-09-2022		TLM2	CO3	T1,R1	
72.	D-H representation	1	02-09-2022		TLM2	CO3	T1,R1	
73.	CRT Classes	10			05-09	-2022 to 17-09-2022		
74.	I Mid Examinations	5			19-09	-2022 to 24-09-2022		
75.	Problems on Forward Kinematics	1	26-09-2022		TLM2	CO3	T1,R1	
76.	Numericals	1	28-09-2022		TLM2	CO3	T1,R1	
77.	Numericals	1	29-09-2022		TLM2	CO3	T1,R1	
78.	Numericals, Tutorial	1	30-09-2022		TLM2	CO3	T1,R1	
79.	Numericals	1	30-09-2022		TLM2	CO3	T1,R1	
No. of	classes required to complete UNIT-III	15			No. of class	ses taken:		

UNIT-IV:ROBOT DYNAMICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
80.	Introduction to Dynamics of Robots	1	03-10-2022		TLM2	CO4	T1,R1	
81.	Differential transformations	1	05-10-2022		TLM2	CO4	T1,R1	
82.	Numericals	1	06-10-2022		TLM2	CO4	T1,R1	
83.	Numericals, Tutorial	1	07-10-2022		TLM2	CO4	T1,R1	
84.	Numericals	1	07-10-2022		TLM2	CO4	T1,R1	
85.	Numericals	1	10-10-2022		TLM2	CO4	T1,R1	
86.	Jacobian Matrix	1	12-10-2022		TLM2	CO4	T1,R1	
87.	Numericals	1	13-10-2022		TLM1	CO4	T1,R1	
88.	Numericals, Tutorial	1	14-10-2022		TLM2	CO4	T1,R1	
89.	Numericals	1	14-10-2022		TLM1	CO4	T1,R1	
90.	Lagrange Euler formulation	1	17-10-2022		TLM2	CO4	T1,R1	
91.	Numericals	1	19-10-2022		TLM2	CO4	T1,R1	
92.	Numericals	1	20-10-2022		TLM1	CO4	T1,R1	
93.	Numericals, Tutorial	1	21-10-2022		TLM2	CO4	T1,R1	1
94.	Numericals	1	21-10-2022		TLM1	CO4	T1,R1	
No. of	classes required to complete UNIT-IV	15		•	No. c	f classes taken:	•	•

UNIT-V:TRAJECTORY PLANNING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
95.	Introduction to Trajectory Planning	1	24-10-2022		TLM2	CO5	T1,R1	
96.	Considerations on Trajectory Planning	1	26-10-2022		TLM2	CO5	T1,R1	
97.	Joint Interpolated Trajectory	1	27-10-2022		TLM2	CO5	T1,R1	
98.	Numericals	1	28-10-2022		TLM2	CO5	T1,R1	
99.	Numericals, Tutorial	1	28-10-2022		TLM3	CO5	T1,R1	
100.	Numericals	1	31-10-2022		TLM2	CO5	T1,R1	
101.	Numericals	1	02-11-2022		TLM2	CO5	T1,R1	
102.	Numericals	1	03-11-2022		TLM2	CO5	T1,R1	
103.	Cartesian Path Trajectory	1	04-11-2022		TLM2	CO5	T1,R1	
104.	Numericals, Tutorial	1	04-11-2022		TLM2	CO5	T1,R1	
105.	Numericals	1	07-11-2022		TLM2	CO5	T1,R1	
106.	Numericals	1	09-11-2022		TLM2	CO5	T1,R1	
107.	Numericals	1	10-11-2022		TLM2	CO5	T1,R1	
108.	Numericals, Tutorial	1	11-11-2022		TLM2	CO5	T1,R1	
109.	Numericals	1	11-11-2022		TLM2	CO5	T1,R1	
110.	Robot Programming	1	14-11-2022		TLM2	CO5	T1,R1	
111.	Robot Programming	1	16-11-2022		TLM2	CO5	T1,R1	
112.	Robot Programming	1	17-11-2022		TLM2	CO5	T1,R1	
113.	Robot Programming, Tutorial	1	18-11-2022		TLM2	CO5	T1,R1	
114.	Robot Programming	1	18-11-2022		TLM2	CO5	T1,R1	
No. of cla	asses required to complete UNIT-V	15 + 05 (Beyon	id Syllabus)		No. of classes	taken:		
		II Mid Examinatio	ons – 21-11-2022 to	26-11-2022				

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022			
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks		
CRT Classes	05-09-2022	17-09-2022	2 Weeks		
I Mid Examinations	19-09-2022	24-09-2022	1 Week		
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks		
II Mid Examinations	21-11-2022	26-11-2022	1 Week		
Preparation and Practicals	28-11-2022	03-12-2022	1 Week		
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks		

<u> PART – C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u> PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	J. Subba Reddy	J.Subba Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

AKIREDDY BALI REDDY COLLEGE OF ENGINEERING

pproved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada credited by NAAC with "A" Grade and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

-@

DEPARTMENT OF MECHANICAL ENGINEERING

	COURSE HANDOUT
	<u> PART - A</u>
PROGRAM	: B.Tech VII-Sem Mechanical Engineering – A Section
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: PRODUCTION PLANNING AND CONTROL –17ME33
L-T-P STRUCTURE	: 4-0-0
COURSE CREDITS	: 3
COURSE INSTRUCTOR	: Dr.K.Dilip Kumar, Professor
COURSE COORDINATOR	: J.Subba Reddy, Associate Professor
PER-REQUISITE	: Industrial Management & Operational Research

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to understand the basic concepts of production planning and control, familiarize with different forecasting techniques, familiarize the concepts of inventory management, understand the concepts of routing and scheduling and acquire basic knowledge in aggregate planning, expediting and follow up.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1: Exhibit the ability in developing production planning for operating economy, effectivenessand cost control.

CO2: Apply the forecasting techniques in estimating the number of products.

CO3: Use the inventory management techniques to determine the optimum quantity of material.

CO4: To develop the route sheet required for a production process/activities.

CO5: To decide the dispatch procedure required for a production processes and other activities.

<u> </u>	РО	PO	PO	PO	PO	PO	РО	РО	РО	PO	PO	PO	PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	2							2	1		3	
CO2	1	2	2	1								1		3	
CO3	1	2	1	2	2							1		3	
CO4	1	1	2	2								1		3	
CO5	1	1	1	1	2							1		3	

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** R.Pannerselavn, Production and Operations Management, 2nd Edition, PHI,2007.
- **T2** P.Rama Murthy, Production and Operations Management, New Age Internationa, 2ndEdition, 2005

BOS APPROVED REFERENCE BOOKS:

- **R1** S.N.Chary, Production and Operations Management, TMcH, 4th Edition 2010.
- **R2** SamuelEilon, Elements of Production Planning and Control, Universal Publishing Corporation, 2004
- R3 Seetharama L.N, Production Planning and Inventory Control, PHI, 2nd Edition1995

COURSE DELIVERY PLAN (LESSON PLAN): PPC [Program Elective – IV]

<u> PART - B</u>

UNIT-I: INTRODUCTION TO PRODUCTION PLANNING AND CONTROL (PPC)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
115.	CEOs, Course Outcomes, POs and PSOs	1	11-7-2022		TLM2	C01	R1, R2	
116.	UNIT-I Introduction to PPC	1	12-7-2022		TLM2	CO1	R1, R2	
117.	Definition-Objectives of PPC	1	15-7-2022		TLM2	CO1	R1, R2	
118.	Functions of production planning and control	1	16-7-2022		TLM2	C01	R1, R2	
119.	Elements of production control	1	18-7-2022		TLM2	CO1	R1, R2	
120.	Types of production	1	19-7-2022		TLM2	CO1	R1, R2	
121.	Process chart	1	22-7-2022		TLM2	CO1	R1, R2	
122.	Tutorial-I	1	23-7-2022		TLM3	CO1	R1, R2	
123.	Product life cycle	1	25-7-2022		TLM2	CO1	R1, R2	
124.	Design of product	1	26-7-2022		TLM2	CO1	R1, R2	
125.	Product Analysis	1	29-7-2022		TLM2	CO1	R1, R2	
126.	Org. Chart for PPC	1	30-7-2022		TLM2	CO1	R1, R2	
127.	Case Studies	1	1-8-2022		TLM2	CO1	R1, R2	
128.	Tutorial-II	1	2-8-2022		TLM3	CO1	R1, R2	
No. of o	No. of classes required to complete UNIT-I: 14 No. of classes taken:						·	

UNIT-II: FORECASTING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
129.	<u>UNIT-I</u>I Introduction to Forecasting	1	5-8-2022		TLM2	CO2	T1,R1	
130.	Importance of forecasting – sales forecasting	1	6-8-2022		TLM2	CO2	T1,R1	
131.	Types of forecasting	1	8-8-2022		TLM2	CO2	T1,R1	-
132.	Qualitative methods	1	12-8-2022		TLM2	CO2	T1,R1	-
133.	Quantities methods – Introduction	1	16-8-2022		TLM2	CO2	T1,R1	
134.	Tutorial-III	1	20-8-2022		TLM3	CO2	T1,R1	
135.	Moving Avg. method	1	22-8-2022		TLM1	CO2	T1,R1	
136.	weighted MAM	1	23-8-2022		TLM1	CO2	T1,R1	
137.	Exponential smoothing method	1	26-8-2022		TLM1	CO2	T1,R1	
138.	Errors in Forecasting	1	27-8-2022		TLM1	CO2	T1,R1	
139.	MAD, MAE, MAPE etc	1	29-8-2022		TLM1	CO2	T1,R1	
140.	Correlation and Regression Analysis	1	30-8-2022		TLM1	CO2	T1,R1	
141.	Delphi Method -Problems	1	2-9-2022		TLM2	CO2	T1,R1	
142.	Numericals, Industrial Applications, Tutorial-IV	1	3-9-2022		TLM3	CO2	T1,R1	
No. of	classes required to complete UNIT-II	14		No. of classes	taken:			

UNIT-III:INVENTORY MANAGEMENT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
143.	<u>UNIT-I</u>II Inventory of management – introduction	1	5-9-2022		TLM2	CO3	T1,R1	
144.	Types of Inventories	1	6-9-2022		TLM2	CO3	T1,R1	
145.	Functions of inventory management	1	9-9-2022		TLM2	CO3	T1,R1	
146.	Cost Associated with Inventories	1	12-9-2022		TLM2	CO3	T1,R1	
147.	EOQ model – Problem	1	13-9-2022		TLM1	CO3	T1,R1	
148.	Selective Control of Inventories	1	16-9-2022		TLM3	CO3	T1,R1	
149.	ABC analysis, VED analysis	1	17-9-2022		TLM2	CO3	T1,R1	
150.	HMI Analysis etc.	1	19-9-2022		TLM2	CO3	T1,R1	
151.	Inventory control systems	1	20-9-2022		TLM2	CO3	T1,R1	
152.	P-Systems	1	23-9-2022		TLM2	CO3	T1,R1	
153.	Q-Systems	1	24-9-2022		TLM2	CO3	T1,R1	
154.	Numericals	1	26-9-2022		TLM2	CO3	T1,R1	
155.	Tutorial-V	1	27-9-2022		TLM1	CO3	T1,R1	
156.	Introduction to MRP	1	30-9-2022		TLM2	CO3	T1,R1	
157.	objective of MRP	1	1-10-2022		TLM2	CO3	T1,R1	
158.	Inputs of MRP	1	10-10-2022		TLM2	CO3	T1,R1	
159.	Bill of Materials	1	11-10-2022		TLM2	CO3	T1,R1	
160.	Introduction to JIT inventory	1	14-10-2022		TLM2	CO3	T1,R1	
161.	Element of JIT	1	15-10-2022		TLM2	CO3	T1,R1	
162.	Japanese concepts, Kanban system	1	17-10-2022		TLM2	CO3	T1,R1	
163.	Tutorial-VI	1	18-10-2022		TLM3	CO3	T1,R1	
No. of	classes required to complete UNIT-III	21			No. of class	ses taken:		

UNIT-IV:ROUTING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
164.	Unit-IV- Routing, Routing procedure	1	21-10-2022		TLM2	CO4	T1,R1	
165.	Route sheets ,Maintanance Sheets	1	22-10-2022		TLM2	CO4	T1,R1	
166.	Factors affecting routing procedure	1	25-10-2022		TLM2	CO4	T1,R1	
167.	Definition of Scheduling	1	28-10-2022		TLM2	CO4	T1,R1	
168.	Forward and Backward Scheduling	1	29-10-2022		TLM2	CO4	T1,R1	
169.	Johnsons Rules	1	31-10-2022		TLM1	CO4	T1,R1	
170.	Tutorial-VII	1	1-11-2022		TLM3	CO4	T1,R1	
171.	Difference between loading & scheduling	1	2-11-2022		TLM2	CO4	T1,R1	
172.	Scheduling Policies	1	4-11-2022		TLM2	CO4	T1,R1	
173.	Techniques- Gant Chart, Gant Chart Symbols	1	5-11-2022		TLM2	CO4	T1,R1	
174.	Scheduling Methods	1	7-11-2022		TLM2	CO4	T1,R1	
175.	Tutorial-VIII	1	11-11-2022		TLM3	CO4	T1,R1	
No. of a	No. of classes required to complete UNIT-IV 12 No. of classes taken:							

UNIT-V:AGGREGATE PLANNING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
176.	Aggregate Planning Stage of Aggregate Planning	1	12-11-2022		TLM2	CO5	T1,R1	
177.	Chase Planning Expanding & Controlling Accepts	1	12-11-2022		TLM2	CO5	T1,R1	
178.	Tutorial-IX	1	13-11-2022		TLM2	CO5	T1,R1	
179.	Introduction to Dispatching, Activities of Dispatcher, Dispatching Procedure	1	14-11-2022		TLM2	CO5	T1,R1	
180.	Follow up definition, Types of Follow up, Reasons for existence of functions	1	14-11-2022		TLM3	CO5	T1,R1	
181.	Computer Applications in PPC	1	15-11-2022		TLM2	CO5	T1,R1	
182.	ERP Systems, ERP Modules, Basics of MRP-II	1	16-11-2022		TLM2	CO5	T1,R1	
183.	Numericals, Tutorial-X	1	19-11-2022		TLM2	CO5	T1,R1	
No. of cla	sses required to complete UNIT-V	08			No. of classes t	aken:		

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemen	t of Class work	10-12-2018				
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks			
I Mid Examinations	19-09-2022	24-09-2022	1 Week			
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks			
II Mid Examinations	21-11-2022	26-11-2022	1 Week			
Preparation and Practicals	28-11-2022	03-12-2022	1 Week			
Semester End Examinations	05-12-2022	17-12-2022	1 Week			

<u> PART - C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

<u>PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	Dr.K.Dilip Kumar	Dr.K.Dilip Kumar	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: KAMALA PRIYA B	
Course Name & Code	: POWER PLANT ENGINEERING	
L-T-P Structure	: 4-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., MECH., VII-Sem., Sections- A,B&C	A.Y :
2022-23		

PRE-REQUISITE: Thermodynamics, Thermal Engineering.

COURSE EDUCATIONAL OBJECTIVES (CEOs): To study the various power plant potentials and its working principles.

COURSE OUTCOMES (COs): At the end of the course, students are able to

0001	Construction of the course, students are use to				
CO 1	Understand the basics of various energy sources and various circuits in				
	steam power plant(Understanding level).				
CO 2	Comprehend Diesel and Gas Turbine power generating plants				
	(Remembering level).				
CO 3	Analyze salient features of Hydroelectric and Nuclear power plants and				
	interpret the data (Analysis level).				
CO 4	Differentiates direct and indirect energy conversion systems (Understanding				
	level).				
CO5	Evaluate economics of power generation and pollution issues related to				
	power plants (Apply level).				

cocho															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	-	-	-	-	-	-	-	1	1	-	-
CO2	3	1	2	2	-	1	2	-	-	-	-	1	2	-	2
CO3	2	3	-	3	-	1	2	-	-	-	-	1	2	-	2
CO4	2	3	1	2	-	-	1	-	-	-	-	1	2	-	1
CO5	3	2	2	3	-	-	3	-	-	-	-	1	3	-	3

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Arora &Domkundwar, A course in Power Plant Engineering- Dhanpat Rai & Company 5th Revised Reprint Edition, 2004.
- T2 P.K.Nag, Power Plant Engineering, 3rd Edition, 2008 TMH, New Delhi,

REFERENCE BOOKS:

- **R1** R.K.Rajput, A Text book of Power Plant Engineering, Laxmi Publications ,2_{nd} Edition 2001
- **R2** M.M.ElWakil, Power plant technology, 3rd Edition 2010 TMH.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:STEAM POWER PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
184.	Course Outcomes	1	11-07-2022		TLM1	
185.	Introduction to Subject	1	13-07-2022		TLM1	
186.	Energy sources, Resources and Development of Power in India.	1	14-07-2022		TLM1	
187.	Steam power plant:Plant Layout, Working of Different circuits, factors to be considered for the selection of the plant	1	15-07-2022		TLM2	
188.	Types of Coal-Fuel handling systems-	1	18-07-2022		TLM1	
189.	Coal handling, choice of coal handling equipment, Coal Storage	2	20-07-2022		TLM1, TLM2	
190.	Ash handling systems	2	21-07-2022		TLM2	
191.	Overfeed and underfeed stokers	1	22-07-2022		TLM1, TLM2	
192.	Traveling grate stokers, Spreader stokers, Retort stokers	1	25-07-2022		TLM1, TLM2	
193.	Pulverized fuel burning system and, its components	2	27-07-2022		TLM2	
194.	Draught system, Cyclone furnace	1	28-07-2022		TLM1	
195.	Design and construction, Dust collectors,	1	29-07-2022		TLM1	
196.	Dust collectors, Electrostatic precipitator	1	01-08-2022		TLM2	
197.	Cooling towers and heat rejection	2	03-08-2022		TLM1, TLM2	
198.	TUTORIAL-1	1	04-08-2022		TLM3	
No. of	f classes required to complete UNI	T-I: 15		No. of class	ses taken:	

UNIT-II:DIESEL POWER PLANT AND GAS TURBINE PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
25.	Plant layout with auxiliaries-Fuel storage	1	05-08-2022		TLM2	
26.	Fuel supply system-Air supply system-Exhaust system	1	08-08-2022		TLM2	
27.	Water cooling system-Lubrication system	1	10-08-2022		TLM2	
28.	Starting system-Supercharging	1	11-08-2022		TLM1	

29.	Advantages and Disadvantages of Diesel plants over Thermal plants	1	12-08-2022	TLM 1	
30.	TUTORIAL-2	1	17-08-2022	TLM3	
31.	Introduction-Classification- Layout with auxiliaries	1	18-08-2022	TLM2	
32.	Principles of working of Closed and Open cycle gas turbines	1	22-08-2022	TLM 1	
33.	Combined cycle power plants and comparison	1	24-08-2022	TLM1, TLM2	
34.	TUTORIAL-3	1	24-08-2022	TLM3	
No. o	f classes required to complete UN		No. of classes taken:		

UNIT-III:HYDRO ELECTRIC POWER PLANT AND NUCLEAR POWER PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
17.	Hydrology-Hydrological cycle	1	25-08-2022		TLM1	
18.	Rainfall- Run off Hydrograph	1	26-08-2022		TLM1	
19.	Flow duration curve- Mass curve	1	29-08-2022		TLM2	
20.	Site selection of hydro plant- Typical layout	1	01-09-2022		TLM 1	
21.	Different types of hydro plants	2	02-09-2022		TLM2	
22.	TUTORIAL-4	1	26-09-2022		TLM3	
23.	Nuclear Fission and Fusion - Nuclear Fuels-	1	28-09-2022		TLM 1	
24.	Breeding- Components of Reactor	1	29-09-2022		TLM 1	
25.	Types of Nuclear Reactors- Pressurized water reactor(PWR)-	1	30-09-2022		TLM 1	
26.	Boiling water reactor (BWR)	1	10-10-2022		TLM 1	
27.	CANDU reactor-Gas cooled reactor	1	12-10-2022		TLM 1	
28.	Liquid metal cooled reactor-Fast Breeder Reactor	1	13-10-2022		TLM1	
29.	Nuclear waste and its Disposal	1	14-10-2022		TLM1	
30.	TUTORIAL-5	1	17-10-2022		TLM3	
No. of	f classes required to complete UN	IT-III: 14		No. of class	sses taken:	

UNIT-IV :POWER FROM NON-CONVENTIONAL SOURCES AND DIRECT ENERGY CONVERSION SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
20.	Solar power plants-Utilization of Solar collectors.	1	19-10-2022		TLM1	
21.	Different types of solar collectors.	2	20-10-2022		TLM1, TLM2	

22.	Principle of working of Wind energy-Types	1	21-10-2022	TLM	L	
23.	Tidal Energy	1	26-10-2022	TLM2	2	
24.	TUTORIAL-6	1	27-10-2022	TLM	3	
25.	Solar cell- Fuel cell	1	28-10-2022	TLM	L	
26.	Thermo Electric and Thermo ionic conversion system	1	31-10-2022	TLM	L	
27.	MHD power generation	2	02-11-2022	TLM2	2	
28.	TUTORIAL-7	1	03-11-2022	TLM	3	
No. of	No. of classes required to complete UNIT-IV:09 No. of classes taken:					

UNIT-V : POWER PLANT ECONOMICS AND POLLUTION & CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
41.	Fixed cost-Operating cost Fluctuating loads	1	04-11-2022		TLM 1	
42.	General arrangement of Power Distribution-Load curves	1	07-11-2022		TLM 1	
43.	Load duration curve and its problems	2	09-11-2022		TLM1	
44.	Various load factors in power plants	1	10-11-2022		TLM1	
45.	TUTORIAL-8	1	11-11-2022		TLM3	
46.	Particulate and gaseous pollutants	1	14-11-2022		TLM1	
47.	Air and Water pollution by Thermal plants	1	16-11-2022		TLM1	
48.	Acid rains -Methods to control pollution	1	17-11-2022		TLM1	
49.	Numerical Problems on economics of power generation	3	18-11-2022		TLM1	
50.	TUTORIAL-9	1	18-11-2022		TLM3	
No. of	f classes required to complete UN	T-V:10	•	No. of class	sses taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

ACADEMIC CALENDAR:

Description	From	То	Weeks
Commencement of Class Work: 11-07-2022			
I Phase of Instructions	11.07.2022	17.09.2022	7W
I Mid Examinations	19.09.2022	24.09.2022	1W
II Phase of Instructions	25.09.2022	19.11.2022	9W
II Mid Examinations	21.11.2022	26.11.2022	1W
Preparation and Practicals	28.11.2022	03.12.2022	1W
Semester End Examinations	05.12.2022	17.12.2022	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,C	1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PART-D

PROGRAMME OUTCOMES (POs):

PRO	GRAMME OUTCOMES (POs):
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards
	improvement of quality and optimization of engineering systems in the design, analysis and
	manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

<u> PART - A</u>

PROGRAM	: B.Tech VII-Sem MechanicalEngineering – A Section
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Total Quality management& 17ME36
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Seelam Srinivasa Reddy, Assoc., Professor
COURSE COORDINATOR	: Seelam Srinivasa Reddy, Associate Professor
PER-REQUISITE	:IndustrialManagement

COURSE EDUCATIONAL OBJECTIVES:The main objective of this course is to familiarize the concepts of quality management techniques in industries

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1:Comprehend the principles and strategies of quality control

CO2:Apply the principles of total quality management in an industry.

CO3:Analyze statistical quality control tools towards improving the quality.

CO4:Adopt the principles of Taguchi techniques for industrial needs.

CO5: Implement ISO quality standards in an organization.

COURSE ARTICULATION MATRIX(Correlation between Cos&POs,PSOs):

COs	РО	РО	РО	РО	PO	РО	РО	PO	PO	РО	PO	РО	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1				2							3	3	3	3	3
CO2			3	3		2	2				3	3	3	3	3
CO3	3	3	3	3							3	3	3	3	3
CO4	2		3								3	3	3	3	3
CO5	1		3	3		2	2				3	3	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS-APPROVEDTEXTBOOKS:

T :Dale H. Besterfiled., Total Quality Management, Pearson Education, 3rd Edition 2010 **BOS APPROVED REFERENCE BOOKS:**

R1. James R. Evans & William M. Lidsay, The Management and Control of Quality, South-Western (Thomson Learning), 2002.

R2. Feigenbaum.A.V, Total Quality Management, MCGraw-Hill, 2005.

R3. Narayana V. and Sreenivasan, N.S, Quality Management- Concepts and Tasks, New Age International, 2006.

R4. Zeiri, Total Quality Management for Engineers, Wood Head Publishers, 2009.

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29) <u>PART - B</u>

UNIT-I:INTRODUCTION TO TQM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Textbook followed	HOD Sign Weekly
199.	Introduction to TQM	1	11-07-2022		TLM1	CO'1	T&R1	
200.	CEOs, Course Outcomes, POs and PSOs	1	13-07-2022		TLM1	CO'1	T&R1	
201.	INTRODUCTION: Evolution of total quality management	1	14-07-2022		TLM1	CO'1	T&R1	-
202.	Definition of Quality	1	15-07-2022		TLM1	CO'1	T&R1	
203.	Quality costs,	1	18-07-2022		TLM2	CO'1	T&R1	
204.	Quality Council	1	20-07-2022		TLM2	CO'1	T&R1	
205.	Strategic Planning	1	21-07-2022		TLM2	CO'1	T&R1	
206.	Deming Philosophy	1	22-07-2022		TLM2	CO'1	T&R1	
207.	Barriers to TQM Implementation	1	25-07-2022		TLM2	CO'1	T&R1	
208.	Barriers to TQM Implementation	1	27-07-2022		TLM2	CO'1	T&R1	
209.	Revision	1	28-07-2022		TLM2	CO'1	T&R1	
210.	Quiz-1	1	29-07-2022		TLM6	CO'1	T&R1	
No. of a	classes required to complete UNIT-I:	UNIT-I: 12 No. of classes taken:						

UNIT-II:TQM PRINCIPLES

		No. of	Tentative	Actual	Teaching	Learning Outcome		HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	COs	Textbook followed	Sign
		Required	Completion	Completion	Methods	03		Weekly

No. of a	classes required to complete UNIT-II	16		No. of classes taken:			
226.	Quiz	1	02-09-2022	TLM6	CO2	T&R1	
225.	Revision	1	01-09-2022	TLM2	CO2	T&R1	
224.	Strategy, Performance Measure	1	29-08-2022	TLM2	CO2	T&R1	
223.	Performance Measures-Basic Concepts,	1	26-08-2022	TLM2	CO2	T&R1	
222.	supplier selection,	1	25-08-2022	TLM2	CO2	T&R1	
221.	Partnership- Partnering, sourcing,	1	24-08-2022	TLM2	CO2	T&R1	
220.	5S, Kaizen, Supplier	1	22-08-2022	TLM2	CO2	T&R1	
219.	PDSA cycle,	1	18-08-2022	TLM2	CO2	T&R1	
218.	Continuous process improvement- Juran Trilogy.	1	17-08-2022	TLM2	CO2	T&R1	
217.	Empowerment and Teamwork, Performance appraisal, Benefits,	1	12-08-2022	TLM2	CO2	T&R1	
216.	Maslow 's hierarchy of needs, Herzberg theory,	1	10-08-2022	TLM2	CO2	T&R1	
215.	Employee Involvement, Motivation.	1	08-08-2022	TLM2	CO2	T&R1	
214.	customer retention, Service quality.	1	05-08-2022	TLM2	CO2	T&R1	
213.	Customer perception of quality, customer feedback.	1	04-08-2022	TLM2	CO2	T&R1	
212.	Types of Customers, customer supply chain	1	03-08-2022	TLM1	CO2	T&R1	
211.	TQM Principles: Customer satisfaction.	1	01-08-2022	TLM1	CO2	T&R1	

UNIT-III:STATISTICAL PROCESS CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
227.	STATISTICAL PROCESS CONTROL: The seven tools of quality,	1	26-09-2022		TLM1	CO3	T&R1	
228.	Statistical Fundamentals,	1	28-09-2022		TLM2	CO3	T&R1	
229.	Population and Sample,	1	29-09-2022		TLM2	CO3	T&R1	
230.	Normal curve,	1	30-09-2022		TLM2	CO3	T&R1	
231.	Control charts for variables and attributes,	1	06-10-2022		TLM2	CO3	T&R1	
232.	Process capability,	1	07-10-2022		TLM2	CO3	T&R1	
233.	Concepts of six sigma,	1	10-10-2022		TLM2	CO3	T&R1	
234.	New seven Management tools.	1	12-10-2022		TLM2	CO3	T&R1	
235.	Problems	1	13-10-2022		TLM3	CO3	T&R1	
236.	Revision & Quiz	1	14-10-2022		TLM2&6	CO3	T&R1	
No. of c	lasses required to complete UNIT-III	10			No. of classes	s taken:		

UNIT-IV:TQM TOOLS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
237.	TQM TOOLS: Benchmarking,	1	17-10-2022		TLM1	CO4	T&R1	
238.	Benchmarking Process,	1	19-10-2022		TLM2	CO4	T&R1	
239.	Quality Function Deployment (QFD),	1	20-10-2022		TLM2	CO4	T&R1	
240.	House of Quality, QFD Process	1	21-10-2022		TLM2	CO4	T&R1	
241.	Taguchi Quality Loss Function,	1	24-10-2022		TLM2	CO4	T&R1	
242.	Total Productive Maintenance Concept,	1	26-10-2022		TLM2	CO4	T&R1	
243.	improvement needs,.	1	27-10-2022		TLM2	CO4	T&R1	
244.	FMEA- Stages of FMEA	1	28-10-2022		TLM2	CO4	T&R1	
245.	Revision	1	31-10-2022		TLM2	CO4	T&R1	
246.	Quiz	1	02-11-2022		TLM6	CO4	T&R1	
No. of classes required to complete UNIT-IV 10 No. of classes taken:								

UNIT-V:QUALITY SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly	
247.	QUALITY SYSTEMS: Need for ISO 9000 and other Quality systems,	1	03-11-2022		TLM1	CO5	T&R1		
248.									
249.	ISO 9000:2000 Quality System,	1	04-11-2022		TLM2	CO5	T&R1		
250.	Implementation of Quality system,	1	07-11-2022		TLM2	CO5	T&R1		
251.	Documentation,	1	09-11-2022		TLM2	CO5	T&R1		
252.	Quality Auditing,	1	10-11-2022		TLM2	CO5	T&R1		
253.	TS 16949, ISO 14000- concepts.	1	11-11-2022		TLM2	CO5	T&R1		
254.	Revision & Quiz	1	14-11-2022		TLM2	CO5	T&R1		
255.		1	16-11-2022		TLM2&6	CO5	T&R1		
256.		1	17-11-2022						
257.		1	18-11-2022						
No. of cla	No. of classes required to complete UNIT-V 07 + 03 (Beyond Syllabus)								
		I Mid Examina	tions – 21-11-20)22 to 26-11-202	22				

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

EVALUATION PROCESS

Commencemer	t of Class work	11	1-07-2022
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks
CRT Classes	05-09-2022	17-09-2022	2 Weeks
I Mid Examinations	19-09-2022	24-09-2022	1 Week
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks
II Mid Examinations	21-11-2022	26-11-2022	1 Week
Preparation and Practicals	28-11-2022	03-12-2022	1 Week
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks

<u>PART – C</u>

EVALUATION PROCESS:	<u> </u>	Marka
Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,C	1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u> PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	S.Srinivasa Reddy S.Srinivasa Reddy J.S		J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab				
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)				
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 01	Semester End Examination : 60				
Name of the Faculty	Faculty : J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)					

COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

PRE-REQUISITES: Robotics, CAD/CAM

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to demonstrate and analysis of various types of robots. **COURSE OUTCOMES:**

After completion of the course student will be able to:

CO1.Develop Robot Programmes to use to control commands

CO2.Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and unloading.

CO3.Simulate forward and inverse kinematic movements of a robot using MATLAB.

CO4.Perform the demo operations on SCARA and PUMA using Robo analysers.

Mapping of COs with POs and PSOs:

LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs – Robotics and SimulationLab (17ME72)														
	POs PSOs														
	1 2 3 4 5 6 7 8 9 10 11 12						12	PSO 1	PSO 2	PSO 3					
	CO1	2	1			3						2		3	
S	CO2	1	2	2		3						2		3	
COS	CO3	3	3		2	3						3			3
	CO4	1	1			3						2			3
	1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)														

Lab instructor (s)

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation L	ab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Sec	tion – A)			
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40			
Credits	: 01	Semester End Examination	: 60			
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)					

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Lab instructor (s)

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab				
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)				
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 01	Semester End Examination : 60				
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)					

LIST OF EXPERIMENTS

At least 10 Experiments from 12 overall should be conducted

LIST OF EXPERIMENTS:

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing
- 7. Spray painting
- 8. Polishing
- 9. Simulateof Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. SimulateSCARA,PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB, C Prog

REFERENCE: Robotics and Simulation Lab Manual

Lab instructor (s)

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab				
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)				
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 01	Semester End Examination : 60				
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)					

Notification of Cycles (Section – A)

At least TEN experiments may be conducted.

Cycle - I

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing

Cycle – II

- 7. Spray painting
- 8. Polishing
- 9. Simulation of Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. Simulation of SCARA, PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB

Lab instructor (s)

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab				
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)				
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 01	Semester End Examination : 60				
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)					

Lab Occupancy Time Table (B.Tech Mech Engg- VIISem:Section – A / S)

↓Day/Date →	9.00 _ 9.50	9.50- 10.40	10.50- 11.40	11.40- 12.30-	12.30- 1.30	1.30-2.20	2.20-3.10	3.10-4.00
Monday								
Tuesday	R&S –VII-A lab BATCH-B1							
Wednesday					LUNCH			
Thursday					BREAK			
Friday								
saturday	R&S –VII-A lab BATCH- B2			СН- В2				

Faculty – In Charges:

S.No	Class	Section	Lab Assistant	Faculty – In Charge
1	B.Tech – VII Semester	A/S	Mr. P. Guna Sundar Reddy	Mr. JonnalaSubba Reddy Mr. K. Kathik

Lab instructor (s)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab	
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40	
Credits	: 01	Semester End Examination : 60	
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)		

Batches (Section – A)

S.No	Batches	Regd.Nos	Total No. of Students
1	B. Tech –VII Sem - A/S	18761A0301,3G1,19761A0301- 315, 316 – 332, 333 – 347, 20765A0301 – 315	58
2	Batch A1	18761A0301,3G1,19761A0301– 315, 316– 332	29
3	Batch A2	19761A0333–347, 20765A0301-315	29

Sub Batch of A11: 18761A0301,19761A0301-315 (14) Sub Batch of A12: 19761A0316 - 332 (15)

S. No	Batch	Registered Nos	Total	
1	A111	18761A0301,3G1-	03	
1	AIII	19761A0301	05	
2	A112	197671A0302-305	03	
3	A113	197671A0307-309	03	
4	A114	197671A0310-311	02	
5	A115	197671A0313-314	02	
6	A116	197671A0315	01	
	Total (A11) 14			

S No Batch Registered Nos

S. No	Batch	Registered Nos	Total
1	A121	197671A0316-318	03
2	A122	197671A0319-322	03
3	A123	197671A0323-324	02
4	A124	197671A0326-328	03
5	A125	197671A0329-330	02
6	A126	197671A0331-332	02
	Total (A12)		

Sub Batches of A21: 19761A0333-347 (14) Sub Batches of A22: 20765A0301-307, 308-315 (15)

S. No	Batch	Registered Nos	Total
1	A211	19761A0333-335	03
2	A212	19761A0336-338	03
3	A213	19761A0339-341	03
4	A214	19761A0342-343	02
5	A215	19761A0344-345	02
6	A216	19761A0347	01
	Total (A21)		

S. No	Batch	Registered Nos	Total
1	A221	20765A0301-303	03
2	A222	20765A0304-306	03
3	A223	20765A0307-309	03
4	A224	20765A0310-311	02
5	A225	20765A0312-313	02
6	A226	20765A0314-315	02
Total (A22)			15

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code : 17M	E72(R 17 Reg)	Lab: Robotics and Simulation Lab
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 01	Semester End Examination : 60
Name of the Faculty	: J. Subba Reddy (Asso	ociate Professor) / K. Karthik (Assistant Professor)

Schedule of Experiments (Section – A: A1 Batch)

S.No	Batches	Regd. Nos			Total No. of Students
1	Batch A1 18761A0301,3G1,19761A0301- 315, 316- 332				29
S.No.		Name of the experiment	No. of Classes Required	Tentative Date of Completion	Learning
1		Robotics and Simulation Lab, Demonstration of CEOs, and COs of the Laboratory	3	16-07-2022	2 TLM4
Cycle I					
2	Program for com	mands like joint command, circle command	3	23-07-2022	2 TLM4
3	Program for com	mands SPLINE command (continues path)	3	30-07-2022	2 TLM4
4	Program for PTP	command	3	06-08-2022	2 TLM4
5	Palletizing		3	20-08-2022	2 TLM4
6	Loading / Unload	ing	3	27-08-2022	2 TLM4
Cycle II					
7	Gluing		3	03-09-2022	2 TLM4
8	Spray painting, Po	olishing	3	17-09-2022	2 TLM4
	I Mid Exams		19-09-2022 to 26-09		09-2022
9	Simulation of Rol ROBOANALYZER	pot with 2 Dof, 3 Dof, 4 Dof using	3	01-10-2022	2 TLM4
10	Simulation of SCA	ARA, PUMA using ROBOANALYZER	3	15-10-2022	2 TLM4
11	Simulate forward MATLAB	and inverse kinematics RR Manipulator using	3	22-10-2022	2 TLM4
12	Simulate forward MATLAB	and inverse kinematics RP Manipulator using	3	29-10-2022	2 TLM4
13	Design of Robotic	c System	3	05-11-2022	2 TLM4
14	Revision		3	12-11-2022	2 TLM4
15	Internal Exam		3	19-11-2022	2 TLM4
	II Mid Exams		21-1	1-2022 to 26-	11-2022
	Preparation and	Practicals	28-1	L1-2022 to 03-	·12-2022
	Semester End Ex	ams	05-1	L2-2022 to 17-	·12-2022

Lab instructor (s)

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab	
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40	
Credits	: 01	Semester End Examination : 60	
Name of the Faculty	: J. Subba Reddy (Associate Professor) / K. Karthik (Assistant Professor)		

Schedule of Experiments (Section – A: A2 Batch)

S.No	Batches	Regd.Nos		Total No. of S	tudents
1	Batch A2	19761A0333–347, 20765A0301-315		29	
S.No.		Name of the experiment	No. of Classes Required	Tentative Date of Completion	Teaching Learning Methods
1		Robotics and Simulation Lab, Demonstration of CEOs, and COs of the Laboratory	3	12-07-2022	TLM4
Cycle I					
2	Program for com	mands like joint command, circle command	3	19-07-2022	TLM4
3	Program for com	mands SPLINE command (continues path)	3	26-07-2022	TLM4
4	Program for PTP	command	3	02-08-2022	TLM4
	Palletizing		3	09-08-2022	TLM4
5	Loading / Unload	ing		16-08-2022	TLM4
6	Gluing		3	23-08-2022	TLM4
7	Circular Motion		3	30-08-2022	TLM4
Cycle II			•		
8	Spray painting, P	olishing	3	06-09-2022	TLM4
9	Simulation of Rol ROBOANALYZER	pot with 2 Dof, 3 Dof, 4 Dof using	3	13-09-2022	TLM4
		I Mid Exams	19-09-2022 to 26-09-2022		2022
10	Simulation of SCA	ARA, PUMA using ROBOANALYZER	3	27-09-2022	TLM4
11	Simulate forward MATLAB	and inverse kinematics RR Manipulator using	3	11-10-2022	TLM4
12	Simulate forward MATLAB	and inverse kinematics RP Manipulator using	3	18-10-2022	TLM4
13	Welding Applicat	ions	3	25-10-2022	TLM4
14	Collaboration of	Robots	3	01-11-2022	TLM4
15	Revision		3	08-11-2022	TLM4
15	Internal Exam		3	15-11-2022	TLM4
	II Mid Exams		2	1-11-2022 to 26-11-	2022
	Preparation and	Practicals	2	8-11-2022 to 03-12-	2022
	Semester End Ex	ams	0	5-12-2022 to 17-12-	2022

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – A)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40		
Credits	: 01	Semester End Examination : 60		
Name of the Faculty	: J. Subba Reddy (Associate Profe	ssor) / K. Karthik (Assistant Professor)		

Evaluation Criterion for Laboratory

EVALUATION PROCESS:

Evaluation Task	COs	Max. Marks
Day – to – Day Evaluation	1,2,3,4	A=20
Mid Examination	1,2,3,4	B=10
Viva-Voce	1,2,3,4	C=05
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M; 85%≤A<90%= 3M; 80%≤A<85%= 2M; 75%≤A<80%= 1M; <75%=0M)	-	D=05
Cumulative Internal Examination (CIE): A+B+C+D	1,2,3,4	A+B+C+D=40
Semester End Examinations (SEE): E	1,2,3,4	E=60
Total Marks: CIE + SEE = A+B+C+D+E	1,2,3,4	100

Lab instructor (s)

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier – I)

Laboratory Code	: 17ME73(R 17 Reg) Lab:Metrology and Instrumentation Lab				
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)			
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40			
Credits	: 02	Semester End Examination : 60			
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) /B.KAMALA PRIYA (Assistant Professor)			

COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

PRE-REQUISITES :METROLOGY & INSTRUMENTATION

COURSE EDUCATIONAL OBJECTIVES:

The objectives of this laboratory course is to enable the students learn the basic principles of

metrological instruments and perform their calibration tests for industrial needs.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1.Perform linear, angular and gear measurements in manufacturing industries.

CO2. Analyze the measurement of the surface roughness and perform alignment tests.

CO3.Calibrate the displacement, load and speed measuring instruments

CO4.Measure the pressure, flow and vibration measuring instruments.

Mapping of COs with POs and PSOs:

LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs – Metrology and Instrumentation Lab (L 160)															
	POs PSOs															
		1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PSO 2	PSO 3
	CO1	2	3	2	2					2			1		3	
cos	CO2	2	3	2	2					2			1		3	
5	CO3	2	2		2					2			1		3	
	CO4	2	2		2					2			1		3	
			1:	Slight	: (Low) 2: N	/lode	rate (Medi	um) 3	3: Sub	ostan	tial (F	ligh)		

Lab in charge – I

Lab – in charge – II

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier – I)

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Lab in charge – I Lab – in charge – II Head of the Department

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier – I)

Laboratory Code	: 17ME73(R 17 Reg) Lab:Metrology and Instrumentation Lab				
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)			
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40			
Credits	: 02	Semester End Examination : 60			
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA (Assistant Professor)			

LIST OF EXPERIMENTS

At least 06 Experiments from each laboratory and 12 overallshould be conducted

PART-A: METROLOGY LAB

At least SIX experiments may be conducted.

- 1. Measurement of lengths, heights, diameters by vernier calipers and micrometers.
- 2. Measurement of bores by dial bore indicators.
- 3. Taper measurement by using balls and rollers.
- 4. Use of gear teeth vernier calipers and checking the chordal addendum and chordalheight of spur gear.
- 5. Machine tool alignment of test on the lathe or milling machine.
- 6. Measurement of screw thread parameters using Tool makers microscope.
- 7. Angle and taper measurements by Bevel protractor, Sine bars, etc.
- 8. Thread measurement by three wire method.
- 9. Surface roughness measurement by Tally Surf.

PART-B: INSTRUMENTATION LAB

At least SIX experiments may be conducted.

- 1. Calibration of Pressure Gauges
- 2. Study and calibration of LVDT transducer for displacement measurement.
- 3. Calibration of strain gauge for load measurement.
- 4. Calibration of capacitive transducer for linear displacement.
- 5. Study and calibration of photo and magnetic speed pickups for the measurement ofspeed.
- 6. Study and calibration of a rotameter for flow measurement.
- 7. Study of Piezo-electric transducer.
- 8. Study and use of a Seismic pickup for the measurement of vibration amplitude of anengine bed at various loads.
- 9. Study and calibration of McLeod gauge for low pressure.
- 10. Study and calibration of RTD for temperature measurement

REFERENCE: Metrology and Instrumentation Lab Manuals

Lab in charge – I

Lab – in charge – II

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	: 17ME73(R 17 Reg) Lab:Metrology and Instrumentation Lab				
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)				
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 02	Semester End Examination : 60				
Name of the Faculty	: B.SUDHEER KUMAR (Sr	: B.SUDHEER KUMAR (Sr.Asst Professor) / B.KAMALA PRIYA (Assistant Professor)				

Batches (Section – A)

S.No	Batches	Regd.Nos	Total No. of Students
1	B. Tech – A/S	18761A0301,3G1 , 19761A0301 – 303 & 305,19761A0307- 311, 19761A0313 – 319, 18761A0321- 324,19761A0326-345 ,19761A0347,20765A0301 – 315	58
2	Batch A1	18761A0301 , 18761A03G1 , 19761A0301 – 303 & 305, 19761A0307- 311, 19761A0313 – 319, 19761A0321- 332	29
3	Batch A2	19761A0333- 345, 19761A0347,20765A0301 – 315	29

Sub Batch of A11: Sub Batch of A12: 18761A0301 , 18761A03G1 , 19761A0301 - 316 (15) 19761A0317 - 18761A0332 (14)

S. No	Batch	Registered Nos	Total		
1	A111	18761A0301, 3G1	03		
1	AIII	,19761A0301	03		
2	A112	19761A0302 – 303 & 305	03		
3	A113	19761A0307 – 309	03		
4	A114	19761A0310 –311 & 313	03		
5	A115	19761A0314–316	03		
	Total (A11)				

S. No	Batch	Registered Nos	Total			
1	A121	19761A0317 – 319	03			
2	A122	19761A0321 - 323	03			
3	A123	19761A0324 -327	03			
4	A124	19761A0328 -330	03			
5	A125	19761A0331 -332	02			
	Total (A12) 14					

Sub Batches of A21: Sub Batches of A22: 18761A0333- 345, 347, 20765A0301(15) 20765A0302 - 20765A0315(14)

S. No	Batch	Registered Nos	Total		
1	B211	19761A0333 - 335	03		
2	B212	19761A0336 - 338	03		
3	B213	19761A0339 - 341	03		
4	B214	19761A0342 – 344	03		
5	B215	19761A0345, 347	02		
5	D215	20765A0301	03		
	Total (A21)				

S. No	Batch	Registered Nos	Total		
1	B221	20765A0302 – 304	03		
2	B222	20765A0305 – 307	03		
3	B223	20765A0308 – 310	03		
4	B224	20765A0311 – 313	03		
5	B225	20765A0314 – 315	02		
	Total (A22)				

Lab – in charge – II

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg) Lab:Metrology and Instrumentation Lab					
A.Y.	: 2022-23 Class: B. Tech – VII Semester (Section – A)					
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 02	Semester End Examination : 60				
Name of the Faculty	: B.SUDHEER KUMAR (Sr	B.SUDHEER KUMAR (Sr.Asst Professor) / B.KAMALA PRIYA (Assistant Professor)				

Notification of Cycles (Section – B)

Cycle – I:METROLOGY LAB

At least SIX experiments may be conducted.

- 1. Measurement of lengths, heights, diameters by vernier calipers and micrometers.
- 2. Measurement of bores by dial bore indicators.
- 3. Taper measurement by using balls and rollers.
- 4. Use of gear teeth vernier calipers and checking the chordal addendum and chordalheight of spur gear.
- 5. Machine tool alignment of test on the lathe or milling machine.
- 6. Measurement of screw thread parameters using Tool makers microscope.
- 7. Angle and taper measurements by Bevel protractor, Sine bars, etc.
- 8. Thread measurement by three wire method.
- 9. Surface roughness measurement by Taly Surf.

Cycle - II: INSTRUMENTATION LAB

At least SIX experiments may be conducted.

- 1. Calibration of Pressure Gauges
- 2. Study and calibration of LVDT transducer for displacement measurement.
- 3. Calibration of strain gauge for load measurement.
- 4. Calibration of capacitive transducer for linear displacement.
- 5. Study and calibration of photo and magnetic speed pickups for the measurement ofspeed.
- 6. Study and calibration of a rotameter for flow measurement.
- 7. Study of Piezo-electric transducer.
- 8. Study and use of a Seismic pickup for the measurement of vibration amplitude of anengine bed at various loads.
- 9. Study and calibration of McLeod gauge for low pressure.
- 10. Study and calibration of RTD for temperature measurement

Lab in charge – I

Lab – in charge – II

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	: 17ME73(R 17 Reg) Lab:Metrology and Instrumentation Lab				
A.Y.	: 2022-23	Class: B. Tech – VII Semester				
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40				
Credits	: 02	Semester End Examination : 60				
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA (Assistant Professor)				

Lab Occupancy Time Table (B.Tech Mech Engg- VIISem:Section – A)

	9.00	9.50	10.50	11.40	12.30	13.30	14.20	15.10
	-	-	-	-	-	-	-	-
↓Day/Date→	9.50	10.40	11.40	12.30	13.30	14.20	15.10	16.00
Monday								
Tuesday	M & I Lab – VI A/S – A1				M & I Lab – VI C/S – C1			
Wednesday								
Thursday		M & I	Lab – VI A/	′S – B1	LUNCH			
Friday							M & I Lab -	- VI C/S – C2
Saturday		M & I Lab – VI A/S – A2				٨	1 & I Lab – VI A	/S – B2

Faculty – In Charges:

S.No	Class	Section	Lab Instructors	Faculty – In Charge
1		A/S	Md. Jony	Mr.B.Sudheer Kumar [T542]
-		A73		Mrs. B. Kamala Priya [T792]
2	B.Tech – VII	P / C	Md. Jony	Mr. V.Sankara Rao [T721]
2	Semester	B/S		Mrs. B. Kamala Priya [T792]
3		c/s	Md. Jony	Mr. K.Lakshmi Prasad [T686]
5		C/ 3		Ms.P . Mounika [T872]

Lab in charge – I

Lab – in charge – II

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	Lab:Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA (Assistant Professor)

Schedule of Experiments (Section – A: A1 Batch)

S.No	Batches	Regd.Nos	Total No. of Students
1	Batch A1	18761A0301 , 18761A03G1 , 19761A0301 – 303 & 305, 19761A0307- 311, 19761A0313 – 319, 19761A0321- 332	29

Date			Experime	nt (Batch)			
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
12-07-2022	Demonst	ration of all exp	eriments, CEOs	and COs of the	aboratory (Ex –	01 to 06)	
	METROLOGY LAB						
19-07-2022	A111	A112	A113	A114	A115		
26-07-2022	A112	A113	A114	A115	A111		
02-08-2022	A113	A114	A115	A111	A112		
16-08-2022	A114	A115	A111	A112	A113		
23-08-2022	A115	A111	A112	A113	A114		
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
30-08-2022	A121	A122	A123	A124	A125		
·		CRT CLASSE	S:05-09-2022 TC	0 17-09-2022	÷		
		19-09-2022 TO	24-09-2022: / N	lid Examination	1		
27-09-2022	A122	A123	A124	A125	A121		
01-11-2022	A123	A124	A125	A121	A122		
08-11-2022	A124	A125	A121	A122	A123		
15-11-2022	A125	A121	A122	A123	A124		
15-11-2022		Backlog	g experiments / /	Additional Expe	riments		
			oce and Repetiti		•		
		21-11-2022 to 2	26-11-2022: <i>II M</i>	id Examination	S		
28-11-2022							
to	Preparation and Practical's						
03-12-2022							
05-12-2022			Compostor Fred				
to 17-12-2022			Semester End	Examinations			
17-12-2022							

Lab in charge

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	Lab:Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA (Assistant Professor)

Schedule of Experiments (Section – A: A1 Batch)

S.No	Batches	Regd.Nos	Total No. of Students
1	Batch A1	18761A0301 , 18761A03G1 , 19761A0301 – 303 & 305,	29
1	Datch AI	19761A0307- 311, 19761A0313 – 319, 19761A0321- 332	29

Date			Experime	nt (Batch)			
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
12-07-2022	Demonst	ration of all exp	eriments, CEOs	and COs of the	Laboratory (Ex –	01 to 06)	
		INSTE	RUMENTATIO	N LAB			
19-07-2022	A121	A122	A123	A124	A125		
26-07-2022	A122	A123	A124	A125	A121		
02-08-2022	A123	A124	A125	A121	A122		
16-08-2022	A124	A125	A121	A122	A123		
23-08-2022	A125	A121	A122	A123	A124		
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
30-08-2022	A111	A112	A113	A114	A115		
	CRT CLASSES:05-09-2022 TO 17-09-2022						
	•	19-09-2022 TO	24-09-2022: / N	Aid Examination			
27-09-2022	A112	A113	A114	A115	A111		
01-11-2022	A113	A114	A115	A111	A112		
08-11-2022	A114	A115	A111	A112	A113		
15-11-2022	A115	A111	A112	A113	A114		
			g experiments /	•			
15-11-2022		Viva – Vo	oce and Repetiti	on / Beyond the	Syllabus		
21-11-2022 to 26-11-2022: II Mid Examinations							
28-11-2022	2022						
to	Preparation a	nd Practical's					
03-12-2022							
05-12-2022							
to			Semester End	Examinations			
17-12-2022							

Lab in charge

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	Lab:Metrology and Instrum	entation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)	
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment	: 40
Credits	: 02	Semester End Examination	: 60
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA	(Assistant Professor)

Schedule of Experiments (Section – A: A2 Batch)

S.No	Batches	Regd.Nos	Total No. of Students
1	Batch A2	19761A0333- 345, 19761A0347,20765A0301 – 315	29

Data			Experime	nt (Batch)		
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
16-07-2022	Demonst	ration of all exp	eriments, CEOs	and COs of the	Laboratory (Ex –	01 to 06)
		N	IETROLOGY L	AB		
23-07-2022	A211	A212	A213	A214	A215	
30-07-2022	A215	A211	A212	A213	A214	
06-08-2022	A214	A215	A211	A212	A213	
20-08-2022	A213	A214	A215	A211	A212	
27-08-2022	A212	A213	A214	A215	A211	
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
03-09-2022	A221	A222	A223	A224	A225	
CRT CLASSES:05-09-2022 TO 17-09-2022						
		19-09-2022 TO	24-09-2022: / N	1id Examination	1	
10-09-2022	A225	A221	A222	A223	A224	
17-09-2022	A224	A225	A221	A222	A223	
01-10-2022	A223	A224	A225	A221	A222	
15-10-2022	A222	A223	A224	A225	A221	
22-10-2022 &		Backlog	g experiments /	Additional Expe	riments	
29-10-2022		Viva – Vo	oce and Repetiti	on / Beyond the	Syllabus	
	21-11-2022 to 26-11-2022: Il Mid Examinations					
28-11-2022	28-11-2022					
to 03-12-2022	Preparation and Practical's					
05-12-2022						
to 17-12-2022	Semester End Examinations					

Lab in charge

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF MECHANICAL ENGINEERING (Accredited by NBA Tier - I)

Laboratory Code	: 17ME73(R 17 Reg)	Lab:Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – A)
Lab/Practicals	: 06 hrs/Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: B.SUDHEER KUMAR (Sr	Asst Professor) / B.KAMALA PRIYA (Assistant Professor)

Schedule of Experiments (Section – B: B2 Batch)

S.No	Batches	Regd.Nos	Total No. of Students
1	Batch A2	19761A0333- 345, 19761A0347,20765A0301 – 315	29

Date	Experiment (Batch)					
	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
16-07-2022	Demonstration of all experiments, CEOs and COs of the Laboratory (Ex – 01 to 06)					
INSTRUMENTATION LAB						
23-07-2022	A221	A222	A223	A224	A225	
30-07-2022	A225	A221	A222	A223	A224	
06-08-2022	A224	A225	A221	A222	A223	
20-08-2022	A223	A224	A225	A221	A222	
27-09-2022	A222	A223	A224	A225	A221	
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex — 6
03-09-2022	A211	A212	A213	A214	A215	
CRT CLASSES:05-09-2022 TO 17-09-2022						
19-09-2022 TO 24-09-2022: I Mid Examination						
10-09-2022	A215	A211	A212	A213	A214	
17-09-2022	A214	A215	A211	A212	A213	
01-10-2022	A213	A214	A215	A211	A212	
15-10-2022	A212	A213	A214	A215	A211	
	Backlog experiments / Additional Experiments					
22-10-2022						
&	Viva – Voce and Repetition / Beyond the Syllabus					
29-10-2022						
21-11-2022 to 26-11-2022: Il Mid Examinations 28-11-2022						
20-11-2022 to	Preparation and Practical's					
03-12-2022						
05-12-2022						
to	Semester End Examinations					
17-12-2022						

Lab in charge

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

: 2022-23

Name of Course Instructor	: A NageswaraRao	
Course Name & Code	: CIM & 17ME92	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., MECH., VII-Sem., Sections- A	A.Y : 20

PRE-REQUISITE:CAD/CAM

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The main objective of this course is to control the entire production process using computers. This integration allows individual processes to exchange information with each other and initiate actions.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the basics of production and derive production metrics.
CO 2	Prepare CNC programs for manufacturing of different geometries on milling and lathe
	Machines.
CO 3	Apply group technology concepts for parts classification.
CO 4	Select layouts of FMS for industrial applications.
CO 5	Develop a CAPP system for rotational and prismatic parts.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2									2		
CO2	1	1	2	2	1							1	3		
CO3	1	1	1		1							1	3		
CO4		2		1									2		
CO5	1				1								3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

BOS APPROVED TEXT BOOKS:

- **T1** 1. Mikell P Groover, Automation, production Systems and Computer Integrated Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
- **T2** 2. P. Radhakrishnan, "Computer Numerical Control ", New Central Book Agency, 1992.

REFERENCE BOOKS:

R1 P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM,New Age International Publishers, 3rd edition 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
258.	Production Systems	1	13.07.2022			
259.	production facilities	1	14.07.2022			
260.	Manufacturing operations	1	15.07.2022			
261.	manufacturing models and metrics	1	16.07.2022			
262.	Examples of Manufacturing problems	1	20.07.2022			
263.	CIM Definition	1	21.07.2022			
264.	CIM components	1	22.07.2022			
265.	Evolution of CIM, needs of CIM	1	23.07.2022			
266.	Benefits of CIM	1	27.07.2022			
267.	Overview of CIM software and Hardware	1	28.07.2022			
No. of	f classes required to complete UN	IT-I:10		No. of clas	ses taken:	

UNIT-II: NUMERICAL CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Basic components of NC system	1	29.07.2022			
36.	NC motion control system	1	30.07.2022			
37.	Applications of NC, advantages and disadvantages of NC	1	03.08.2022			
38.	computer Numerical control	1	04.08.2022			
39.	functions and advantages of CNC	1	05.08.2022			
40.	Direct Numerical Control, components of a DNC system	1	06.08.2022			
41.	Functions and advantages of DNC	1	10.08.2022			
42.	NC part programming.	1	11.08.2022			
43.	NC part programming turn	1	12.08.2022			
44.	NC part programming mill		13.08.2022			
No. o	f classes required to complete UN		No. of clas	ses taken:		

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
31.	Part Families, Parts Classification and Coding	1	28-09-2022			· · · ·
32.	Features of Parts Classification and Coding Systems	1	30.09.2022			
33.	Opitz of Parts Classification and Coding Systems	1	01.10.2022			
34.	Production Flow Analysis	1	06.10.2022			
35.	Composite Part Concept,	1	07.10.2022			
36.	Machine Cell Design	1	08.10.2022			
37.	Applications Of Group Technology	1	12.10.2022			
38.	Quantitative analysis of cellular manufacturing	1	13.10.2022			
39.	Rank Order Clustering Method, Arranging Machines in a GT cell	2	14.10.2022			
40.	HollierMethod, Simple Problems		15.10.2022			
No. o	f classes required to complete UI	NIT-III:10		No. of clas	ses taken:	

UNIT-III: CELLULAR MANUFACTURING SYSTEMS

UNIT-IV :FLEXIBLE MANUFACTURING SYSTEMS (FMS)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
29.	Flexibility	1	19.10.2022			
30.	Types of FMS	1	20.10.2022			
31.	FMS Components	1	21.10.2022			
32.	FMS Application & Benefits	1	22.10.2022			
33.	FMS Planning and implementation issues	1	26.10.2022			
34.	Quantitative analysis of FMS	1	27.10.2022			
35.	Simple Problems.	1	28.10.2022			
36.	FMS software	1	29.10.2022			
37.	FMS hardware	1	02.11.2022			
38.	Implementation issues FMS	1	03.11.2022			
No. of	f classes required to complete U	No. of clas	ses taken:			

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
51	Process planning for		04.11.2022			
51.	parts	1				
52.	Process planning for assemblies	1	05.11.2022			
53.	Make or buy decisions	1	09.11.2022			
54.	Computer aided process planning	1	10.11.2022			
55.	Retrieval and generative CAPP systems	1	11.11.2022			
56.	Concurrent engineering	1	12.11.2022			
57.	design for manufacturing	1	16.11.2022			
58.	Advanced manufacturing planning	1	17.11.2022			
59.	lean production and JIT & production systems	1	18.11.2022			
60.	Lean principles	1	19.11.2022			
No. of clas	sses required to complete U	JNIT-V:08	3	No. of class	es taken:	

UNIT-V :PROCESS PLANNING AND CONCURRENT ENGINEERING

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	An ability to apply knowledge of Mathematics, Sciences and Engineering fundamentals to
101	
	find the solution to real time Mechanical Engineering problems.
PO 2	An ability to identify and formulate mathematical models to analyze complex engineering
	problems.
PO 3	An ability to design a mechanical systems/ processes to meet the desired needs within
	realistic constraints such as economic, environmental, societal, health & safety.
PO 4	An ability to design and conduct experiments, perform analysis, interpretation of data and
	synthesis of information to provide valid conclusions.
PO 5	An ability to develop the model and analyze the Mechanical systems using modern software
	tools.
PO 6	An ability to understand societal, health, safety, legal, cultural issues and the consequent
	responsibilities relevant to engineering practice.
PO 7	An ability to understand the impact of engineering solutions in societal, environmental
	context and demonstrate the knowledge for sustainable development.
PO 8	An ability to understand the professional ethics to follow the norms of engineering practice.
PO 9	An ability to function effectively as an individual and as a member / leader in diverse
	technical teams.
PO 10	An ability to communicate effectively with the engineering community and society through
	reports & presentations.
PO 11	An ability to apply management principles to organise the multidisciplinary projects.
PO 12	An ability to understand the need of independent and lifelong learning so as to address day
	to day technological changes.
1	

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards
	improvement of quality and optimization of engineering systems in the design,
	analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor

A NAGESWARA RAO A NAGESWARA RAO J SUBBAREDDY

Course Coordinator Module Coordinator

HOD Dr S PICHI REDDY

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

PROGRAM	: B.Tech., VII-Sem.,(B/S) ME
ACADEMIC YEAR	: 2022-2023
COURSE NAME & CODE	: Refrigeration and Air-Conditioning - 17ME28
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Dr. V. DHANA RAJU
COURSE COORDINATOR	: Dr. V. DHANA RAJU
PRE-REQUISITE: Thermod	lynamics

COURSE OBJECTIVE: In a broader way, this course provides the simple understanding of refrigeration and air conditioning fundamentals. First, it covers the different refrigeration cycles and its analysis. Then the concepts of psychrometry and psychrometry processes used for air conditioning are imparted. Finally, the concepts of comfort air conditioning, cooling load design and its estimation are addressed.

COURSE OUTCOMES (CO)

CO1: Describe the basic concepts of refrigeration and its applications.

CO2: Evaluate the performance parameters of refrigeration systems.

CO3: Identify the desirable refrigerants and its use in various refrigeration systems.

CO4: Analyze the psychrometric properties and processes used in Air Conditioning systems.

CO5: Design of Air Conditioning systems for thermal comfort conditions.

	-				-		· · · · ·						00002	/	/ ·
COs	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	2	1		2	2					1	3		
CO2	3	3	3	1		2	2					1	3		
CO3	2	2	2	2		3	3					2	2		
CO4	3	3	2	2		2	2					2	2		
C05	3	3	3	2		2	2					2	3		

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, **put '-'** 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

T1 C. P. Arora. , Refrigeration and air conditioning - TMH, 2nd Edition, 2000.

T2 R. Dossat, Principles of Refrigeration - - Pearson 4th Edition 2001.

BOS APPROVED REFERENCE BOOKS:

- **R1** S. C. Arora, Domkundwar, A course in refrigeration and air conditioning-Dhanapat Rai& sons 5th Edition 1997.
- **R2** Wilbert F.Stoecker, Jerold W. J.Jones, MGH, 1986.

COURSE DELIVERY PLAN (LESSON PLAN): Section-B

	UN			1	UNIT-I FUNDAMENTALS OF REFRIGERATION									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Textbook followed	HOD Sign Weekly						
1.	Introduction: Refrigeration, CEOs, Course Outcomes, POs and PSOs	1	11-07-22		TLM2	CO1	T1							
2.	Applications of refrigeration	1	12-07-22		TLM2	CO2	T1							
3.	Unit of refrigeration and COP	1	13-07-22		TLM2	CO1	T1							
4.	Heat Engine, Refrigerator and Heat pump	1	14-07-22		TLM2	CO1	T1							
5.	Types of Refrigeration systems	1	16-07-22		TLM2, TLM 4	CO2	T1							
6.	Problems on refrigeration basics	1	18-07-22		TLM2, TLM 4	CO2	T1							
7.	Refrigerant: Desirable characteristics of ideal refrigerant	1	19-07-22		TLM2	CO3	T1							
8.	Classification of refrigerants- Desirable Properties-Nomenclature, Refrigerant Designation	1	20-07-22		TLM 1	CO3	T1							
9.	Commonly used refrigerants, Alternate refrigerants, Green House effect& Global	1	21-07-22		TLM 1	CO3	T1							
10.	Air refrigeration system: working on Reversed Carnot cycle	1	23-07-22		TLM 1	CO2	T1							
11.	Air refrigeration system working on Bell Coleman cycle	1	25-07-22		TLM 1	CO2	T1							
12.	Air refrigeration Problems	1	26-07-22		TLM 1	CO2	T1							
13.	COP- Open and Dense air systems Problems	1	27-07-22		TLM 1	CO2	T1							
14.	Tutorial	1	28-07-22		TLM 1	CO2	T1							
No. of	f classes required to complete UN	NIT-I = 14		No	o. of classes	taken:								

UNIT-II VAPOUR COMPRESSION REFRIGERATION SYSTEM & COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
15	Introduction to VCR system: Essential components of the VCR plant	1	30-07-22		TLM 1	CO1	T1	
16	, Simple vapour compression refrigeration cycle, COP	1	01-08-22		TLM 1	CO1	T2	
17	Representation of cycle on	1	02-08-22		TLM 1	CO1	T2	

	T-S and p-h Charts							
18	VCR numerical problems	1	03-08-22		TLM 1	CO1	T2	
19	Tutorial	1	04-08-22		TLM 1	CO1	T2	
20	Effect of sub cooling and superheating,	1	06-08-22		TLM 1	CO1	T2	
21	Effect of condenser and evaporator pressure	1	08-08-22		TLM 1	CO1	T2	
22	Actual VCR and theoretical VCR, Tutorial	1	10-08-22		TLM 1	CO1	T2	
23	VCR-System Components: Compressors -Classification-Working Principles	1	11-08-22		TLM 1	CO1	R1	
24	Work expression for the reciprocating compressor	1	17-08-22		TLM 1	CO1	R1	
25	Rotary compressors, Problems	1	20-08-22		TLM 1	CO1	R1	
26	Condensers – Classification-working principle,	1	22-08-22		TLM 1	CO1	R1	
27	Evaporators-Classification- Expansion valve – Classification-working principle-, Tutorial	1	23-08-22		TLM 1	CO1	R1	
No. of	f classes required to complete UN	IT-II = 13	No. of classes taken:					

UNIT-III VAPOUR ABSORPTION, STEAM JET & NON-CONVENTIONAL

REFRIGERATION SYSTEM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
28	Introduction to VAR system and its working principle,	1	24-08-22		TLM 1	CO1	Т2	
29	Max. COP derivation for the VAR system and VAR problems	1	25-08-22		TLM 1	CO1	T2	
30	Description and working of NH ₃ -Water system, Refrigerant-Absorbent solution requirements	1	27-08-22		TLM 1	CO1	Т2	
31	LiBr-Water (Two shell & Four shell) System, Tutorial	1	29-08-22		TLM 1	CO1	T2	
32	Principle of operation of Three fluid absorption systems, Salient features	1	30-08-22		TLM 1	CO1	T2	
33	Steam Jet Refrigeration System: Working Principle, Basic Analysis- Applications	1	01-09-22		TLM 1	CO1	T2	
34	. Non-Conventional Refrigeration Systems: Thermo electric refrigeration, Vortex tube refrigeration, Adiabatic Demagnetization refrigeration, Tutorial	1	03-09-22		TLM 1	CO1	T2	
	CRT Classes 10 05-09-2022 to 17-09-2022							

	I Mid Examinations	5	19-09-2022 to 24-09-2022
No. o	f classes required to complete UNI	Γ -III = 07	No. of classes taken:

UNIT-IV PSYCHROMETRY & HUMAN COMFORT

Т

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
35	Psychrometry: Introduction,	1	26-09-22		TLM 1	CO4	T1	
36	Psychometric properties and relations	1	27-09-22		TLM 1	CO4	T1	
37	Psychometric problems	1	28-09-22		TLM 1	CO4	T1	
38	Psychometric problems		29-09-22		TLM 1	CO4	T1	
39	Psychometric chart and its analysis,	1	01-10-22		TLM 1	CO4	T1	
40	Psychometric processes and its analysis	1	06-10-22		TLM 1	CO4	T1	
41	Tutorial	1	10-10-22		TLM 1	CO4	T1	
42	Psychometric processes and its analysis	1	11-10-22		TLM 1	CO4	T1	
43	Sensible, Latent and Total heat,	1	12-10-22		TLM 1	CO4	T1	
44	Sensible Heat Factor and Bypass Factor,	1	13-10-22		TLM 1	CO4	T1	
45	Solving Problems	1	15-10-22		TLM 1	CO4	T1	
46	Human Comfort: Thermodynamics of human body	1	17-10-22		TLM 1	CO4	T1	
47	Factors affecting the human comfort and its analysis.	1	18-10-22		TLM 1	CO4	T1	
48	Effective temperature –	1	19-10-22		TLM 1	CO4	T1	
49	Comfort chart	1	20-10-22		TLM 1	CO4	T1	
50	Tutorial	1	22-10-22		TLM 1	CO4	T1	
No. c	of classes required to complete UNIT	Γ-IV = 16		No	o. of classes	taken:		
	UNIT-V AIR	CONDITI	ONING SYS	TEMS AND) DESIGN	I		
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
51	Introduction: Air Conditioning Systems,	1	25-10-22		TLM 1	CO5	T1	
52	Components of Air conditioning	1	26-10-22		TLM 1	CO5	T1	
53	Classification of air conditioning system	1	27-10-22		TLM 1	CO5	T1	
54	Central and Unitary systems, Winter and Year-round systems	1	29-10-22		TLM 1	CO5	T1	
55	Cooling load estimation and its procedure	1	31-10-22		TLM 1	CO5	T1	
56	Cooling load components	1	01-11-22		TLM 1	CO5	R 1	
57	Infiltration load, Design of Air Condition Systems,	1	02-11-22		TLM 1	CO5	R1	
58	Bypass factor-circulated air	1	03-11-22		TLM 1	CO5	T1	

	with ADP, System with Ventilated and re-circulation,						
59	RSHF, GSHF and ESHF, Solving cooling load Problems	1	05-11-22	TLM 1	CO5	R1	
60	Solving cooling load Problems	1	07-11-22	TLM 1	CO5	R1	
61	Solving cooling load Problems	1	08-11-22	TLM 1	CO5	R1	
62	Solving cooling load Problems	1	09-11-22	TLM 1	CO5	R1	
63	Solving cooling load Problems	1	10-11-22	TLM 1	CO5	R1	
64	Solving cooling load Problems	1	10-11-22	TLM 1	CO5	R1	
65	Tutorial	1	10-11-22	TLM 1	CO5	R1	
No. of	classes required to complete UNIT-		No. of classes	taken:			

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
66	Air craft Refrigeration System and Cryogenics	1	16-11-22		TLM2	CO1,CO 4	R3	
67	Eco friendly refrigerants	1	17-11-22		TLM2	CO4	R3	
68	Advanced refrigeration methods	1	19-11-22		TLM2	CO5	R3	

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD				
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo				
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study				

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022				
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks			
CRT Classes	05-09-2022	17-09-2022	2 weeks			
I Mid Examinations	19-09-2022	24-09-2022	1 Week			
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks			
II Mid Examinations	21-11-2022	26-11-2022	1 Week			
Preparation and Practical's	28-11-2022	03-12-2022	1 Week			
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks			

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-C

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
ro i	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
FU 2	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
103	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
100	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
DO 11	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Dr.V.Dhana Raju Course Coordinator Dr.V.Dhana Raju Module Coordinator Dr. P.Vijay Kumar Dr.

HOD Dr. S. Pichi Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

	PARI - A
PROGRAM	: B.Tech VII-Sem MechanicalEngineering – B Section
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: ROBOTICS–17ME29
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: K.Venkateswara Reddy, Assistant Professor
COURSE COORDINATOR	: J.Subba Reddy, Associate Professor
PER-REQUISITE	: Engineering Mechanics & Kinematics of Machines

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to cultivate the interest and ability to develop robotic systems for social and industrial development.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1: Understand the basics of robots, end effectors and its applications.

CO2: Familiarize the working of actuators and sensors for robotic application.

CO3: Formulate D-H matrices for different kinematics problems.

CO4: Model the dynamic behavior of robot.

CO5: Analyze the trajectory of robotic motion.

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

<u> </u>	РО	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					2						2		2	3
CO2	3	3	2									2		2	3
CO3	3	3	2									2		2	3
CO4	3	2	1				2					2		2	2
CO5	2					3	3					1	2	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

Saeed B.Niku, Introduction to robotics- analysis ,systems &application, Second **T1** Edition,

Willy India Private Limited, New Delhi,2011.

T2 R.K.Mittal and IJ Nagrath, Robotics and Control, Tata McGraw–Hill publishing company Limited, New Delhi,2003.

BOS APPROVED REFERENCE BOOKS:

MikellP.Groover, Mitchell Weiss, Roger N. Nagel&Nicholas G. Odrey, Ashish Dutta,

- **R1** Industrial Robotics, Second Edition McGraw- Hill Education(India) Private Limited, 2012
- **R2** Robert J.Schilling, Fundamentals of robotics analysis & control, PHI learning private limited, New Delhi,4thEdition 2002
- R3 John.J Criag, Introduction to Robotics-Mechanics and Control, Third Edition,Pearson Education,Inc.,2008

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29)

<u> PART - B</u>

UNIT-I: INTRODUCTION TO ROBOTICS, ANATOMY, ROBOT END EFFECTORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to Robotics	1	11-07-2022		TLM2	CO1	T1, T2, R1, R2	
2.	CEOs, Course Outcomes, POs and PSOs	1	12-07-2022		TLM2	-	-	
3.	Basic concepts – Robot anatomy	1	13-07-2022		TLM2	CO1	T1, T2, R1, R2	
4.	Components of robots, Tutorial	1	15-07-2022		TLM2	CO1	T1, T2, R1, R2	
5.	Robot motions	1	16-07-2022		TLM2	CO1	T1, T2, R1, R2	
6.	Number of D.O.F – Work volume	1	18-07-2022		TLM2	CO1	T1, T2, R1, R2	
7.	Robot applications in Material transfer and machine loading / unloading applications	1	19-07-2022		TLM2	C01	T1, T2, R1, R2	
8.	Robot applications in Processing operations – Assembly and inspection – Future applications	1	20-07-2022		TLM2	C01	T1, T2, R1, R2	
9.	Robot End Effectors –Introduction, Tutorial	1	22-07-2022		TLM3	CO1	T1, T2, R1, R2	
10.	Types of end effectors – Mechanical grippers	1	23-07-2022		TLM2	CO1	T1, T2, R1, R2	
11.	Vacuum cups, magnetic grippers, adhesive gripers and others	1	25-07-2022		TLM2	C01	T1, T2, R1, R2	
12.	Robot / End effectors interface	1	26-07-2022		TLM2	CO1	T1, T2, R1, R2	
13.	Considerations in gripper selection and design	1	27-07-2022		TLM2	C01	T1, T2, R1, R2	
14.	Case Studies, Numericals, Tutorial	1	29-07-2022		TLM2	CO1	T1, T2, R1, R2	
15.	Numericals	1	30-07-2022		TLM3	C01	T1, T2, R1, R2	
No. of	classes required to complete UNIT-I:	15			No. of class	ses taken:		·

UNIT-II: ROBOT ACTUATORS AND SENSORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
16.	Introduction to Actuators	1	01-08-2022		TLM2	CO2	T1,R1	
17.	Characteristics of Actuating System	1	02-08-2022		TLM2	CO2	T1,R1	
18.	Pneumatic Actuators	1	03-08-2022		TLM2	CO2	T1,R1	
19.	Hydraulic Actuators, Tutorial	1	05-08-2022		TLM2	CO2	T1,R1	
20.	Electric Motors	1	06-08-2022		TLM2	CO2	T1,R1	
21.	Introduction to Sensors	1	08-08-2022		TLM3	CO2	T1,R1	
22.	Sensor characteristics	1	10-08-2022		TLM1	CO2	T1,R1	
23.	Position sensors: Potentiometers, LVDT	1	12-08-2022		TLM1	CO2	T1,R1	
24.	Resolvers, Encoders, Tutorial	1	13-08-2022		TLM1	CO2	T1,R1	
25.	Magnetostrictive Displacement Transducers (MDT)	1	16-08-2022		TLM1	CO2	T1,R1	
26.	Velocity Sensors: Encoders	1	17-08-2022		TLM1	CO2	T1,R1	
27.	Tachometers	1	19-08-2022		TLM1	CO2	T1,R1	
28.	Industrial Applications, Tutorial	1	20-08-2022		TLM2	CO2	T1,R1	
29.	Case Studies	1	22-08-2022		TLM2	CO2	T1,R1	
No. of	classes required to complete UNIT-II	14		No. of classes	taken:	•	•	

UNIT-III: MANIPULATOR KINEMATICS

C No.	Topics to be sourced	No. of	Tentative	Actual	Teaching	Learning Outcome	Tout Dook followed	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	COs	Text Book followed	Sign Weekly
30.	Introduction to Manipulator Kinematics , Coordinate Frames	1	23-08-2022	completion	TLM2	CO3	T1,R1	Weekiy
31.	Description of Objects in space	1	24-08-2022		TLM2	CO3	T1,R1	
32.	Transformation of vectors, Tutorial	1	26-08-2022		TLM2	CO3	T1,R1	
33.	Numericals	1	27-08-2022		TLM1	CO3	T1,R1	
34.	Inverting a Homogeneous Transform	1	29-08-2022		TLM3	CO3	T1,R1	
35.	Numericals	1	30-08-2022		TLM2	CO3	T1,R1	
36.	Fundamental Rotation Matrices, Numericals, Tutorial	1	02-09-2022		TLM2	CO3	T1,R1	
37.	D-H representation	1	03-09-2022		TLM2	CO3	T1,R1	
38.	CRT Classes	10		I	05-09	2022 to 17-09-2022		
39.	I Mid Examinations	5			19-09	2022 to 24-09-2022		
40.	Problems on Forward Kinematics	1	26-09-2022		TLM2	CO3	T1,R1	
41.	Numericals	1	27-09-2022		TLM2	CO3	T1,R1	
42.	Numericals	1	28-09-2022		TLM2	CO3	T1,R1	
43.	Numericals, Tutorial	1	30-09-2022		TLM2	CO3	T1,R1	
44.	Numericals	1	01-10-2022		TLM2	CO3	T1,R1	
No. of	classes required to complete UNIT-III	15			No. of class	ses taken:		

UNIT-IV: ROBOT DYNAMICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
45.	Introduction to Dynamics of Robots	1	04-10-2022		TLM2	CO4	T1,R1	
46.	Differential transformations	1	07-10-2022		TLM2	CO4	T1,R1	
47.	Numericals	1	08-10-2022		TLM2	CO4	T1,R1	
48.	Numericals, Tutorial	1	10-10-2022		TLM2	CO4	T1,R1	
49.	Numericals	1	11-10-2022		TLM2	CO4	T1,R1	
50.	Numericals	1	12-10-2022		TLM2	CO4	T1,R1	
51.	Jacobian Matrix	1	14-10-2022		TLM2	CO4	T1,R1	
52.	Numericals	1	15-10-2022		TLM1	CO4	T1,R1	
53.	Numericals, Tutorial	1	17-10-2022		TLM2	CO4	T1,R1	
54.	Numericals	1	18-10-2022		TLM1	CO4	T1,R1	
55.	Lagrange Euler formulation	1	19-10-2022		TLM2	CO4	T1,R1	
56.	Numericals	1	21-10-2022		TLM2	CO4	T1,R1	
57.	Numericals	1	22-10-2022		TLM1	CO4	T1,R1	
58.	Numericals, Tutorial	1	25-10-2022		TLM2	CO4	T1,R1	1
59.	Numericals	1	26-10-2022		TLM1	CO4	T1,R1	1
No. of	classes required to complete UNIT-IV	15			No. c	of classes taken:	•	

UNIT-V: TRAJECTORY PLANNING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
60.	Introduction to Trajectory Planning	1	28-10-2022		TLM2	CO5	T1,R1	
61.	Considerations on Trajectory Planning	1	29-10-2022		TLM2	CO5	T1,R1	
62.	Joint Interpolated Trajectory	1	31-10-2022		TLM2	CO5	T1,R1	
63.	Numericals	1	01-11-2022		TLM2	CO5	T1,R1	
64.	Numericals, Tutorial	1	02-11-2022		TLM3	CO5	T1,R1	
65.	Numericals	1	04-11-2022		TLM2	CO5	T1,R1	
66.	Numericals	1	05-11-2022		TLM2	CO5	T1,R1	
67.	Cartesian Path Trajectory	1	07-11-2022		TLM2	CO5	T1,R1	
68.	Numericals, Tutorial	1	08-11-2022		TLM2	CO5	T1,R1	
69.	Numericals	1	09-11-2022		TLM2	CO5	T1,R1	
70.	Numericals	1	11-11-2022		TLM2	CO5	T1,R1	
71.	Numericals, Tutorial	1	12-11-2022		TLM2	CO5	T1,R1	
72.	Numericals	1	14-11-2022		TLM2	CO5	T1,R1	
73.	Robot Programming	1	15-11-2022		TLM2	CO5	T1,R1	
74.	Robot Programming	1	16-11-2022		TLM2	CO5	T1,R1	
75.	Robot Programming	1	18-11-2022		TLM2	CO5	T1,R1	
76.	Robot Programming, Tutorial	1	19-11-2022		TLM2	CO5	T1,R1	
No. of cla	No. of classes required to complete UNIT-V 15 + 04 (Beyond Syllabus) No. of classes taken:							
		I Mid Examinatio	ons – 21-11-2022 to 2	26-11-2022				

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022			
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks		
CRT Classes 05-09-2022		17-09-2022	2 Weeks		
I Mid Examinations	19-09-2022	24-09-2022	1 Week		
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks		
II Mid Examinations	21-11-2022	26-11-2022	1 Week		
Preparation and Practicals	28-11-2022	03-12-2022	1 Week		
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks		

<u> PART – C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u> PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	K.Venkateswara Reddy	J.Subba Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

	<u>COURSE HANDOUT</u>
PROGRAM	: B.Tech., ME VII-Sem., B/S
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Metrology and Instrumentation (17ME30)
L-T-P STRUCTURE	: 4-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: V.Sankararao
COURSE COORDINATOR	: B.Sudheer Kumar

PRE-REQUISITE: Modern Machining Processes

COURSE OBJECTIVE : The main objective of this course is to ascertain basic principles of measurements and calibrate the instruments.

COURSE OUTCOMES(CO): At the end of the course, the student will be able to :

CO:1	Apply different measuring techniques in quality control departments of industries
	and to ensure quality of products.
CO:2	Measure the dimensions using linear, angular and optical measuring instruments.
CO:3	Analyze measuring systems of surface roughness and perform alignment /
	acceptance test effectively.
CO:4	Design the instruments for the measurement of stress, strain, force, torque etc.
CO:5	Analyze measuring systems of Pressure, Fluid flow and Temperature.

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO 1	PO 2	PO 3	РО 4	PO 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3				1							2		2	
CO2	3	2	2		1							2		2	
CO3	3	3	2		1							2		2	2
CO4	3	2	2	2	1							2	2		
CO5	3	2	2	2	1							2	2		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** D.S.Kumar, Mechanical Measurements and Controls, 4th Edition, Metropolitan Book Co-Private Ltd.
- T2 R.K.Jain, Engineering Metrology, Khanna Publishers.3rd edition,2003
- **T3** BeckWith, Marangoni, Linehard, Mechanical Measurements, Person Education Asia.6th edition, 2011.

BOS APPROVED REFERENCE BOOKS:

- **R1** A.K, Sawhneypuneet "A course in Mechanical Measurements and instrumentation control" DhanpatRai publications, 12thEdition, 2012
- R2 J.P. Holman, Experimental Methods for Engineers, McGraw Hill.
- **R3** Ernest O. Doebelin, Measurement systems Application and Design, International Student Edition, 4thEdition, McGraw-Hill Book Company, 1998.
- **R4** M. Mahajan, A text book of Metrology, DhanpatRai& Co.
- **R5** I C Gupta, Engineering Metrology, DanpathRai

COURSE DELIVERY PLAN (LESSON PLAN): M&I

UNIT-I

S No.	Topics to be sovered	No. of Classes	Tentative Date of	Actual Date of	Teaching	Learning	Text	HOD			
S.No.	Topics to be covered	Required	Completion	Completion	Learning Methods	Outcome COs	Book followed	Sign Weekly			
1.	INTRODUCTION TO SUBJECT	1	13/07/2022		TLM2	CO1	-	,			
2.	COURSE OUTCOMES	1			TLM2	CO1	-				
3.	BASIC CONCEPTS INTRODUCTION		14/07/2022		TLM2	CO1	T2				
4.	FUNDAMENTAL MEASURING PROCESSES AND METHODS	1	15/07/2022		TLM1	CO1	R4, T3				
5.	GENERALISED MEASUREMENT SYSTEM AND ITS FUNCTIONAL ELEMENTS	1	16/07/2022		TLM1	CO1	Т3				
6.	PERFORMANCE CHARACTERISTICS	2	20/07/2022		TLM1	CO1	R4				
7.	ANALYSIS OF EXPERIMENTAL DATA: CAUSES AND TYPES OF EXPERIMENTAL ERRORS	1	21/07/2022		TLM1	CO1	T1				
8.	TREATMENT OF EXPERIMENTAL DATA	1	22/07/2022		TLM1	CO1	T1				
9.	METHOD OF LEAST SQUARES	1	23/07/2022		TLM1	CO1	T1				
10.	GRAPHICAL ANALYSIS AND CURVE FITTING.	2	27/07/2022		TLM1	CO1	T1				
No. of	classes required to completeUNIT-I	11			No. of clas	ses taken:					
	UNIT-II										

	UNIT-II							
		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
	LINEAR MEASUREMENT					CO2	R5,T2	
11.	STANDARDS OF	1	28/07/2022		TLM1			
11.	MEASUREMENTS LINE AND		20/07/2022					
	END STANDARD.							
	BASIC PRINCIPLE AND					CO2	R5,T2	
12.	APPLICATIONS OF SLIP	1	29/07/2022		TLM2		-	
	GAUGES							
12	DIAL INDICATOR AND	1	20/07/2022		TLM2	CO2	R5,T2	
13.	MICROMETERS	1	30/07/2022		I LIVIZ		-	
	ANGULAR MEASUREMENTS					CO2	R5,T2	
14.	BEVEL PROTRACTOR – ANGLE	1	03/08/2022		TLM2		-	
	SLIP GAUGES							
	SINE BAR, ROLLERS AND					CO2	R5,T2	
15.	SPHERES USED TO DETERMINE	2	04/08/2022		TLM2		-	
	THE TAPERS							
16.	APPLICATIONS OF ANGULAR	1	05/00/2022		TLM2	CO2	R5,T2	
10.	MEASUREMENT	1	05/08/2022		I LIVIZ			
	OPTICAL MEASURING					CO2	R5,T2	
17.	INSTRUMENTS TOOL MAKER'S	1	06/08/2022		TLM2			
	MICROSCOPE AND ITS USES							
18.	COLLIMATORS, OPTICAL	1	10/08/2022		TINA	CO2	R5,T2	
10.	PROJECTOR	T	10/08/2022		TLM2			
19.	OPTICAL FLATS AND THEIR	1	11/09/2022		TINA	CO2	R5,T2	
19.	USES	T	11/08/2022		TLM2			
20	INTERFEROMETER, AND	1	12/08/2022		TINA	CO2	R5,T2	
20.	THOSE APPLICATIONS	Ţ	12/08/2022		ILIVIZ		-	
20.	INTERFEROMETER, AND	1	12/08/2022		TLM2	CO2	R5,T2	

No. of classes required to complete UNIT-II	10			No. of classes taken:
--	----	--	--	-----------------------

	UNIT-III							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
21.	SURFACE TEXTURE FACTORS EFFECTING SURFACE ROUGHNESS	1	17/08/2022		TLM2	CO3	R5,T2	
22.	REASONS FOR CONTROLLING SURFACE TEXTURE	1	18/08/2022		TLM2	CO3	R5,T2	
23.	DIFFERENCES BETWEEN SURFACE ROUGHNESS AND SURFACE WAVINESS	1	20/08/2022		TLM2	CO3	R5,T2	
24.	ELEMENTS OF SURFACE TEXTURE NUMERICAL ASSESSMENT OF SURFACE FINISH – CLA, R, R.M.S VALUES – RA VALUES, AND RZ VALUES	1	24/08/2022		TLM2	CO3	R5,T2	
25.	BASIC PRINCIPLE OF PROFILE METER AND TOMLINSON SURFACE METER	1	25/08/2022		TLM2	CO3	R5,T2	
26.	ISI SYMBOLS FOR INDICATION OF SURFACE FINISH	1	26/08/2022		TLM2	CO3	R5,T2	
27.	APPLICATIONS SURFACE TEXTURE	1	27/08/2022		TLM2	CO3	R5,T2	
28.	LIMITS AND FITS INTRODUCTION, NORMAL SIZE, TOLERANCE LIMITS, DEVIATIONS, ALLOWANCE	2	01/09/2022		TLM2	CO3	R5,T2	
29.	FITS AND THEIR TYPES – UNILATERAL AND BILATERAL TOLERANCE SYSTEM	1	02/09/2022		TLM2	CO3	R5,T2	
30.	HOLE AND SHAFT BASIS SYSTEMS	1	03/09/2022		TLM2	CO3	R5,T2	
31.	INTERCHANGEABILITY AND SELECTIVE ASSEMBLY	1	28/09/2022		TLM2	CO3	R5,T2	
32.	INDIAN STANDARD	1	29/09/2022		TLM2	CO3	R5,T2	
No. of UNIT-II	classes required to complete I	13			No. of clas	ses taken:		

UNIT-IV

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly		
33.	MEASUREMENT OF DISPLACEMENT INTRODUCTION, CLASSIFICATION	1	30/09/2022		TLM2	CO4	T1,T3			
34.	DIMENSIONAL MEASUREMENT, GAUGE BLOCKS	1	01/10/2022		TLM2	CO4	T1,T3			
35.	С	RT CLASSES	6 05-09-2022	TO 17-09-202	22					
36.	5. I MID EXAMINATION 19-09-2022 TO 24-09-2022									
37.	OPTICAL METHODS, PNEUMATIC GAUGE	1	12/10/2022		TLM2	CO4	T1,T3			

	APPLICATIONS OF	1		_		_
38.	DISPLACEMENT MEASUREMENT	_		TLM2	CO4	T1,T3
39.	MEASUREMENT OF STRESS AND STRAIN INTRODUCTION, STRAIN MEASUREMENTS ELECTRICAL RESISTANCE STRAIN GAUGE, GAUGE FACTOR	1	13/10/2022	TLM2	CO4	T1,T3
40.	MEASUREMENT OF RESISTANCE STRAIN-GAGE OUTPUTS	1	14/10/2022	TLM2	CO4	T1,T3
41.	TEMPERATURE COMPENSATION	1	15/10/2022	TLM1	CO4	T1,T3
42.	STRAIN GAGE ROSETTES, APPLICATIONS OF STRAIN MEASUREMENT	1	19/10/2022	TLM2	CO4	T1,T3
43.	MEASUREMENT OF FORCE AND TORQUE INTRODUCTION, ELASTIC TRANSDUCER	1	20/10/2022	TLM2	CO4	T1,T3
44.	STRAIN GAGE LOAD CELLS	1	21/10/2022	TLM2	CO4	T1,T3
45.	DYNAMOMETERS- MECHANICAL, HYDRAULIC, ELECTRICAL	1	22/10/2022	TLM2	CO4	Т1,Т3
46.	APPLICATIONS OF FORCE AND TORQUE MEASUREMENT	1	26/10/2022	TLM2	CO4	T1,T3
No. of UNIT-I	classes required to complete V	12		No. of clas	ses taken:	

UNIT-V

		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
	MEASUREMENT OF PRESSURE		-	•		0.05		
47.	INTRODUCTION, MANOMETERS	1	27/10/2022		TLM2	CO5	T1,T3	
48.	DIAL TYPE PRESSURE GAUGE,	1	28/10/2022		TLM2	CO5	T1 T2	
40.	PRESSURE TRANSDUCERS	1	28/10/2022		ILIVIZ	05	T1,T3	
	PITOT, STATIC, AND PITOT-							
49.	STATIC TUBE AND ITS	1	29/10/2022		TLM2	CO5	T1,T3	
	CHARACTERISTICS							
	LOW PRESSURE							
50.	MEASUREMENT GAUGES	1	02/11/2022		TLM2	CO5	T1,T3	
50.	APPLICATIONS OF PRESSURE	Т				005	11,13	
	MEASUREMENT							
	MEASUREMENT OF FLUID							
51.	FLOW INTRODUCTION,	1	03/11/2022		TLM2	CO5	T1,T3	
	ROTAMETER	-						
52.	TURBINE FLOW METER, LASER	1	04/11/2022		TLM2	CO5	T1,T3	
	DOPPLER	-	0 1/ 11/ 2022				11,10	
	ANEMOMETER, HOT-WIRE							
53.	ANEMOMETER, APPLICATIONS	1	05/11/2022		TLM2	CO5	T1,T3	
	OF FLUID FLOW		, , -				,	
	MEASUREMENT							
	MEASUREMENT OF							
54.	TEMPERATURE	1	09/11/2022		TLM2	CO5	T1,T3	
	INTRODUCTION, TYPES OF		, ,				, -	
	THERMOMETERS							
55.	THERMOCOUPLES, RTD	1	10/11/2022		TLM2	CO5	T1,T3	

56.	THERMISTERS, PYROMETERS. TEMPERATURE MEASUREMENT	1	11/11/2022	TLM2	CO5	T1,T3	
57.	TEMPERATURE MEASUREMENT	1	12/11/2022	TLM2	CO5	T1,T3	
No. of classes required to complete UNIT-V		11		No. of clas	ses taken:		

CONTENTS BEYOND THE SYLLABUS

		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
58.	INTRODUCTION TO GEAR MEASUREMENTS	1	16/11/2022		TLM2	CO2	T1,T3	
59.	INTRODUCTION TO COMPARATORS	1	17/11/2022		TLM2	CO2	T1,T3	
60.	MEASUREMENT OF SPEED	1	18/11/2022		TLM2	CO4	T1,T3	

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
V.Sankararao	B.Sudheer Kumar	J.Subba Reddy	Dr.S.Pichi Reddy

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: A Dhanunay Kumar	
Course Name & Code	: CIM & 17ME92	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., MECH., VII-Sem., Section- B	A.Y : 2022-23

PRE-REQUISITE: CAD/CAM

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to control the entire production process using computers. This integration allows individual processes to exchange information with each other and initiate actions.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the basics of production and derive production metrics.
CO 2	Prepare CNC programs for manufacturing of different geometries on milling and lathe
	Machines.
CO 3	Apply group technology concepts for parts classification.
CO 4	Select layouts of FMS for industrial applications.
CO 5	Develop a CAPP system for rotational and prismatic parts.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2									2		
CO2	1	1	2	2	1							1	3		
CO3	1	1	1		1							1	3		
CO4		2		1									2		
CO5	1				1								3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

BOS APPROVED TEXT BOOKS:

- **T1** 1. Mikell P Groover, Automation, production Systems and Computer Integrated Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
- **T2** 2. P. Radhakrishnan, "Computer Numerical Control ", New Central Book Agency, 1992.

REFERENCE BOOKS:

R1 P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM,New Age International Publishers, 3rd edition 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Production Systems	1	12.07.2022					
2.	production facilities	1	14.07.2022					
3.	Manufacturing operations	1	15.07.2022					
4.	manufacturing models and metrics	1	16.07.2022					
5.	Examples of Manufacturing problems	1	19.07.2022					
6.	CIM Definition	1	20.07.2022					
7.	CIM components	1	22.07.2022					
8.	Evolution of CIM, needs of CIM	1	23.07.2022					
9.	Benefits of CIM	1	26.07.2022					
10.	Overview of CIM software and Hardware	1	28.07.2022					
No. o	No. of classes required to complete UNIT-I:10 No. of classes taken:							

UNIT-II: NUMERICAL CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Basic components of NC system	1	29.07.2022			
2.	NC motion control system	1	30.07.2022			
3.	Applications of NC, advantages and disadvantages of NC	1	02.08.2022			
4.	computer Numerical control	1	03.08.2022			
5.	functions and advantages of CNC	1	05.08.2022			
6.	Direct Numerical Control, components of a DNC system	1	06.08.2022			
7.	Functions and advantages of DNC	1	09.08.2022			
8.	NC part programming.	1	10.08.2022			
9.	NC part programming turn	1	12.08.2022			
10.	NC part programming mill		16.08.2022			
No. o	f classes required to complete UN	NIT-II:10		No. of clas	ses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Part Families, Parts Classification and Coding	1	27-09-2022			
2.	Features of Parts Classification and Coding Systems	1	30.09.2022			
3.	Opitz of Parts Classification and Coding Systems	1	01.10.2022			
4.	Production Flow Analysis	1	07.10.2022			
5.	Composite Part Concept,		08.10.2022			
6.	Machine Cell Design	1				
7.	Applications Of Group Technology	1	12.10.2022			
8.	Quantitative analysis of cellular manufacturing	1	14.10.2022			
9.	Rank Order Clustering Method, Arranging Machines in a GT cell	2	15.10.2022			
10.	HollierMethod, Simple Problems]	18.10.2022			
No. o	f classes required to complete UI	NIT-III:09)	No. of clas	ses taken:	

UNIT-III: CELLULAR MANUFACTURING SYSTEMS

UNIT-IV :FLEXIBLE MANUFACTURING SYSTEMS (FMS)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Flexibility	1	19.10.2022			
2.	Types of FMS	1	21.10.2022			
3.	FMS Components	1	22.10.2022			
4.	FMS Application & Benefits	1	25.10.2022			
5.	FMS Planning and implementation issues	1	26.10.2022			
6.	Quantitative analysis of FMS	1	28.10.2022			
7.	Simple Problems.	1	29.10.2022			
8.	FMS software	1	01.11.2022			
9.	FMS hardware	1	02.11.2022			
10.	Implementation issues FMS	1	04.11.2022			
No. of	f classes required to complete U	NIT-IV:10)	No. of clas	ses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Process planning for parts	1	05.11.2022			
2.	Process planning for assemblies	1	08.11.2022			•
3.	Make or buy decisions	1	09.11.2022			
4.	Computer aided process planning	1	11.11.2022			
5.	Retrieval and generative CAPP systems	1	12.11.2022			
6.	Concurrent engineering	1	15.11.2022			
7.	design for manufacturing	1	16.11.2022			
8.	Advanced manufacturing planning	1	18.11.2022			
9.	lean production and JIT & production systems	1	19.11.2022			
10.	Lean principles					
No. of clas	sses required to complete U	UNIT-V:09)	No. of class	es taken:	

UNIT-V :PROCESS PLANNING AND CONCURRENT ENGINEERING

Teaching Learning Methods						
TLM1	Chalk and Talk TLM4		Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5 ICT (NPTEL/Swayam Prabha/MOC				
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

NOOM	
PO 1	An ability to apply knowledge of Mathematics, Sciences and Engineering fundamentals to
	find the solution to real time Mechanical Engineering problems.
PO 2	An ability to identify and formulate mathematical models to analyze complex engineering
	problems.
PO 3	An ability to design a mechanical systems/ processes to meet the desired needs within
	realistic constraints such as economic, environmental, societal, health & safety.
PO 4	An ability to design and conduct experiments, perform analysis, interpretation of data and
	synthesis of information to provide valid conclusions.
PO 5	An ability to develop the model and analyze the Mechanical systems using modern software
	tools.
PO 6	An ability to understand societal, health, safety, legal, cultural issues and the consequent
	responsibilities relevant to engineering practice.
PO 7	An ability to understand the impact of engineering solutions in societal, environmental
	context and demonstrate the knowledge for sustainable development.
PO 8	An ability to understand the professional ethics to follow the norms of engineering practice.
PO 9	An ability to function effectively as an individual and as a member / leader in diverse
	technical teams.
PO 10	An ability to communicate effectively with the engineering community and society through
	reports & presentations.
PO 11	An ability to apply management principles to organise the multidisciplinary projects.
PO 12	An ability to understand the need of independent and lifelong learning so as to address day
	to day technological changes.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal								
	systems.								
PSO 2	To apply the principles of manufacturing technology, scientific management towards								
	improvement of quality and optimization of engineering systems in the design,								
	analysis and manufacturability of products.								
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of								
	performance of various systems relating to transmission of motion and power,								
	conservation of energy and other process equipment.								

Course Instructor A Dhanunay Kumar Course Coordinator A NAGESWARA RAO Module Coordinator J SUBBAREDDY HOD Dr S PICHI REDDY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT									
<u> PART - A</u>									
PROGRAM	: B.Tech VII-Sem MechanicalEngineering – B,C Sections								
ACADEMIC YEAR	: 2022-23								
COURSE NAME & CODE	: Total Quality management & 17ME36								
L-T-P STRUCTURE	: 3-0-0								
COURSE CREDITS	:3								
COURSE INSTRUCTOR	: Narayana Karagani, Assistant Professor								
COURSE COORDINATOR	: Seelam Srinivasa Reddy, Associate Professor								
PER-REQUISITE	Industrial Management								

COURSE EDUCATIONAL OBJECTIVES: The main objective of this course is to familiarize the concepts of quality management techniques in industries

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1: Comprehend the principles and strategies of quality control

CO2: Apply the principles of total quality management in an industry.

CO3: Analyze statistical quality control tools towards improving the quality.

CO4: Adopt the principles of Taguchi techniques for industrial needs.

CO5: Implement ISO quality standards in an organization.

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

COs	PO 1	PO 2	PO 3	PO	PO	РО 6	PO 7	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO
	1	2	3	4	5	0	/	8	9	10	11	12	1	2	3
CO1				2							3	3	3	3	3
CO2			3	3		2	2				3	3	3	3	3
CO3	3	3	3	3							3	3	3	3	3
CO4	2		3								3	3	3	3	3
CO5	1		3	3		2	2				3	3	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS-APPROVED TEXTBOOKS:

T: Dale H. Besterfiled., Total Quality Management, Pearson Education, 3rd Edition 2010 **BOS APPROVED REFERENCE BOOKS:**

R1. James R. Evans & William M. Lidsay, The Management and Control of Quality, South-Western (Thomson Learning), 2002.

R2. Feigenbaum.A.V, Total Quality Management, MCGraw-Hill, 2005.

R3. Narayana V. and Sreenivasan, N.S, Quality Management- Concepts and Tasks, New Age International, 2006.

R4. Zeiri, Total Quality Management for Engineers, Wood Head Publishers, 2009.

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29) <u>PART - B</u>

UNIT-I: INTRODUCTION TO TQM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Textbook followed	HOD Sign Weekly
1.	Introduction to TQM	1	11-07-2022		TLM1	CO'1	T&R1	
2.	CEOs, Course Outcomes, POs and PSOs	1	13-07-2022		TLM1	CO'1	T&R1	
3.	INTRODUCTION: Evolution of total quality management	1	14-07-2022		TLM1	CO'1	T&R1	
4.	Definition of Quality	1	15-07-2022		TLM1	CO'1	T&R1	
5.	Quality costs,	1	18-07-2022		TLM2	CO'1	T&R1	
6.	Quality Council	1	20-07-2022		TLM2	CO'1	T&R1	
7.	Strategic Planning	1	21-07-2022		TLM2	CO'1	T&R1	
8.	Deming Philosophy	1	22-07-2022		TLM2	CO'1	T&R1	
9.	Barriers to TQM Implementation	1	25-07-2022		TLM2	CO'1	T&R1	
10.	Barriers to TQM Implementation	1	27-07-2022		TLM2	CO'1	T&R1	
11.	Revision	1	28-07-2022		TLM2	CO'1	T&R1	
12.	Quiz-1	1	29-07-2022		TLM6	CO'1	T&R1	
No. of	classes required to complete UNIT-I:	12			No. of class	ses taken:		

UNIT-II: TQM PRINCIPLES

S.No.	S.No. Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Textbook followed	HOD Sign	
		Required	Completion	Completion	Methods	COs		Weekly	

No. of	classes required to complete UNIT-II	16		No. of classes taken:		1	1
28.	Quiz	1	02-09-2022	TLM6	CO2	T&R1	
27.	Revision	1	01-09-2022	TLM2	CO2	T&R1	
26.	Strategy, Performance Measure	1	29-08-2022	TLM2	CO2	T&R1	
25.	Performance Measures-Basic Concepts,	1	26-08-2022	TLM2	CO2	T&R1	
24.	supplier selection,	1	25-08-2022	TLM2	CO2	T&R1	
23.	Partnership- Partnering, sourcing,	1	24-08-2022	TLM2	CO2	T&R1	
22.	5S, Kaizen, Supplier	1	22-08-2022	TLM2	CO2	T&R1	
21.	PDSA cycle,	1	18-08-2022	TLM2	CO2	T&R1	
20.	Continuous process improvement- Juran Trilogy.	1	17-08-2022	TLM2	CO2	T&R1	
19.	Empowerment and Teamwork, Performance appraisal, Benefits,	1	12-08-2022	TLM2	CO2	T&R1	
18.	Maslow 's hierarchy of needs, Herzberg theory,	1	10-08-2022	TLM2	CO2	T&R1	
17.	Employee Involvement, Motivation.	1	08-08-2022	TLM2	CO2	T&R1	
16.	customer retention, Service quality.	1	05-08-2022	TLM2	CO2	T&R1	
15.	Customer perception of quality, customer feedback.	1	04-08-2022	TLM2	CO2	T&R1	
14.	Types of Customers, customer supply chain	1	03-08-2022	TLM1	CO2	T&R1	
13.	TQM Principles: Customer satisfaction.	1	01-08-2022	TLM1	CO2	T&R1	

UNIT-III: STATISTICAL PROCESS CONTROL

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
29.	STATISTICAL PROCESS CONTROL: The seven tools of quality,	1	26-09-2022		TLM1	CO3	T&R1	
30.	Statistical Fundamentals,	1	28-09-2022		TLM2	CO3	T&R1	
31.	Population and Sample,	1	29-09-2022		TLM2	CO3	T&R1	
32.	Normal curve,	1	30-09-2022		TLM2	CO3	T&R1	
33.	Control charts for variables and attributes,	1	06-10-2022		TLM2	CO3	T&R1	
34.	Process capability,	1	07-10-2022		TLM2	CO3	T&R1	
35.	Concepts of six sigma,	1	10-10-2022		TLM2	CO3	T&R1	
36.	New seven Management tools.	1	12-10-2022		TLM2	CO3	T&R1	
37.	Problems	1	13-10-2022		TLM3	CO3	T&R1	
38.	Revision & Quiz	1	14-10-2022		TLM2&6	CO3	T&R1	
No. of c	lasses required to complete UNIT-III	10			No. of classes taken:			

UNIT-IV: TQM TOOLS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
39.	TQM TOOLS: Benchmarking,	1	17-10-2022		TLM1	CO4	T&R1	
40.	Benchmarking Process,	1	19-10-2022		TLM2	CO4	T&R1	
41.	Quality Function Deployment (QFD),	1	20-10-2022		TLM2	CO4	T&R1	
42.	House of Quality, QFD Process	1	21-10-2022		TLM2	CO4	T&R1	
43.	Taguchi Quality Loss Function,	1	24-10-2022		TLM2	CO4	T&R1	
44.	Total Productive Maintenance Concept,	1	26-10-2022		TLM2	CO4	T&R1	
45.	improvement needs,.	1	27-10-2022		TLM2	CO4	T&R1	
46.	FMEA- Stages of FMEA	1	28-10-2022		TLM2	CO4	T&R1	
47.	Revision	1	31-10-2022		TLM2	CO4	T&R1	
48.	Quiz	1	02-11-2022		TLM6	CO4	T&R1	
No. of	No. of classes required to complete UNIT-IV				No. c	of classes taken:		

UNIT-V: QUALITY SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
49.	QUALITY SYSTEMS: Need for ISO 9000 and other Quality systems,	1	03-11-2022		TLM1	CO5	T&R1	
50.								
51.	ISO 9000:2000 Quality System,	1	04-11-2022		TLM2	CO5	T&R1	
52.	Implementation of Quality system,	1	07-11-2022		TLM2	CO5	T&R1	
53.	Documentation,	1	09-11-2022		TLM2	CO5	T&R1	
54.	Quality Auditing,	1	10-11-2022		TLM2	CO5	T&R1	
55.	TS 16949, ISO 14000- concepts.	1	11-11-2022		TLM2	CO5	T&R1	
56.	Revision & Quiz	1	14-11-2022		TLM2	CO5	T&R1	
57.		1	16-11-2022		TLM2&6	CO5	T&R1	
58.		1	17-11-2022					
59.		1	18-11-2022					
No. of cla	asses required to complete UNIT-V	07 + 03 (Bey	ond Syllabus)					
		Mid Examina	tions – 21-11-20)22 to 26-11-20	22			

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022			
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks		
CRT Classes	05-09-2022	17-09-2022	2 Weeks		
I Mid Examinations	19-09-2022	24-09-2022	1 Week		
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks		
II Mid Examinations	21-11-2022	26-11-2022	1 Week		
Preparation and Practicals	28-11-2022	03-12-2022	1 Week		
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks		

<u> PART – C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M; 85%≤A<90%= 3M; 80%≤A<85%= 2M; 75%≤A<80%= 1M; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u>PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	Narayana K	S.Srinivasa Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Credits : 3

Name of Course Instructor : KAMALA PRIYA B

Course Name & Code : POWER PLANT ENGINEERING

L-T-P Structure : 4-0-0

Program/Sem/Sec : B.Tech., MECH., VII-Sem., A, B & C A.Y : 2022-23

PRE-REQUISITE: Thermodynamics, Thermal Engineering.

COURSE EDUCATIONAL OBJECTIVES (CEOs): To study the various power plant potentials and its working principles.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the basics of various energy sources and various circuits in steam power
	plant(Understanding level).
CO 2	Comprehend Diesel and Gas Turbine power generating plants (Remembering level).
CO 3	Analyze salient features of Hydroelectric and Nuclear power plants and interpret the
	data (Analysis level).
CO 4	Differentiates direct and indirect energy conversion systems (Understanding level).
CO5	Evaluate economics of power generation and pollution issues related to power plants
	(Apply level).

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	P D2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	-	-	-	-	-	-	-	1	1	-	-
CO2	3	1	2	2	-	1	2	-	-	-	-	1	2	-	2
CO3	2	3	-	3	-	1	2	-	-	-	-	1	2	-	2
CO4	2	3	1	2	-	-	1	-	-	-	-	1	2	-	1
CO5	3	2	2	3	-	-	3	-	_	-	-	1	3	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Arora &Domkundwar, A course in Power Plant Engineering- Dhanpat Rai & Company 5th Revised Reprint Edition, 2004.
- T2 P.K.Nag, Power Plant Engineering, 3rd Edition ,2008 TMH, New Delhi,

REFERENCE BOOKS:

- **R1** R.K.Rajput, A Text book of Power Plant Engineering, Laxmi Publications ,2nd Edition 2001
- **R2** M.M.ElWakil, Power plant technology, 3rd Edition 2010 TMH.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: STEAM POWER PLANT

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Course Outcomes	1	11-07-2022		TLM1	
2.	Introduction to Subject	1	13-07-2022		TLM1	
3.	Energy sources, Resources and Development of Power in India.	1	14-07-2022		TLM1	
4.	Steam power plant: Plant Layout, Working of Different circuits, factors to be considered for the selection of the plant	1	15-07-2022		TLM2	
5.	Types of Coal-Fuel handling systems-	1	18-07-2022		TLM1	

6.	Coal handling, choice of coal handling equipment, Coal Storage	2	20-07-2022	TLM1, TLM2
7.	Ash handling systems	2	21-07-2022	TLM2
8.	Overfeed and underfeed stokers	1	22-07-2022	TLM1, TLM2
9.	Traveling grate stokers, Spreader stokers, Retort stokers	1	25-07-2022	TLM1, TLM2
10.	Pulverized fuel burning system and, its components	2	27-07-2022	TLM2
11.	Draught system, Cyclone furnace	1	28-07-2022	TLM1
12.	Design and construction, Dust collectors,	1	29-07-2022	TLM1
13.	Dust collectors, Electrostatic precipitator	1	01-08-2022	TLM2
14.	Cooling towers and heat rejection	2	03-08-2022	TLM1, TLM2
15.	TUTORIAL-1	1	04-08-2022	TLM3
No. of	classes required to comple	No. of classes taken:		

UNIT-II: DIESEL POWER PLANT AND GAS TURBINE PLANT

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly
1.	Plant layout with auxiliaries-Fuel storage	1	05-08-2022		TLM2	

2.	Fuel supply system-Air supply system-Exhaust system	1	08-08-2022	TLM2
3.	Water cooling system- Lubrication system	1	10-08-2022	TLM2
4.	Starting system- Supercharging	1	11-08-2022	TLM1
5.	Advantages and Disadvantages of Diesel plants over Thermal plants	1	12-08-2022	TLM1
6.	TUTORIAL-2	1	17-08-2022	TLM3
7.	Introduction- Classification-Layout with auxiliaries	1	18-08-2022	TLM2
8.	Principles of working of Closed and Open cycle gas turbines	1	22-08-2022	TLM1
9.	Combined cycle power plants and comparison	1	24-08-2022	TLM1, TLM2
10.	TUTORIAL-3	1	24-08-2022	TLM3
No. of	classes required to comple	ete UNIT-II	: 10	No. of classes taken:

UNIT-III: HYDRO ELECTRIC POWER PLANT AND NUCLEAR POWER PLANT

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Hydrology- Hydrological cycle	1	25-08-2022		TLM1	
2.	Rainfall- Run off Hydrograph	1	26-08-2022		TLM1	
3.	Flow duration curve-	1	29-08-2022		TLM2	

Mass curve			
4. Site selection of hydro plant- Typica layout	al 1	01-09-2022	TLM1
5. Different types of hydro plants	2	02-09-2022	TLM2
6. TUTORIAL-4	1	26-09-2022	TLM3
7. Nuclear Fission and Fusion - Nuclear Fuels-	1	28-09-2022	TLM1
Breeding- Compone 8. of Reactor	ents 1	29-09-2022	TLM1
P. Types of Nuclear Reactors- Pressurize water reactor(PWR)		30-09-2022	TLM1
Boiling water reactor10.(BWR)	or 1	10-10-2022	TLM1
11. CANDU reactor-Ga	as 1	12-10-2022	TLM1
12. Liquid metal cooled reactor-Fast Breeder Reactor		13-10-2022	TLM1
13. Nuclear waste and i Disposal	ts 1	14-10-2022	TLM1
14. TUTORIAL-5	1	17-10-2022	TLM3
of classes required to co	omplete UNIT-	III: 14	No. of classes taken:

UNIT-IV : POWER FROM NON-CONVENTIONAL SOURCES AND DIRECT ENERGY CONVERSION SYSTEMS

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly

1.	Solar power plants- Utilization of Solar collectors.	1	19-10-2022	TLM1
2.	Different types of solar collectors.	2	20-10-2022	TLM1, TLM2
3.	Principle of working of Wind energy-Types	1	21-10-2022	TLM1
4.	Tidal Energy	1	26-10-2022	TLM2
5.	TUTORIAL-6	1	27-10-2022	TLM3
6.	Solar cell- Fuel cell	1	28-10-2022	TLM1
7.	Thermo Electric and Thermo ionic conversion system	1	31-10-2022	TLM1
8.	MHD power generation	2	02-11-2022	TLM2
9.	TUTORIAL-7	1	03-11-2022	TLM3
No. of	f classes required to comple	ete UNIT-I	V:09	No. of classes taken:

UNIT-V : POWER PLANT ECONOMICS AND POLLUTION & CONTROL

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Fixed cost-Operating cost Fluctuating loads	1	04-11-2022		TLM1	
2.	General arrangement of Power Distribution- Load curves	1	07-11-2022		TLM1	
3.	Load duration curve and its problems	2	09-11-2022		TLM1	
4.	Various load factors in power plants	1	10-11-2022		TLM1	

5.	TUTORIAL-8	1	11-11-2022	TLM3
6.	Particulate and gaseous pollutants	1	14-11-2022	TLM1
7.	Air and Water pollution by Thermal plants	1	16-11-2022	TLM1
8.	Acid rains -Methods to control pollution	1	17-11-2022	TLM1
9.	Numerical Problems on economics of power generation	3	18-11-2022	TLM1
10.	TUTORIAL-9	1	18-11-2022	TLM3
No. of	No. of classes required to complete UNIT-V:10			No. of classes taken:

Teaching Learning Methods			
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

ACADEMIC CALENDAR:

Description	From	То	Weeks
Commencement of Class Work: 11-07	-2022		
I Phase of Instructions	11.07.2022	17.09.2022	7W
I Mid Examinations	19.09.2022	24.09.2022	1W
II Phase of Instructions	25.09.2022	19.11.2022	9W
II Mid Examinations	21.11.2022	26.11.2022	1W
Preparation and Practicals	28.11.2022	03.12.2022	1W
Semester End Examinations	05.12.2022	17.12.2022	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/:	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10
Attendance: D ($\geq 95\% = 5M$; 90% $\leq A < 95\% = 4M$; 85% $\leq A < 90\% = 3N$ 80% $\leq A < 85\% = 2M$; 75% $\leq A < 80\% = 1M$; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems
105	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to
100	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
	responsionnies fore vant is the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
100	and norms of the engineering practice.
	and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
DO 10	
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	To apply the principles of thermal sciences to design and develop various thermal
1	systems.
PSO	To apply the principles of manufacturing technology, scientific management towards
2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
PSO	To apply the basic principles of mechanical engineering design for evaluation of
3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Kamala Priya B	Kamala Priya B	Dr. P.Vijay Kumar	Dr. S. Pichi Reddy

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.T.Nagadurga	
Course Name & Code	: Utilization of Electrical Energy & 17EE81	
L-T-P Structure	: 4-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ME., VII-Sem., Sections- A&B	A.Y:2022-23

PRE-REQUISITES: -

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to familiarize with characteristics of various drives, comprehend the different issues related to heating, welding and illumination.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Choose a drive for particular application
CO 2	Identify a heating /welding scheme for a given application
CO 3	Illustrate the different schemes of traction and its main components
CO 4	Develop a lighting scheme for a given practical case
CO5	Assess the economic aspects in utilization of electrical energy

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

											,					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	-	2	-	-	-	-	-	-	1	-	-	-	
CO2	3	2	1	2	-	-	-	-	-	-	-	1	-	-	-	
CO3	3	1	3	-	3	I	-	-	-	I	-	2	-	-	-	
CO4	3	2	2	2	-	-	-	-	-	-	-	1	-	-	-	
CO5	2		1		-	-		-				1				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 C.L.Wadhwa "Generation,Distribution and Utilization of Electrical energy, New Age International Publishers,3rd Edition,2015.
- **T2** N.V.Suryanarayana "Utilization of electric power including electric drives and electric traction, New age international publishers New Delhi, 2nd edition 2014.

REFERENCE BOOKS:

- **R1** Art & Science of Utilization of electrical Energy, Partab, Dhanpat Rai & Co., 2004.
- **R2** Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: ELECTRIC HEATING AND WELDING:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, CEO's &CO's	1	11/7/22		TLM1/TLM2	
2.	Advantages & applications of Electric heating	1	13/7/22		TLM1/TLM2	
3.	Classification of electric heating	1	14/7/22		TLM1/TLM2	
4.	Classification of electric heating	1	15/7/22		TLM1/TLM2	
5.	Requirement of good heating material	1	18/7/22		TLM1/TLM2	
6.	Electric Arc Furnace	1	20/7/22		TLM1/TLM2	
7.	Induction heating	1	21/7/22		TLM1/TLM2	
8.	Dielectric heating	1	22/7/22		TLM1/TLM2	
9.	Electric welding	1	25/7/22		TLM1/TLM2	
10.	Resistance welding	1	27/7/22		TLM1/TLM2	
11.	Arc welding	1	28/7/22		TLM1/TLM2	
No. o	f classes required to complete U	NIT-I:11		No. of classes	s taken:	

UNIT-II: ILLUMINATION ENGINEERING:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	29/7/22		TLM1/TLM2	
2.	Nature of light &Laws of illumination	1	1/8/22		TLM1/TLM2	
3.	Lighting schemes, sources of light	1	3/8/22		TLM1/TLM2	
4.	Fluorescent Lamps	1	4/8/22		TLM1/TLM2	
5.	Compact Fluorescent Lamps	1	5/8/22		TLM1/TLM2	
6.	LED Lamps discharge lamps	1	8/8/22		TLM1/TLM2	
7.	Sodium Vapour Lamp	1	10/8/22		TLM1/TLM2	
8.	mercury vapour lamps	1	11/8/22		TLM1/TLM2	
9.	Neon lamps	1	12/8/22		TLM1/TLM2	
10.	Comparison between tungsten &fluorescent tubes	1	17/8/22		TLM1/TLM2	
11.	Requirements of good lighting	1	18/8/22		TLM1/TLM2	

12.	Street lighting	1	19/8/22		TLM1/TLM2		
13.	Mid-I Exams	1	20/9/22				
14.	Mid-I Exams	1	21/9/22				
15.	Mid-I Exams	1	23/9/22				
16.	Mid-I Exams	1	24/9/22				
No. of classes required to complete UNIT-II: 12 No. of classes taken:							

UNIT-III: ELECTRIC DRIVES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	22/8/22		TLM1/TLM2	
2.	Factors affecting selection of motor	1	24/8/22		TLM1/TLM2	
3.	Types of loads	1	25/8/22		TLM1/TLM2	
4.	Elements of electric drive	1	26/8/22		TLM1/TLM2	
5.	Steady state characteristics of drives	1	29/8/22		TLM1/TLM2	
6.	Transient characteristics of drives	1	31/8/22		TLM1/TLM2	
7.	Size of motor	1	1/9/22		TLM1/TLM2	
8.	Load equalization	1	2/9/22		TLM1/TLM2	
9.	Industrial applications	1	26/9/22		TLM1/TLM2	
No. of	classes required to complete UN	NIT-III:10	1	No. of class	sses taken:	

UNIT-IV: ELECTRIC TRACTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	28/9/22		TLM1/TLM2	
2.	Requirement of an ideal traction system	1	3/10/22		TLM1/TLM2	
3.	Supply system for electric traction	1	7/10/22		TLM1/TLM2	
4.	Supply system for electric traction	1	13/10/22		TLM1/TLM2	
5.	Train movement	1	17/10/22		TLM1/TLM2	
6.	Mechanism of train movement	1	19/10/22		TLM1/TLM2	
7.	Traction motors	1	20/10/22		TLM1/TLM2	
8.	Modern trends in electric traction	1	21/10/22		TLM1/TLM2	
9.	Automation in electric traction	1	24/10/22		TLM1/TLM2	
10.	problems	1	26/10/22		TLM1/TLM2	
	f classes required to complete U			No. of class	sses taken:	
UNIT-V	V: REFRIGERATION AND AIF	No. of	IONING Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Ro. of Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly

1.	Introduction	1	27/10/22	TLM1/TLM2
2.	Types of refrigeration	1	28/10/22	TLM1/TLM2
3.	Compression refrigeration	1	1/11/22	TLM1/TLM2
4.	Basic vapour compression cycle	1	3/11/22	TLM1/TLM2
5.	Absorption refrigeration system	1	4/11/22	TLM1/TLM2
6.	Operational features	1	7/11/22	TLM1/TLM2
7.	household refrigerator	1	9/11/22	TLM1/TLM2
8.	Air-conditioning	1	10/11/22	TLM1/TLM2
9.	Types of air conditioning system	1	11/11/22	TLM1/TLM2
10.	Room air conditioner	1	14/11/22	TLM1/TLM2
11.	Summer & winter air conditioning systems	1	16/11/22	TLM1/TLM2
12.	Cooling capacity of an air conditioner	1	17/11/22	TLM1/TLM2
13.	Working of electrical system	1	18/11/22	TLM1/TLM2
14.	Revision	1	18-11-2022	TLM1/TLM2
15.	Mid-II Exams	1	22-11-2022	
16.	Mid-II Exams	1	23-11-2022	
17.	Mid-II Exams	1	25-11-2022	
18.	Mid-II Exams	1	26-11-2022	
No. of	f classes required to complete U	NIT-V:		No. of classes taken:

Contents beyond the Syllabus:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Economic aspects in utilization of electrical energy	1	28-09-2022		TLM1/TLM2	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

<u>PART-C</u> (EVALUATION PROCESS (R17 Regulations):)

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10

Assignment-III (Unit-III)	A3=5						
Assignment-IV (Unit-IV)	A4=5						
Assignment-V (Unit-V)							
II-Mid Examination (Units-III, IV & V)	M2=20						
II-Quiz Examination (Units-III, IV & V)	Q2=10						
Attendance	B=5						
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5						
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20						
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10						
Cumulative Internal Examination (CIE) : A+B+M+Q	40						
Semester End Examination (SEE)	60						
Total Marks = CIE + SEE	100						

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	8W
CRT classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	8W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practicals	28-11-2022	03-12-2022	1W
Semester End Examinations	5-12-2022	17-12-2022	2W

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.

PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Course Instructor	Course Coordinator	Module Coordinator	HOD
T.Nagadurga	Mrs T.Naga Durga		Dr. J.Siva Vara Prasad

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: C.Rajamallu	
Course Name & Code	: BASIC CIVIL ENGINEERING & 17CE80	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ME., VII-Sem., Sections- A-B-C-	A.Y : 2022-23

PRE-REQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):. This course deals with the importance of building planning, properties and applications of various building materials, soil classification and different types of foundations, important aspects of surveying, levelling operations and identify the terminology in roadway and railway networks, principles of water resources and environmental engineering

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Recognize the importance of building planning for construction
CO 2	Identify appropriate building materials for construction purposes
CO 3	Distinguish the different types of soils and foundations required for specific usage
CO 4	Evaluate the basics of surveying and levelling operations for field application and
	categorize the important elements of roadway and railway networks
CO 5	Discriminate the importance of quantity and quality aspects of water in the society and
	priorities for sanitation management.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

					(,		,			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2		2	1				2		2	1	3
CO2				2		2	1				2		2	1	3
CO3		1	1	2		2	1				2		2	1	3
CO4		1	1	2		2	1				2		2	1	3
CO5		1	1	2	2	2	1				2		2	1	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 1. M.S Palanichamy "Basic Civil Engineering", Tata McGraw Hill Publishing 2000.

REFERENCE BOOKS:

- **R1** 1. S S Bhavikatti "Basic Civil Engineering", New age International Publications, 2010
- **R2** C P Kaushik& S S Bhavikatti "Basic Civil Engineering ", New age International Publications 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Building Planning

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Building Planning- Role of a Civil Engineer	1	11-07-2022		TLM2	-		
2.	Inter connection among specializations in Civil Engineering	1	13-07-2022		TLM2			
3.	Elements of a Building, Basic Requirements of a Building	1	14-07-2022		TLM2			
4.	Planning- Hot and dry climates	1	15-07-2022		TLM1			
5.	Hot and wet climates, Cold climatic conditions	1	18-07-2022		TLM1			
6.	Aspect and Prospect, Roominess- Grouping, Privacy, circulation	1	20-07-2022		TLM1			
7.	Sanitation and ventilation	1	21-07-2022		TLM2			
8.	Orientation, Economy, Role of Bye-laws	1	22-07-2022		TLM2			
No. o	No. of classes required to complete UNIT-I: No. of classes taken:							

UNIT-II: Building Materials

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Building Materials - Classification	1	25-07-2022		TLM1	
2.	Rocks, Bricks Classification, Composition, Properties, Commercial forms, Uses	1	27-07-2022		TLM2	
3.	Timber, Ply wood Classification, Composition, Properties, Commercial forms	1	28-07-2022		TLM2	
4.	Glass, Bitumen Classification, Composition, Properties, Commercial forms,	1	29-07-2022		TLM1	

5.	Aluminium, Cement Classification, Composition, Properties, Commercial forms,	1	01-08-2022	TLM1	
6.	Steel, Concrete Classification, Composition, Properties, Commercial forms, Uses	1	03-08-2022	TLM2	
7.	Mortar Classification, Composition, Properties, Commercial forms, Uses	1	04-08-2022	TLM2	
8.	Concept of eco-friendly materials, examples	1	05-08-2022	TLM1	
No. o	f classes required to complete UN	IT-II:		No. of classes taken:	

UNIT-III: SOIL CLASSIFICATION AND FOUNDATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Types of soils, soil classification	1	8-08-2022		TLM1	
2.	Engineering properties	1	10-08-2022		TLM1	
3.	Bearing Capacity of soil, purpose and methods of improving bearing capacity	1	12-08-2022		TLM2	
4.	Foundations – Requirements	1	17-08-2022		TLM2	
5.	Loads, Types	1	22-08-2022		TLM1	
6.	for special structures-water tanks-	1	24-08-2022		TLM2	
7.	for special structures- silos, chimneys- transmission line towers- cooling towers, telecommunication towers	1	25-08-2022		TLM1	
No. of	f classes required to complete UN	IT-III:07	•	No. of class	sses taken:	

UNIT-IV : SURVEYING, LEVELLING & HIGHWAY NETWORK

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Objective of surveying– Principles, applications and uses of - chain surveying	1	26-08-2022		TLM2	
2.	theodolite, levelling, contour maps, Planimeter, EDM concept	1	29-08-2022		TLM2	
3.	linear distance and area measurement	1	1-09-2022		TLM1	
4.	Total station- GIS-Concept and applications in civil engineering.	1	2-09-2022		TLM2	
5.	CRT Classes	:5-9-2022	to 17-09-2022			
6.	MID-1 Examinations:19-09-2022 to 24-09-2022					
7.	Indian highways- Basic terminology- Classification of roads - PIEV theory - Traffic signs - IRC Code provisions		26-09-2022		TLM1	

8.	Indian railways –Permanent way and components of railway track	1	28-09-2022		TLM2	
9.	Gauges – Rails -Sleepers – Ballast.	1	29-09-2022		TLM2	
No. of classes required to complete UNIT-IV:07			No. of clas	ses taken:		

UNIT-V: WATER RESOURCES AND ENVIRONMENTAL ENGINEERING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Objectives of water supply system-Sources of water supply-Hydrologic cycle	1	30-09-2022		TLM1	¥
2.	Rainfall measurement - Purpose of dams, reservoirs, intakes, infiltration galleries	1	10-10-2022		TLM1	
3.	Water demands –Water quality parameters and their impacts - Principles of water treatment	1	12-10-2022		TLM2	
4.	Objectives of water distribution systems	1	13-10-2022		TLM2	
5.	Wastewater characteristics and their impacts	1	14-10-2022		TLM1	
6.	Principles of sewage treatment	1	17-10-2022		TLM2	
7.	Disposal of sewage	1	19-10-2022		TLM2	
8.	Water quality standards for – drinking purpose,	1	20-10-2022		TLM2	
9.	irrigation, -making	1	21-10-2022		TLM1	
10.	curing of concrete	1	26-10-2022		TLM1	
11.	methods of water distribution systems	1	27-10-2022		TLM2	
12.	Sewage generation in a society	1	28-10-2022		TLM2	
13.	Revision of Unit-1	1	2-11-2022		TLM2	
14.	Revision of Unit-1	1	3-11-2022		TLM2	
15.	Revision of Unit-2	1	4-11-2022		TLM1	
16.	Revision of Unit-2	1	7-11-2022		TLM1	
17.	Revision of Unit-3	1	9-11-2022		TLM1	
18.	Revision of Unit-3	1	10-11-2022		TLM1	
19.	Revision of Unit-4	1	11-11-2022		TLM2	
20.	Revision of Unit-4	1	14-11-2022		TLM2	
21.	Revision of Unit-5	1	16-11-2022		TLM2	
22.	Revision of Unit-5	1	17-11-2022		TLM1	
No. of	f classes required to complete UN	IT-V:12	•	No. of clas	sses taken:	

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	6W
CRT Classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	7W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practicals	28-11-2022	03-12-2022	1W
Semester End Examinations	05-12-2022	17-12-2022	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
DO 4	considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
100	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
D O 0	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice. Individual and team work : Function effectively as an individual, and as a member or leader in
PO 9	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and
	software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the
	professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil
	engineering domain

Course Instructor (C.Rajamallu) Course Coordinator (C.Rajamallu) Module Coordinator (B.Narasimha Rao)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Sectio	n B)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40	
Credits	: 01	Semester End Examination	: 60	
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)			
Mr. K. Venkateswara Reddy (Assistant Professor)				

COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

PRE-REQUISITES: Robotics, CAD/CAM

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to demonstrate and analysis of various types of robots.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1.Develop Robot Programmes to use to control commands

CO2.Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and unloading.

CO3.Simulate forward and inverse kinematic movements of a robot using MATLAB.

CO4.Perform the demo operations on SCARA and PUMA using Robo analysers.

Mapping of COs with POs and PSOs:

LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs – Robotics and SimulationLab (17ME72)															
		POs						PSOs								
		1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PSO 2	PSO 3
	CO1	2	1			3							2		3	
cos	CO2	1	2	2		3							2		3	
8	CO3	3	3		2	3							3			3
	CO4	1	1			3							2			3
	1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)															

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	on B)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40	
Credits	: 01	Semester End Examination	: 60	
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)			
Mr. K. Venkateswara Reddy (Assistant Professor)				

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	on B)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40	
Credits	: 01	Semester End Examination	: 60	
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)			
	Mr. K. Venkateswara Reddy (Assistant Professor)			

LIST OF EXPERIMENTS

At least 10 Experiments from 12 overall should be conducted

LIST OF EXPERIMENTS:

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing
- 7. Spray painting
- 8. Polishing
- 9. Simulateof Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. SimulateSCARA,PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB, C Prog

REFERENCE: Robotics and Simulation Lab Manual

Lab instructor (s)

Head of the Department

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Sectio	n B)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40		
Credits	: 01	Semester End Examination	: 60		
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)				
	Mr. K. Venkateswara Redd	Mr. K. Venkateswara Reddy (Assistant Professor)			

Notification of Cycles (Section –B)

At least TEN experiments may be conducted.

Cycle - I

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing

Cycle – II

- 7. Spray painting
- 8. Polishing
- 9. Simulation of Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. Simulation of SCARA, PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Sectio	n B)	
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40	
Credits	: 01	Semester End Examination	: 60	
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)			
	Mr. K. Venkateswara Reddy (Assistant Professor)			

Lab Occupancy Time Table (B.Tech Mech Engg- VII Sem : Section – B / S)

↓Day/Dat e→	9.00 _ 9.50	9.50- 10.40	10.50- 11.40	11.40- 12.30-	12.30- 1.30	1.30- 2.20	2.20- 3.10	3.10- 4.00
Monday								
Tuesday								
Wednesday					LUNCH			
Thursday		R&S –	VII-B lab BA	ТСН-В2	BREAK			
Friday								
saturday						R&S −1	/II-B lab BAT	СН- В1

Faculty – In Charges:

S.No	Class	Section	Lab Assistant	Faculty – In Charge	
1	B.Tech – VII Semester	B/S	Mr. P. Guna Sundar Reddy	Mr. K.V.Viswanadh Mr. K. Venkateswara Reddy	

Lab instructor (s)

Head of the Department

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	on B)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40		
Credits	: 01	Semester End Examination	: 60		
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)				
	Mr. K. Venkateswara Reddy (Assistant Professor)				

Batches (Section – B)

S.No	Batches	Regd.Nos	Total No. of Students
1	B. Tech –VII Sem - B/S	18765A0323,19761A0348- 363, 364 – 377, 378– 394, 20765A0316 – 330	59
2	Batch B1	18765A0323,19761A0348– 363, 364– 377	29
3	Batch B2	19761A0378–394, 20765A0316-330	30

Sub Batch of B11: 18765A0323,19761A0348- 363 (15)

S. No	Batch	Registered Nos	Total		
1	B111	18765A0323,19761A0348- 349	03		
2	B112	197671A0350-352	03		
3	B113	197671A0354-356	03		
4	B114	197671A0357-358	02		
5	B115	197671A0359-360	02		
6	B116	197671A0361-363	02		
	Total (B11)				

Sub Batch of B12: 19761A0364 – 377 (14)

S. No	Batch	Registered Nos	Total		
1	B121	197671A0364-366	03		
2	B122	197671A0367-369	03		
3	B123	197671A0370-371	02		
4	B124	197671A0372-373	02		
5	B125	197671A0374-375	02		
6	B126	197671A0376-377	02		
	Total (B12)				

Sub Batches of B21: 19761A0378-394 (15)

Sub Batches of B22: 20765A0316-330 (15)

S. No	Batch	Registered Nos	Total			
1	B211	19761A0378-380	03			
2	B212	19761A0381-384	03			
3	B213	19761A0385-387	03			
4	B214	19761A0388-389	02			
5	B215	19761A0390-391	02			
6	B216	19761A0393-394	02			
	Total (B21) 15					

S. No	Batch	Registered Nos	Total
1	B221	20765A0316-318	03
2	B222	20765A0319-321	03
3	B223	20765A0322-324	03
4	B224	20765A0325-326	02
5	B225	20765A0327-328	02
6	B226	20765A0329-330	02
Total (B22)			15

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab	
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	n B)
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40
Credits	: 01	Semester End Examination	: 60
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. As	sistant Professor)	
	Mr. K. Venkateswara Redd	y (Assistant Professor)	

	S.No	Batches	Regd. Nos			Total No. of Students		
	1	Batch B1	18765A0323,19761A0348- 363, 364- 377			29		
s	S.No.	Name	e of the experiment	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	1		to Robotics and Lab, Demonstration of all , CEOs, and COs of the	3	16/07/2022		TLM4	
Cycle	e I							
	2	-	commands like joint ircle command	3	16/07/2022		TLM4	
	3	command (c	commands SPLINE ontinues path)	3	23/07/2022		TLM4	
	4	-	PTP command	3	30/07/2022		TLM4	
	5	Palletizing		3	06/08/2022		TLM4	
	6	Loading / Un	loading	3	20/08/2022		TLM4	
Cycle	e II							
	7	Gluing		3	27/08/2022		TLM4	
	8	Spray paintir	ng, Polishing	3	03/09/2022		TLM4	
l Mie	d Exan	ns			19-09-2	2022 to 26-09-2	2022	
	9		f Robot with 2 Dof, 3 Dof, ROBOANALYZER	3	01/10/2022		TLM4	
	10	Simulation o ROBOANALY	f SCARA, PUMA using ZER	3	15/10/2022		TLM4	
	11		ward and inverse R Manipulator using	3	22/10/2022		TLM4	
	12		ward and inverse P Manipulator using	3	29/10/2022		TLM4	
	13	Design of Ro	botic System	3	05/11/2022		TLM4	
	14	Revision		3	12/11/2022		TLM4	
	15	Internal Exar	n	3	19/11/2022		TLM4	
		II Mid Exams	5		21-11-2	2022 to 26-11-2	2022	
		Preparation	eparation and Practicals 28-11-2022 to 03-12-2022			2022		
		Semester En		05-12-2	2022 to 17-12-2	2022		

Schedule of Experiments (Section – B: B1 Batch)

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	on B)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40		
Credits	: 01	Semester End Examination	: 60		
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. As	sistant Professor)			
Mr. K. Venkateswara Reddy (Assistant Professor)					

Schedule of Experiments (Section – B: B2 Batch)

S.No	Batches	Regd.Nos Total No. of Stude					dents	
1	Batch B2	19761A0378–394, 2076	55A0316-33	0	30			
S.No.	Name of the experiment		No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory		3	14/07/2022	·	TLM4		
	Cycle I							
2	Program for con command, circle	nmands like joint command	3	14/07/2022		TLM4		
3	Program for con command (conti		3	21/07/2022		TLM4		
4	Program for PTP		3	28/07/2022		TLM4		
	Palletizing		3	04/08/2022		TLM4		
5	Loading / Unload	ding		11/08/2022		TLM4		
6	Gluing		3	18/08/2022		TLM4		
7	Circular Motion		3	25/08/2022		TLM4		
	Cycle II							
8	Spray painting, F	Polishing	3	01/09/2022		TLM4		
	I Mid E	Exams		19-09-2022 to 26-09-2022				
9	Simulation of Ro 4 Dof using ROB	bot with 2 Dof, 3 Dof, OANALYZER	3	29/09/2022		TLM4		
10	Simulation of SC ROBOANALYZER	ARA, PUMA using	3	13/10/2022		TLM4		
11	Simulate forwar kinematics RR M MATLAB	d and inverse Ianipulator using	3	20/10/2022		TLM4		
12	Simulate forwar kinematics RP M MATLAB	d and inverse Ianipulator using	3	27/10/2022		TLM4		
13	Welding Applications		3	03/11/2022		TLM4		
14	Collaboration of	Robots	3	10/11/2022		TLM4		
15	Revision		3	17/11/2022		TLM4		
15	Internal Exam		3	17/11/2022		TLM4		
	II Mid Exams			21-11-2	022 to 26-11-	2022		
	Preparation and	l Practicals		28-11-2022 to 03-12-2022				
	Semester End Ex	kams		05-12-2022 to 17-12-2022				

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab	
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section	ו B)
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40
Credits	: 01	Semester End Examination	: 60
Name of the Faculty	: Mr. K.V.Viswanadh (Sr. Assistant Professor)		
	Mr. K. Venkateswara Reddy (Assistant Professor)		

Evaluation Criterion for Laboratory

EVALUATION PROCESS:

Evaluation Task	COs	Max. Marks
Day – to – Day Evaluation	1,2,3,4	A=20
Mid Examination	1,2,3,4	B=10
Viva-Voce	1,2,3,4	C=05
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M; 85%≤A<90%= 3M; 80%≤A<85%= 2M; 75%≤A<80%= 1M; <75%=0M)	-	D=05
Cumulative Internal Examination (CIE): A+B+C+D	1,2,3,4	A+B+C+D=40
Semester End Examinations (SEE): E	1,2,3,4	E=60
Total Marks: CIE + SEE = A+B+C+D+E	1,2,3,4	100

Lab instructor (s)

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

PRE-REQUISITES : METROLOGY & INSTRUMENTATION

COURSE EDUCATIONAL OBJECTIVES:

The objectives of this laboratory course is to enable the students learn the basic principles

of metrological instruments and perform their calibration tests for industrial needs.

COURSE OUTCOMES:

After completion of the course student will be able to: **CO1.**Perform linear, angular and gear measurements in manufacturing industries. **CO2.**Analyze the measurement of the surface roughness and perform alignment tests. **CO3.**Calibrate the displacement, load and speed measuring instruments **CO4.**Measure the pressure, flow and vibration measuring instruments. **Mapping of COs with POs and PSOs:**

LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs – Metrology and Instrumentation Lab (17ME73)															
							P	Os							PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PSO 2	PSO 3
	CO1	2	3	2	2					2			1		3	
cos	CO2	2	3	2	2					2			1		3	
S	CO3	2	2		2					2			1		3	
	CO4 2 2 2 1 3															
	1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)															

Lab – in charge – II

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Lab in charge – I

Lab – in charge – II

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

LIST OF EXPERIMENTS

At least 06 Experiments from each laboratory and 12 overall should be conducted

PART-A: METROLOGY LAB

At least SIX experiments may be conducted.

- 1. Measurement of lengths, heights, diameters by vernier calipers and micrometers.
- 2. Measurement of bores by dial bore indicators.
- 3. Taper measurement by using balls and rollers.
- 4. Use of gear teeth vernier calipers and checking the chordal addendum and chordalheight of spur gear.
- 5. Machine tool alignment of test on the lathe or milling machine.
- 6. Measurement of screw thread parameters using Tool makers microscope.
- 7. Angle and taper measurements by Bevel protractor, Sine bars, etc.
- 8. Thread measurement by three wire method.
- 9. Surface roughness measurement by Taly Surf.

PART-B: INSTRUMENTATION LAB

At least SIX experiments may be conducted.

- 1. Calibration of Pressure Gauges
- 2. Study and calibration of LVDT transducer for displacement measurement.
- 3. Calibration of strain gauge for load measurement.
- 4. Calibration of capacitive transducer for linear displacement.
- 5. Study and calibration of photo and magnetic speed pickups for the measurement ofspeed.
- 6. Study and calibration of a rotameter for flow measurement.
- 7. Study of Piezo-electric transducer.
- 8. Study and use of a Seismic pickup for the measurement of vibration amplitude of anengine bed at various loads.
- 9. Study and calibration of McLeod gauge for low pressure.
- 10. Study and calibration of RTD for temperature measurement

REFERENCE: Metrology and Instrumentation Lab Manuals

Lab in charge – I

Lab – in charge – II

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

Batches (Section – B)

S. No	Batches	Regd. Nos	Total No. of Students
1	B. Tech – B/S	18765A0323, 19761A0348 - 394, 20765A0316 – 330	59
2	Batch B1	18765A0323, 19761A0348 - 377	29
3	Batch B2	19761A0378 – 394, 20765A0316 – 330	30

Sub Batch of B11:

18765A0323, 19761A0348 – 363 (15)

S. No	Batch	Registered Nos	Total
1	B111	18765A0323,	03
1	BIII	19761A0348 – 349	05
2	B112	19761A0350 – 352	03
3	B113	19761A0354 – 356	03
4	B114	19761A0357 – 359	03
5	B115	19761A0360 - 363	03
Total (B11) 15			

Sub Batch of B12:

19761A0364 – 377 (14)

S. No	Batch	Registered Nos	Total
1	B121	19761A0364 – 366	03
2	B122	19761A0367 – 369	03
3	B123	19761A0370 – 372	03
4	B124	19761A0373 – 375	03
5	B125	19761A0376 – 377	02
	14		

Sub Batches of B21: 19761A0378 - 394 (15)

S. No	Batch	Registered Nos	Total	
1	B211	19761A0378 – 380	03	
2	B212	19761A0381 – 384	03	
3	B213	19761A0385 – 387	03	
4	B214	19761A0388 – 390	03	
5	B215	19761A0391 – 394	03	
	Total (B21)			

Sub Batches of B22: 20765A0316 - 330 (15)

S. No	Batch	Registered Nos	Total
1	B221	20765A0316 - 318	03
2	B222	20765A0319 – 321	03
3	B223	20765A0322 – 324	03
4	B224	20765A0325 – 327	03
5	B225	20765A0328 - 330	03
	15		

Lab in charge – I

Lab – in charge – II

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

Notification of Cycles (Section – B)

<u>Cycle – I</u>:METROLOGY LAB

At least SIX experiments may be conducted.

- 1. Measurement of lengths, heights, diameters by vernier calipers and micrometers.
- 2. Measurement of bores by dial bore indicators.
- 3. Taper measurement by using balls and rollers.
- 4. Use of gear teeth vernier calipers and checking the chordal addendum and chordalheight of spur gear.
- 5. Machine tool alignment of test on the lathe or milling machine.
- 6. Measurement of screw thread parameters using Tool makers microscope.
- 7. Angle and taper measurements by Bevel protractor, Sine bars, etc.
- 8. Thread measurement by three wire method.
- 9. Surface roughness measurement by Taly Surf.

Cycle – II: INSTRUMENTATION LAB

At least SIX experiments may be conducted.

- 1. Calibration of Pressure Gauges
- 2. Study and calibration of LVDT transducer for displacement measurement.
- 3. Calibration of strain gauge for load measurement.
- 4. Calibration of capacitive transducer for linear displacement.
- 5. Study and calibration of photo and magnetic speed pickups for the measurement ofspeed.
- 6. Study and calibration of a rotameter for flow measurement.
- 7. Study of Piezo-electric transducer.
- 8. Study and use of a Seismic pickup for the measurement of vibration amplitude of anengine bed at various loads.
- 9. Study and calibration of McLeod gauge for low pressure.
- 10. Study and calibration of RTD for temperature measurement

Lab – in charge – II

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

Schedule of Experiments (Section – B: B1 Batch)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B1	18765A0323, 19761A0348 – 377	29

Data	Experiment (Batch)							
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6		
14-07-2022		CRT CLASSES						
METROLOGY LAB								
21-07-2022		CRT CLASSES						
28-07-2022			CRICE					
04-08-2022	Demonstrat	ion of all expe	riments, CEOs a	and COs of the	E Laboratory (E	x – 01 to 06)		
11-08-2022	B111	B112	B113	B114	B115			
18-08-2022	B112	B113	B114	B115	B111			
25-08-2022	B113	B114	B115	B111	B112			
01-09-2022	B114	B115	B111	B112	B113			
08-09-2022	B115	B111	B112	B113	B114			
15-09-2022			Repe	tition				
	19	-09-2022 to 24	4-09-2022 / Mi	d Examination	s			
	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6		
29-09-2022			Introduction	n to Cycle -II	•			
13-10-2022	B121	B122	B123	B124	B125			
20-10-2022	B122	B123	B124	B125	B121			
27-10-2022	B123	B124	B125	B121	B122			
03-11-2022	B124	B125	B121	B122	B123			
10-11-2022	B125	B121	B122	B123	B124			
17-11-2022	I	Backlog experi	ments / Additic	onal Experimer	its/ Viva – Voce	•		
	21	-11-2022 to 26	-11-2022: <i>II M</i>	id Examinatior	ns			
28-11-2022								
to			Preparation a	and Practicals				
03-12-2022								
05-12-2022			Semester End	Evaminations				
to 17-12-2022			Semester End	Examinations				

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

Schedule of Experiments (Section – B: B1 Batch)

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B1	18765A0323, 19761A0348 – 377	29

Data			Experime	nt (Batch)			
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
14-07-2022		CRT Classes					
	INSTRUMENTATION LAB						
21-07-2022		CRT Classes					
28-07-2022							
04-08-2022	Demonstrat	ion of all expe	riments, CEOs a	and COs of the	Laboratory (E)	(– 01 to 06)	
11-08-2022	B121	B122	B123	B124	B125		
18-08-2022	B122	B123	B124	B125	B121		
25-08-2022	B123	B124	B125	B121	B122		
01-09-2022	B124	B125	B121	B122	B123		
08-09-2022	B125	B121	B122	B123	B124		
15-09-2022			Repe	tition			
	19	9-09-2022 to 24	4-09-2022 I Mi	d Examination	s		
	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
29-09-2022			Introduction	n to Cycle -II	1		
13-10-2022	B111	B112	B113	B114	B115		
20-10-2022	B112	B113	B114	B115	B111		
27-10-2022	B113	B114	B115	B111	B112		
03-11-2022	B114	B115	B111	B112	B113		
10-11-2022	B115	B111	B112	B113	B114		
17-11-2022	I	Backlog experi	ments / Additio	onal Experimen	its/ Viva – Voce		
	21	-11-2022 to 26	-11-2022: <i>II M</i>	id Examination	ıs		
28-11-2022							
to			Preparation a	and Practicals			
03-12-2022							
05-12-2022 to			Semester End	Examinations			
17-12-2022			Jemester Lilu				

Lab in charge

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

<u>Schedule of Experiments (Section – B: B2 Batch)</u>

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B2	19761A0378 – 394, 20765A0316 - 330	30

Dete			Experime	nt (Batch)		
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
27-09-2021	Demonstrat	ion of all expe	riments, CEOs	and COs of the	Exaboratory (Ex	∝ – 01 to 06)
METROLOGY LAB						
04-10-2021	B211	B212	B213	B214	B215	
11-10-2021	B215	B211	B212	B213	B214	
18-10-2021	B214	B215	B211	B212	B213	
25-10-2021	B213	B214	B215	B211	B212	
01-11-2021	B212	B213	B214	B215	B211	
	30	3-11-2021 to 1	3-11-2021: <i>I M</i>	id Examinatio	าร	
	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
15-11-2021	B221	B222	B223	B224	B225	
22-11-2021	B225	B221	B222	B223	B224	
29-11-2021	B224	B225	B221	B222	B223	
06-12-2021	B223	B224	B225	B221	B222	
13-12-2021	B222	B223	B224	B225	B221	
20-12-2021		Backlog	experiments /	Additional Exp	eriments	
27-12-2021		Viva – Voo	ce and Repetiti	on / Beyond th	e Syllabus	
	03	-01-2022 to 08	3-01-2022: <i>II M</i>	lid Examinatio	ns	
10-01-2022						
to			Preparation a	and Practicals		
15-01-2022						
17-01-2022						
to			Semester End	Examinations		
29-01-2022						

Lab in charge

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME73 (R 17 Reg)	Lab: Metrology and Instrumentation Lab
A.Y.	: 2022-23	Class: B. Tech – VII Semester (Section – B)
Lab/Practicals	: 6 hrs/ Week	Continuous Internal Assessment : 40
Credits	: 02	Semester End Examination : 60
Name of the Faculty	: V.Sankararao (Sr. Assist	ant Professor)/ B.Kamala Priya (Assistant Professor)

<u>Schedule of Experiments (Section – B: B2 Batch)</u>

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch B2	19761A0378 – 394, 20765A0316 - 330	30

Data			Experime	nt (Batch)		
Date	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
27-09-2021	Demonstrat	ion of all expe	riments, CEOs	and COs of the	Laboratory (Ex	∝ – 01 to 06)
	INSTRUMENTATION LAB					
04-10-2021	B221	B222	B223	B224	B225	
11-10-2021	B225	B221	B222	B223	B224	
18-10-2021	B224	B225	B221	B222	B223	
25-10-2021	B223	B224	B225	B221	B222	
01-11-2021	B222	B223	B224	B225	B221	
	30	3-11-2021 to 13	3-11-2021: <i>I M</i>	id Examinatio	าร	
	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
15-11-2021	B211	B212	B213	B214	B215	
22-11-2021	B215	B211	B212	B213	B214	
29-11-2021	B214	B215	B211	B212	B213	
06-12-2021	B213	B214	B215	B211	B212	
13-12-2021	B212	B213	B214	B215	B211	
20-12-2021		Backlog	experiments /	Additional Exp	eriments	
27-12-2021		Viva – Voo	ce and Repetiti	on / Beyond th	e Syllabus	
	06	-12-2021 to 11	L-12-2021: <i>II M</i>	lid Examinatio	ns	
10-01-2022						
to	Preparation and Practical's					
15-01-2022						
17-01-2022						
to			Semester End	Examinations		
29-01-2022						

Lab in charge

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

COURSE HANDOUT

PROGRAM	: B. Tech., VII-Sem., MECH/A
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Refrigeration and Air-Conditioning – 17ME28
L-T-P STRUCTURE	: 3-1-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Mr. Mallikarjuna Rao Dandu
COURSE COORDINATOR	: Mr. V. DHANA RAJU
PRE-REQUISITE: Thermod	ynamics.

COURSE OBJECTIVE: In a broader way, this course provides the simple understanding of refrigeration and air conditioning fundamentals. First, it covers the different refrigeration cycles and its analysis. Then the concepts of psychrometry and psychrometry processes used for air conditioning are imparted. Finally, the concepts of comfort air conditioning, cooling load design and its estimation are addressed.

COURSE OUTCOMES(CO)

CO1: Describe the basic concepts of refrigeration and its applications.

CO2: Evaluate the performance parameters of refrigeration systems.

CO3: Identify the desirable refrigerants and its use in various refrigeration systems.

CO4: Analyze the psychrometric properties and processes used in Air Conditioning systems.

CO5: Design of Air Conditioning systems for thermal comfort conditions.

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	2	1		2	2					1	3		
CO2	3	3	3	1		2	2					1	3		
CO3	2	2	2	2		3	3					2	2		
C04	3	3	2	2		2	2					2	2		
CO5	3	3	3	2		2	2					2	3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** C. P. Arora. , Refrigeration and air conditioning TMH, 2nd Edition, 2000.
- **T2** R. Dossat, Principles of Refrigeration - Pearson 4th Edition 2001.

BOS APPROVED REFERENCE BOOKS:

- **R1** S. C. Arora, Domkundwar, A course in refrigeration and air conditioning-Dhanapat Rai& sons 5th Edition 1997.
- **R2** Wilbert F.Stoecker, Jerold W. J.Jones, MGH, 1986.
- R3 Manohar Prasad, Refrigeration and Air conditioning, New Age international, 2003

COURSE DELIVERY PLAN (LESSON PLAN): Section-C

UNIT-I FUNDAMENTALS OF REFRIGERATION, REFRIGERANT & AIR- REFRIGERATION SYSTEM -14

	A	No. of	IGERATIO Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of Completion	Date of Completion	Learning Methods	Outcome Cos	Book followed	Sign Weekly
1.	Introduction: Refrigeration, Applications of refrigeration	1	25-07-2022		TLM2	CO1	T1	, , contraction
2.	Unit of refrigeration and COP	1	26-07-2022		TLM2	CO1	T1	
3.	Heat Engine, Refrigerator and Heat pump	1	28-07-2022		TLM2	CO1	T1	
4.	Types of Refrigeration systems, Problems on refrigeration basics	1	28-07-2022		TLM2, TLM4	CO2	T1	
5.	TUTORIAL-01	1	30-07-2022		TLM3	CO1	T1	
6.	Refrigerant: Desirable characteristics of ideal refrigerant	1	01-08-2022		TLM2	CO3	T1/R1	
7.	Classification of refrigerants- Desirable Properties-Nomenclature, Refrigerant Designation	1	02-08-2022		TLM 2, TLM 4	CO3	T1	
8.	Commonly used refrigerants, Alternate refrigerants,	1	04-08-2022		TLM 2	CO3	T1	
9.	Green House effect& Global	1	04-08-2022		TLM 7	CO3	T1	
10.	Air refrigeration system: working on Reversed Carnot cycle	1	06-08-2022		TLM 2	CO1	T1	
11.	Air refrigeration system working on Bell Coleman cycle	1	08-08-2022		TLM 2	CO1	T1	
12.	COP- Open and Dense air systems Problems	1	11-08-2022		TLM 2 TLM 4	CO2	T1	
13.	Solving Problems	1	11-08-2022		TLM 4	CO2	T1	
14.	TUTORIAL-02 Assignment-I/Quiz-I	1	16-08-2022		TLM 3, TLM 6	CO2	T1	
No. o	f classes required to complete UN	MT-I = 14		No	o. of classes	taken:		

UNIT-II VAPOUR COMPRESSION REFRIGERATION SYSTEM & COMPONENTS -10

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
15.	Introduction to VCR system: Essential components of the VCR plant	1	16-08-2022		TLM 2	CO1	T2	
16.	Simple vapour compression refrigeration cycle, COP	1	18-08-2022		TLM 2	CO1	T2	
17.	Representation of cycle on T-S and p-h Charts	1	18-08-2022		TLM 2	CO1	T2	

18.	Effect of sub cooling and superheating	1	20-08-2022		TLM 2	CO1	R1	
19.	Solving Problems	1	22-08-2022		TLM 4	CO2	R1	
20.	TUTORIAL-03	1	23-08-2022		TLM 3	CO2	T2	
21.	VCR-System Components: Compressors -Classification-Working Principles	1	25-08-2022		TLM 2, TLM8	CO1	Т2	
22.	Condensers – Classification-working principle	1	25-08-2022		TLM 2, TLM8	CO1	T2	
23.	Evaporators-Classification- working principle	1	27-08-2022		TLM 2, TLM8	CO1	T2	
24.	Expansion valve – Classification-working principle-	1	29-08-2022		TLM 2, TLM8	CO1	T2	
25.	Advantages and disadvantages Assignment-2/Quiz-2	1	30-08-2022		TLM 2, TLM 6	CO1	T2	
No. of	No. of classes required to complete UNIT-II = 10			No	o. of classes	taken:		

UNIT-III VAPOUR ABSORPTION, STEAM JET & NON-CONVENTIONAL REFRIGERATION SYSTEM -07

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
26.	Vapour Absorption Refrigeration system: working principle	1	01-09-2022		TLM 2	CO1	T1	
27.	Max. COP derivation for the VAR system and problems	1	01-09-2022		TLM 2, TLM 4	CO2	T1	
28.	Description and working of NH ₃ -Water system	1	03-09-2022		TLM 2	CO1	T1	
29.	LiBr-Water (Two shell & Four shell) System	1	26-09-2022		TLM 2	CO1	T1	
30.	TUTORIAL-04	1	27-09-2022		TLM 3	CO3	T1	
31.	Principle of operation of Three fluid absorption systems, Salient features.	1	29-09-2022		TLM 2	CO1	T1	
32.	Steam Jet Refrigeration System: Working Principle	1	29-09-2022		TLM 2	CO1	T1	
33.	Basic Analysis- Applications	1	01-10-2022		TLM 2	CO1	T1	
34.	Solving Problems	1	10-10-2022		TLM 4	CO2	T1	
35.	Non-Conventional Refrigeration Systems: Thermo electric refrigeration, Vortex tube refrigeration	1	11-10-2022		TLM 2	CO1	R1	
36.	Adiabatic Demagnetization refrigeration	1	13-10-2022		TLM 2	CO1	R1	
37.	TUTORIAL-05 Assignment-3/Quiz-3	1	13-10-2022		TLM 3, TLM 6	CO1	T1	
No. o	No. of classes required to complete UNIT-III = 06 No. of classes taken:							

PSYCHROMETRY & HUMAN COMFORT- 11									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly	
38.	Psychrometry : Introduction	1	15-10-2022		TLM 2	CO4	T2		
39.	Psychometric properties and relations	1	17-10-2022		TLM 2	CO4	Т2		
40.	Psychometric problems	1	18-10-2022		TLM 4	CO4	T2		
41.	TUTORIAL-06	1	20-10-2022		TLM 3	CO4	T2		
42.	Psychometric chart and its analysis, Psychometric processes and its analysis	1	20-10-2022		TLM 2	CO4	T2		
43.	Sensible, Latent and Total heat	1	22-10-2022		TLM 2	CO4	T2		
44.	Sensible Heat Factor and Bypass Factor	1	25-10-2022		TLM 2	CO4	T2		
45.	Solving Problems	2	27-10-2022		TLM 4	CO4	T2		
46.	TUTORIAL-07	1	29-10-2022		TLM 3	CO4	T2		
47.	Human Comfort: Thermodynamics	1	31-10-2022		TLM 2	CO4	T2		
48.	Effective temperature – Comfort chart	1	01-11-2011		TLM 2	CO4	T2		
49.	Factors affecting the human comfort and its analysis Assignment-4/Quiz-4	1	03-11-2011		TLM 2, TLM 6	CO4	T2		
No. of classes required to complete UNIT-IV = 10 No. of classes taken:						taken:			

UNIT-IV PSYCHROMETRY & HUMAN COMFORT- 11

UNIT-V

AIR CONDITI	ONING SYSTEM	S AND DESIGN -09

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
50.	Introduction: Air Conditioning Systems, Components of Air conditioning	1	03-11-2011		TLM 2, TLM8	CO5	R1/T2	
51.	Central and Unitary systems, Winter and Year-round systems	1	05-11-2011		TLM 2, TLM8	CO5	R1/T1	
52.	Cooling load estimation Solving Problems	1	07-11-2011		TLM 2	CO5	R1/T1	
53.	TUTORIAL-08	1	10-11-2011		TLM 3	CO5	T1	
54.	Design of Air Condition Systems	1	10-11-2022		TLM 2	CO5	T1	
55.	bypass factor-circulated air with ADP	1	12-11-2011		TLM 2	CO5	T1	
56.	System with Ventilated and re-circulation	1	14-11-2011		TLM 2, TLM8	CO5	T1	
57.	RSHF, GSHF and ESHF	1	15-11-2011		TLM 2	CO5	T1	
58.	Solving Problems	1	17-11-2011		TLM 4	CO5	T1	
59.	TUTORIAL-09 Assignment-5/Quiz-5	1	19-11-2011		TLM 3, TLM 6	CO5	T1	
No. of classes required to complete UNIT-V = 09					o. of classes	taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Air craft Air-Refrigeration System	1	16-08-2022		TLM2	CO1, CO4	R3	
2.	Cryogenics	1	13-10-2022		TLM2	CO1, CO3, CO5	R1& R2	

Teaching Learning Methods									
TLM1 Chalk and Talk TLM4 Problem Solving TLM7				Seminars or GD					
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo				
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study				

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	8W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	8W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practical	28-11-2022	03-12-2022	1W
Semester End Examinations	05-12-2022	17-12-2022	2W

EVALUATION PROCESS:

Evaluation Task	Cos	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max (B1, B2) +25% of Min (B1, B2)	1,2,3,4,5	B=20
Cumulative Internal Examination: A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Coordinator

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

	<u>PART - A</u>
PROGRAM	: B.Tech VII-Sem MechanicalEngineering – C Section
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: ROBOTICS–17ME29
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Dr. Ch. Siva Sankara Babu, Sr.Assistant Professor
COURSE COORDINATOR	: J.Subba Reddy, Associate Professor
PER-REQUISITE	: Engineering Mechanics & Kinematics of Machines

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to cultivate the interest and ability to develop robotic systems for social and industrial development.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1:Understand the basics of robots, end effectors and its applications.

CO2: Familiarize the working of actuators and sensors for robotic application.

CO3:Formulate D-H matrices for different kinematics problems.

CO4:Model the dynamic behavior of robot.

CO5:Analyze the trajectory of robotic motion.

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COc	РО	РО	РО	РО	PO	РО	РО	РО	PO	РО	PO	РО	PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					2						2		2	3
CO2	3	3	2									2		2	3
CO3	3	3	2									2		2	З
CO4	3	2	1				2					2		2	2
CO5	2					3	3					1	2	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Saeed B.Niku, Introduction to robotics- analysis ,systems &application, Second Edition, Willy India Private Limited, New Delhi,2011.
- **T2** R.K.Mittal and IJ Nagrath, Robotics and Control, Tata McGraw–Hill publishingcompany Limited, New Delhi,2003.

BOS APPROVED REFERENCE BOOKS:

- **R1** MikellP.Groover, Mitchell Weiss, Roger N. Nagel&Nicholas G. Odrey, Ashish Dutta, Industrial Robotics, Second Edition McGraw- Hill Education(India) PrivateLimited, 2012
- **R2** Robert J.Schilling, Fundamentals of robotics analysis & control, PHI learning private limited, New Delhi,4thEdition 2002
- **R3** John.J Criag, Introduction to Robotics-Mechanics and Control, Third Edition, Pearson Education, Inc., 2008

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29)

PART - B

UNIT-I:INTRODUCTION TO ROBOTICS, ANATOMY, ROBOT END EFFECTORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to Robotics	1	11-07-2022		TLM2	CO1	T1, T2, R1, R2	
2.	CEOs, Course Outcomes, POs and PSOs	1	12-07-2022		TLM2	-	-	
3.	Basic concepts – Robot anatomy	1	13-07-2022		TLM2	CO1	T1, T2, R1, R2]
4.	Components of robots, Tutorial	1	14-07-2022		TLM2	CO1	T1, T2, R1, R2]
5.	Robot motions	1	18-07-2022		TLM2	CO1	T1, T2, R1, R2	
6.	Number of D.O.F – Work volume	1	19-07-2022		TLM2	CO1	T1, T2, R1, R2	
7.	Robot applications in Material transfer and machine loading / unloading applications	1	20-07-2022		TLM2	C01	T1, T2, R1, R2	
8.	Robot applications in Processing operations – Assembly and inspection – Future applications	1	21-07-2022		TLM2	C01	T1, T2, R1, R2	
9.	Robot End Effectors –Introduction, Tutorial	1	23-07-2022		TLM3	CO1	T1, T2, R1, R2	
10.	Types of end effectors – Mechanical grippers	1	25-07-2022		TLM2	CO1	T1, T2, R1, R2	
11.	Vacuum cups, magnetic grippers, adhesive gripers and others	1	26-07-2022		TLM2	C01	T1, T2, R1, R2	
12.	Robot / End effectors interface	1	27-07-2022		TLM2	CO1	T1, T2, R1, R2	
13.	Considerations in gripper selection and design, Tutorial	1	28-07-2022		TLM3	C01	T1, T2, R1, R2	
14.	Case Studies, Numericals	1	30-07-2022		TLM2	CO1	T1, T2, R1, R2]
15.	Numericals	1	01-08-2022		TLM2	C01	T1, T2, R1, R2]
No. of	No. of classes required to complete UNIT-I: 15 No. of classes taken:						•	

UNIT-II: ROBOT ACTUATORS AND SENSORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
16.	Introduction to Actuators	1	02-08-2022		TLM2	CO2	T1,R1	
17.	Characteristics of Actuating System	1	03-08-2022		TLM2	CO2	T1,R1	
18.	Pneumatic Actuators, Tutorial	1	04-08-2022		TLM2,3	CO2	T1,R1	
19.	Hydraulic Actuators	1	06-08-2022		TLM2	CO2	T1,R1	
20.	Electric Motors	1	08-08-2022		TLM2	CO2	T1,R1	
21.	Introduction to Sensors	1	10-08-2022		TLM3	CO2	T1,R1	
22.	Sensor characteristics, Tutorial	1	11-08-2022		TLM1,3	CO2	T1,R1	
23.	Position sensors: Potentiometers, LVDT	1	16-08-2022		TLM1	CO2	T1,R1	
24.	Resolvers, Encoders	1	17-08-2022		TLM1	CO2	T1,R1	
25.	Magnetostrictive Displacement Transducers (MDT)	1	18-08-2022		TLM1	CO2	T1,R1	
26.	Velocity Sensors: Encoders	1	20-08-2022		TLM1	CO2	T1,R1	
27.	Tachometers	1	22-08-2022		TLM1	CO2	T1,R1	
28.	Industrial Applications	1	23-08-2022		TLM2	CO2	T1,R1]
29.	Case Studies, Tutorial	1	24-08-2022		TLM2,3	CO2	T1,R1	
No. of	classes required to complete UNIT-II	14		No. of classes	taken:		•	

UNIT-III:MANIPULATOR KINEMATICS

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book followed	HOD Sign
		Required	Completion	Completion	Methods	COs		Weekly
30.	Introduction to Manipulator Kinematics	1	25-08-2022		TLM2	CO3	T1,R1	
31.	Coordinate Frames	1	27-08-2022		TLM2	CO3	T1,R1	
32.	Description of Objects in space	1	29-08-2022		TLM2	CO3	T1,R1	
33.	Transformation of vectors	1	30-08-2022		TLM2	CO3	T1,R1	
34.	Numericals, Tutorial	1	01-09-2022		TLM1,3	CO3	T1,R1	
35.	Inverting a Homogeneous Transform	1	03-09-2022		TLM2	CO3	T1,R1	
	CRT Classes	10	05-09-2022 to 17-09-2022					
	I Mid Examinations	5			19-09-2022	2 to 24-09-2022		
36.	Numericals	1	26-09-2022		TLM2	CO3	T1,R1	
37.	Fundamental Rotation Matrices	1	27-09-2022		TLM2	CO3	T1,R1	
38.	Numericals, Tutorial	1	28-09-2022		TLM2,3	CO3	T1,R1	
39.	D-H representation	1	29-09-2022		TLM2	CO3	T1,R1	
40.	Problems on Forward Kinematics	1	01-10-2022		TLM2	CO3	T1,R1	
41.	Numericals	1	03-10-2022		TLM2	CO3	T1,R1	
42.	Numericals	1	04-10-2022		TLM2	CO3	T1,R1	
43.	Numericals, Tutorial	1	06-10-2022		TLM2,3	CO3	T1,R1	
No. of	classes required to complete UNIT-III	14			No. of clas	ses taken:		

UNIT-IV:ROBOT DYNAMICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
44.	Introduction to Dynamics of Robots	1	10-10-2022		TLM2	CO4	T1,R1	
45.	Differential transformations	1	11-10-2022		TLM2	CO4	T1,R1	
46.	Numericals	1	12-10-2022		TLM2	CO4	T1,R1	
47.	Numericals, Tutorial	1	13-10-2022		TLM2,3	CO4	T1,R1	
48.	Numericals	1	15-10-2022		TLM2	CO4	T1,R1	
49.	Jacobian Matrix	1	17-10-2022		TLM2	CO4	T1,R1	-
50.	Numericals	1	18-10-2022		TLM1	CO4	T1,R1	-
51.	Numericals	1	19-10-2022		TLM2	CO4	T1,R1	-
52.	Numericals, Tutorial	1	20-10-2022		TLM1,3	CO4	T1,R1	-
53.	Lagrange Euler formulation	1	22-10-2022		TLM2	CO4	T1,R1	
54.	Numericals	1	25-10-2022		TLM1	CO4	T1,R1	-
55.	Numericals	1	26-10-2022		TLM2	CO4	T1,R1	1
56.	Numericals, Tutorial	1	27-10-2022		TLM1,3	CO4	T1,R1	-
No. of	Io. of classes required to complete UNIT-IV 15 No. of classes taken:							1

UNIT-V:TRAJECTORY PLANNING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
57.	Introduction to Trajectory Planning	1	29-10-2022		TLM2	CO5	T1,R1	
58.	Considerations on Trajectory Planning	1	31-10-2022		TLM2	CO5	T1,R1	1
59.	Joint Interpolated Trajectory	1	01-11-2022		TLM2	CO5	T1,R1	1
60.	Numericals	1	02-11-2022		TLM2	CO5	T1,R1	1
61.	Numericals, Tutorial	1	03-11-2022		TLM3	CO5	T1,R1	1
62.	Numericals	1	05-11-2022		TLM2	CO5	T1,R1	1
63.	Numericals	1	07-11-2022		TLM2	CO5	T1,R1	
64.	Cartesian Path Trajectory	1	08-11-2022		TLM2	CO5	T1,R1	1
65.	Numericals	1	09-11-2022		TLM2	CO5	T1,R1	1
66.	Numericals, Tutorial	1	10-11-2022		TLM3	CO5	T1,R1	1
67.	Numericals	1	14-11-2022		TLM2	CO5	T1,R1	
68.	Numericals	1	15-11-2022		TLM2	CO5	T1,R1	1
69.	Robot Programming (Beyond Syllabus)	1	16-11-2022		TLM2	CO5	T1,R1	1
70.	Robot Programming (Beyond Syllabus)	1	17-11-2022		TLM2	CO5	T1,R1	l
71.	Robot Programming (Beyond Syllabus)	1	19-11-2022		TLM2	CO5	T1,R1	
No. of cla	No. of classes required to complete UNIT-V 12 + 03 (Beyond Syllabus) No. of classes taken:							
		II Mid Examinatio	ons – 21-11-2022 to	26-11-2022				

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemen	t of Class work	11-07-2022		
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks	
CRT Classes	05-09-2022	17-09-2022	2 Weeks	
I Mid Examinations	19-09-2022	24-09-2022	1 Week	
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks	
II Mid Examinations	21-11-2022	26-11-2022	1 Week	
Preparation and Practicals	28-11-2022	03-12-2022	1 Week	
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks	

<u> PART – C</u>

EVALUATION PROCESS:		
Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u> PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Signature				
Faculty Name	Dr. Ch. Siva Sankara Babu	J.Subba Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

PROGRAM	: B.Tech., VII-Sem., ME						
ACADEMIC YEAR	: 2022-23						
COURSE NAME & CODE	: Metrology and Instrumentation (17ME30)						
L-T-P STRUCTURE	: 4-0-0						
COURSE CREDITS	:3						
COURSE INSTRUCTOR	: B.SUDHEER KUMAR						
COURSE COORDINATOR : K.Narayana							

PRE-REQUISITE: Modern Machining Processes

COURSE OBJECTIVE : The main objective of this course is to ascertain basic principles of measurements and calibrate the instruments.

COURSE OUTCOMES(CO): At the end of the course, the student will be able to :

CO:1	Apply different measuring techniques in quality control departments of industries
	and to ensure quality of products.
CO:2	Measure the dimensions using linear, angular and optical measuring instruments.
CO:3	Analyze measuring systems of surface roughness and perform alignment /
	acceptance test effectively.
CO:4	Design the instruments for the measurement of stress, strain, force, torque etc.
CO:5	Analyze measuring systems of Pressure, Fluid flow and Temperature.

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO 1	PO 2	РО 3	РО 4	РО 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3				1							2		2	
CO2	3	2	2		1							2		2	
CO3	3	3	2		1							2		2	2
CO4	3	2	2	2	1							2	2		
CO5	3	2	2	2	1							2	2		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** D.S.Kumar, Mechanical Measurements and Controls, 4th Edition, Metropolitan Book Co-Private Ltd.
- T2 R.K.Jain, Engineering Metrology, Khanna Publishers.3rd edition,2003
- **T3** BeckWith, Marangoni, Linehard, Mechanical Measurements, Person Education Asia.6th edition, 2011.

BOS APPROVED REFERENCE BOOKS:

- **R1** A.K, Sawhneypuneet "A course in Mechanical Measurements and instrumentation control" DhanpatRai publications, 12thEdition, 2012
- R2 J.P. Holman, Experimental Methods for Engineers, McGraw Hill.
- **R3** Ernest O. Doebelin, Measurement systems Application and Design, International Student Edition, 4thEdition, McGraw-Hill Book Company, 1998.
- **R4** M. Mahajan, A text book of Metrology, DhanpatRai& Co.
- **R5** I C Gupta, Engineering Metrology, DanpathRai

COURSE DELIVERY PLAN (LESSON PLAN): M&I UNIT-I

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	INTRODUCTION TO SUBJECT	1	13/07/2022		TLM2	CO1	-	
2.	COURSE OUTCOMES	1			TLM2	CO1	-	
3.	BASIC CONCEPTS INTRODUCTION		14/07/2022		TLM2	CO1	T2	
4.	FUNDAMENTAL MEASURING PROCESSES AND METHODS	1	15/07/2022		TLM1	CO1	R4, T3	
5.	GENERALISED MEASUREMENT SYSTEM AND ITS FUNCTIONAL ELEMENTS	1	16/07/2022		TLM1	C01	Т3	
6.	PERFORMANCE CHARACTERISTICS	2	20/07/2022		TLM1	CO1	R4	
7.	ANALYSIS OF EXPERIMENTAL DATA: CAUSES AND TYPES OF EXPERIMENTAL ERRORS	1	21/07/2022		TLM1	C01	T1	
8.	TREATMENT OF EXPERIMENTAL DATA	1	22/07/2022		TLM1	CO1	T1	
9.	METHOD OF LEAST SQUARES	1	23/07/2022		TLM1	CO1	T1	
10.	GRAPHICAL ANALYSIS AND CURVE FITTING.	2	27/07/2022		TLM1	CO1	T1	
No. of	classes required to completeUNIT-I	11			No. of clas	ses taken:		

UNIT-II No. of Tentative Actual Teaching Learning Text HOD S.No. Classes Book Sign Topics to be covered Date of Date of Learning Outcome followed Weekly Required Completion Completion Methods COs LINEAR MEASUREMENT R5,T2 CO2 STANDARDS OF 1 11. 28/07/2022 TLM1 MEASUREMENTS LINE AND END STANDARD. BASIC PRINCIPLE AND CO2 R5,T2 12. APPLICATIONS OF SLIP 1 29/07/2022 TLM2 GAUGES DIAL INDICATOR AND CO2 R5,T2 1 30/07/2022 TLM2 13. MICROMETERS ANGULAR MEASUREMENTS CO2 R5,T2 **BEVEL PROTRACTOR – ANGLE** 03/08/2022 14. 1 TLM2 SLIP GAUGES SINE BAR, ROLLERS AND CO2 R5,T2 04/08/2022 TLM2 15. SPHERES USED TO 2 DETERMINE THE TAPERS APPLICATIONS OF ANGULAR CO2 R5,T2 1 05/08/2022 TLM2 16. MEASUREMENT **OPTICAL MEASURING** CO2 R5,T2 **INSTRUMENTS** TOOL 17. 1 06/08/2022 TLM2 MAKER'S MICROSCOPE AND ITS USES COLLIMATORS, OPTICAL CO2 R5,T2 1 10/08/2022 TLM2 18. PROJECTOR **OPTICAL FLATS AND THEIR** CO2 R5,T2 19. 1 11/08/2022 TLM2 USES INTERFEROMETER, AND CO2 R5,T2 20. 1 12/08/2022 TLM2 THOSE APPLICATIONS

No. of classes required to complete	10		No. of classes taken:
UNIT-II	10		NO. OF Classes taken.

UNIT-III

S.No. Topics to be covered Classes Date of Date of Lea	eaching	Learning	Tout	
Required Completion Met	earning lethods	Outcome COs	Text Book followed	HOD Sign Weekly
SURFACE TEXTURE FACTORS				
21. EFFECTING SURFACE 1 17/08/2022 TL	TLM2	CO3	R5,T2	
ROUGHNESS				
REASONS FOR CONTROLLING 1 18/08/2022	TINAS	602	DF 73	
22. SURFACE TEXTURE	TLM2	CO3	R5,T2	
DIFFERENCES BETWEEN				
23. SURFACE ROUGHNESS AND 1 20/08/2022 TL	TLM2	CO3	R5,T2	
SURFACE WAVINESS				
ELEMENTS OF SURFACE				
TEXTURE NUMERICAL				
	TLM2	CO3	R5,T2	
FINISH – CLA, R, R.M.S VALUES –				
RA VALUES, AND RZ VALUES				
BASIC PRINCIPLE OF PROFILE				
	TLM2	CO3	R5,T2	
SURFACE METER				
ISI SYMBOLS FOR INDICATION 1	TI 842	602	DF 70	
26. OF SURFACE FINISH 26/08/2022 TL	TLM2	CO3	R5,T2	
APPLICATIONS SURFACE 1 ar / or / oppo				
27. TEXTURE 1 27/08/2022 TL	TLM2	CO3	R5,T2	
LIMITS AND FITS				
INTRODUCTION, NORMAL SIZE				
28. TOLERANCE LIMITS, 2 01/09/2022 TL	TLM2	CO3	R5,T2	
DEVIATIONS, ALLOWANCE				
FITS AND THEIR TYPES –				
	TLM2	CO3	R5,T2	
TOLERANCE SYSTEM			,	
HOLE AND SHAFT BASIS				
30. SYSTEMS 1 03/09/2022 TL	TLM2	CO3	R5,T2	
			-	
31. INTERCHANGEABILITY AND 1 28/09/2022 TL	TLM2	CO3	R5,T2	
SELECTIVE ASSEMBLY		COS	N3,12	
32. INDIAN STANDARD 1 29/09/2022 TL	TLM2	CO3	R5,T2	
		05	N3,12	
No. of classes required to complete 13 No.	n of class	ses taken:		
UNIT-III				

UNIT-IV

		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
	MEASUREMENT OF		30/09/2022					
33.	DISPLACEMENT INTRODUCTION,	1			TLM2	CO4	T1,T3	
	CLASSIFICATION							
34.	DIMENSIONAL MEASUREMENT,	1	01/10/2022		TI N42	<u> </u>	T4 T 2	1
34.	GAUGE BLOCKS	L			TLM2	CO4	T1,T3	
35.	С	RT CLASSES	5 05-09-2022	TO 17-09-202	22			
36.	I MID EXAMINATION 19-09-2022 TO 24-09-2022							
37.	OPTICAL METHODS,	1	12/10/2022		TINAO	CO4	T1 T2	
37.	PNEUMATIC GAUGE	L	12/10/2022		TLM2	CO4	T1,T3	

38.	APPLICATIONS OF	1		TLM2	CO4	T1 T2	
50.	DISPLACEMENT MEASUREMENT				04	T1,T3	
39.	MEASUREMENT OF STRESS AND STRAIN INTRODUCTION, STRAIN MEASUREMENTS ELECTRICAL RESISTANCE STRAIN GAUGE, GAUGE FACTOR	1	13/10/2022	TLM2	CO4	T1,T3	
40.	MEASUREMENT OF RESISTANCE STRAIN-GAGE OUTPUTS	1	14/10/2022	TLM2	CO4	T1,T3	
41.	TEMPERATURE COMPENSATION	1	15/10/2022	TLM1	CO4	T1,T3	
42.	STRAIN GAGE ROSETTES, APPLICATIONS OF STRAIN MEASUREMENT	1	19/10/2022	TLM2	CO4	T1,T3	
43.	MEASUREMENT OF FORCE AND TORQUE INTRODUCTION, ELASTIC TRANSDUCER	1	20/10/2022	TLM2	CO4	T1,T3	
44.	STRAIN GAGE LOAD CELLS	1	21/10/2022	TLM2	CO4	T1,T3	
45.	DYNAMOMETERS- MECHANICAL, HYDRAULIC, ELECTRICAL	1	22/10/2022	TLM2	CO4	T1,T3	
46.	APPLICATIONS OF FORCE AND TORQUE MEASUREMENT	1	26/10/2022	TLM2	CO4	T1,T3	
No. of UNIT-I	classes required to complete V	12		No. of clas	sses taken	:	

UNIT-V

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
47.	MEASUREMENT OF PRESSURE INTRODUCTION, MANOMETERS	1	27/10/2022		TLM2	CO5	T1,T3	
48.	DIAL TYPE PRESSURE GAUGE, PRESSURE TRANSDUCERS	1	28/10/2022		TLM2	CO5	T1,T3	
49.	PITOT, STATIC, AND PITOT- STATIC TUBE AND ITS CHARACTERISTICS	1	29/10/2022		TLM2	CO5	T1,T3	
50.	LOW PRESSURE MEASUREMENT GAUGES APPLICATIONS OF PRESSURE MEASUREMENT	1	02/11/2022		TLM2	CO5	T1,T3	
51.	MEASUREMENT OF FLUID FLOW INTRODUCTION, ROTAMETER	1	03/11/2022		TLM2	CO5	T1,T3	
52.	TURBINE FLOW METER, LASER DOPPLER	1	04/11/2022		TLM2	CO5	T1,T3	
53.	ANEMOMETER, HOT-WIRE ANEMOMETER, APPLICATIONS OF FLUID FLOW MEASUREMENT	1	05/11/2022		TLM2	CO5	T1,T3	
54.	MEASUREMENT OF TEMPERATURE INTRODUCTION, TYPES OF THERMOMETERS	1	09/11/2022		TLM2	CO5	T1,T3	
55.	THERMOCOUPLES, RTD	1	10/11/2022		TLM2	CO5	T1,T3	

56.	THERMISTERS, PYROMETERS. TEMPERATURE MEASUREMENT	1	11/11/2022	TLM2	CO5	T1,T3	
57.	TEMPERATURE MEASUREMENT	1	12/11/2022	TLM2	CO5	T1,T3	
	No. of classes required to complete UNIT-V			 No. of classes taken:			

CONTENTS BEYOND THE SYLLABUS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
58.	INTRODUCTION TO GEAR MEASUREMENTS	1	16/11/2022		TLM2	CO2	T1,T3	
59.	INTRODUCTION TO COMPARATORS	1	17/11/2022		TLM2	CO2	T1,T3	
60.	MEASUREMENT OF SPEED	1	18/11/2022		TLM2	CO4	T1,T3	

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD

pproved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada credited by NAAC with "A" Grade and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

-@

DEPARTMENT OF MECHANICAL ENGINEERING

	COURSE HANDOUT
	<u> PART - A</u>
PROGRAM	: B.Tech VII-Sem Mechanical Engineering – C Section
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: PRODUCTION PLANNING AND CONTROL – 17ME33
L-T-P STRUCTURE	: 4-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: B.Udaya Lakshmi, Assistant Professor
COURSE COORDINATOR	: J.Subba Reddy, Associate Professor
PER-REQUISITE	: Industrial Management & Operational Research

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to understand the basic concepts of production planning and control, familiarize with different forecasting techniques, familiarize the concepts of inventory management, understand the concepts of routing and scheduling and acquire basic knowledge in aggregate planning, expediting and follow up.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1: Exhibit the ability in developing production planning for operating economy, effectiveness and cost control.

CO2: Apply the forecasting techniques in estimating the number of products.

CO3: Use the inventory management techniques to determine the optimum quantity of material.

CO4: To develop the route sheet required for a production process/activities.

CO5: To decide the dispatch procedure required for a production processes and other activities.

<u> </u>	PO	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	2							2	1		3	
CO2	1	2	2	1								1		3	
CO3	1	2	1	2	2							1		3	
CO4	1	1	2	2								1		3	
CO5	1	1	1	1	2							1		3	

COURSE ARTICULATION MATRIX (Correlation between COs & POs, PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 R.Pannerselavn, Production and Operations Management, 2nd Edition, PHI,2007.
- **T2** P.Rama Murthy, Production and Operations Management, New Age Internationa, 2ndEdition,
 - 2005

BOS APPROVED REFERENCE BOOKS:

- **R1** S.N.Chary, Production and Operations Management, TMcH, 4th Edition 2010.
- **R2** SamuelEilon, Elements of Production Planning and Control, Universal Publishing Corporation, 2004
- R3 Seetharama L.N, Production Planning and Inventory Control, PHI, 2nd Edition1995

COURSE DELIVERY PLAN (LESSON PLAN): PPC [Program Elective – IV]

<u> PART - B</u>

UNIT-I: INTRODUCTION TO PRODUCTION PLANNING AND CONTROL (PPC)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	CEOs, Course Outcomes, POs and PSOs	1	11-7-2022		TLM2	C01	R1, R2	
2.	UNIT-I Introduction to PPC	1	12-7-2022		TLM2	CO1	R1, R2	
3.	Definition-Objectives of PPC	1	13-7-2022		TLM2	CO1	R1, R2	
4.	Functions of production planning and control	1	16-7-2022		TLM2	CO1	R1, R2	
5.	Elements of production control	1	18-7-2022		TLM2	CO1	R1, R2	
6.	Types of production	1	19-7-2022		TLM2	CO1	R1, R2	
7.	Process chart	1	20-7-2022		TLM2	CO1	R1, R2	
8.	Tutorial-I	1	23-7-2022		TLM3	CO1	R1, R2	
9.	Product life cycle	1	25-7-2022		TLM2	CO1	R1, R2	
10.	Design of product	1	26-7-2022		TLM2	CO1	R1, R2	
11.	Product Analysis	1	27-7-2022		TLM2	CO1	R1, R2	
12.	Org. Chart for PPC	1	30-7-2022		TLM2	CO1	R1, R2	
13.	Case Studies	1	1-8-2022		TLM2	CO1	R1, R2	
14.	Tutorial-II	1	2-8-2022		TLM3	CO1	R1, R2	1
No. of	No. of classes required to complete UNIT-I:				No. of class	ses taken:	•	

UNIT-II: FORECASTING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
15.	UNIT-II Introduction to Forecasting	1	3-8-2022		TLM2	CO2	T1,R1	
16.	Importance of forecasting – sales forecasting	1	6-8-2022		TLM2	CO2	T1,R1	
17.	Types of forecasting	1	8-8-2022		TLM2	CO2	T1,R1	-
18.	Qualitative methods	1	10-8-2022		TLM2	CO2	T1,R1	
19.	Quantities methods – Introduction	1	13-8-2022		TLM2	CO2	T1,R1	
20.	Tutorial-III	1	16-8-2022		TLM3	CO2	T1,R1	
21.	Moving Avg. method	1	17-8-2022		TLM1	CO2	T1,R1	
22.	weighted MAM	1	20-8-2022		TLM1	CO2	T1,R1	
23.	Exponential smoothing method	1	22-8-2022		TLM1	CO2	T1,R1	
24.	Errors in Forecasting	1	23-8-2022		TLM1	CO2	T1,R1	
25.	MAD, MAE, MAPE etc	1	24-8-2022		TLM1	CO2	T1,R1	
26.	Correlation and Regression Analysis	1	27-8-2022		TLM1	CO2	T1,R1	
27.	Delphi Method -Problems	1	29-8-2022		TLM2	CO2	T1,R1	
28.	Numericals, Industrial Applications, Tutorial-IV	1	30-8-2022		TLM3	CO2	T1,R1	
No. of	classes required to complete UNIT-II	14		No. of classes	taken:			

UNIT-III: INVENTORY MANAGEMENT

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book followed	HOD Sign
5.100.		Required	Completion	Completion	Methods	COs	Text book followed	Weekly
29.	<u>UNIT-I</u>II Inventory of management – introduction	1	3-9-2022		TLM2	CO3	T1,R1	
30.	Types of Inventories	1	5-9-2022		TLM2	CO3	T1,R1	
31.	Functions of inventory management	1	6-9-2022		TLM2	CO3	T1,R1	
32.	Cost Associated with Inventories	1	7-9-2022		TLM2	CO3	T1,R1	
33.	EOQ model – Problem	1	10-9-2022		TLM1	CO3	T1,R1	
34.	Selective Control of Inventories	1	12-9-2022		TLM3	CO3	T1,R1	
35.	ABC analysis, VED analysis	1	13-9-2022		TLM2	CO3	T1,R1	
36.	HMI Analysis etc.	1	14-9-2022		TLM2	CO3	T1,R1	
37.	Inventory control systems	1	17-9-2022		TLM2	CO3	T1,R1	
38.	P-Systems	1	27-9-2022		TLM2	CO3	T1,R1	
39.	Q-Systems	1	28-9-2022		TLM2	CO3	T1,R1	
40.	Numericals	1	1-10-2022		TLM2	CO3	T1,R1	
41.	Tutorial-V	1	3-10-2022		TLM1	CO3	T1,R1	
42.	Introduction to MRP	1	4-10-2022		TLM2	CO3	T1,R1	
43.	objective of MRP	1	8-10-2022		TLM2	CO3	T1,R1	
44.	Inputs of MRP	1	10-10-2022		TLM2	CO3	T1,R1	
45.	Bill of Materials	1	11-10-2022		TLM2	CO3	T1,R1	
46.	Introduction to JIT inventory	1	12-10-2022		TLM2	CO3	T1,R1	
47.	Element of JIT	1	15-10-2022		TLM2	CO3	T1,R1	
48.	Japanese concepts, Kanban system	1	17-10-2022		TLM2	CO3	T1,R1	
49.	Tutorial-VI	1	17-10-2022		TLM3	CO3	T1,R1	
No. of	classes required to complete UNIT-III	21			No. of class	ses taken:		

UNIT-IV: ROUTING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
50.	Unit-IV- Routing, Routing procedure	1	18-10-2022		TLM2	CO4	T1,R1	
51.	Route sheets ,Maintanance Sheets	1	19-10-2022		TLM2	CO4	T1,R1	
52.	Factors affecting routing procedure	1	22-10-2022		TLM2	CO4	T1,R1	
53.	Definition of Scheduling	1	23-10-2022		TLM2	CO4	T1,R1	
54.	Forward and Backward Scheduling	1	25-10-2022		TLM2	CO4	T1,R1	
55.	Johnsons Rules	1	25-10-2022		TLM1	CO4	T1,R1	
56.	Tutorial-VII	1	26-10-2022		TLM3	CO4	T1,R1	
57.	Difference between loading & scheduling	1	29-10-2022		TLM2	CO4	T1,R1	
58.	Scheduling Policies	1	31-10-2022		TLM2	CO4	T1,R1	
59.	Techniques- Gant Chart, Gant Chart Symbols	1	1-11-2022		TLM2	CO4	T1,R1	
60.	Scheduling Methods	1	2-11-2022		TLM2	CO4	T1,R1	
61.	Tutorial-VIII	1	2-11-2022		TLM3	CO4	T1,R1	1
No. of	classes required to complete UNIT-IV	12			No. o	of classes taken:	•	

UNIT-V: AGGREGATE PLANNING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
62.	Aggregate Planning	1	5-11-2022		TLM2	CO5	T1,R1	
63.	Stage of Aggregate Planning	1	6-11-2022		TLM2	CO5	T1,R1	
64.	Chase Planning	1	7-11-2022		TLM2	CO5	T1,R1	
65.	Expanding & Controlling Accepts	1	9-11-2022		TLM2	CO5	T1,R1	
66.	Tutorial-IX	1	9-11-2022		TLM3	CO5	T1,R1	
67.	Introduction to Dispatching	1	12-11-2022		TLM2	CO5	T1,R1	
68.	Activities of Dispatcher	1	12-11-2022		TLM2	CO5	T1,R1	
69.	Dispatching Procedure	1	13-11-2022		TLM2	CO5	T1,R1	
70.	Follow up definition, Types of Follow up	1	14-11-2022		TLM2	CO5	T1,R1	
71.	Reasons for existence of functions	1	14-11-2022		TLM2	CO5	T1,R1	
72.	Computer Applications in PPC	1	15-11-2022		TLM2	CO5	T1,R1	
73.	ERP Systems, ERP Modules, Basics of MRP- II	1	16-11-2022		TLM2	CO5	T1,R1	
74.	Numericals, Tutorial-X	1	19-11-2022		TLM3	CO5	T1,R1	
No. of cla	No. of classes required to complete UNIT-V				No. of classes	taken:	•	

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemen	t of Class work	10-12-2018			
I Phase of Instructions	25-11-2019	11-01-2020	7 Weeks		
I Mid Examinations	20-01-2020	22-01-2020	½ Week		
II Phase of Instructions	23-01-2020	25-03-2020	9 Weeks		
II Mid Examinations	26-03-2020	28-03-2020	1⁄2 Week		
Preparation and Practicals	30-03-2020	04-04-2020	1 Week		
Semester End Examinations	06-04-2020	11-04-2020	1 Week		

<u> PART - C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

<u> PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	B.Udaya Lakshmi	J.Subba Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: A.Dhanunjay Kumar	
Course Name & Code	: CIM & 17ME92	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., MECH., VII-Sem., Sections-C	A.Y : 2022-23

PRE-REQUISITE:CAD/CAM

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to control the entire production process using computers. This integration allows individual processes to exchange information with each other and initiate actions.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the basics of production and derive production metrics.
CO 2	Prepare CNC programs for manufacturing of different geometries on milling and lathe
	Machines.
CO 3	Apply group technology concepts for parts classification.
CO 4	Select layouts of FMS for industrial applications.
CO 5	Develop a CAPP system for rotational and prismatic parts.

|--|

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2									2		
CO2	1	1	2	2	1							1	3		
CO3	1	1	1		1							1	3		
CO4		2		1									2		
CO5	1				1								3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

BOS APPROVED TEXT BOOKS:

- **T1** 1. Mikell P Groover, Automation, production Systems and Computer Integrated Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
- **T2** 2. P. Radhakrishnan, "Computer Numerical Control ", New Central Book Agency, 1992.

REFERENCE BOOKS:

R1 P.Radhakrishnan,S.Subramanyam&V.Raju,CAD/CAM/CIM,New Age International Publishers, 3rd edition 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Production Systems	1	11.07.2022		TLM2	
2.	production facilities	1	12.07.2022		TLM2	
3.	Manufacturing operations	1	13.07.2022		TLM2	
4.	manufacturing models and metrics	1	14.07.2022		TLM2	
5.	Examples of Manufacturing problems	1	18.07.2022		TLM2	
6.	CIM Definition	1	19.07.2022		TLM2	
7.	CIM components	1	20.07.2022		TLM2	
8.	Evolution of CIM, needs of CIM	1	21.07.2022		TLM2	
9.	Benefits of CIM	1	25.07.2022		TLM2	
10.	Overview of CIM software and Hardware	1	26.07.2022		TLM2	
No. o	f classes required to complete UN	IT-I:10	1	No. of clas	sses taken:	

UNIT-II: NUMERICAL CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Basic components of NC system	1	27.07.2022		TLM2	
2.	NC motion control system	1	28.07.2022		TLM2	
3.	Applications of NC, advantages and disadvantages of NC	1	01.08.2022		TLM2	
4.	computer Numerical control	1	02.08.2022		TLM2	
5.	functions and advantages of CNC	1	03.08.2022		TLM2	
6.	Direct Numerical Control, components of a DNC system	1	04.08.2022		TLM2	
7.	Functions and advantages of DNC	1	08.08.2022		TLM2	
8.	NC part programming.	1	09.08.2022		TLM2	
9.	NC part programming turn	1	10.08.2022		TLM2	
10.	NC part programming mill		11.08.2022		TLM2	
No. o	f classes required to complete UI	NIT-II:10		No. of clas	sses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Part Families, Parts Classification and Coding	1	26-09-2022		TLM2	· · · · ·
2.	Features of Parts Classification and Coding Systems	1	27.09.2022		TLM2	
3.	Opitz of Parts Classification and Coding Systems	1	28.09.2022		TLM2	
4.	Production Flow Analysis	1	29.09.2022		TLM2	
5.	Composite Part Concept,		01.10.2022		TLM2	
6.	Machine Cell Design	1			TLM2	
7.	Applications Of Group Technology	1	06.10.2022		TLM2	
8.	Quantitative analysis of cellular manufacturing	1	10.10.2022		TLM2	
9.	Rank Order Clustering Method, Arranging Machines in a GT cell	2	11.10.2022		TLM2	
10.	HollierMethod, Simple Problems		12.10.2022		TLM2	
No. o	f classes required to complete UI	NIT-III:09		No. of class	sses taken:	

UNIT-III: CELLULAR MANUFACTURING SYSTEMS

UNIT-IV :FLEXIBLE MANUFACTURING SYSTEMS (FMS)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Flexibility	1	13.10.2022		TLM2	
2.	Types of FMS	1	17.10.2022		TLM2	
3.	FMS Components	1	18.10.2022		TLM2	
4.	FMS Application & Benefits	1	19.10.2022		TLM2	
5.	FMS Planning and implementation issues	1	20.10.2022		TLM2	
6.	Quantitative analysis of FMS	1	25.10.2022		TLM2	
7.	Simple Problems.	1	26.10.2022		TLM2	
8.	FMS software	1	27.10.2022		TLM2	
9.	FMS hardware	1	31.10.2022		TLM2	
10.	Implementation issues FMS	1	01.11.2022		TLM2	
No. of	f classes required to complete U	NIT-IV:10)	No. of clas	sses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Process planning for parts	1	02.11.2022		TLM2	
2.	Process planning for assemblies	1	03.11.2022		TLM2	
3.	Make or buy decisions	1	07.11.2022		TLM2	
4.	Computer aided process planning	1	08.11.2022		TLM2	
5.	Retrieval and generative CAPP systems	1	09.11.2022		TLM2	
6.	Concurrent engineering	1	10.11.2022		TLM2	
7.	design for manufacturing	1	14.11.2022		TLM2	
8.	Advanced manufacturing planning	1	15.11.2022		TLM2	
9.	lean production and JIT & production systems	2	17.11.2022		TLM2	
10.	Lean principles	1			TLM2	
No. of cla	sses required to complete U	NIT-V:10)	No. of class	ses taken:	1

UNIT-V : PROCESS PLANNING AND CONCURRENT ENGINEERING

Teaching I	Teaching Learning Methods								
TLM1	LM1 Chalk and Talk		Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

100010	
PO 1	An ability to apply knowledge of Mathematics, Sciences and Engineering fundamentals to
	find the solution to real time Mechanical Engineering problems.
PO 2	An ability to identify and formulate mathematical models to analyze complex engineering
	problems.
PO 3	An ability to design a mechanical systems/ processes to meet the desired needs within
	realistic constraints such as economic, environmental, societal, health &safety.
PO 4	An ability to design and conduct experiments, perform analysis, interpretation of data and
	synthesis of information to provide valid conclusions.
PO 5	An ability to develop the model and analyze the Mechanical systems using modern software
	tools.
PO 6	An ability to understand societal, health, safety, legal, cultural issues and the consequent
	responsibilities relevant to engineering practice.
PO 7	An ability to understand the impact of engineering solutions in societal, environmental
	context and demonstrate the knowledge for sustainable development.
PO 8	An ability to understand the professional ethics to follow the norms of engineering practice.
PO 9	An ability to function effectively as an individual and as a member / leader in diverse
	technical teams.
PO 10	An ability to communicate effectively with the engineering community and society through
	reports & presentations.
PO 11	An ability to apply management principles to organise the multidisciplinary projects.
PO 12	An ability to understand the need of independent and lifelong learning so as to address day
	to day technological changes.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards
	improvement of quality and optimization of engineering systems in the design,
	analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of
	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
A NAGESWARA RAO	A NAGESWARA RAO	J SUBBAREDDY	Dr S PICHI REDDY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

	COURSE HANDOUT
	<u>PART - A</u>
PROGRAM	: B.Tech VII-Sem MechanicalEngineering – B,C Sections
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Total Quality management & 17ME36
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Narayana Karagani, Assistant Professor
COURSE COORDINATOR	: Seelam Srinivasa Reddy, Associate Professor
PER-REQUISITE	Industrial Management

COURSE EDUCATIONAL OBJECTIVES: The main objective of this course is to familiarize the concepts of quality management techniques in industries

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1: Comprehend the principles and strategies of quality control

CO2: Apply the principles of total quality management in an industry.

CO3: Analyze statistical quality control tools towards improving the quality.

CO4: Adopt the principles of Taguchi techniques for industrial needs.

CO5: Implement ISO quality standards in an organization.

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

COs	PO 1	PO 2	PO 3	PO	PO	PO 6	PO 7	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO
	1	2	3	4	5	O	/	8	9	10	11	12	1	2	3
CO1				2							3	3	3	3	3
CO2			3	3		2	2				3	3	3	3	3
CO3	3	3	3	3							3	3	3	3	3
CO4	2		3								3	3	3	3	3
CO5	1		3	3		2	2				3	3	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS-APPROVED TEXTBOOKS:

T: Dale H. Besterfiled., Total Quality Management, Pearson Education, 3rd Edition 2010 **BOS APPROVED REFERENCE BOOKS:**

R1. James R. Evans & William M. Lidsay, The Management and Control of Quality, South-Western (Thomson Learning), 2002.

R2. Feigenbaum.A.V, Total Quality Management, MCGraw-Hill, 2005.

R3. Narayana V. and Sreenivasan, N.S, Quality Management- Concepts and Tasks, New Age International, 2006.

R4. Zeiri, Total Quality Management for Engineers, Wood Head Publishers, 2009.

COURSE DELIVERY PLAN (LESSON PLAN): ROBOTICS (17ME29) <u>PART - B</u>

UNIT-I: INTRODUCTION TO TQM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Textbook followed	HOD Sign Weekly
1.	Introduction to TQM	1	11-07-2022		TLM1	CO'1	T&R1	
2.	CEOs, Course Outcomes, POs and PSOs	1	13-07-2022		TLM1	CO'1	T&R1	
3.	INTRODUCTION: Evolution of total quality management	1	14-07-2022		TLM1	CO'1	T&R1	
4.	Definition of Quality	1	15-07-2022		TLM1	CO'1	T&R1	
5.	Quality costs,	1	18-07-2022		TLM2	CO'1	T&R1	
6.	Quality Council	1	20-07-2022		TLM2	CO'1	T&R1	
7.	Strategic Planning	1	21-07-2022		TLM2	CO'1	T&R1	
8.	Deming Philosophy	1	22-07-2022		TLM2	CO'1	T&R1	
9.	Barriers to TQM Implementation	1	25-07-2022		TLM2	CO'1	T&R1	
10.	Barriers to TQM Implementation	1	27-07-2022		TLM2	CO'1	T&R1	
11.	Revision	1	28-07-2022		TLM2	CO'1	T&R1	
12.	Quiz-1	1	29-07-2022		TLM6	CO'1	T&R1	
No. of	No. of classes required to complete UNIT-I:				No. of class	ses taken:		

UNIT-II: TQM PRINCIPLES

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Textbook followed	HOD Sign	
		Required	Completion	Completion	Methods	COs		Weekly	

No. of	classes required to complete UNIT-II	16		No. of classes taken:		1	1
28.	Quiz	1	02-09-2022	TLM6	CO2	T&R1	
27.	Revision	1	01-09-2022	TLM2	CO2	T&R1	
26.	Strategy, Performance Measure	1	29-08-2022	TLM2	CO2	T&R1	
25.	Performance Measures-Basic Concepts,	1	26-08-2022	TLM2	CO2	T&R1	
24.	supplier selection,	1	25-08-2022	TLM2	CO2	T&R1	
23.	Partnership- Partnering, sourcing,	1	24-08-2022	TLM2	CO2	T&R1	
22.	5S, Kaizen, Supplier	1	22-08-2022	TLM2	CO2	T&R1	
21.	PDSA cycle,	1	18-08-2022	TLM2	CO2	T&R1	
20.	Continuous process improvement- Juran Trilogy.	1	17-08-2022	TLM2	CO2	T&R1	
19.	Empowerment and Teamwork, Performance appraisal, Benefits,	1	12-08-2022	TLM2	CO2	T&R1	
18.	Maslow 's hierarchy of needs, Herzberg theory,	1	10-08-2022	TLM2	CO2	T&R1	
17.	Employee Involvement, Motivation.	1	08-08-2022	TLM2	CO2	T&R1	
16.	customer retention, Service quality.	1	05-08-2022	TLM2	CO2	T&R1	
15.	Customer perception of quality, customer feedback.	1	04-08-2022	TLM2	CO2	T&R1	
14.	Types of Customers, customer supply chain	1	03-08-2022	TLM1	CO2	T&R1	
13.	TQM Principles: Customer satisfaction.	1	01-08-2022	TLM1	CO2	T&R1	

UNIT-III: STATISTICAL PROCESS CONTROL

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
29.	STATISTICAL PROCESS CONTROL: The seven tools of quality,	1	26-09-2022		TLM1	CO3	T&R1	
30.	Statistical Fundamentals,	1	28-09-2022		TLM2	CO3	T&R1	
31.	Population and Sample,	1	29-09-2022		TLM2	CO3	T&R1	
32.	Normal curve,	1	30-09-2022		TLM2	CO3	T&R1	
33.	Control charts for variables and attributes,	1	06-10-2022		TLM2	CO3	T&R1	
34.	Process capability,	1	07-10-2022		TLM2	CO3	T&R1	
35.	Concepts of six sigma,	1	10-10-2022		TLM2	CO3	T&R1	
36.	New seven Management tools.	1	12-10-2022		TLM2	CO3	T&R1	
37.	Problems	1	13-10-2022		TLM3	CO3	T&R1	
38.	Revision & Quiz	1	14-10-2022		TLM2&6	CO3	T&R1	
No. of classes required to complete UNIT-III 10 No. of classes taken:								

UNIT-IV: TQM TOOLS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
39.	TQM TOOLS: Benchmarking,	1	17-10-2022		TLM1	CO4	T&R1	
40.	Benchmarking Process,	1	19-10-2022		TLM2	CO4	T&R1	
41.	Quality Function Deployment (QFD),	1	20-10-2022		TLM2	CO4	T&R1	
42.	House of Quality, QFD Process	1	21-10-2022		TLM2	CO4	T&R1	
43.	Taguchi Quality Loss Function,	1	24-10-2022		TLM2	CO4	T&R1	
44.	Total Productive Maintenance Concept,	1	26-10-2022		TLM2	CO4	T&R1	
45.	improvement needs,.	1	27-10-2022		TLM2	CO4	T&R1	
46.	FMEA- Stages of FMEA	1	28-10-2022		TLM2	CO4	T&R1	
47.	Revision	1	31-10-2022		TLM2	CO4	T&R1	
48.	Quiz	1	02-11-2022		TLM6	CO4	T&R1	
No. of	No. of classes required to complete UNIT-IV				No. c	of classes taken:		

UNIT-V: QUALITY SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly	
49.	QUALITY SYSTEMS: Need for ISO 9000 and other Quality systems,	1	03-11-2022		TLM1	CO5	T&R1		
50.									
51.	ISO 9000:2000 Quality System,	1	04-11-2022		TLM2	CO5	T&R1		
52.	Implementation of Quality system,	1	07-11-2022		TLM2	CO5	T&R1		
53.	Documentation,	1	09-11-2022		TLM2	CO5	T&R1		
54.	Quality Auditing,	1	10-11-2022		TLM2	CO5	T&R1		
55.	TS 16949, ISO 14000- concepts.	1	11-11-2022		TLM2	CO5	T&R1		
56.	Revision & Quiz	1	14-11-2022		TLM2	CO5	T&R1		
57.		1	16-11-2022		TLM2&6	CO5	T&R1		
58.		1	17-11-2022						
59.		1	18-11-2022						
No. of cla	No. of classes required to complete UNIT-V 07 + 03 (Beyond Syllabus)								
		Mid Examina	tions – 21-11-20)22 to 26-11-20	22				

TEACHING LEARNING METHODS:

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/ Project/Assignment/Quiz

ACADEMIC CALENDER:

Commencemer	t of Class work	11-07-2022			
I Phase of Instructions	11-07-2022	03-09-2022	8 Weeks		
CRT Classes	05-09-2022	17-09-2022	2 Weeks		
I Mid Examinations	19-09-2022	24-09-2022	1 Week		
II Phase of Instructions	26-09-2022	19-11-2022	8 Weeks		
II Mid Examinations	21-11-2022	26-11-2022	1 Week		
Preparation and Practicals	28-11-2022	03-12-2022	1 Week		
Semester End Examinations	05-12-2022	17-12-2022	2 Weeks		

<u> PART – C</u>

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M; 85%≤A<90%= 3M; 80%≤A<85%= 2M; 75%≤A<80%= 1M; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40
Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

<u>PART – D</u>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

1. To apply the principles of thermal sciences to design and develop various thermal systems.

2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Faculty Name	Narayana K	S.Srinivasa Reddy	J.Subba Reddy	Dr. S. Pichi Reddy
Designation	Course Instructor	Course Coordinator	Module Coordinator	HOD
Signature				

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: KAMALA PRIYA B	
Course Name & Code	: POWER PLANT ENGINEERING	
L-T-P Structure	: 4-1-0	Credits : 3
Program/Sem/Sec	: B.Tech., MECH., VIII-Sem., Sections- A,B&C	A.Y : 2019-20
		0100100 10

PRE-REQUISITE:Thermodynamics, Thermal Engineering.

COURSE EDUCATIONAL OBJECTIVES (CEOs): To study the various power plant potentials and its working principles.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the basics of various energy sources and various circuits in steam
	power plant(Understanding level).
CO 2	Comprehend Diesel and Gas Turbine power generating plants (Remembering
	level).
CO 3	Analyze salient features of Hydroelectric and Nuclear power plants and
	interpret the data (Analysis level).
CO 4	Differentiates direct and indirect energy conversion systems (Understanding
	level).
CO5	Evaluate economics of power generation and pollution issues related to power
	plants (Apply level).

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

	-	-			()		/			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	-	-	-	-	-	-	-	1	1	-	-
CO2	3	1	2	2	-	1	2	-	-	-	-	1	2	-	2
CO3	2	3	-	3	-	1	2	-	-	-	-	1	2	-	2
CO4	2	3	1	2	-	-	1	-	-	-	-	1	2	-	1
CO5	3	2	2	3	-	-	3	-	-	-	-	1	3	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Arora &Domkundwar, A course in Power Plant Engineering- Dhanpat Rai & Company 5th Revised Reprint Edition, 2004.
- T2 P.K.Nag, Power Plant Engineering, 3rd Edition ,2008 TMH, New Delhi,

REFERENCE BOOKS:

- R1 R.K.Rajput, A Text book of Power Plant Engineering, Laxmi Publications ,2nd Edition 2001
- **R2** M.M.ElWakil, Power plant technology, 3rd Edition 2010 TMH.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:STEAM POWER PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Course Outcomes	1			TLM1	
2.	Introduction to Subject	1			TLM1	
3.	Energy sources, Resources and Development of Power in India.	1			TLM1	
4.	Steam power plant:Plant Layout, Working of Different circuits, factors to be considered for the selection of the plant	1			TLM2	
5.	Types of Coal-Fuel handling systems-	1			TLM1	
6.	Coal handling, choice of coal handling equipment, Coal Storage	2			TLM1, TLM2	
7.	Ash handling systems	2			TLM2	
8.	Overfeed and underfeed stokers	1			TLM1, TLM2	
9.	Traveling grate stokers, Spreader stokers, Retort stokers	1			TLM1, TLM2	
10.	Pulverized fuel burning system and, its components	2			TLM2	
11.	Draught system, Cyclone furnace	1			TLM1	
12.	Design and construction, Dust collectors,	1			TLM1	
13.	Dust collectors, Electrostatic precipitator	1			TLM2	
14.	Cooling towers and heat rejection	2			TLM1, TLM2	
15.	TUTORIAL-1	1			TLM3	
No. o	f classes required to complete UN	T-I: 19		No. of class	sses taken:	

UNIT-II:DIESEL POWER PLANT AND GAS TURBINE PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Plant layout with auxiliaries-Fuel storage	1			TLM2	
2.	Fuel supply system-Air supply system-Exhaust system	1			TLM2	
3.	Water cooling system-Lubrication system	1			TLM2	

4.	Starting system-Supercharging	1	TLM1
5.	Advantages and Disadvantages of Diesel plants over Thermal plants	1	TLM1
6.	TUTORIAL-2	1	TLM3
7.	Introduction-Classification- Layout with auxiliaries	1	TLM2
8.	Principles of working of Closed and Open cycle gas turbines	1	TLM1
9.	Combined cycle power plants and comparison	1	TLM1, TLM2
10.	TUTORIAL-3	1	TLM3
No. of	f classes required to complete UN	IT-II: 10	No. of classes taken:

UNIT-III:HYDRO ELECTRIC POWER PLANT AND NUCLEAR POWER PLANT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Hydrology-Hydrological cycle	1			TLM1	
2.	Rainfall- Run off Hydrograph	1			TLM1	
3.	Flow duration curve- Mass curve	1			TLM2	
4.	Site selection of hydro plant- Typical layout	1			TLM1	
5.	Different types of hydro plants	2			TLM2	
6.	TUTORIAL-4	1			TLM3	
7.	Nuclear Fission and Fusion - Nuclear Fuels-	1			TLM1	
8.	Breeding- Components of Reactor	1			TLM1	
9.	Types of Nuclear Reactors- Pressurized water reactor(PWR)-	1			TLM1	
10.	Boiling water reactor (BWR)	1			TLM1	
11.	CANDU reactor-Gas cooled reactor	1			TLM1	
12.	Liquid metal cooled reactor-Fast Breeder Reactor	1			TLM1	
13.	Nuclear waste and its Disposal	1			TLM1	
14.	TUTORIAL-5	1			TLM3	
No. of	f classes required to complete UN	IT-III: 15		No. of clas	sses taken:	

UNIT-IV :POWER FROM NON-CONVENTIONAL SOURCES AND DIRECT ENERGY CONVERSION SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Solar power plants-Utilization of Solar collectors.	1			TLM1	
2.	Different types of solar collectors.	2			TLM1, TLM2	

3.	Principle of working of Wind energy-Types	1	TLM1
4.	Tidal Energy	1	TLM2
5.	TUTORIAL-6	1	TLM3
6.	Solar cell- Fuel cell	1	TLM 1
7.	Thermo Electric and Thermo ionic conversion system	1	TLM1
8.	MHD power generation	2	TLM2
9.	TUTORIAL-7	1	TLM3
No. o	f classes required to complete UNI	T-IV:11	No. of classes taken:

UNIT-V : POWER PLANT ECONOMICS AND POLLUTION & CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fixed cost-Operating cost Fluctuating loads	1			TLM1	
2.	General arrangement of Power Distribution-Load curves	1			TLM1	
3.	Load duration curve and its problems	2			TLM1	
4.	Various load factors in power plants	1			TLM1	
5.	TUTORIAL-8	1			TLM3	
6.	Particulate and gaseous pollutants	1			TLM1	
7.	Air and Water pollution by Thermal plants	1			TLM1	
8.	Acid rains -Methods to control pollution	1			TLM1	
9.	Numerical Problems on economics of power generation	3			TLM1	
10.	TUTORIAL-9	1			TLM3	
11.	Revision	1				
12.	Revision	1				
13.	Revision	1				
No. of	f classes required to complete UNI	T-V: 13		No. of class	sses taken:	

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Cumulative Internal Examination (CIE) : A+M	25
Semester End Examination (SEE)	75
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering		
101	fundamentals, and an engineering specialization to the solution of complex engineering		
	problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex		
	engineering problems reaching substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for complex engineering problems and		
	design system components or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural, societal, and environmental		
	considerations.		
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research		
	methods including design of experiments, analysis and interpretation of data, and synthesis of		
	the information to provide valid conclusions.		
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern		
	engineering and IT tools including prediction and modelling to complex engineering activities		
DO (with an understanding of the limitations		
PO 6			
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to		
PO 7	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering		
PO /	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need		
	for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and		
100	norms of the engineering practice.		
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in		
107	diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the		
	engineering community and with society at large, such as, being able to comprehend and write		
	effective reports and design documentation, make effective presentations, and give and receive		
	clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the		
	engineering and management principles and apply these to one's own work, as a member and		
	leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in		
	independent and life-long learning in the broadest context of technological change.		

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.	
PSO 2	To apply the principles of manufacturing technology, scientific management towards	
	improvement of quality and optimization of engineering systems in the design, analysis and	
	manufacturability of products.	
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of performance of	
	various systems relating to transmission of motion and power, conservation of energy and other	
	process equipment.	

Course Instructor Kamala Priya B Course Coordinator Mr. K.Lakshmi Prasad Module Coordinator Dr. P.Vijay Kumar HOD Dr. S. Pichi Reddy

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: MrImran Abdul	
Course Name & Code	: Utilization of Electrical Energy & 17EE81	
L-T-P Structure	: 4-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ME., VII-Sem., Sections- B&C	A.Y:2022-23

PRE-REQUISITES: -

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to familiarize with characteristics of various drives, comprehend the different issues related to heating, welding and illumination.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Choose a drive for particular application
CO 2	Identify a heating /welding scheme for a given application
CO 3	Illustrate the different schemes of traction and its main components
CO 4	Develop a lighting scheme for a given practical case
CO5	Assess the economic aspects in utilization of electrical energy

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	-					· · · ·										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	-	2	-	-	-	-	-	-	1	-	-	-	
CO2	3	2	1	2	-	-	-	-	-	-	-	1	-	-	-	
CO3	3	1	3	-	3	-	-	-	-	-	-	2	-	-	-	
CO4	3	2	2	2	-	-	-	-	-	-	-	1	-	-	-	
CO5	2		1		-	-		-				1				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 C.L.Wadhwa "Generation,Distribution and Utilization of Electrical energy, New Age International Publishers,3rd Edition,2015.
- **T2** N.V.Suryanarayana "Utilization of electric power including electric drives and electric traction,New age international publishers New Delhi,2nd edition 2014.

REFERENCE BOOKS:

- **R1** Art & Science of Utilization of electrical Energy, Partab, Dhanpat Rai & Co., 2004.
- **R2** Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: ELECTRIC HEATING AND WELDING:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, CEO's &CO's	1	11/7/22		TLM1/TLM2	
2.	Advantages & applications of Electric heating	1	13/7/22		TLM1/TLM2	
3.	Classification of electric heating	1	14/7/22		TLM1/TLM2	
4.	Classification of electric heating	1	15/7/22		TLM1/TLM2	
5.	Requirement of good heating material	1	18/7/22		TLM1/TLM2	
6.	Electric Arc Furnace	1	20/7/22		TLM1/TLM2	
7.	Induction heating	1	21/7/22		TLM1/TLM2	
8.	Dielectric heating	1	22/7/22		TLM1/TLM2	
9.	Electric welding	1	25/7/22		TLM1/TLM2	
10.	Resistance welding	1	27/7/22		TLM1/TLM2	
11.	Arc welding	1	28/7/22		TLM1/TLM2	
No. o	f classes required to complete U	NIT-I:11		No. of classe	s taken:	

UNIT-II: ILLUMINATION ENGINEERING:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	29/7/22		TLM1/TLM2	
2.	Nature of light &Laws of illumination	1	1/8/22		TLM1/TLM2	
3.	Lighting schemes, sources of light	1	3/8/22		TLM1/TLM2	
4.	Fluorescent Lamps	1	4/8/22		TLM1/TLM2	
5.	Compact Fluorescent Lamps	1	5/8/22		TLM1/TLM2	
6.	LED Lamps discharge lamps	1	8/8/22		TLM1/TLM2	
7.	Sodium Vapour Lamp	1	10/8/22		TLM1/TLM2	
8.	mercury vapour lamps	1	11/8/22		TLM1/TLM2	
9.	Neon lamps	1	12/8/22		TLM1/TLM2	
10.	Comparison between tungsten &fluorescent tubes	1	17/8/22		TLM1/TLM2	
11.	Requirements of good lighting	1	18/8/22		TLM1/TLM2	

12.	Street lighting	1	19/8/22		TLM1/TLM2
13.	Mid-I Exams	1	20/9/22		
14.	Mid-I Exams	1	21/9/22		
15.	Mid-I Exams	1	23/9/22		
16.	Mid-I Exams	1	24/9/22		
No. o	f classes required to complete	No. of classes	s taken:		

UNIT-III: ELECTRIC DRIVES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	22/8/22		TLM1/TLM2	
2.	Factors affecting selection of motor	1	24/8/22		TLM1/TLM2	
3.	Types of loads	1	25/8/22		TLM1/TLM2	
4.	Elements of electric drive	1	26/8/22		TLM1/TLM2	
5.	Steady state characteristics of drives	1	29/8/22		TLM1/TLM2	
6.	Transient characteristics of drives	1	31/8/22		TLM1/TLM2	
7.	Size of motor	1	1/9/22		TLM1/TLM2	
8.	Load equalization	1	2/9/22		TLM1/TLM2	
9.	Industrial applications	1	26/9/22		TLM1/TLM2	
No. of	classes required to complete UN		No. of clas	sses taken:		

UNIT-IV: ELECTRIC TRACTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	28/9/22		TLM1/TLM2	
2.	Requirement of an ideal traction system	1	3/10/22		TLM1/TLM2	
3.	Supply system for electric traction	1	7/10/22		TLM1/TLM2	
4.	Supply system for electric traction	1	13/10/22		TLM1/TLM2	
5.	Train movement	1	17/10/22		TLM1/TLM2	
6.	Mechanism of train movement	1	19/10/22		TLM1/TLM2	
7.	Traction motors	1	20/10/22		TLM1/TLM2	
8.	Modern trends in electric traction	1	21/10/22		TLM1/TLM2	
9.	Automation in electric traction	1	24/10/22		TLM1/TLM2	
10.	problems	1	26/10/22		TLM1/TLM2	
	f classes required to complete U			No. of clas	sses taken:	
NIT-V	V: REFRIGERATION AND AIF					
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly

1.	Introduction	1	27/10/22	TLM1/TLM2
2.	Types of refrigeration	1	28/10/22	TLM1/TLM2
3.	Compression refrigeration	1	1/11/22	TLM1/TLM2
4.	Basic vapour compression cycle	1	3/11/22	TLM1/TLM2
5.	Absorption refrigeration system	1	4/11/22	TLM1/TLM2
6.	Operational features	1	7/11/22	TLM1/TLM2
7.	household refrigerator	1	9/11/22	TLM1/TLM2
8.	Air-conditioning	1	10/11/22	TLM1/TLM2
9.	Types of air conditioning system	1	11/11/22	TLM1/TLM2
10.	Room air conditioner	1	14/11/22	TLM1/TLM2
11.	Summer & winter air conditioning systems	1	16/11/22	TLM1/TLM2
12.	Cooling capacity of an air conditioner	1	17/11/22	TLM1/TLM2
13.	Working of electrical system	1	18/11/22	TLM1/TLM2
14.	Revision	1	18-11-2022	TLM1/TLM2
15.	Mid-II Exams	1	22-11-2022	
16.	Mid-II Exams	1	23-11-2022	
17.	Mid-II Exams	1	25-11-2022	
18.	Mid-II Exams	1	26-11-2022	
No. of	classes required to complete U	NIT-V:		No. of classes taken:

Contents beyond the Syllabus:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Economic aspects in utilization of electrical energy	1	28-09-2022		TLM1/TLM2	

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

<u>PART-C</u> (EVALUATION PROCESS (R17 Regulations):)

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10

Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	8W
CRT classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	8W
II Mid Examinations	21-11-2022	26-11-2022	1 W
Preparation and Practicals	28-11-2022	03-12-2022	1 W
Semester End Examinations	5-12-2022	17-12-2022	2W

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering problems and							
	design system components or processes that meet the specified needs with appropriate							
	consideration for the public health and safety, and the cultural, societal, and environmental							
	considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data, and synthesis of							
	the information to provide valid conclusions.							
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess							
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
	the professional engineering practice							
PO 7	Environment and sustainability: Understand the impact of the professional engineering							
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need							
	for sustainable development.							

PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Imran Abdul	Imran Abdul Mrs T.Naga Durga		Dr. J.Siva Vara Prasad

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: C.Rajamallu	
Course Name & Code	: BASIC CIVIL ENGINEERING & 17CE80	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ME., VII-Sem., Sections- A-B-C-	A.Y : 2022-23

PRE-REQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):. This course deals with the importance of building planning, properties and applications of various building materials, soil classification and different types of foundations, important aspects of surveying, levelling operations and identify the terminology in roadway and railway networks, principles of water resources and environmental engineering

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Recognize the importance of building planning for construction						
CO 2	Identify appropriate building materials for construction purposes						
CO 3	Distinguish the different types of soils and foundations required for specific usage						
CO 4	Evaluate the basics of surveying and levelling operations for field application and						
	categorize the important elements of roadway and railway networks						
CO 5	Discriminate the importance of quantity and quality aspects of water in the society and						
	priorities for sanitation management.						

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

				· · · · ·	,,										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01				2		2	1				2		2	1	3
CO2				2		2	1				2		2	1	3
CO3		1	1	2		2	1				2		2	1	3
CO4		1	1	2		2	1				2		2	1	3
CO5		1	1	2	2	2	1				2		2	1	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 1. M.S Palanichamy "Basic Civil Engineering", Tata McGraw Hill Publishing 2000.

REFERENCE BOOKS:

- **R1** 1. S S Bhavikatti "Basic Civil Engineering", New age International Publications, 2010
- R2 C P Kaushik& S S Bhavikatti "Basic Civil Engineering ", New age International Publications 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Building Planning

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Building Planning- Role of a Civil Engineer	1	11-07-2022		TLM2	
2.	Inter connection among specializations in Civil Engineering	1	13-07-2022		TLM2	
3.	Elements of a Building, Basic Requirements of a Building	1	14-07-2022		TLM2	
4.	Planning- Hot and dry climates	1	15-07-2022		TLM1	
5.	Hot and wet climates, Cold climatic conditions	1	18-07-2022		TLM1	
6.	Aspect and Prospect, Roominess- Grouping, Privacy, circulation	1	20-07-2022		TLM1	
7.	Sanitation and ventilation	1	21-07-2022		TLM2	
8.	Orientation, Economy, Role of Bye-laws	1	22-07-2022		TLM2	
No. o	f classes required to complete UN	IT-I:		No. of clas	sses taken:	

UNIT-II: Building Materials

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Building Materials - Classification	1	25-07-2022		TLM1	
2.	Rocks, Bricks Classification, Composition, Properties, Commercial forms, Uses	1	27-07-2022		TLM2	
3.	Timber, Ply wood Classification, Composition, Properties, Commercial forms	1	28-07-2022		TLM2	
4.	Glass, Bitumen Classification, Composition, Properties, Commercial forms,	1	29-07-2022		TLM1	

_	Aluminium, Cement		01.00.0000	TLM1	
5.	Classification, Composition,	1	01-08-2022		
	Properties, Commercial forms,				
	Steel, Concrete Classification,			TLM2	
6.	Composition, Properties,	1	03-08-2022		
	Commercial forms, Uses				
	Mortar Classification,			TLM2	
7.	Composition, Properties,	1	04-08-2022		
	Commercial forms, Uses				
8.	Concept of eco-friendly	1	05-08-2022	TLM1	
0.	materials, examples	1	03-08-2022		
No. o	f classes required to complete UN	No. of classes taken:			

UNIT-III: SOIL CLASSIFICATION AND FOUNDATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Types of soils, soil classification	1	8-08-2022		TLM1	
2.	Engineering properties	1	10-08-2022		TLM1	
3.	Bearing Capacity of soil, purpose and methods of improving bearing capacity	1	12-08-2022		TLM2	
4.	Foundations – Requirements	1	17-08-2022		TLM2	
5.	Loads, Types	1	22-08-2022		TLM1	
6.	for special structures-water tanks-	1	24-08-2022		TLM2	
7.	for special structures- silos, chimneys- transmission line towers- cooling towers, telecommunication towers	1	25-08-2022		TLM1	
No. o	f classes required to complete UN	TT-III:07	1	No. of clas	sses taken:	

UNIT-IV : SURVEYING, LEVELLING & HIGHWAY NETWORK

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Objective of surveying– Principles, applications and	1	26-08-2022		TLM2		
	uses of - chain surveying						
2.	theodolite, levelling, contour maps, Planimeter, EDM concept	1	29-08-2022		TLM2		
3.	linear distance and area measurement	1	1-09-2022		TLM1		
4.	Total station- GIS-Concept and applications in civil engineering.	1	2-09-2022		TLM2		
5.	CRT Classes:5-9-2022 to 17-09-2022						
6.	MID-1 Examinations:19-09-2022 to 24-09-2022						
7.	Indian highways- Basic terminology- Classification of roads - PIEV theory - Traffic signs - IRC Code provisions	1	26-09-2022		TLM1		

8.	Indian railways –Permanent way and components of railway track	1	28-09-2022		TLM2			
9.	Gauges – Rails -Sleepers – Ballast.	1	29-09-2022		TLM2			
No. of	No. of classes required to complete UNIT-IV:07 No. of classes taken:							

UNIT-V: WATER RESOURCES AND ENVIRONMENTAL ENGINEERING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Objectives of water supply system-Sources of water supply-Hydrologic cycle	1	30-09-2022		TLM1	
2.	Rainfall measurement - Purpose of dams, reservoirs, intakes, infiltration galleries	1	10-10-2022		TLM1	
3.	Water demands –Water quality parameters and their impacts - Principles of water treatment	1	12-10-2022		TLM2	
4.	Objectives of water distribution systems	1	13-10-2022		TLM2	
5.	Wastewater characteristics and their impacts	1	14-10-2022		TLM1	
6.	Principles of sewage treatment	1	17-10-2022		TLM2	
7.	Disposal of sewage	1	19-10-2022		TLM2	
8.	Water quality standards for – drinking purpose,	1	20-10-2022		TLM2	
9.	irrigation, -making	1	21-10-2022		TLM1	
10.	curing of concrete	1	26-10-2022		TLM1	
11.	methods of water distribution systems	1	27-10-2022		TLM2	
12.	Sewage generation in a society	1	28-10-2022		TLM2	
13.	Revision of Unit-1	1	2-11-2022		TLM2	
14.	Revision of Unit-1	1	3-11-2022		TLM2	
15.	Revision of Unit-2	1	4-11-2022		TLM1	
16.	Revision of Unit-2	1	7-11-2022		TLM1	
17.	Revision of Unit-3	1	9-11-2022		TLM1	
18.	Revision of Unit-3	1	10-11-2022		TLM1	
19.	Revision of Unit-4	1	11-11-2022		TLM2	
20.	Revision of Unit-4	1	14-11-2022		TLM2	
21.	Revision of Unit-5	1	16-11-2022		TLM2	
			17.11.2022		TLM1	
22.	Revision of Unit-5	1	17-11-2022			

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	03-09-2022	6W
CRT Classes	05-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	7W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practicals	28-11-2022	03-12-2022	1W
Semester End Examinations	05-12-2022	17-12-2022	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering						
	fundamentals, and an engineering specialization to the solution of complex engineering						
DO 4	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						
PO 3	Design/development of solutions : Design solutions for complex engineering problems and						
r03	design system components or processes that meet the specified needs with appropriate						
	consideration for the public health and safety, and the cultural, societal, and environmental						
	considerations.						
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research						
	methods including design of experiments, analysis and interpretation of data, and synthesis of						
	the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern						
	engineering and IT tools including prediction and modelling to complex engineering activities						
	with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess						
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to						
DO 5	the professional engineering practice						
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need						
	for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and						
100	norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in						
	diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the						
	engineering community and with society at large, such as, being able to comprehend and write						
	effective reports and design documentation, make effective presentations, and give and receive						
DO 11	clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the						
	engineering and management principles and apply these to one's own work, as a member and						
PO 12	leader in a team, to manage projects and in multidisciplinary environments. Life-long learning: Recognize the need for, and have the preparation and ability to engage in						
ru 12	independent and life-long learning in the broadest context of technological change.						
	independent and me-tong learning in the broadest context of technological change.						

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and
	software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the
	professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil
	engineering domain

Course Instructor (C.Rajamallu) Course Coordinator (C.Rajamallu) Module Coordinator (B.Narasimha Rao)

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab					
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)					
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40					
Credits	: 01	Semester End Examination : 60					
Name of the Faculty	: Dr.M.B.S Sreekara Reddy(Associate Professor) / K. Karthik (Assistant Professor)						

COURSE EDUCATIONAL OBJECTIVES (CEOs) and COURSE OUTCOMES (COs):

PRE-REQUISITES: Robotics, CAD/CAM

COURSE EDUCATIONAL OBJECTIVES:

The main objective of this course is to demonstrate and analysis of various types of robots.

COURSE OUTCOMES:

After completion of the course student will be able to:

CO1.Develop Robot Programmes to use to control commands

CO2.Experiment the robot operations like palletizing, gluing, spray painting, polishing, loading and unloading.

CO3.Simulate forward and inverse kinematic movements of a robot using MATLAB.

CO4.Perform the demo operations on SCARA and PUMA using Robo analysers.

Mapping of COs with POs and PSOs:

LABORATORY COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) & PSOs – Robotics and SimulationLab (17ME72)															
			POs PSOs												
1 2 3 4 5 6 7 8 9 10 11 12 PSO 1 PSO 2 PS										PSO 3					
	CO1	2	1			3							2	3	
S	CO2	1	2	2		3							2	3	
cos	CO3	3	3		2	3							3		3
	CO4	1	1			3							2		3
	1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)														

Lab instructor (s)

Head of the Department

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40	
Credits	: 01	Semester End Examination	: 60	
Name of the Faculty	: Dr.M.B.S Sreekara Redd	y (Associate Professor) / K. Karthik (Assista	ant Professor)	

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to:

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the principles of thermal sciences to design and develop various thermal systems.

PSO2: To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.

PSO3: To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40
Credits	:01	Semester End Examination : 60
Name of the Faculty	: Dr.M.B.S Sreekara Reddy (Assoc	ciate Professor) / K. Karthik (Assistant Professor)

LIST OF EXPERIMENTS

At least 10 Experiments from 12 overall should be conducted

LIST OF EXPERIMENTS:

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing
- 7. Spray painting
- 8. Polishing
- 9. Simulateof Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. SimulateSCARA,PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB, C Prog

REFERENCE: Robotics and Simulation Lab Manual

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40		
Credits	:01	Semester End Examination : 60		
Name of the Faculty	: Dr.M.B.S Sreekara Reddy (Assoc	iate Professor) / K. Karthik (Assistant Professor)		

Notification of Cycles (Section –C)

At least TEN experiments may be conducted.

Cycle - I

- 1. Program for commands like joint command, circle command
- 2. Program for commands SPLINE command (continues path)
- 3. Program for PTP command
- 4. Palletizing
- 5. Loading / Unloading
- 6. Gluing

Cycle – II

- 7. Spray painting
- 8. Polishing
- 9. Simulation of Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER
- 10. Simulation of SCARA, PUMA using ROBOANALYZER
- 11. Simulate forward and inverse kinematics RR Manipulator using MATLAB
- 12. Simulate forward and inverse kinematics RP Manipulator using MATLAB

SOFTWARE PACKAGES

ARISTO ROBOT, ROBOANALYZER, MATLAB

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation	n Lab
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (S	Section – C)
Lab/Practicals	: 3hrs/ Week	Continuous Internal Assessment	: 40
Credits	: 01	Semester End Examination	: 60
Name of the Faculty	: Dr.M.B.S Sreekara Reddy (Assoc	iate Professor) / K. Karthik (Assista	nt Professor)

Lab Occupancy Time Table (B.Tech Mech Engg- VIISem:Section – C/S)

↓Day/Date →	9.00 - 9.50	9.50- 10.40	10.50- 11.40	11.40- 12.30-	12.30- 1.30	1.30- 2.20	2.20- 3.10	3.10- 4.00
Monday								
Tuesday						R&S LAB BATCH-B2		
Wednesday					LUNCH			
Thursday					BREAK			
Friday						R&S LAB BATCH-B1		
Saturday								

Faculty – In Charges:

S.No	Class	Section	Lab Assistant	Faculty – In Charge
1	B.Tech – VII Semester	C/S	Mr. P. Guna Sundar Reddy	Dr.M.B.S Sreekara Reddy Reddy Mr. K. Karthik

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab		
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)		
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40		
Credits	: 01	Semester End Examination : 60		
Name of the Faculty	: Dr.M.B.S Sreekara Reddy (Associate Professor) / K. Karthik (Assistant Professor)			

Batches (Section – C)

S.No	Batches	Regd.Nos	Total No. of Students
1	B. Tech –VII Sem - C/S	18761A0317,17-3F0,19761A0396-3A0,19761A03A1- 3A9, 3B0 – 3B5,3B6-3C4, 3C5 – 3D0, 3D1-3E0,20765A0331-344	61
2	Batch A1	18761A0317,17761A03F0,19761A0396- 399, 3A0- 3A9,3B0-3C4	31
3	Batch A2	19761A03C5–3E0, 20765A0331-344	30

Sub Batch of A11: 18761A0317,17-3F0,19761A0396- 3A8 (15)

Sub Batch of A12: 19761A03A9 - 3C4 (16)

S. No	Batch	Registered Nos	Total
1 A111	A111	18761A0317,17-	03
	AIII	3F0,19761A0396	03
2	A112	197671A0397-399	03
3	A113	197671A03A0-3A2	03
4	A114	197671A03A3-3A5	03
5	A115	197671A03A6-3A7	02
6	A116	197671A03A8	01
Total (A11) 15			

S. No	Batch	Registered Nos	Total
1	A121	197671A03A9-3B1	03
2	A122	197671A03B2-3B4	03
3	A123	197671A03B5-3B7	03
4	A124	197671A03B8-3C0	03
5	A125	197671A03C1-3C2	02
6	A126	197671A03C3-3C4	02
Total (A12)			16

Sub Batches of A21: 19761A03C5-3D9 (15)

Sub Batches of A22:				
19761A03E0,20765A0331-344 (15)				

S. No	Batch	Registered Nos	Total
1	A211	19761A03C5-3C7	03
2	A212	19761A03C8-3D0	03
3	A213	19761A03D1-3D3	03
4	A214	19761A03D4-3D6	03
5	A215	19761A03D7-3D8	02
6	A216	19761A03D9	01
Total (A21)			15

S. No Batch **Registered Nos** Total 19761A03E0-1 A221 03 20765A0332 03 2 A222 20765A0333-335 20765A0336-338 03 A223 3 4 A224 20765A0339-340 02 20765A0341-342 5 A225 02 A226 20765A0343-344 6 02 Total (A22) 15

Lab instructor (s)

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code : 17M	E72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)			
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40		
Credits	:01	Semester End Examination	: 60		
Name of the Faculty	: Dr.M.B.S Sreekara Re	ddy (Associate Professor) / K. Karthik (Assista	nt Professor)		

<u>Schedule of Experiments (Section – C: C1 Batch)</u>

S.No	Batches	Regd. Nos	Total No. of Students
1	Batch A1	18761A0317,17761A03F0,19761A0396– 399, 3A0– 3A9,3B0-3C4	31

S.No.	Name of the experiment	No. of Classes Required	Tentative Date of Completion	Teaching Learning Methods	
1	Introduction to Robotics and Simulation Lab, Demonstration of all experiments, CEOs, and COs of the Laboratory	2	15-7-2022	TLM4	
Cycle I					
2	Program for commands like joint command, circle command	2	22-07-2022	TLM4	
3	Program for commands SPLINE command (continues path)	2	29-7-2022	TLM4	
4	Program for PTP command	2	5-8-2022	TLM4	
5	Palletizing	2	12-8-2022	TLM4	
6	Loading / Unloading	2	26-8-2022	TLM4	
	I Mid Exams	19-09-2022 to 26-09-2022			
7	Gluing	2	2-09-2022	TLM4	
Cycle II					
8	Spray painting, Polishing	2	09-09-2022	TLM4	
9	Simulation of Robot with 2 Dof, 3 Dof, 4 Dof using ROBOANALYZER	2	16-9-2022	TLM4	
10	Simulation of SCARA, PUMA using ROBOANALYZER	2	23-9-2022	TLM4	
11	Simulate forward and inverse kinematics RR Manipulator using MATLAB	2	14-10-2022	TLM4	
12	Simulate forward and inverse kinematics RP Manipulator using MATLAB	2	4-11-2022	TLM4	
13	Internal Exam	2	18-11-2022	TLM4	
	II Mid Exams	21-1	1-2022 to 26-11	-2022	
	Preparation and Practicals	28-1	1-2022 to 03-12-	2022	
	Semester End Exams	05-1	2-2022 to 17-12-	2022	

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)			
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment	: 40		
Credits	: 01	Semester End Examination	: 60		
Name of the Faculty	:Dr.M.B.S Sreekara Reddy (Associate Professor) / K. Karthik (Assistant Professor)				

<u>Schedule of Experiments (Section – C: C2 Batch)</u>

S.No	Batches	Total No. of Students				
1	Batch A2	19761A03C5–3E0, 20765A0331-344			30	
S.No.		Name of the experiment	No. of Classes Required	Tentative Date of Completic	Learning	
1	Introduction Demonstration Laboratory	to Robotics and Simulation Lab, of all experiments, CEOs, and COs of the	2	12-07-202	2 TLM4	
Cycle I						
2	Program for cor	nmands like joint command, circle command	2	19-07-202	2 TLM4	
3	Program for cor	nmands SPLINE command (continues path)	2	26-07-202	2 TLM4	
4	Program for PTF	P command	2	02-08-202	2 TLM4	
5	Palletizing		2	2 TLM4		
6	Loading / Unloa	ding	2 23-08-2022 TLM4			
	I Mid Exams		19-09-2022 to 26-09-2022			
7	Gluing		2	30-08-202	2 TLM4	
Cycle I	l					
8	Spray painting,	Polishing	2	6-09-202	2 TLM4	
9	Simulation of Ro ROBOANALYZEF	boot with 2 Dof, 3 Dof, 4 Dof using	2	13-09-202	2 TLM4	
10	Simulation of SC	CARA, PUMA using ROBOANALYZER	2	20-09-202	2 TLM4	
11	Simulate forwar using MATLAB	d and inverse kinematics RR Manipulator	2	11-10-202	2 TLM4	
12	Simulate forwar using MATLAB	d and inverse kinematics RP Manipulator	2 01-11-2		2 TLM4	
13	Internal Exam		2	15-11-202	2 TLM4	
	II Mid Exams		21-11-2022 to 26-11-2022			
	Preparation and	d Practicals	28-11-2022 to 03-12-2022			
	Semester End E	xams	05-1	2-2022 to 17	-12-2022	

Lab instructor (s)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Laboratory Code	: 17ME72(R 17 Reg)	Lab: Robotics and Simulation Lab			
A.Y.	: 2022-2023	Class: B. Tech – VII Semester (Section – C)			
Lab/Practicals	: 3 hrs/ Week	Continuous Internal Assessment : 40			
Credits	: 01	Semester End Examination : 60			
Name of the Faculty	:Dr.M.B.S Sreekara Reddy (Assoc	iate Professor) / K. Karthik (Assistant Professor)			

Evaluation Criterion for Laboratory

EVALUATION PROCESS:

Evaluation Task	COs	Max. Marks
Day – to – Day Evaluation	1,2,3,4	A=20
Mid Examination	1,2,3,4	B=10
Viva-Voce	1,2,3,4	C=05
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M; 85%≤A<90%= 3M; 80%≤A<85%= 2M; 75%≤A<80%= 1M; <75%=0M)	-	D=05
Cumulative Internal Examination (CIE): A+B+C+D	1,2,3,4	A+B+C+D=40
Semester End Examinations (SEE): E	1,2,3,4	E=60
Total Marks: CIE + SEE = A+B+C+D+E	1,2,3,4	100

Lab instructor (s)

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

PROGRAM	: B.Tech. VII-Sem., ME – C/S
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: M & I Lab, 17ME73
L-T-P STRUCTURE	:0-0-3
COURSE CREDITS	: 1
COURSE INSTRUCTOR	: K. Lakshmi Prasad/P. Mounika
COURSE COORDINATOR	4:

PRE-REQUISITE: Metrology & Instrumentation

COURSE OBJECTIVE:

The main objective of this course is to provide hands on experience in using metrological instruments and calibrate them.

COURSE OUTCOMES (CO)

CO 1	Perform linear, angular and gear measurements in manufacturing industries.			
CO 2	Analyze the measurement of the surface roughness and perform			
	alignment tests.			
со з	Calibrate the displacement, load and speed measuring			
instruments.				
CO 4	Calibrate pressure, flow and vibration measuring instruments.			

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

												,			
COs	PO	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	2					2			1		3	
CO2	2	3	2	2					2			1		3	
CO3	2	2		2					2			1		3	
CO4	2	2		2					2			1		3	

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

REFERENCE:

R1 Lab Manual

COURSE DELIVERY PLAN (LESSON PLAN): Section-C

S.No.	Experiment to be conducted	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Reference	HOD Sign Weekly
1.	Introduction	3	12.07.22		TLM8	-	
2.	Demonstration	3	19.07.22		TLM8	R1	
3.	Experiment-1	3	26.07.22		TLM8	R1	
4.	Experiment-2	3	02.08.22		TLM8	R1	
5.	Experiment-3	3	16.08.22		TLM8	R1	
6.	Experiment-4	3	23.08.22		TLM8	R1	
7.	Experiment-5	3	30.08.22		TLM8	R1	
8.	Demonstration	3	27.09.22		TLM8	-	
9.	Experiment-6	3	04.10.22		TLM8	R1	
10.	Experiment-7	3	11.10.22		TLM8	R1	
11.	Experiment-8	3	18.10.22		TLM8	R1	
12.	Experiment-9	3	25.10.22		TLM8	R1	
13.	Experiment-10	3	01.11.22		TLM8	R1	
14.	Repetition	3	08.11.22		TLM8	R1	
15.	Internal Exam	3	15.11.22		TLM8	R1	

Batch: C1 (17761A03F0, 19761A0396 TO 19761A03C4)

DETAILS:

Batch No.	Reg. No. of Students	Number of Students
C1A	17761A03F0,	3
	19761A0396,397	
C1B	19761A0398-3A0	3
C1C	19761A03A1-3A3	3
C1D	19761A03A4-3A6	3
C1E	19761A03A7-3A9	3

Batch No.	Reg. No. of Students	Number of Students
C1F	19761A03B0-3B2	3
C1G	19761A03B3-3B5	3
C1H	19761A03B6-3B8	3
C1I	19761A03B9-3C1	3
C1J	19761A03C2-3C4	3

Batch:C2 (19761A03C5 TO 19761A03E0, 20765A0331 TO 20765A0344)

S.No.	Experiment to be conducted	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Reference	HOD Sign Weekly
1.	Introduction		15.07.22		TLM8	R1	
2.	Demonstration	3	22.07.22		TLM8	-	
3.	Experiment-1	3	29.07.22		TLM8	R1	
4.	Experiment-2	3	05.08.22		TLM8	R1	
5.	Experiment-3	3	12.08.22		TLM8	R1	
6.	Experiment-4	3	26.08.22		TLM8	R1	
7.	Experiment-5	3	02.09.22		TLM8	R1	
8.	Demonstration	3	30.09.22		TLM8	-	
9.	Experiment-6	3	07.10.22		TLM8	R1	
10.	Experiment-7	3	14.10.22		TLM8	R1	
11.	Experiment-8	3	21.10.22		TLM8	R1	
12.	Experiment-9	3	28.10.22		TLM8	R1	
13.	Experiment-10	3	04.11.22		TLM8	R1	
14.	Repetition	3	11.11.22		TLM8	R1	
15.	Internal Exam	3	18.11.22		TLM8	R1	

DETAILS:

Batch No.	Reg. No. of Students	Number of Students
C2A	19761A03C5-3C7	3
C2B	19761A03C8-3D0	3
C2C	19761A03D1-3D3	3
C2D	19761A03D4-3D6	3
C2E	19761A03D7-3D9	3

Batch No.	Reg. No. of Students	Number of Students
C2F	19761A03E0,20765A0331, 332	3
C2G	20765A0333335	3
C2H	20765A0336-338	3
C2I	20765A0339-341	3
C2J	20765A0342-344	3

Schedule	Schedule:									
Batch No:	Exp. 01	Exp. 02	Exp. 03	Exp. 04	Exp. 05	Exp. 06	Exp. 07	Exp. 08	Exp. 09	Exp. 10
C1A/C2A	MET1	MET2	MET3	MET4	MET5	INT6	INT7	INT8	INT9	INT10
C1B/C2B	MET2	MET3	MET4	MET5	MET1	INT7	INT8	INT9	INT10	INT6
C1C/C2C	MET3	MET4	MET5	MET1	MET2	INT8	INT9	INT10	INT6	INT7
C1D/C2D	MET4	MET5	MET1	MET2	MET3	INT9	INT10	INT6	INT7	INT8
C1E/C2E	MET5	MET1	MET2	MET3	MET4	INT10	INT6	INT7	INT8	INT9
C1F/C2F	INT6	INT7	INT8	INT9	INT10	MET1	MET2	MET3	MET4	MET5
C1G/C2G	INT7	INT8	INT9	INT10	INT6	MET2	MET3	MET4	MET5	MET1
C1H/C2H	INT8	INT9	INT10	INT6	INT7	MET3	MET4	MET5	MET1	MET2
C1I/C2I	INT9	INT10	INT6	INT7	INT8	MET4	MET5	MET1	MET2	MET3
C1J/C2J	INT10	INT6	INT7	INT8	INT9	MET5	MET1	MET2	MET3	MET4

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD		
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo		
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study		

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11.07.22	03.09.22	8
CRT Classes	05.09.22	17.09.22	2
I Mid Examinations	19.09.22	24.09.22	1
II Phase of Instructions	26.09.22	19.11.22	8
II Mid Examinations	21.11.22	26.11.22	1
Preparation and Practical	28.11.22	03.12.22	1
Semester End Examinations	05.12.22	17.12.22	2

EVALUATION PROCESS:

Evaluation Task	Cos	Marks
Day to Day Evaluation: A	1,2,3,4	A=20
Internal Lab Exams: B	1,2,3,4	B=10
Viva Marks: C	1,2,3,4	C=5
Attendance	1,2,3,4	D=5
Cumulative Internal Examination : CIE=A+B+C+D	1,2,3,4	CIE=40
Semester End Examinations: SEE	1,2,3,4	SEE=60
Total Marks: CIE+SEE	1,2,3,4	100

Exp.No.	Name of the Experiment	Related CO
MET1	Measurement of lengths, heights, diameters by Vernier calipers and micrometers.	C01
MET2	Measurement of bores by dial bore indicators.	CO1
MET3	Taper measurement by using balls and rollers.	CO1
MET4	Use of gear teeth Vernier calipers and checking the chordal addendum and chordal height of spur	CO2
MET5	gear. Machine tool alignment of test on the lathe or milling machine	CO2
INT6	Calibration of Pressure Gauges	CO4
INT7	Study and calibration of LVDT transducer for displacement measurement.	CO3
INT8	Calibration of strain gauge for load measurement.	CO3
INT9	Study and calibration of photo and magnetic speed pickups for the measurement of speed.	CO3
INT10	Calibration of capacitive transducer for linear displacement.	CO3

LIST OF EXPERIMENTS:

NOTIFICATION OF CYCLE

Exp.No.	Name of the Experiment	Related CO
MET1	Measurement of lengths, heights, diameters by Vernier calipers and micrometers.	C01
MET2	Measurement of bores by dial bore indicators.	CO1
MET3	Taper measurement by using balls and rollers.	CO1
MET4	Use of gear teeth Vernier calipers and checking the chordal addendum and chordal height of spur gear.	CO2
MET5	Machine tool alignment of test on the lathe or milling machine	CO2
INT6	Calibration of Pressure Gauges	CO4
INT7	Study and calibration of LVDT transducer for displacement measurement.	CO3
INT8	Calibration of strain gauge for load measurement.	CO3
INT9	Study and calibration of photo and magnetic speed pickups for the measurement of speed.	CO3
INT10	Calibration of capacitive transducer for linear displacement.	CO3

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course	Course	Module	HOD
Instructor	Coordinator	Coordinator	