LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: G.VIJAYA LAKSHMI

Course Name & Code L-T-P Structure Program/Sem/Sec : Numerical Methods & Integral Calculs&20FE10 : 2-1 -0 : II B.Tech/III sem/MECH-A

Credits:3 A.Y.: 2022 - 23

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Estimate the best fit polynomial for the given tabulated data using					
COI	Interpolation.(Understand – L2)					
CO2	Apply numerical techniques in solving of equations and evaluation of integrals. (Apply					
02	– L3)					
CO3	Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and					
103	their respective applications to areas and volumes. (Apply – L3)					
CO4	Generate the single valued functions in the form of Fourier series and obtain Fourier					
C04	series representation of periodic function. (Apply – L3)					
CO5	Evaluate the directional derivative, divergence and angular velocity of a vector function.					
105	(Apply – L3)					

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
C01	3	2	-	2	-	-	-	-	-	-	-	1			
CO2	3	2	-	2	-	-	-	-	-	-	-	1			
CO3	3	2	-	1	-	-	-	-	-	-	-	1			
C04	3	1	-	-	-	-	-	-	-	-	-	1			
CO5	3	1	-	1	-	-	-	-	-	-	-	1			
	1 - Low				2	-Medi	um			3	- High				

TEXTBOOKS:

- T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 42ndEdition, Khanna Publishers, New Delhi, 2012.
- **T2** Dr. B. V. Ramana, "Higher Engineering Mathematics", 1stEdition, TMH, New Delhi, 2010.
- **T3** S. S. Sastry, *"Introductory Methods of Numerical Analysis"* 5th Edition, PHI Learning Private Limited, New Delhi, 2012.

REFERENCE BOOKS:

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

R3 W.E. Boyce and R. C. Diprima, "Elementary Differential Equations", 7th Edition, John Wiley & sons, New Delhi,2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Interpolation And Finite Differences

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to the course, Course Outcomes	1	12/09/22		TLM1	
2.	Introduction to UNIT I	1	13/09/22		TLM2	
3.	Forward Differences	1	14/09/22		TLM1	
4.	Backward differences	1	17/09/22		TLM1	
5.	Central Differences	1	19/09/22		TLM1	
6.	Symbolic relations and separation of symbols	1	20/09/22		TLM1	
7.	Symbolic relations and separation of symbols	1	21/09/22		TLM1	
8.	Newton's forward formulae for interpolation	1	24/09/22		TLM1	
9.	Newton's backward formulae for interpolation	1	26/09/22		TLM1	
10.	Related Problems	1	27/09/22		TLM1	
11.	Lagrange's Interpolation	1	28/09/22		TLM1	
12.	TUTORIAL I	1	01/10/22		TLM1	
13.	Lagrange's Interpolation	1	10/10/22		TLM3	
No.	of classes required to complete	UNIT-I: 1	3	No. of clas	sses taker	1:

UNIT-II: Numerical solutions of Equations and Numerical Integration

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Introduction to UNIT II	1	11/10/22		TLM2	
15.	Algebraic and Transcendental Equations	1	12/10/22		TLM1	
16.	False Position method	1	15/10/22		TLM1	
17.	False Position method	1	17/10/22		TLM1	
18.	Newton- Raphson Method in one variable	1	18/10/22		TLM1	
19.	Newton- Raphson Method applications	1	19/10/22		TLM1	
20.	Tutorial II	1	22/10/22		TLM3	
21.	Related Problems	1	25/10/22		TLM1	
22.	Trapezoidal rule	1	26/10/22		TLM1	
23.	Simpson's 1/3 Rule, Simpson's 3/8 Rule	1	29/10/22		TLM1	
No.	of classes required to complete	UNIT-II:	10	No. of clas	sses takei	1:

UNIT-III: Multiple Integrals

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
24.	Introduction to Unit-III	1	31/10/22		TLM2	
25.	Double Integrals -Cartesian coordinates	1	01/11/22		TLM1	
26.	Applications to Double integrals	1	02/11/22		TLM2	

	(Content Beyond the syllabus)				
27.	Triple Integrals - Cartesian coordinates	1	05/11/22	TLM1	
28.	Triple Integrals - Polar coordinates	1	14/11/22	TLM1	
29.	TUTORIAL - III	1	15/11/22	TLM3	
30.	Triple Integrals - Spherical coordinates	1	16/11/22	TLM 1	
31.	Change of order of Integration	1	19/11/22	TLM1	
32.	Change of order of Integration	1	21/11/22	TLM1	
33.	Change of order of Integration	1	22/11/22	TLM1	
	No. of classes required to comp	-III: 10	No. of classes taken:	:	

UNIT-IV: Fourier Series

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34.	Introduction to UNIT IV	1	23/11/22		TLM1	
35.	Determination of Fourier coefficients, Even and Odd Functions	1	26/11/22		TLM1	
36.	Fourier Series in the [0,2pi]	1	28/11/22		TLM1	
37.	Fourier Series in the [0,2pi]	1	29/11/22		TLM1	
38.	Fourier Series in an arbitrary interval	1	30/11/22		TLM1	
39.	Problems	1	03/12/22		TLM1	
40.	Fourier Series in an arbitrary interval	1	05/12/22		TLM1	
41.	TUTORIAL IV	1	06/12/22		TLM3	
42.	Fourier series in an arbitrary interval odd and even functions	1	07/12/22		TLM1	
43.	Half-range Sine and Cosine series	1	10/12/22		TLM1	
44.	Half-range Sine and Cosine series	1	12/12/22		TLM1	
No.	of classes required to complete	11	No. of clas	sses taker	1 :	

UNIT-V: Vector Differentiation

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
45.	Introduction to UNIT V	1	13/12/22		TLM1	
46.	Vector Differentiation	1	14/12/22		TLM1	
47.	Gradient	1	17/12/22		TLM1	
48.	Directional Derivative	1	19/12/22		TLM1	
49.	Directional Derivative	1	20/12/22		TLM1	
50.	Divergence	1	21/12/22		TLM3	
51.	Curl	1	24/12/22		TLM1	
52.	TUTORIAL V	1	26/12/22		TLM1	
53.	Solenoidal fields, Irrotational fields, potential surfaces	1	27/12/22		TLM1	
54.	Laplacian, second order operators	1	28/12/22		TLM 1	
55.	Properties	1	31/12/22		TLM1	
56.	Content beyond the syllabus		31/12/22			
No. o	f classes required to complet	11	No. of clas	sses taker	1:	

Teaching MethodsTLM1Chalk and TalkTLM4Demonstration (Lab/Field Visit)

TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks			
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5			
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))				
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10			
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5			
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)				
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10			
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>			
Cumulative Internal Examination (CIE): M	<mark>30</mark>			
Semester End Examination (SEE)	<mark>70</mark>			
Total Marks = CIE + SEE	100			

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering				
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering				
	problems.				
	Problem analysis: Identify, formulate, review research literature, and analyze complex				
PO 2	engineering problems reaching substantiated conclusions using first principles of				
	mathematics, natural sciences, and engineering sciences.				
	Design/development of solutions: Design solutions for complex engineering problems and				
PO 3	design system components or processes that meet the specified needs with				
100	appropriate consideration for the public health and safety, and the cultural, societal and				
	environmental considerations.				
	Conduct investigations of complex problems: Use research-based knowledge and research				
PO 4	methods including design of experiments, analysis and interpretation of data and synthesis of				
	the information to provide valid conclusions.				
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern				
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities				
	with an understanding of the limitations.				
DO (The engineer and society: Apply reasoning informed by the contextual knowledge to assess				
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
	Environment and sustainability : Understand the impact of the professional engineering				
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of and need				
107	for sustainable development.				
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and				
PO 8	norms of the engineering practice.				
DO 0	Individual and team work: Function effectively as an individual, and as a member or leader				
PO 9	in diverse teams, and in multidisciplinary settings.				
	Communication: Communicate effectively on complex engineering activities with the				
PO 10	engineering community and with society at large, such as, being able to comprehend and write				
PU 10	effective reports and design documentation, make effective presentations and give and receive				
	clear instructions.				
	Project management and finance: Demonstrate knowledge and understanding of the				
PO 11	engineering and management principles and apply these to one's own work, as a member and				
	leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in				
1012	independent and life-long learning in the broadest context of technological change.				

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	G.Vijaya Lakshmi	Dr. K. R. Kavitha	Dr. A. Rami Reddy	Dr. A. Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: S.RAMI REDDY

Course Name & Code: FLUID MECHANICS & HYDRAULIC MACHINERY&20 ME03L-T-P Structure: 2-1-0Program/Sem/Sec: B.Tech/III/APREREQUISITE: Engineering physics and Mathematics

COURSE EDUCATIONAL OBJECTIVES (CEOs): To understand the fundamental concepts of fluid mechanics, various flow measuring devices, boundary layer separation and performance characteristics of hydraulic machines.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the fundamentals of fluid mechanics and dimensional analysis and similarity concepts
CO2	Comprehend the kinematics and dynamics of fluid flows
CO3	Analyze boundary layer flow and friction losses in pipes
C04	Apply impulse momentum concept to impact of jet problems
C05	Evaluate the performance parameters of hydraulic turbines and pumps

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	2	3	-	-	-	-	-	3	-	3	2	-	3
CO2	3	3	3	2	-	-	-	-	-	-	-	3	2	-	2
CO3	2	1	3	2	1	-	-	-	-	-	-	3	2	-	3
CO4	2	1	2	3	-	-	-	-	-	-	-	3	3	-	3
CO5	3	2	3	2	1	-	I	-	I	-	-	3	2	-	2
1 - Low			2	-Medi	um			3	- High						

TEXTBOOKS:

- T1 P.N.Modi and S.M.Seth, Hydraulics, "Fluid Mechanics and Hydraulic Machinery, 15th Edition, Standard Book House, 2004.
- T2 Philip J, Robert W.fox, Fluid mechanics, 7th edition, John Wiley & sons, 2011.

REFERENCE BOOKS:

- R1 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", 9th Edition, laxmi publications
- R2 Banga & Sharma, "Hydraulic Machines", Edition, Khanna publishers, 6th Edition, 1999.
- **R3** Rama Durgaiah, "Fluid Mechanics and Machinery", Edition, New Age International, 1st edition, 2006
- **R4** D.S.Kumar, "Fluid Mechanics and Fluid power engineering", 5th Edition, S.K.Kataria & Sons.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: FLUID STATITICS AND DIMENSIONAL ANALYSIS AND SIMILARITY

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to FMHM	1	12/09/2022		TLM1	
2.	Physical properties of fluids	1	13/09/2022		TLM3	
3.	Specific gravity,viscosity,surface tension,vapour pressure	1	15/09/2022		TLM1	
4.	Problems on physical properties	1	17/09/2022		TLM1	
5.	Manometers, classification	1	19/09/2022		TLM2	
6.	Problems on manometers	1	20/09/2022		TLM3	
7.	Dimensional analysis,rayleigh's method	1	22/09/2022		TLM1	
8.	Buckingham's Pi theorem method	1	24/09/2022		TLM1	
No.	No. of classes required to complete UNIT-I: 8				sses takei	1:

UNIT-II: FLUID STATICS AND FLUID DYNAMICS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
9.	Stream line, path line, streak line, stream tube	1	26/09/2022		TLM1	
10.	Classification of flows, equation of continuity for 1 dimensional flow	1	27/09/2022		TLM3	
11.	Surface and body forces, Euler's equation, Bernoulli's equation	1	29/09/2022		TLM1	
12.	Momentum equation and its application on pipe bend	1	30/09/2022		TLM1	
13.	Reynold's experiment	1	06/10/2022		TLM2	
14.	Darcy's formula	1	08/10/2022		TLM1	
15.	Minor losses in pipes	1	10/10/2022		TLM1	
16.	Problems on major and minor losses	1	11/10/2022		TLM3	
17.	Pipes in series and parallel	1	13/10/2022		TLM1	
18.	Total energy line and hydraulic gradient line	1	17/10/2022		TLM1	
19.	Venturi meter, orifice meter, pitot tube	1	18/10/2022		TLM3	
20.	Problems on venturi and orifice meter	1	20/10/2022		TLM1	
No.	of classes required to complete	e UNIT-II:	12	No. of clas	sses taker	1:

UNIT-III: BOUNDARY LAYER FLOW AND IMPACT OF JETS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
21.	Laminar and turbulent boundary layer	1	22/10/2022		TLM2	
22.	Boundary layer thickness	1	25/10/2022		TLM3	
23.	displacement thickness	1	27/10/2022		TLM1	
24.	momentum thickness	1	29/10/2022		TLM1	
25.	energy thickness	1	31/10/2022		TLM1	
26.	Energy thickness	1	01/11/2022		TLM3	
27.	boundary layer separation	1	03/11/2022		TLM1	
28.	Problems on boundary layer thickness	1	05/11/2022		TLM1	

38.	Problems on radial vanes No. of classes required to comp		29/11/2022	TLM3 No. of classes taken:
37.	Problems on radial vanes	1	28/11/2022	TLM1
36.	Problems on moving plates	1	26/11/2022	TLM1
35.	Problems on moving plates	1	24/11/2022	TLM1
34.	Problems on moving plates	1	22/11/2022	TLM3
33.	Problems on stationary plates	1	21/11/2022	TLM1
32.	Problems on stationary plates	1	19/11/2022	TLM1
31.	Flow over radial vanes	1	17/11/2022	TLM1
30.	Jet striking centrally and a tip for symmetrically and unsymmetrically vanes, velocity diagrams	1	15/11/2022	TLM3
29.	Hydrodynamic forces of jets on stationary and moving flat, inclined, curved vanes	1	14/11/2022	TLM2

UNIT-IV: HYDRAULIC TURBINES AND PERFORMANCE OF THE HYDRAULIC TURBINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
39.	Classification of hydraulic turbines	1	01/12/2022		TLM2	
40.	Pelton wheel, work done, efficiency	1	03/12/2022		TLM2	
41.	Francis turbine, work done, efficiency	1	05/12/2022		TLM1	
42.	Kaplan turbine, work done, efficiency	1	06/12/2022		TLM3	
43.	Specific speed, specific quantities	1	08/12/2022		TLM1	
44.	Unit quantities, Draft tube- classification	1	12/12/2022		TLM1	
45.	Performance characteristic curves, governing of turbines	1	13/12/2022		TLM3	
46.	Problems on hydraulic turbines	1	15/12/2022		TLM1	
47.	Problems on hydraulic turbines	1	17/12/2022		TLM1	
48.	Problems on hydraulic turbines	1	19/12/2022		TLM1	
49.	Problems on hydraulic turbines	1	20/12/2022		TLM3	
50.	Problems on hydraulic turbines	1	22/12/2022		TLM1	
No.	of classes required to complete	UNIT-IV	: 12			

UNIT-V: CENTRIFUGAL PUMPS AND RECIPROCATING PUMPS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
51.	Working of centrifugal pump, types	1	24/12/2022		TLM2	
52.	Losses and efficiencies, specific speed	1	26/12/2022		TLM2	
53.	Pumps in series and pumps in parallel	1	27/12/2022		TLM3	
54.	Problems on centrifugal pumps	1	29/12/2022		TLM1	
55.	Problems on centrifugal pumps	1	31/12/2022		TLM1	
56.	Problems on centrifugal pumps	1	02/01/2023		TLM1	
57.	Main components and working of reciprocating pumps, types	1	03/01/2023		TLM3	
58.	Slip, negative slip	1	05/01/2023		TLM1	
59.	Problems on reciprocating pumps	1	07/01/2023		TLM1	
No. o	No. of classes required to complete UNIT-V: 9				sses taker	1:

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
PO 1	specialization to the solution of complex engineering problems.
PO 2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	S.RAMI REDDY	S.RAMI REDDY	Dr.P.VIJAYA KUMAR	Dr.S.PICHI REDDY
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr.P.Ravindra Kumar

Course Name & Code	: Thermodynamics & 20ME04
L-T-P Structure	: 3-1-0
Program/Sem/Sec	: B.Tech III Sem A/S

Credits: 3 **A.Y.:** 2022-23

PREREQUISITE: Engineering Physics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To provide an intuitive understanding of thermodynamics to emphasize on physics of thermodynamic systems and this covers the heat and work interactions. It also provides the insights on laws of thermodynamics and its applications, properties of pure substance, ideal gases and different thermodynamic cycles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Classify the various thermodynamic systems, properties and processes with examples and temperature scales of a system [Remembering Level –L1].
CO2	Differentiate open and closed system and built up the heat and work transfer relations of thermal systems [Understanding Level –L2].
CO3	Apply the laws of thermodynamics to find the thermodynamic properties and parameters of various thermal systems [Applying Level-L3].
C04	Understand the properties of pure substance and gases to compute the non-reactive mixture parameters [Understanding Level –L2].
C05	CO5: Analyze the performance parameters of various thermodynamic cycles [Analyzing Level – L4].

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	1	-	-	-	-	-	-	-	-	1	2	-	-
CO2	3	3	2	3	-	-	-	-	2	-	-	2	3	-	1
CO3	3	1	1	3	-	-	-	-	1	-	-	2	3	-	2
CO4	3	3	2	2	-	-	-	3	-	-	-	2	1	-	3
CO5	3	3	-	3	I	-	-	-	3	-	I	3	2	-	3
		1	. - Low	7		2	-Medi	ium			3 -	High			

TEXTBOOKS:

T1	P.K.Nag, "Engineering Thermodynamics"- McGraw-Hill. 5th Edition, 2013						
T2	Y.A. Cengel, and M.A.Boles, "Thermodynamics: An Engineering Approach", McGraw-Hill,						
	7th Edition, 2011.						

REFERENCE BOOKS:

R1	G.J.Van Wylen & Sonntag, "Fundamentals of Thermodynamics", John Wiley& sons, publications Inc. 5th Edition, 1998.
R2	E.Rathakrishnan, "Fundamentals of Engineering Thermodynamics", PHI, 2nd Edition, 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basic Concepts and Zeroth Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	12-09-22		1	
2.	Basic Concepts, Classification of systems, Macroscopic & Microscopic approaches	1	14-09-22		1,2	
3.	System-Types - examples, Control mass and Control volume Properties of system	1	14-09-22		1,2	
4.	State, Path, Process, Cycle, path and point functions.	1	15-09-22		1,2	
5.	Equilibrium, reversible and irreversible processes, Quasistatic process, Applications of TD, Internal Energy, Specific heat, Enthalpy	1	19-09-22		1,2	
6.	Zeroth law of Thermodynamics Temperature scales – Temperature measurement , Comparison of thermometers	1	21-09-22		1,2	
7.	Constant volume gas thermometerNumericalProblemsonTemperature scales.	1	21-09-22		1,2	
8.	Advantages of gas thermometers over liquid thermometers	1	22-09-22		1,2	
9.	Numerical problems on Internal energy, enthalpy, specific heat and latent heat, Assignement-1	1	26-09-22		1	
10	Tutorial -I	1	28-09-22		3	
No.	of classes required to complete U	NIT-I: 10		No. of clas	ses taken	

UNIT-II: First Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11	First Law Analysis of Closed Systems : Introduction, First law for a closed system undergoing change of state and cycle	1	28-09-22		1,2	
12	Representation of Thermodynamic processes on P-V planes	1	29-09-22		1,2	
13	First Law Analysis of Closed System undergoing different process.	1	10-10-22		1,2	
14	Different forms of stored energy, Forms of energy, Mechanical and Non mechanical forms of Work transfer	2	12-10-22		1,2	
15	pdV work and other types of work transfer.	1	12-10-22		1,2	
16	Applications of first law, PMM1 Numerical problems on work and energy.	1	13-10-22		1	

17	First Law Analysis of Open Systems : Thermodynamic analysis of control volume-conservation of mass, energy principle.	1	17-10-22		1,2	
18	Steady Flow Energy Equation (SFEE), Steady Flow Engineering Devices-Nozzles, Diffusers.	1	19-10-22		1,2	
19	Turbine, Compressors, ThrottlingValves, HeatExchangers,Limitationson firstlawthermodynamics, PMM1.	1	19-10-22		1,2	
20	Numerical Problems on SFEE	1	20-10-22		1	
21	Tutorial -2	1	26-10-22		3	
No.	of classes required to complete U	NIT-II: 11		No. of class	ses taken	

UNIT-III: Second Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22	SecondLawAnalysisofThermodynamics:Introduction,EnergyReservoirs,HeatEngines,Refrigerators,HeatPumps.	1	26-10-22		1,2	
23	Kelvin-Planks, Clausius statement of second law of thermodynamics.	1	27-10-22		1,2	
24	Numerical Problems on Second law of TD.	1	02-11-22		1	
25	Equivalence of Kelvin -Planck and Clausius statements.	1	02-11-22		1,2	
26	Perpetual Motion Machine-II, Carnot cycle.	1	03-11-22		1,2	
27	Carnot Theorem – Numerical problem.	1	14-11-22		1	
28	Entropy: Introduction, Clausius inequality, t-s property diagrams.	1	16-11-22		1,2	
29	Entropy change for ideal gases – Derivations.	1	16-11-22		1,2	
30	Isentropic relations for ideal gases, Principle of increase of entropy.	1	17-11-22		1,2	
31	Applications of Entropy- Third law of Thermodynamics Numerical Problems on Entropy.	1	21-11-22		1,2	
32	Numerical Problems, Assignement-3.	1	23-11-22		1	
33	Tutorial -3	1	23-11-22		3	_
	No. of classes required to compl	ete UNIT-	III: 12	No. of clas	sses taken	:

UNIT-IV: Properties of Pure Substances and Gases

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34	Properties of Pure Substance: Introduction, Phases of pure substance.	1	24-11-22		1,2	
35	<i>p-v, p-T, T-s</i> and <i>h-s</i> diagrams for pure substance, <i>p-v-T</i> Surface.	1	28-11-22		1,2	
36	Properties of steam, quality or dryness fraction.	1	30-11-22		1,2	
37	Phase change processes, Mollier diagram for a pure substance.	1	30-11-22		1,2,4,6	

38	Numerical Problems.	1	01-12-22	1	
39	PropertiesofIdealGases:Equationofstateofagas,Avogadro'slaw,Idealgas,perfectgas,realgas.statestatestate	1	05-12-22	1,2	
40	Properties of mixture of gases – Dalton's law and Amagat's law of partial pressures.	1	07-12-22	1,2	
41	Internal energy, enthalpy and specific heats of gas mixtures, Entropy of gas mixtures.	1	07-12-22	1,2	
42	Numerical Problems.	1	08-12-22	1,2	
43	Tutorial -4	1	12-12-22	3	
No.	of classes required to complete U	NIT-IV: 1	0	No. of classes taken:	

UNIT-V: Thermodynamic Cycles

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
44.	Introduction, working of Carnot vapour cycle, working of simple Rankine cycle	1	14-12-22		1,2		
45.	Problems on Carnot vapour cycle and simple Rankine cycle	1	14-12-22		1,2		
46.	Gas power cycles -Otto, Numerical Problems	1	15-12-22		1,2		
47.	Diesel cycle, Dual cycle - Numerical Problems	1	19-12-22		1,2		
48.	Brayton Cycles and its problems	1	21-12-22		1,2		
49.	RefrigerationCyclesReversedCarnotCycle,Numerical Problems	1	21-12-22		1,2		
50.	Bell-Coleman cycle and simple vapour compression refrigeration Cycle (Theory)	1	22-12-22		1,2		
	f classes required to complete	UNIT-V: 7	7	No. of classes taken:			
Conte	ent beyond the curriculum			1			
1.				26-12-22			
2.			l systems	28-12-22			
3.		systems		28-12-22			
4.	Revision			29-12-22			

Teaching	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5

I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

ACADEMIC CALENDER:

Commencement	of Class work	25-10-	-2021
I Phase of Instructions	25-10-2021	11-12-2021	7 Weeks
I Mid Examinations	13-12-2021	18-12-2021	1 Week
II Phase of Instructions	20-12-2021	05-02-2022	7 Weeks
II Mid Examinations	07-02-2022	12-02-2022	1 Week
Preparation and Practical's	14-02-2022	19-02-2022	1 Week
Semester End Examinations	21-02-2022	05-03-2022	2 Weeks

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
DO 3	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of
PO 2	mathematics, natural sciences, and engineering sciences
	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
PO 3	appropriate consideration for the public health and safety, and the cultural, societal,
	and environmental considerations
	Conduct investigations of complex problems : Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
	Environment and sustainability : Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
PO 10	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
PO 11	member and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1 Image: Second s	vards
To apply the principles of manufacturing technology, scientific management tow	varde
	anus
PSO 2 improvement of quality and optimization of engineering systems in the design, ana	alysis
and manufacturability of products.	
To apply the basic principles of mechanical engineering design for evaluation	on of
PSO 3 performance of various systems relating to transmission of motion and po	ower,
conservation of energy and other process equipment.	

Title Course Instructor	Course	Module	Head of the
	Coordinator	Coordinator	Department

Name of the Faculty	Dr.P.Ravindra Kumar	Dr.P.Ravindra Kumar	Dr.P.Vijay Kumar	Dr.S.Pichi Reddy
Signature				

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

Part-A

PROGRAM	: B.Tech, III-Sem., MECH, Section-A
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Metallurgy & Material Science -20ME05
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	: 3
COURSE INSTRUCTOR	: Dr. S Pichi Reddy
COURSE COORDINATOR	: Dr. S Pichi Reddy
PRE-REQUISITE	: Engineering physics, Engineering Chemistry

COURSE OBJECTIVE:

The objectives of this course are to acquire knowledge on structure of metals and alloys, understand the concept of alloys and equilibrium diagrams; demonstrate the concept of heat treatment process.

COURSE OUTCOMES (CO):

After completion of the course students will be able to

CO1: Comprehend the structure of materials, alloys, and correlated the material properties with structures.

CO2: Illustrate the procedure of drawing the equilibrium diagrams and apply the principle of equilibrium diagrams in evaluating the properties of materials.

CO3: Recall the properties, applications of ferrous, non-ferrous metals and composite materials.

CO4: Apply the principle of mechanical working on metals and heat treatment on materials.

CO5: Identify the types of composite materials and the manufacturing processes of fiber reinforced composites.

000	NOL	ANI	1001						i ciat	.1011			USUI	03,1 1	JUSJ.
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	1	2	1					1		1	2
CO2	1	2	2	1	1	2	1					1		1	2
CO3	1	2	2	1	1	2	1					1		1	2
CO4	1	2	2	1	1	2	1					1		1	2
CO5	1	2	2	1	1	2	1					1		1	2
				•							·				

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 V.D.Kotgire, S.V.Kotgire, Material Science and Metallurgy, Everest Publishing House, 24thEdition, 2008.
- T2 Sidney H. Avener, Introduction to Physical Metallurgy, Tata McGraw-Hill, 3rdEdition, 2011.

BOS APPROVED REFERENCE BOOKS:

- **R1** Richard A.Flinn, Paul Trojan, Engineering Materials and Their Applications, Jaico Publishing House, 4thEdition, 1999.
- **R2** William and callister, Materials Science and engineering, Wiley India private Ltd., 2011.
- **R3** U.C Jindal and Atish Mozumber, Material since and metallurgy, Pearson education- 2012

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: STRUCTURE OF METALS, CONSTITUTION OF ALLOYS

RequiredCompletionMethodsCOsfollo1.Introduction to Metallurgy and Materials - Course Educational Objective (CEO) & Course Outcomes (CO'S)01 $13/9/2022$ TLM1CO1T1,2.Structure of metals Introduction01 $14/9/2022$ TLM1CO1T2,3.Body centered cubic, Face cantered cubic Structures01 $15/9/2022$ TLM1CO1T4.cloge packed hexagonal structure01 $17/9/2022$ TLM1CO1T5.crystallographic planes01 $21/9/2022$ TLM1CO1T2,R6.Mechanism of crystallization of metals01 $21/9/2022$ TLM1CO1T2,R7.Grain and grain boundaries01 $22/9/2022$ TLM1CO1T2,R8.Effect of grain boundaries on the properties of metal / alloys of alloying, Solid solid01 $27/9/2022$ TLM1CO1T2,R10.Substitution Solid Solution, and constructions01 $28/9/2022$ TLM1CO1T2,R11.Hune Rothery rules.01 $29/9/2022$ TLM1CO1T2,R12.Experimental methods of construction of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,13.Classification of equilibrium diagrams01 $12/10/2022$ TLM1CO2T2,14.Experimental methods of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,14.Isomo	ext HOD	Text	Learning	Teaching	Actual	Tentative	No. of	UNIT-I: SIRUCIURE (
Introduction to Metallurgy and Materials - Course Educational Objective (CEO) & Course Outcomes (CO's)Image and the second se	0	Book						Topics to be covered	S.No.	
1.Materials - Course Educational Objective (CEO) & Course Outcomes (CO's)0113/9/2022TLMICO1T1,2.Structure of metals Introduction0114/9/2022TLMICO1T2,3.Body centered cubic, Face cantered cubic Structures0115/9/2022TLMICO1T4.closed packed hexagonal structure0117/9/2022TLMICO1T5.crystallographic planes0120/9/2022TLMICO1T2,R6.Mechanism of crystallization of metals0121/9/2022TLMICO1T2,R7.Grain and grain boundaries0124/9/2022TLMICO1T2,R8.Effect of grain boundaries0124/9/2022TLMICO1T2,R9.Necessity of alloying, Solid solutions0127/9/2022TLMICO1T2,R10.Substitution Solid Solution, and properties of metal / alloys0128/9/2022TLMICO1T2,R11.Hume Rothery rules.0129/9/2022TLMICO1T2,R12.Experimental methods of construction of equilibrium diagrams0111/10/2022TLMICO2T2,R13.Classification of equilibrium diagrams.0111/10/2022TLMICO2T2,R14.Equilibrium cooling and heating of alloys, lever rule0112/10/2022TLMICO2T2,R15.Partial cutectic equilibrium diagrams.01<	wed Weekly	followed		Methods	Completion	Completion	Required	Introduction to Metallurgy and		
Objective (CO) & Course Outcomes (CO's)Image: Constant of the course o	D6	T1,R6	CO1	TLM1		12/0/2022	01	Materials - Course Educational	1	
2.Structure of metals Introduction01 $14/9/2022$ TLMICO1T2,3.Body centered cubic, Face cantered cubic Structures01 $15/9/2022$ TLMICO1T4.structure01 $17/9/2022$ TLMICO1T5.crystallographic planes01 $20/9/2022$ TLMICO1T6.Mechanism of crystallization of metals01 $21/9/2022$ TLMICO1T2,R7.Grain and grain boundaries01 $22/9/2022$ TLMICO1T2,R8.Effect of grain boundaries on the properties of metal / alloys01 $24/9/2022$ TLMICO1T2,R9.Neccessity of alloying, Solid solutions01 $27/9/2022$ TLMICO1T2,R10.Substitution Solid Solution and substitution Solid Solution,01 $29/9/2022$ TLMICO1T2,R11.Hume Rothery rules.01 $29/9/2022$ TLMICO1T2,R12.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLMICO2T2,R13.Classification of equilibrium diagrams.01 $11/10/2022$ TLMICO2T2,R14.Isomorphous, cutertic equilibrium diagrams.01 $12/10/2022$ TLMICO2T2,R14.Facilibrium cooling and heating of alloys, lever rule01 $13/10/2022$ TLMICO2T2,R15.Partial cutcetic equilibrium diagrams.	,	11,10	COI			13/9/2022	01		1.	
2.0114/9/2022101CO112,3.Body centered cubic, Face cantered cubic Structures0115/9/2022TLMICO1T4.closed packed hexagonal structure0117/9/2022TLMICO1T5.crystallographic planes01 $20/9/2022$ TLMICO1T6.Mechanism of crystallization of metals01 $21/9/2022$ TLMICO1T2,R7.Grain and grain boundaries on the properties of metal / alloys01 $24/9/2022$ TLMICO1T2,R8.Effect of grain boundaries on the properties of alloying, Solid subtitution Solid Solution and Substitution Solid Solution,01 $27/9/2022$ TLMICO1T2,R10.Interstitial Solid Solution and Substitution Solid Solution,01 $29/9/2022$ TLMICO1T2,R11.Hume Rothery rules.01 $29/9/2022$ TLMICO1T2,R12.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLMICO2T2,13.Classification of equilibrium diagrams.01 $11/10/2022$ TLMICO2T2,14.Isomorphous, eutectic equilibrium diagrams.01 $12/10/2022$ TLMICO2T2,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLMICO2T2,15.Fartial eutectic equilibrium diagrams.01 $15/10/2022$ TLMICO2T2,<				TI M1			<u> </u>			
5.cantered cubic Structures01 $15/9/2022$ CO1CO1114.closed packed hexagonal structure01 $17/9/2022$ TLM1CO1T5.crystallographic planes01 $20/9/2022$ TLM1CO1T2,R6.Mechanism of crystallization of metals01 $21/9/2022$ TLM1CO1T2,R7.Grain and grain boundaries01 $22/9/2022$ TLM1CO1T2,R8.Effect of grain boundaries on the properties of metal / alloys01 $24/9/2022$ TLM1CO1T2,R9.Necessity of alloying, Solid solutions01 $28/9/2022$ TLM1CO1T2,R10.Interstitial Solid Solution and Substitution Solid Solution,01 $28/9/2022$ TLM1CO1T2,R11.Hume Rothery rules.01 $29/9/2022$ TLM1CO1T2,R12.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLM1CO2T2,13.Classification of equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,14.Isomorphous, cutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2T2,15.Partial eutectic equilibrium diagrams.01 $15/10/2022$ TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule01 $18/10/2022$ TLM1CO2T2,17.Transformations in the01	,R6	T2,R6	CO1	1 1/1/11		14/9/2022	01	Structure of metals infoduction	2.	
4.structure101 $11/9/2022$ 101 $10/9/2022$ 101 $10/9/2022$ 101 $10/9/2022$ 101 $10/9/2022$ 101 $10/9/2022$ $10/9/20$	'2	T2	CO1			15/9/2022	01	cantered cubic Structures	3.	
5. $I = 0.1 + 1 = 0.1$ $0.1 = 20.9/2022$ $I = 0.1 = 0.01$ $0.01/20.022$ $I = 0.01$ <t< td=""><td>'1</td><td>T1</td><td>CO1</td><td></td><td></td><td>17/9/2022</td><td>01</td><td>structure</td><td>4.</td></t<>	'1	T1	CO1			17/9/2022	01	structure	4.	
6.of metals01 $21/9/2022$ CO1 $12/R$ 7.Grain and grain boundaries01 $22/9/2022$ TLM1CO1 $T2,R$ 8.Effect of grain boundaries on the properties of metal / alloys01 $24/9/2022$ TLM1CO1 $T2,R$ 9.Necessity of alloying, Solid solutions01 $27/9/2022$ TLM1CO1 $T2,R$ 9.Necessity of alloying, Solid solutions01 $27/9/2022$ TLM1CO1 $T2,R$ 10.Interstitial Solid Solution and Substitution Solid Solution, ubstitution Solid Solution,01 $28/9/2022$ TLM1CO1 $T2,R$ 11.Hume Rothery rules.01 $29/9/2022$ TLM1CO1 $T2,R$ 11.Hume Rothery rules.01 $29/9/2022$ TLM1CO1 $T2,R$ 12.Construction of equilibrium diagrams01 $01/10/2022$ TLM1CO2 $T2,R$ 13.Classification of equilibrium diagrams.01 $11/10/2022$ TLM1CO2 $T2,R$ 14.Isomorphous,eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2 $T2,R$ 15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2 $T2,R$ 16.Equilibrium cooling and heating of alloys, lever rule01 $18/10/2022$ TLM1CO2 $T2,R$ 17.Transformations in the01 $18/10/2022$ TLM1CO2 $T2,R$	'1	T1	CO1	TLM1		20/9/2022	01	crystallographic planes	5.	
7. I	.1,R6	T2,R1,R6	CO1	TLM1		21/9/2022	01	•	6.	
8. properties of metal / alloys 01 24/9/2022 CO1 12, 9. Necessity of alloying, Solid solution and Substitution Solid Solution, 01 27/9/2022 TLM1 CO1 T2, 10. Substitution Solid Solution, and Substitution Solid Solution, 01 28/9/2022 TLM1 CO1 T2, 11. Hume Rothery rules. 01 29/9/2022 TLM1 CO1 T2, No. of classes required to complete UNIT-I 11 No. of classes taken: VNIT - II EQUILIBRIUM DIAGRAMS 12. Experimental methods of construction of equilibrium diagrams 01 01/10/2022 TLM1 CO2 T2, 13. Classification of equilibrium diagrams 01 11/10/2022 TLM1 CO2 T2, 14. equilibrium diagrams. 01 12/10/2022 TLM1 CO2 T2, 15. Partial eutectic equilibrium diagrams. 01 13/10/2022 TLM1 CO2 T2, 16. Equilibrium cooling and heating of alloys, lever rule 01 15/10/2022 TLM1 CO2 T2, 17. Coring. 01 18/10/2022<	.1,R6	T2,R1,R6	CO1	TLM1		22/9/2022	01	Grain and grain boundaries	7.	
9.solutions $I = 0$ 01 $27/9/2022$ $I = 12$ 10.Interstitial Solid Solution and Substitution Solid Solution,01 $28/9/2022$ $TLM1$ $CO1$ $T2$,11.Hume Rothery rules.01 $29/9/2022$ $TLM1$ $CO1$ $T2$,No. of classes required to complete UNIT-I11.Hume Rothery rules.01 $29/9/2022$ $TLM1$ $CO1$ $T2$,No. of classes required to complete UNIT-I11.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ $TLM1$ $CO2$ $T2$,13.Classification of equilibrium diagrams01 $11/10/2022$ $TLM1$ $CO2$ $T2$,14.Experimental methods of equilibrium diagrams.01 $12/10/2022$ $TLM1$ $CO2$ $T2$,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ $TLM1$ $CO2$ $T2$,16.Equilibrium cooling and heating of alloys, lever rule01 $18/10/2022$ $TLM1$ $CO2$ $T2$,17.Coring. Transformations in the01 $18/10/2022$ $TLM1$ $CO2$ $T2$,	,R1	T2,R1	CO1	TLM1		24/9/2022	01		8.	
10.Substitution Solid Solution,01 $28/9/2022$ TLM1CO1T2,11.Hume Rothery rules.01 $29/9/2022$ TLM1CO1T2,No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-I111No. of classes required to complete UNIT-I11Colspan="4">II POULISEIUM DIAGRAMS12.Experimental methods of construction of equilibrium diagrams0111/10/2022TLM1CO2T2,13.Classification of equilibrium diagrams0112/10/2022TLM1CO2T2,14.Semonorphous, euteric equilibrium diagrams0113/10/2022 <th co<="" td=""><td>,R1</td><td>T2,R1</td><td>CO1</td><td>TLM1</td><td></td><td>27/9/2022</td><td>01</td><td>i i c,</td><td>9.</td></th>	<td>,R1</td> <td>T2,R1</td> <td>CO1</td> <td>TLM1</td> <td></td> <td>27/9/2022</td> <td>01</td> <td>i i c,</td> <td>9.</td>	,R1	T2,R1	CO1	TLM1		27/9/2022	01	i i c ,	9.
International problem of the probl	R1	T2,R1	CO1	TLM1		28/9/2022	01		10	
11. $CO1$ $CO1$ 12 ,No. of classes required to complete UNIT-I11No. of classes required to complete UNIT-IUNIT – II EQUILIBRIUM DIAGRAMS12.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLM1CO2T2,13.Classification of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,14.Isomorphous, eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.Coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,	,111	12,111	COI				01	Substitution Solid Solution,	10.	
UNIT – II EQUILIBRIUM DIAGRAMS12.Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLM1CO2T2,13.Classification of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,14.Isomorphous, eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2T2,15.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.Coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,	,R1	T2,R1	CO1	TLM1		29/9/2022	01	Hume Rothery rules.	11.	
Experimental methods of construction of equilibrium diagrams01 $01/10/2022$ TLM1CO2T2,13.Classification of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,14.Isomorphous, eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2T2,15.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.Coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,		aken:	of classes ta	No.			11	classes required to complete UNIT-I	No. of	
12. $construction of equilibrium diagrams0101/10/2022ILMICO2T2,13.Classification of equilibrium diagrams0111/10/2022TLM1CO2T2,14.Isomorphous, eutectic equilibrium diagrams.0112/10/2022TLM1CO2T2,15.Partial eutectic equilibrium diagrams.0113/10/2022TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule0115/10/2022TLM1CO2T2,17.Coring.0118/10/2022TLM1CO2T2,17.Coring.0118/10/2022TLM1CO2T2,$					JAGRAMS	ILIBRIUM D	– II EQUI	UNIT		
12.construction of equilibrium diagrams0101/10/2022 $CO2$ 12, $CO2$ 13.Classification of equilibrium diagrams0111/10/2022TLM1CO2T2, $CO2$ 14.Isomorphous, eutectic equilibrium diagrams.0112/10/2022TLM1CO2T2, $CO2$ 15.Partial eutectic equilibrium diagrams.0113/10/2022TLM1CO2T2, $CO2$ 15.Equilibrium cooling and heating of alloys, lever rule0115/10/2022TLM1CO2T2, $CO2$ 17.Coring. Transformations in the0118/10/2022TLM1CO2T2,				TI M1						
13.Classification of equilibrium diagrams01 $11/10/2022$ TLM1CO2T2,14.Isomorphous, eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,14.Partial eutectic equilibrium diagrams.01 $12/10/2022$ TLM1CO2T2,15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.Coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,	,R1	T2,R1	CO2			01/10/2022	01		12.	
13.diagrams0111/10/2022CO212,14.Isomorphous, eutectic equilibrium diagrams.0112/10/2022TLM1CO2T2,15.Partial eutectic equilibrium diagrams.0113/10/2022TLM1CO2T2,15.Equilibrium cooling and heating of alloys, lever rule0115/10/2022TLM1CO2T2,16.Coring. Transformations in the0118/10/2022TLM1CO2T2,				TI M1				1 0		
14.equilibrium diagrams.0112/10/2022TLM1CO2T2,15.Partial eutectic equilibrium diagrams.0113/10/2022TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule0115/10/2022TLM1CO2T2,17.Coring. Transformations in the0118/10/2022TLM1CO2T2,	,R1	T2,R1	CO2			11/10/2022	01	diagrams	13.	
14.equilibrium diagrams.01 $12/10/2022$ $CO2$ $12,$ 15.Partial eutectic equilibrium diagrams.01 $13/10/2022$ TLM1 $CO2$ T2,16.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1 $CO2$ T2,17. $CO2$ $CO2$ $CO2$ $CO2$ $CO2$ $CO2$ $CO2$		T2 D 1		TLM1		10/10/2022	0.1	_	14	
15.diagrams.01 $13/10/2022$ TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.Coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,	,K1	T2,R1	002			12/10/2022	01	equilibrium diagrams.	14.	
15.diagrams.01 $13/10/2022$ TLM1CO2T2,16.Equilibrium cooling and heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,17.coring. Transformations in the01 $18/10/2022$ TLM1CO2T2,				TTT 1.54			0.1	Partial eutectic equilibrium		
16.heating of alloys, lever rule01 $15/10/2022$ TLM1CO2T2,coring.17.Transformations in the01 $18/10/2022$ TLM1CO2T2,	,R1	T2,R1	CO2			13/10/2022	01	-	15.	
16.heating of alloys, lever rule $15/10/2022$ $CO2$ $12,$ coring17.Transformations in the01 $18/10/2022$ TLM1CO2T2,				ТІ МІ І			01	Equilibrium cooling and		
17. Transformations in the 01 18/10/2022 TLM1 CO2 T2,	,R1	T2,R1	CO2			15/10/2022	UI	heating of alloys, lever rule	16.	
	,R1	T2,R1	CO2	TLM1		18/10/2022	01		17.	
18.Allotropy, Eutectic reaction01 $19/10/2022$ TLM1CO2T2,	,R1	T2,R1	CO2	TLM1		19/10/2022	01	Allotropy, Eutectic reaction	18.	
19. Eutectoid reaction 01 20/10/2022 TLM1 CO2 T2,	,R1	T2,R1	CO2	TLM1		20/10/2022	01	Eutectoid reaction	19.	
20. Peritectoid reaction 01 22/10/2022 TLM1 CO2 T2,	,R1	T2,R1	CO2	TLM1		22/10/2022	01	Peritectoid reaction	20.	

21.	Study of Cu-Ni equilibrium diagrams.	01	25/10/2022	TLM1	CO2	T2,R1	
22.	Bi-Cd equilibrium diagrams.	01	26/10/2022	TLM1	CO2	-	
23.	Study of Iron-Iron carbide equilibrium diagram.	01	27/10/2022	TLM1	CO2	-	
No. of	f classes required to complete UNIT- II	12		No. of Classes taken:			

UNIT-III : STEELS, CAST IRONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
24.	Classification of steels, structure, properties and applications of plain carbon steel	01	29/10/2022	Completion	TLM1	CO3	T1,R1,R6	WEEKIY
25.	Low carbon steel	01	1/11/2022		TLM1	CO3	T2,R6	
26.	Medium carbon steel	01	2/11/2022		TLM1	CO3	T2,R6	
27.	High carbon steel & applications.	01	3/11/2022		TLM1	CO3	T2,R6	
28.	Structure, properties and applications of white cast iron	01	5/11/2022		TLM1	CO3	T1,T2,R1	
29.	Structure, properties and applications of malleable cast iron.	01	15/11/2022		TLM1	CO3	T1,T2,R1	
30.	Grey cast iron	01	16/11/2022		TLM1	CO3	-	
31.	Spheroidal graphite cast iron.	01	17/11/2022		TLM1	CO3	-	
32.	Structure, properties and applications of copper	01	19/11/2022		TLM1	CO3	T2,R1	
33.	Structure, properties and applications of copper alloys	01	22/11/2022		TLM1	CO3	T2,R1	
34.	Aluminium and its alloys	01	23/11/2022		TLM1	CO3	T2,R1	
No. of	classes required to complete UNIT-III	11			No. of clas	ses taken:		

UNIT-IV : MECHANICAL WORKING, HEAT TREATMENT OF ALLOYS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
35.	Hot working, Cold working,	01	24/11/2022		TLM1	CO4	T1,R1,R6	
36.	Strain hardening	01	26/11/2022		TLM1	CO4	T1,R1,R6	
37.	Recovery, Recrystallisation	01	29/11/2022		TLM1	CO4	T1,R1,R6	
38.	Grain growth.	01	30/11/2022		TLM1	CO4	T1,R1,R6	

39.	Comparison of properties of cold worked parts	01	1/12/2022		TLM1	CO4	T2,R1	
40.	Comparison of properties of hot worked parts	01	3/12/2022		TLM1	CO4	T2,R1	
41.	Annealing, Normalizing	01	6/12/2022		TLM1	CO4	T1,R6]
42.	Hardening.	01	7/12/2022		TLM1	CO4	T1,R6	
43.	Construction of TTT diagram for eutectoid steel.	01	8/12/2022		TLM1	CO4	-	
44.	Harden ability-determination of harden ability by jominy end quench test	01	10/12/2022		TLM1	CO4	T1,T2,R1	
45.	Surface - hardening methods	01	13/12/2022		TLM1	CO4	T1,T2,R1	
46.	Age hardening treatment and application	01	14/12/2022		TLM1	CO4	T1,T2,R1	
No. of c	No. of classes required to complete UNIT-IV12No. of classes taken:							

UNIT-V : COMPOSITE MATERIALS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
47.	Classification of composites	01	15/12/2022		TLM1	CO5	T1,R6	
48.	various methods of component manufacture of fiber reinforced composites-Hand layup process	01	17/12/2022		TLM1	CO5	T1,R6	
49.	Filament winding process,	01	20/12/2022		TLM1	CO5	T1,R6	
50.	SMC processes	01	21/12/2022		TLM1	CO5	T1,R6	
51.	Continuous pultrusion processes, Resin transfer moulding.	01	22/12/2022		TLM1	CO5	T1,R6	
52.	Introduction to metal ceramic mixtures	01	24/12/2022		TLM1	CO5	-	
53.	Metal – Matrix composites	01	27/12/2022		TLM1	CO5	T1,R1,R6	
54.	C–Ccomposites	01	28/12/2022		TLM1	CO5	T2,R1,R6	
55.	Applications of Composites	01	29/12/2022		TLM1/ TLM4	CO5	T1,T2,R1	
56.	Rule of mixture and numericals	01	31/12/2022		TLM1	CO5	-	
No. of	No. of classes required to complete UNIT-V 10 No. of classes taken:							

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Revision for I Phase	09	5/11/2022		TLM1/ TLM4	-		
2.	Revision for II Phase	09	31/12/2022		TLM1/ TLM4	-		

Contents beyond the Syllabus

	Contents beyond the Synab	us						
S No	Tarias to be servered	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign

		Required	Completion	Completion	Methods	COs	followed	Weekly
3.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		
4.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		
5.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD		
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo		
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study		

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	12/09/2022	05/11/2022	8
I Mid Examinations	07/11/2022	12/11/2022	1
II Phase of Instructions	14/11/2022	31/12/2022	7
II Mid Examinations	02/01/2023	07/01/2023	1
Preparation and Practical	09/01/2023	14/01/2023	1
Semester End Examinations	16/01/2023	28/01/2023	2

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Online Quiz Examination-1	1,2	C1
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Online Quiz Examination-2	3,4,5	C2
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Quiz Examination: C	1,2,3,4,5	C=10
Evaluation of Attendance marks: D (As per the Academic Regulations)	-	D=5
Cumulative Internal Examination : E=A+B+C+D	1,2,3,4,5	E=40
Semester End Examinations: F	1,2,3,4,5	F=60
Total Marks: E+F	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	Head of the Department

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: K. V. VISWANADH

Course Name & Code: MECHANICS OF SOLIDS & 20 ME06L-T-P Structure: 2-1-0Program/Sem/Sec: B.Tech/III/APREREQUISITE:Engineering MechanicsCOURSE EDUCATIONAL OBJECTIVES (CEOs):The objective of the courtility

Credits: 3 **A.Y.:** 2022-23

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of the course is to identify nature of the stress and compute the deformations in mechanical members due to various loads.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Compute the stresses and deformations of a member subjected to various types of loading. (Applying-L3)
CO2	Construct the shear force and bending moment diagrams along the length of beam. (Applying-L3)
CO3	Comprehend the variation of bending and shear stresses across the cross section of the beams. (Understanding-L2)
CO4	Analyze the structural members subjected to biaxial stresses. (Analyzing-L4)
C05	Formulate the equations for stresses and deformations due to various loads. (Applying-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	-	-	-	-	-	-	-	-	-	2	-	-	3
CO2	3	3	1	-	-	-	-	-	-	-	-	2	-	-	3
CO3	3	2	-	-	-	-	-	-	-	-	-	2	-	-	3
CO4	3	2	1	-	-	-	-	-	I	-	-	2	-	-	3
CO5	3	2	-	-	-	-	-	-	-	-	-	2	-	-	3
		1	- Low			2	-Medi	ium			3	- High			

TEXTBOOKS:

- **T1** E.P. Popov, Engineering Mechanics of Solids, PHI Learning, 2009.
- T2 Sadhu Singh, Strength of Materials, Khanna Publishers, 2013.

REFERENCE BOOKS:

- **R1** S. Ramamrutham, Strength of Materials, Dhanpat Rai & Sons, 2011.
- R2 M.L. Gambhir, Fundamentals of Solid Mechanics, PHI Learning, 2009.
- **R3** M. Chakraborti, "Strength of Materials", S.K.Kataria & Sons.
- R4 R.Subramanian, "Strength of Materials", Oxford University Press, 2010.
- **R5** R.K.Bansal, "Strength of Materials", Laxmi Publishers, 2013.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: SIMPLE STRESSES AND STRAINS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Mechanics of Solids - Course Educational Objective (CEO) & Course Outcomes (CO's)	1	13-09-2022		TLM1,2	
2.	Concept of Stress & Strain	1	14-09-2022		TLM2	
3.	Mechanical properties of Materials	1	14-09-2022		TLM2	
4.	Stress Strain diagrams for Mild Steel -Hooke's Law Evaluation of Proof stress by Offset method	1	16-09-2022		TLM2,4	
5.	Stresses, Strains & Deformations of a body due to axial force Factor of Safety	1	20-09-2022		TLM1	
6.	Deformation of Stepped bar due to axial loads	1	21-09-2022		TLM1	
7.	Tutorial-I	1	21-09-2022		TLM3	
8.	Stresses in composite bars & Problems	1	23-09-2022		TLM1	
9.	Lateral strain, Poisson's ratio & change in volume; Shear stress & shear strain	1	27-09-2022		TLM1	
10.	Relation between Young's Modulus and shear Modulus	1	28-09-2022		TLM1	
11.	Relation between Elastic modulii & Problems	1	28-09-2022		TLM1	
12.	Tutorial-II	1	30-09-2022		TLM3	
13.	Assignment / Quiz (UNIT-I)	1	11-10-2022		TLM1	
No.	of classes required to complet	e UNIT-I:	13	No. of class	ses taken:	

UNIT-II: SHEAR FORCE AND BENDING MOMENT

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Introduction to Shear force and bending moment; Relation between Shear Force, Bending Moment & rate of Loading	1	12-10-2022		TLM1	
15.	Shear force & Bending moment Diagrams for cantilever beam subjected to Concentrated loads & UDL.	1	12-10-2022		TLM1	
16.	Shear force & Bending moment Diagrams for Simply supported beam subjected to Concentrated loads & UDL.	1	14-10-2022		TLM1	
17.	Estimation of Maximum bending moment for simply supported beam	1	18-10-2022		TLM1	

22.	Revision	1	26-10-2022	TLM1	
21.	Tutorial-IV Assignment / Quiz (UNIT-II)	1	25-10-2022 26-10-2022	TLM3 TLM1	
20.	Tutorial-III	1	21-10-2022	TLM3	
19.	Estimation of Maximum bending moment & point of contra flexure for Overhanging beams	1	19-10-2022	TLM1	
18.	Shear force & Bending moment Diagrams for Overhanging beam subjected to Concentrated loads & UDL	1	19-10-2022	TLM1	

UNIT-III: STRESSES IN BEAMS AND SHEAR STRESSES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
24.	Theory of Simple bending, assumptions	1	28-10-2022		TLM1			
25.	Derivation of flexure equation	1	01-11-2022		TLM1			
26.	Section modulus and problems	1	02-11-2022		TLM1			
27.	Normal stresses due to flexure applications	1	02-11-2022		TLM1			
28.	Revision	1	04-11-2022					
29.	Concept of shear stress variation over cross section due to flexural loads	1			TLM1			
	Derivation of lateral shear stress	1	15-11-2022		TUN (4			
30.	Shear stress distribution across rectangular & circular sections	1	16-11-2022		TLM1			
31.	Problems on distribution of Shear stress	1	16-11-2022		TLM1			
32.	Tutorial-V	1	18-11-2022		TLM3			
33.	Assignment / Quiz (UNIT-III)	1	22-11-2022		TLM1			
	No. of classes required to complete UNIT-III: 10 No. of classes taken:							

UNIT-IV: ANALYSIS OF COMBINED STRESSES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34.	State of stress at a point, normal and tangential stresses on inclined planes	1	23-11-2022		TLM1	
35.	Problem on normal and tangential stresses on inclined planes	1	23-11-2022		TLM1	
36.	Principle stresses and their planes, maximum shear stress plane	1	25-11-2022		TLM1	
37.	Tutorial-VI	1	29-11-2022		TLM3	
38.	Mohr's circle diagram	1	30-11-2022		TLM1	
39.	Problems on Mohr's circle	1	30-11-2022		TLM1	
40.	Problems on Mohr's circle	1	02-12-2022		TLM1	
41.	Tutorial-VII	1	06-12-2022		TLM3	
42.	Assignment / Quiz (UNIT-IV)	1	07-12-2022		TLM1	
43.	Revision	1	07-12-2022		TLM1	
44.	Videos	1	09-12-2022		TLM5	
No.	of classes required to complete	UNIT-IV	: 11	No. of clas	sses taker	1:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
45.	Derivation of Differential equation for elastic line (Deflection	1			TLM1	
45.	Equation)	L	13-12-2022		ILIVII	
46.	Deflection & Slope equations for cantilever beam	1	14-12-2022		TLM1	
47.	Deflection & Slope equations for simply supported beam	1	14-12-2022		TLM1	
48.	Macaulay's method	1	16-12-2022		TLM1	
49.	Introduction to thin & thick shells Hoop stress and longitudinal	1	20 12 2022		TLM2	
50.	stresses for thin cylinders Change in volume of thin cylinder	1	20-12-2022 21-12-2022		TLM2	
51.	Derivation of Lame's equations of Thick cylinders; Problems on thick cylinders	1	21-12-2022		TLM1	
52.	Tutorial-VIII	1	23-12-2022		TLM3	
53.	Assignment / Quiz (UNIT-V)	1	27-12-2022		TLM1	
54.	Beyond Syllabus	1	28-12-2022		TLM2	
55.	Revision	1	28-12-2022		TLM1	
No. o	f classes required to complete	e UNIT-V:	11	No. of clas	sses taken	:

UNIT-V: DEFLECTION OF BEAMS & THIN AND THICK CYLINDRICAL SHELLS

Teaching Learning Methods						
TLM1	TLM1 Chalk and Talk TLM4 Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):


	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
PO 1	specialization to the solution of complex engineering problems.
	Identify, formulate, review research literature, and analyze complex engineering problems
PO 2	reaching substantiated conclusions using first principles of mathematics, natural sciences, and
102	engineering sciences.
	Design solutions for complex engineering problems and design system components or processes
PO 3	that meet the specified needs with appropriate consideration for the public health and safety, and
	the cultural, societal, and environmental considerations.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis
104	and interpretation of data, and synthesis of the information to provide valid conclusions.
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools
PO 5	including prediction and modeling to complex engineering activities with an understanding of the
	limitations.
	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and
PO 6	cultural issues and the consequent responsibilities relevant to the professional engineering
	practice.
PO 7	Understand the impact of the professional engineering solutions in societal and environmental
	contexts, and demonstrate the knowledge of, and need for sustainable development. Apply ethical principles and commit to professional ethics and responsibilities and norms of the
PO 8	engineering practice.
	Function effectively as an individual, and as a member or leader in diverse teams, and in
PO 9	multidisciplinary settings.
	Communicate effectively on complex engineering activities with the engineering community and
PO 10	with society at large, such as, being able to comprehend and write effective reports and design
1010	documentation, make effective presentations, and give and receive clear instructions.
	Demonstrate knowledge and understanding of the engineering and management principles and
PO 11	apply these to one's own work, as a member and leader in a team, to manage projects and in
	multi-disciplinary environments.
PO 12	Recognize the need for and have the preparation and ability to engage in independent and life-
	long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	K. V. VISWANADH	K. V. VISWANADH	B. SUDHEER KUMAR	Dr. S. PICHI REDDY
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Dr. Shaheda Niloufer	
Invironmental Science & 20MC03	
-0-0	Credits : 0
B.Tech., MECH-A., III-Sem., SEC-A	A.Y : 2021-22
-	nvironmental Science & 20MC03 0-0

PRE-REQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs): The purpose of this course is to provide a general background on developing an understanding of systems and cycles on the earth and how individual organisms live together in complex communities and how human activities influence our air, water and soil. It also helps in developing an understanding about our use of fossil fuels and effect on climate and sustainable management of natural resources.

COURSE OUTCOMES (COs): At the end of the course, students are able to

counsi	E OUTCOMES (COS). At the ond of the course, students are dole to
CO 1	Identify environmental problems arising due to engineering and technological activities
	that help to be the part of sustainable solutions.
CO 2	Evaluate local, regional and global environmental issues related to resources and their
	sustainable management.
CO 3	Realize the importance of ecosystem and biodiversity for maintaining ecological
	balance.
CO 4	Acknowledge and prevent the problems related to pollution of air, water and soil.
CO5	Identify the significance of implementing environmental laws and abatement devices for
	environmental management.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	-	3	3	3	-	-	-	3	-	-	-
CO2	3	3	-	-	-	3	3	-	-	-	-	3	-	-	-
CO3	3	-	3	-	-	-	2	-	-	-	-	2	-	-	-
CO4	3	-	-	-	-	2	3	2	-	-	-	3	-	-	-
CO5	3	3	3	3	-	3	3	3	-	-	-	3	-	-	-

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Anubha Kaushik, C.P.Kaushik, "Perspectives in Environmental Studies", New age international publishers, 5th Edition, Delhi, 2016.
- T2 Mahua Basu, S. Xavier, "Fundamentals of Environmental Studies", Cambridge University Press, 1st Edition, Delhi, 2016.

REFERENCE BOOKS:

- R1 S. Deswal, A. Deswal, "A Basic course in Environmental Studies", Educational & Technical Publishers, 2nd Edition, Delhi, 2014.
- R2 R. Rajagopalan, "Environmental Studies (From Crisis to Cure)", Oxford University Press,

2nd Edition, New Delhi, 2012.

- **R3** De, A.K, "Environmental Chemistry", New Age International (P) Limited, 5th Edition, New Delhi, 2003.
- **R4** Dr.K.V.S.G. Murali Krishna, "Environmental Studies", VGS Techno Series, 1st Edition, Vijayawada, 2010.
- **R5** G. Tyler Miller, Scott Spoolman, "Introduction to Environmental Studies", Cengage Learning, 13th Edition, New Delhi, 2009.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: NATURE AND SCOPE OF ENVIRONMENTAL PROBLEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction of course and course objectives. Introduction of components of Environment	1	12-09-2022		2	
2.	Population explosion and variations among Nations.	1	17-09-2022		2	
3.	ResettlementandRehabilitation-Issuesandpossible solutions	1	19-09-2022		2	
4.	Environmental Hazards	1	24-09-2022		2	
5.	Role of Information Technology in environmental management and human health.	1	26-09-2022		2	
No. of cla	asses required to complete UNIT	-I: 5	1	No. of clas	sses taken:	

UNIT-II: NATURAL RESOURCES AND CONSERVATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction and classification of Natural resources, Forest Resources,	1	01-10-2022		2	
2.	Water Resources	1	10-10-2022		2	
3.	Mineral Resources	1	15-10-2022		2	
4.	Food Resources	1	17-10-2022		2	
5.	Food Resources	1	22-10-2022		2	
6.	Mineral Resources	1	29-10-2022		2	
No. o	f classes required to complete UN	IT-II: 6		No. of clas	ses taken:	

UNIT-III: ECOLOGY AND BIODIVERSITY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Definition, structure and functions of an ecosystem	1	31-10-2022		2	
2.	Food chains and Food webs, Ecological succession, Ecological pyramids, Bio-geo-chemical cycles	1	05-11-2022		2	
3.	Major Types of Ecosystems – Forest, Grassland, Desert Land & aquatic Ecosystem, Ecological Niche and Keystone Species, Bio- geographical classification of	1	05-11-2022		2	

	India. India as a mega diversity nation					
4.	I MID EXAMINATION		07-11-2022			
5.	Values of biodiversity- Direct and Indirect values. Threats to biodiversity; Assignment in Unit II	1				
			14-11-2022		2	
6.	Man and wild life conflicts. Endangered and endemic species of India	1	19-11-2022		2,3	
7.	Conservation of biodiversity: In- situ and Ex-situ conservation methods	1	21-11-2022		2	
No. o	f classes required to complete UN	IT-III: 6		No. of clas	ses taken:	

UNIT-IV : ENVIRONMENTAL POLLUTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Air Pollution	1	26-11-2022		2	
2.	Causes, effects and control measures of: Water Pollution	1	28-11-2022		2	
3.	Causes, effects and control measures of: Soil Pollution,		03-12-2022			
4.	Noise Pollution		05-12-2022			
5.	Solid Waste Management	1	12-12-2022		2,3	
6.	Disaster Management- Floods, Cyclones, Earthquakes, Landslides and Tsunamis.	1	17-12-2022		2	
No. o	f classes required to complete UN	sses taken:				

UNIT-V : ENVIRONMENTAL MANAGEMENT

Г

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Sustainable Development	1	19-12-2022		2	
2.	Climate disruption- Greenhouse effect, ozone layer depletion and acid rain. Stockholm conference	1	24-12-2022		2,3	
3.	Environmental Impact Assessment (EIA)		26-12-2022			
4.	Green building, Environmental Law		31-12-2022			
5.	II MID EXAMINATIONS	1	02-01-2023		2	
6.	II MID EXAMINATIONS	1	07-01-2023			
No. of class	ses required to complete UN	[T-V: 04		No. of class	sses taken:	

Teaching	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)							
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)							
TLM3	Tutorial	TLM6	Group Discussion/Project							

٦

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks			
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5			
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15			
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10			
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5			
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)				
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10			
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>			
Cumulative Internal Examination (CIE): M	<mark>30</mark>			
Semester End Examination (SEE)	<mark>70</mark>			
Total Marks = CIE + SEE	100			

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of							
	mathematics, natural sciences, and engineering sciences.							
	Design/development of solutions: Design solutions for complex engineering problems and							
PO 3	design system components or processes that meet the specified needs with							
100	appropriate consideration for the public health and safety, and the cultural, societal and							
	environmental considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data and synthesis of							
	the information to provide valid conclusions.							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern							
	engineering and IT tools including prediction and modeling to complex engineering activities							
	with an understanding of the limitations.							
DO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
PO 6	the professional engineering practice.							
	Environment and sustainability : Understand the impact of the professional engineering							
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of and need							
FU /	for sustainable development.							
	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and							
PO 8	norms of the engineering practice.							
DO 0	Individual and team work: Function effectively as an individual, and as a member or leader							
PO 9	in diverse teams, and in multidisciplinary settings.							
	Communication: Communicate effectively on complex engineering activities with the							
PO 10	engineering community and with society at large, such as, being able to comprehend and write							
	effective reports and design documentation, make effective presentations and give and receive							
	clear instructions.							
PO 11	Project management and finance: Demonstrate knowledge and understanding of the							
	engineering and management principles and apply these to one's own work, as a member and							
	leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in							
1012	independent and life-long learning in the broadest context of technological change.							

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department		
Name of the Faculty	Dr. Shaheda Niloufer	Dr. Shaheda Niloufer	Dr. Shaheda Niloufer	Dr. A. Rami Reddy		
Signature						

A.Y.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier - I), New Delhi **DEPARTMENT OF MECHANICAL ENGINEERING**

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY

: 35

: 3hrs/ Week **Continuous Internal Assessment : 15** : 2022-23 Semester End Examination : B. Tech – III Semester Section : A : D. Mallikarjuna Rao, Sr. Assistant Professor K. Sai Babu, Assistant Professor

COURSE EDUCATIONAL OBJECTIVE:

Determine the discharge of various flow measuring devices, estimation of friction factor and

performance parameters of hydraulic machines.

COURSE OUTCOMES:

LAB Lab/Practicals

Class & Semester

Instructors

After completion of the course students are able to:

Identify the need and use of various flow measuring devices.

CO1: (Understanding-L2)

Apply the Bernoulli's equation for energy balance of fluid flow system. (Applying - L3) **CO2**:

Determine the friction losses of fluid flow through different pipes. **CO3**:

(Applying-L3)

Evaluate the performance characteristics of hydraulic pumps, turbines and impact of jets. **CO4:** (Applying-L3)

20ME55	Р О1	P O2	Р О3	P O4	Р О5	Р Об	Р О7	Р 08	Р О9	P 0 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	-	3	-	-	-	-	1	-	-	2	-	-	3
CO2	2	2	2	3	-	-	-	-	1	-	-	2	-	-	-
CO3	-	-	1	3	-	-	-	-	-		-	2	-	-	-
CO4	2	2	3	1	-	-	-	-	1	-	-	2	-	-	3

Course Articulation Matrix:

Course Instructor

Course Coordinator

Module Coordinator HoD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier - I), New Delhi **DEPARTMENT OF MECHANICAL ENGINEERING**

Laboratory Code LAB Lab/Practicals A.Y. Class & Semester Instructors

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY

: 3hrs/ Week : 2022-23

Continuous Internal Assessment : 15 Semester End Examination : 35

: A

: B. Tech – III Semester Section : D. Mallikarjuna Rao, Sr. Assistant Professor

K. Sai Babu, Assistant Professor

LIST OF EXPERIMENTS:

- 1. Verification of Bernoulli's Theorem
- 2. Calibration of Venturimeter
- 3. Calibration of Orifice meter
- 4. Determination of friction factor for a given pipe line
- 5. Calibration of rectanguar Notch
- 6. Performance Test on Pelton Wheel
- 7. Performance Test on Kaplan Turbine
- 8. Performance Test on Single Stage Centrifugal Pump
- 9. Performance Test on Reciprocating Pump
- **10.** Turbine flow meter

REFERENCES

Lab Manual

Course Instructor

Course Coordinator

HoD

(Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier – I), New Delhi <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

Laboratory Code LAB Lab/Practicals A.Y. Class & Semester Instructors

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY

: 3hrs/ WeekContinuous Internal Assessment: 15: 2022-23Semester End Examination: 35: B. Tech – III SemesterSection: A

: D. Mallikarjuna Rao, Sr. Assistant Professor

K. Sai Babu, Assistant Professor

Batches (Section – A)

Total No. of students	s: 21761A0301-22765A0321 =60
Batch B1	:21761A0301-21761A0330 = 30
Batch B2	: 21761A0331 - 22765A0321= 30
Sub Batches of A1:	

Registered Nos S. No Batch Total 21761A0301-306 6 1 $A1_1$ 21761A0307-312 6 2 A12 21761A0313-318 6 3 A13 21761A0319-324 6 4 A14 21761A0325-330 6 5 A15 Total 30

Sub Batches of A2:

S. No	Batch	Registered Nos	Total				
1	A21	21761A0331-22765A0305	6				
2	A22	22765A0306-22765A0311	6				
3	A23	22765A0312-22765A0317	6				
4	A24	22765A0318-22765A0323	6				
5	A25	22765A0324-22765A0329	6				
	Total						

Course Instructor

Course Coordinator

HoD

(Autonomous)

Laboratory Code LAB Lab/Practicals A.Y. Class & Semester Instructors Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier – I), New Delhi DEPARTMENT OF MECHANICAL ENGINEERING

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY

: 3hrs/ Week : 2022-23 Continuous Internal Assessment : 15 Semester End Examination : 35

: B. Tech – III Semester Section : A

: D. Mallikarjuna Rao, Sr. Assistant Professor

K. Sai Babu, Assistant Professor

Notification of Cycles (Section – A)

Batches	Laboratory	Cycle	Experiment No.s
A1 & A2	FLUID MECHANICS AND HYDRAULIC MACHINARY LAB	Ι	FM 1 to FM 5
		II	HM 6 to HM 10

Total No. of	students: 21761A0301-22765A0321 =60
Batch B1	:21761A0301-21761A0330 = 30
Batch B2	: 21761A0331 - 22765A0321= 30

Course Instructor

Course Coordinator

HoD

Laboratory Code

A.Y.

Lab/Practicals

Class & Semester

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier – I), New Delhi DEPARTMENT OF MECHANICAL ENGINEERING

: A

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

- : 3hrs/ Week Continuous Internal Assessment : 15
- : 2022-23 Semester End Examination : 35

: B. Tech – III Semester Section

Instructors : D. Mallikarjuna Rao, Sr. Assistant Professor

K. Sai Babu, Assistant Professor

Batch-I Schedule

Sma	Date								
S.no		A11	A12	A13	A14	A15			
1	12/09/2022	DEMONSTRATION OF FMHM LAB							
2	19/09/2022	FM - 1	FM – 2	FM - 3	FM-4	FM – 5			
3	26/09/2022	FM - 2	FM - 3	FM - 4	FM - 5	FM – 1			
4	10/10/2022	FM - 3	FM-4	FM – 5	FM - 1	FM - 2			
5	17/10/2022	FM-4	FM – 5	FM - 1	FM - 2	FM - 3			
6	31/10/2022	FM - 5	FM – 1	FM – 2	FM - 3	FM - 4			
07/11/	2022 TO	MID-1							
12/1	1/2022								
7	14/11/2022	FM - 6	FM – 7	FM - 8	FM - 9	FM - 10			
8	21/11/2022	FM - 7	FM - 8	FM - 9	FM - 10	FM - 6			
9	28/11/2022	FM - 8	FM – 9	FM - 10	FM - 6	FM - 7			
10	05/12/2022	FM - 9	FM - 10	FM - 6	FM - 7	FM - 8			
11	12/12/2022	FM - 10	FM – 6	FM – 7	FM - 8	HM - 9			
12	19/12/2022	Repetition							
13	26/12/2022	Lab internal							
02/01/	02/01/2023 TO		MID-2						
07/0	1/2023								

Laboratory Code

A.Y.

Lab/Practicals

Instructors

Class & Semester

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

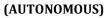
(Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier – I), New Delhi DEPARTMENT OF MECHANICAL ENGINEERING

: A

: 20ME55 Lab: FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

- : 3hrs/ Week Continuous Internal Assessment : 15
- : 2022-23 Semester End Examination : 35


: B. Tech – III Semester Section

: D. Mallikarjuna Rao, Sr. Assistant Professor

K. Sai Babu, Assistant Professor

G		_							
S.no	Date	A21	A22	A23	A24	A25			
1.	22/09/2022	DEMONSTRATION OF FMHM LAB							
2.	29/09/2022	FM - 1	FM – 2	FM – 3	FM - 4	FM – 5			
3.	06/10/2022	FM - 2	FM – 3	FM - 4	FM – 5	FM – 1			
4.	13/10/2022	FM - 3	FM – 4	FM – 5	FM - 1	FM – 2			
5.	20/10/2022	FM-4	FM – 5	FM - 1	FM – 2	FM – 3			
6.	27/10/2022	FM - 5	FM - 1	FM – 2	FM - 3	FM – 4			
7.	03/11/2022	Repetition for cycle-1							
07/11/2	2022 TO	MID-1							
12/1	1/2022								
8.	17/11/2022	FM - 6	FM – 7	FM - 8	FM - 9	FM - 10			
9.	24/11/2022	FM - 7	FM - 8	FM – 9	FM - 10	FM - 6			
10.	01/12/2022	FM - 8	FM – 9	FM - 10	FM - 6	FM - 7			
11.	08/12/2022	FM - 9	FM - 10	FM - 6	FM - 7	FM - 8			
12.	15/12/2022	FM - 10	FM - 6	FM - 7	FM - 8	HM - 9			
13.	22/12/2022	Repetition for cycle-2							
15.	29/12/2022		La	b internal					
02/01/2	02/01/2023 TO		Mid-2						
07/01	1/2023								

Batch-II Schedule

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.K.V.Viswandh/Mr.A.Pratyush

Course Name & Code : Mechanics of Solids and Metallurgy Lab &20ME56 Regulation: R20

L-T-P Structure	: 0-0-3	Credits: 1.5
Program/Sem/Sec	:B.Tech/III/A	A.Y.: 2022-23

PREREQUISITE: Mechanics of solids, Metallurgy and Material science

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of the course is to determine various mechanical properties of materials by testing under different load conditions and observe the microstructure of various materials and perform heat treatment of materials.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Evaluate the mechanical properties of materials by conducting various tests.						
	(Applying-L3)						
CO2	Estimate the behavior of various materials under different loading.						
L02	(Understanding-L2)						
CO3	Identify the material by observing the microstructure. (Remembering-L1)						
CO4	Perform the hardness test and heat treatment of steels. (Applying-L3)						

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	2	1	2	3	-	-	2	-	-	-	-	2	-	-	3
CO2	3	2	2	3	-	-	2	-	-	-	-	2	-	-	3
CO3	3	-	2	3	-	-	-	-	-		-	1	-	3	-
C04	3	-	2	3	1	-	-	-	-	-	-	2	-	3	-
1 - Low					2	-Medi	um			3	- High				

References:

Lab Manual

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

LIST OF EXPERIMENTS

At least 12 experiments are to be conducted:

7. Hardness of various treated and untreated steels.

PART-A: MECHANICS OF SOLIDS

	PART-A: MECHANICS OF SOLIDS	
Any 6 l	Experiments are required to be conducted	
1.	Tension test on mild steel rod.	(MOS1)
2.	Impact test on metal specimen. (a) Izod Impact Test (b) Charpy Impact Test	(MOS2)
3.	Hardness test on metals. (a) Rockwell Hardness Test (b) Brinell Hardness Test	(MOS3)
4.	Double shear test on metals.	(MOS4)
5.	Torsion test on mild steel rod.	(MOS5)
6.	Deflection test on beams. (a) Cantilever Beam (b) Simply Supported beam	(MOS6)
7.	Compression test on helical spring.	(MOS7)
8.	Compression test on brittle materials.	(MOS8)
	PART-B: METALLURGY	
Any 6 I	Experiments are required to be conducted	
1.	Preparation and study of the microstructure of pure metals like Iron, Cu and Al.	(MET1)
2.	Preparation and study of the microstructure of low carbon steels, medium carbon steel	and high
	carbon steels.	(MET2)
3.	Study of the microstructures of gray cast iron, malleable cast iron and nodular cast iron.	(MET3)
4.	Study of the microstructures of brass.	(MET4)
5.	Study of the microstructures of heat treated steels.	(MET5)
6.	Hardenability of steels by Jominy end quench test.	(MET6)
_		

REFERENCES

Lab Manual

Batch-I Schedule (21761A0301-330)

S.No.	Date			Ba	atch				
		A1	A2	A3	A4	A5	A6		
	15/09/22		D	emonstration o	f MOS & MMS	Lab			
1	22/09/22	MOS1	MOS2	MOS3	MET1	MET2	MET3		
2	29/09/22	MOS2	MOS3	MOS1	MET2	MET3	MET1		
3	13/10/22	MOS1	MOS1	MOS2	MET3	MET1	MET2		
4	20/10/22	MET1	MET2	MET3	MOS1	MOS2	MOS3		
5	27/10/22	MET2	MET3	MET1	MOS2	MOS3	MOS1		
6	03/11/22	MET3	MET1	MET2	MOS1	MOS1	MOS2		
	07/11/22 to 12/11/22	I Mid Examinations							
7	17/11/22	MOS4	MOS5	MOS6	MET4	MET5	MET6		
8	24/11/22	MOS5	MOS6	MOS4	MET5	MET6	MET4		
9	01/12/22	MOS6	MOS4	MOS5	MET6	MET4	MET5		
10	08/12/22	MET4	MET5	MET6	MOS4	MOS5	MOS6		
11	15/12/22	MET5	MET6	MET4	MOS5	MOS6	MOS4		
12	22/12/22	MET6	MET4	MET5	MOS6	MOS4	MOS5		
	29/12/22	Internal Examination							
	02/01/22								
	То			II Mid Exa	aminations				
	07/01/22								

Batches:

S. No	Batch	Registered Nos	Total
1	A1	21761A0301-305	5
2	A2	21761A0306-310	5
3	A3	21761A0311-315	5

S. No	Batch	Registered Nos	Total
4	A4	21761A0316-320	5
5	A5	21761A0321-325	5
6	A6	21761A0326-330	5

(MET7)

Batch-II Schedule (21761A0331 & Lateral Entry Students)

S.No.	Date			Ba	atch		
		A1	A2	A3	A4	A5	A6
1	19/09/22	Demonstration of MOS & MMS Lab					
		MOS1	MOS2	MOS3	MET1	MET2	MET3
2	26/09/22	MOS2	MOS3	MOS1	MET2	MET3	MET1
3	10/10/22	MOS1	MOS1	MOS2	MET3	MET1	MET2
4	17/10/22	MET1	MET2	MET3	MOS1	MOS2	MOS3
5	24/10/22	MET2	MET3	MET1	MOS2	MOS3	MOS1
6	31/10/22	MET3	MET1	MET2	MOS1	MOS1	MOS2
	07/11/22			·			
	to 12/11/22			I Mid Exa	minations		
7	14/11/22	MOS4	MOS5	MOS6	MET4	MET5	MET6
8	21/11/22	MOS5	MOS6	MOS4	MET5	MET6	MET4
9	28/11/22	MOS6	MOS4	MOS5	MET6	MET4	MET5
10	05/12/22	MET4	MET5	MET6	MOS4	MOS5	MOS6
11	12/12/22	MET5	MET6	MET4	MOS5	MOS6	MOS4
12	19/12/22	MET6	MET4	MET5	MOS6	MOS4	MOS5
	26/12/22		Internal Examination				
	02/01/22						
	То			II Mid Exa	aminations		
	07/01/22						

Batches:

S. No	Batch	Registered Nos	Total
1	A7	21761A0331-	5
		22765A0304	
2	A8	22765A0305-	5
		22765A0309	
3	A9	22765A0310-	5
		22765A0314	

S. No	Batch	Registered Nos	Total
4	A10	22765A0315-	5
		22765A0319	
5	A11	22765A0320-	5
		22765A034	
6	A12	22765A0325-	5
		22765A0329	

Teaching Learning Methods			
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
Record = B	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.
PEO 2	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.
PEO 3	To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
PO 3	appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
DO 0	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
PO 8	and norms of the engineering practice.
DO O	Individual and team work: Function effectively as an individual, and as a member or
PO 9	leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend
PO 10	and write effective reports and design documentation, make effective presentations,
	and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
FUII	and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
PS0 1	systems.
	To apply the principles of manufacturing technology, scientific management towards
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr.K.V.Viswandh/ Mr.A.Pratyush	Mr.K.V.Viswandh	Mr.B.Sudheer Kumar	Dr.S.Pichi Reddy
Signature				

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I),ISO 9001:2015Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. Y. Vijay Bhaskar Reddy	
Course Name & Code	: Python Programming Lab(20AD53)	
L-T-P Structure	: 0-0-3	Credits : 2
Program/Sem/Sec:	:B.Tech.,MECH., II Sem-A	A.Y: 2022-23

PRE-REQUISITE: Basic Knowledge of Programming.

Course Educational Objective: The Objective of the Python course is to lead the students from the basics of writing and running Python scripts in problem-solving and to design and implement the modules and understands the working of classes and objects in python.

COURSE OUTCOMES (COs): At the end of the course, students are able to :

CO 1	Identify various programming constructs available in Python and apply them in solving
	computational problems. (Apply - L3)
CO 2	Demonstrate data structures available in Python and apply them in solving computational problems. (Apply - L3)
CO 3	Implement modular programming, string manipulations, and Python Libraries (Apply - L3)
CO 4	Improve individual/teamwork skills, communication & report writing skills with ethical values.

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01				2	3										
CO2				2	3									2	
CO3				2	3									2	
CO4									3	3					

COURSE ARTICULATION MATRIX(Correlation betindividual/teamwork:

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section C

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction: Language basics and example problems (Two weeks)	3	25-09-2022		TLM4	

No. of classes required to complete		33		No of classes taken	33
11.	Lab Internal	3	31-12-2022		TLM4
10.	Module 8: Exercise Programs on Matplot Library	3	24-12-2022		TLM4
9.	Module 7:Exercise Programs on Regular Expressions	3	17-12-2022		TLM4
8.	Module 6: Exercise programs on Strings	3	10-12-2022		TLM4
7.	Module 5: Exercise Programs on functions and recursion.	3	03-12-2022		TLM4
6.	Module 4: Exercise Programs on Dictionaries	3	19-11-2022		TLM4
5.	Module 3: Exercise Programs on Sets	3	30-10-2022		TLM4
4.	Module 2: Exercise Programs on Tuples	3	23-10-2022		TLM4
3.	Module 1: Exercise Programs on Lists.	3	16-10-2022		TLM4
2.	Introduction: Language basics and example problems (Two weeks)	3	02-10-2022		TLM4

Teaching I	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis : Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations

PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice
	Environment and sustainability : Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using an open-source programming environment for the success of the organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per society's needs.
PSO 3	To inculcate an ability to analyze, design, and implement database applications.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Dr.Y.Vijay Bhaskar Reddy	Dr. Y . Vijay Bhaskar Reddy	Dr. K. Naga Prasnthi	Dr. S. Pichi Reddy

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I) ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. http://cse.lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: V.Sankararao/B.Sudheer Kumar/M.Oliva : Technical Drawing using Drafting Package Lab) (20MES1)
L-T-P Structure Program/Sem/Sec	: 1-0-2 : B.Tech., Mech., III-Sem., A/S	Credits : 2 A.Y : 2022-23
PRE-REQUISITE	: Engineering Graphics	

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to improve the skill sets of students in drafting packages (Auto CAD/CATIA) and enable them to draw the diagrams related to mechanical engineering components/applications.

COURSE OUTCOMES (COs): At the end of the course, the student shall be able to

CO 1	Understand	the	Auto-CAD	basics	for	2D	sketches	used	in	industries
	(Understand	ding -	L2)							
CO 2	Draw the ma	chine	components	s using 3	D mo	dellin	ig comman	ds. (Ap	plyiı	ng -L3)
CO 3	Edit the 3D s	olid M	lodels using	solid edi	ting o	comm	ands. (Unc	lerstan	ding	g - L2)
	Extract the Orthographic views of the models in Wire Frame, Surface & Solid									
CO 4	Modelling. (A	Apply	ing –L3)							

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3				2					2		1		3	3
CO2	2				3					2		1		3	3
CO3	2				3					2		1		3	3
CO4	2				3					2		1		3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Programs to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	HOD Sign Weekly
1.	Introduction to Technical Drawing using Drafting Package-CEO&COs	04	16.09.2022		TLM2	CO- 1,2,3,4	
2.	Demonstration to AutoCAD Software	04	23.09.2022		TLM4	CO- 1,2,3,4	
3.	Exercise on Basic Drawing Commands (Exp-1)	04	30.09.2022		TLM4	CO-1	
4.	Exercise on Modify Commands (Exp-2)	04	14.10.2022		TLM4	CO-1	
5.	Exercise on isometric views (Exp-3)	04	21.10.2022		TLM4	CO-1	
6.	Exercise on 3D Modelling Commands-I (Exp-4)	04	28-10-2022		TLM4	CO-2	
7.	Exercise on 3D Modelling Commands-II (Exp-5)	04	04-11-2022		TLM4	CO-2	
8.	Exercise on 3D Modelling Commands-III (Exp-6)	04	18-11-2022		TLM4	CO-2	
9.	Exercise on 3D Solid Editing Commands-I (Exp-7)	04	25-11-2022		TLM4	CO-3	
10.	Exercise on 3D Solid Editing Commands-II (Exp-8)	04	02-12-2022		TLM4	CO-3	
11.	Extraction of Wire-Frame & Solid Models from 3D Models (Exp-9)	04	09-12-2022		TLM4	CO-4	
12.	Extraction of Ortho Graphics Views from 3D model-I (Exp-10)	04	16-12-2022		TLM4	CO-4	
13.	Repetition	04	23-12-2022		TLM4	CO-4	
14.	Internal Exam	04	30-12-2022		-	-	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

LIST OF EXPERIMENTS:

Exp. No.	Name of the Experiment	Related CO
MES-1	Exercise on Basic Drawing Commands	CO1
MES2	Exercise on Modify Commands	CO1
MES3	Exercise on isometric views	CO1
MES4	Exercise on 3D Modelling Commands-I	CO2
MES5	Exercise on 3D Modelling Commands-II	CO2
MES6	Exercise on 3D Modelling Commands-III	CO2
MES7	Exercise on 3D Solid Editing Commands-I	CO3
MES8	Exercise on 3D Solid Editing Commands-II	CO3
MES9	Extraction of Wire-Frame & Solid Models from 3D Models	CO4
MES10	Extraction of Ortho Graphics Views from 3D model-I	CO4

NOTIFICATION OF CYCLES

Cycle	Exp. No.	Name of the Experiment	Related CO
	MES-1	Exercise on Basic Drawing Commands	CO1
Cycle-1	MES2	Exercise on Modify Commands	CO1
	MES3	Exercise on isometric views	CO1
	MES4	Exercise on 3D Modelling Commands-I	CO2
Cycle-2	MES5	Exercise on 3D Modelling Commands-II	CO2
	MES6	Exercise on 3D Modelling Commands-III	CO2
Cycle-3	MES7	Exercise on 3D Solid Editing Commands-I	CO3
	MES8	Exercise on 3D Solid Editing Commands-II	CO3
Cycle-4	MES9	Extraction of Wire-Frame & Solid Models from 3D Models	CO4
	MES10	Extraction of Ortho Graphics Views from 3D model-I	CO4

PART-C

DDUCD	AMME OUTCOMES (POs):
rnoun	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
P01	fundamentals, and an engineering specialization to the solution of complex engineering
101	problems.
	Problem analysis : Identify, formulate, review research literature, and analyze complex
P02	engineering problems reaching substantiated conclusions using first principles of
102	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
P03	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems : Use research-based knowledge and
P04	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
P05	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to
P06	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice
	Environment and sustainability : Understand the impact of the professional engineering
P07	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
P08	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
P09	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend
P010	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
	Project management and finance : Demonstrate knowledge and understanding of the
P011	engineering and management principles and apply these to one's own work, as a member
1011	and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for, and have the preparation and ability to
P012	engage in independent and life-long learning in the broadest context of technological
	change.
0	

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
	To apply the principles of manufacturing technology, scientific management towards
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.
J	

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mr.V.Sankararao	Mr. K.V.Viswanadh	Mr.B.Sudheer Kumar	Dr.S.Pichi Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 FRESHMAN ENGINEERING DEPARTMENT

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. M. Srinivasa Reddy	
Course Name & Code	: Numerical Methods & Integral Calculus & 20	FE10
L-T-P Structure	: 3-1 -0	Credits:3
Program/Sem/Sec	: II B.Tech/III sem/ME-B	A.Y.: 2022 - 23

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Estimate the best fit polynomial for the given tabulated data using Interpolation.(Understand -
COI	L2)
CO2	Apply numerical techniques in solving of equations and evaluation of integrals. (Apply – L3)
CO3	Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their
005	respective applications to areas and volumes. (Apply – L3)
CO4	Generate the single valued functions in the form of Fourier series and obtain Fourier series
04	representation of periodic function. (Apply – L3)
CO5	Evaluate the directional derivative, divergence and angular velocity of a vector function. (Apply
05	– L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	-	2	-	-	-	-	-	-	-	1			
CO2	3	2	-	2	-	-	-	-	-	-	-	1			
CO3	3	2	-	1	-	-	-	-	-	-	-	1			
CO4	3	1	-	-	-	-	-	-	-	-	-	1			
CO5	3	1	-	1	-	-	-	-	-	-	-	1			
1 - Low							2 –M	edium				3 - Hig	h		

TEXTBOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42ndEdition, Khanna Publishers, New Delhi, 2012.
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1stEdition, TMH, New Delhi, 2010.
- **T3** S. S. Sastry, "Introductory Methods of Numerical Analysis" 5th Edition, PHI Learning Private Limited, New Delhi, 2012.

REFERENCE BOOKS:

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

PART-B

No. of classes taken:

	-I: Interpolation and Finite Differ	/				
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to the course, Course Outcomes	1	12/09/22		TLM1	
2.	Introduction to UNIT I	1	13/09/22		TLM2	
3.	Forward Differences	1	15/09/22		TLM1	
4.	Backward differences	1	17/09/22		TLM1	
5.	Central Differences	1	19/09/22		TLM1	
6.	Symbolic relations and separation of symbols	1	20/09/22		TLM1	
7.	Symbolic relations and separation of symbols	1	22/09/22		TLM1	
8.	Newton's forward formulae for interpolation	1	24/09/22		TLM1	
9.	Newton's backward formulae for interpolation	1	26/09/22		TLM1	
10.	Lagrange's Interpolation	1	27/09/22		TLM1	
11.	Lagrange's Interpolation	1	29/09/22		TLM1	
12.	Tutorial I	1	01/10/22		TLM3	

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-II: Numerical solutions of Equations and Numerical Integration

No. of classes required to complete UNIT-I: 12

S.	•	No. of	Tentative	Actual	Teaching	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
140.		Required	Completion	Completion	Methods	Weekly
13.	Introduction to UNIT II	1	10/10/22		TLM2	
14.	Algebraic and Transcendental Equations	1	11/10/22		TLM1	
15.	False Position method	1	13/10/22		TLM1	
16.	False Position method	1	15/10/22		TLM1	
17.	Newton- Raphson Method in one variable	1	17/10/22		TLM1	
18.	Newton- Raphson Method applications	1	18/10/22		TLM1	
19.	Trapezoidal rule	1	20/10/22		TLM1	
20.	Simpson's 1/3 Rule	1	22/10/22		TLM1	
21.	Simpson's 3/8 Rule	1	25/10/22		TLM1	
22.	Tutorial II	1	27/10/22		TLM3	
No. o	of classes required to complete U	NIT-II: 10		No. of classes	s taken:	

UNIT-III: Multiple Integrals

S. N 0.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
23.	Introduction to Unit-III	1	29/10/22		TLM1					
24.	Double Integrals -Cartesian coordinates	1	31/10/22		TLM1					
25.	Double Integrals- Polar co ordinates	1	01/11/22		TLM1					
26.	Problems	1	03/11/22		TLM1					
27.	Applications to Double integrals (Content Beyond the syllabus)	1	05/11/22		TLM2					
	I MID EXAMINATIONS (7-11-2022 TO 12-11-2022)									
28.	Triple Integrals - Cartesian	1	14/11/22		TLM1					

	coordinates						
29.	Triple Integrals - Spherical coordinates	1	15/11/22		TLM1		
30.	Change of order of Integration	1	17/11/22		TLM1		
31.	Tutorial III	1	19/11/22		TLM3		
32.	Change of order of Integration	1	21/11/22		TLM1		
No. of classes required to complete UNIT-III: 10 No. of classes taken:							

UNIT-IV: Fourier Series

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Introduction to UNIT IV	1	22/11/22		TLM1	
34.	Determination of Fourier coefficients, Even and Odd Functions	1	24/11/22		TLM1	
35.	Fourier Series expansion in the interval $[0,2\pi]$	1	26/11/22		TLM1	
36.	Fourier Series expansion in the interval $[-\pi,\pi]$	1	28/11/22		TLM1	
37.	Fourier Series in an arbitrary interval [0, 21]	1	29/11/22		TLM1	
38.	Fourier Series in an arbitrary interval [-1, 1]	1	01/12/22		TLM1	
39.	Fourier series in an arbitrary interval odd and even functions	1	03/12/22		TLM1	
40.	Half-range Sine and Cosine series	1	05/12/22		TLM1	
41.	Half-range Sine and Cosine series		06/12/22		TLM1	
42.	Tutorial IV	1	08/12/22		TLM3	
43.	Introduction to Fourier transforms (Content Beyond the Syllabus)	1	10/12/22		TLM2	
No. o	of classes required to complete UN	IT-IV: 11		No. of classes	s taken:	

UNIT-V: Vector Differentiation

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
44.	Introduction to UNIT V	1	12/12/22		TLM1	
45.	Vector Differentiation	1	13/12/22		TLM1	
46.	Gradient	1	15/12/22		TLM1	
47.	Directional Derivative	1	17/12/22		TLM1	
48.	Divergence	1	19/12/22		TLM1	
49.	Curl	1	20/12/22		TLM1	
50.	Solenoidal and Irrotational functions, potential surfaces	1	22/12/22		TLM1	
51.	Laplacian and second order operators	1	24/12/22		TLM1	
52.	TUTORIAL - V	1	26/12/22		TLM3	
53.	Properties	1	27/12/22		TLM1	
54.	Problems on properties	1	29/12/22		TLM1	
55.	Introduction to Vector Integrals (Content Beyond the Syllabus)	1	31/12/22		TLM1	
No. of	f classes required to complete U	NIT-V: 12	•	No. of classes	s taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				

	TLM3	Tutorial	TLM6	Group Discussion/Project
--	------	----------	------	--------------------------

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
101	an engineering specialization to the solution of complex engineering problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
PO 2	problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
	engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and design
PO 3	system components or processes that meet the specified needs with appropriate consideration for the
	public health and safety, and the cultural, societal and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research methods
PO 4	including design of experiments, analysis and interpretation of data and synthesis of the information to
	provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities with an
	understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
PO 6	health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
	engineering practice.
DO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in
PO 7	societal and environmental contexts, and demonstrate the knowledge of and need for sustainable
	development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
	engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse
	teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering
PO 10	community and with society at large, such as, being able to comprehend and write effective reports and design decumentation, make affective presentations and give and receive aler instructions.
	design documentation, make effective presentations and give and receive clear instructions.
DO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and
PO 11	management principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change
	independent and life-long learning in the broadest context of technological change.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr.M.Srinivasa Reddy	Dr. K. R. Kavitha	Dr. A. Rami Reddy	Dr. A. Rami Reddy
Signature				

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: S.RAMI REDDY

Course Name & Code: FLUID MECHANICS & HYDRAULIC MACHINERY&20 ME03L-T-P Structure: 2-1-0Program/Sem/Sec: B.Tech/III/BPREREQUISITE:Engineering physics and Mathematics

COURSE EDUCATIONAL OBJECTIVES (CEOs): To understand the fundamental concepts of fluid mechanics, various flow measuring devices, boundary layer separation and performance characteristics of hydraulic machines.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the fundamentals of fluid mechanics and dimensional analysis and similarity concepts
CO2	Comprehend the kinematics and dynamics of fluid flows
CO3	Analyze boundary layer flow and friction losses in pipes
CO4	Apply impulse momentum concept to impact of jet problems
CO5	Evaluate the performance parameters of hydraulic turbines and pumps

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	2	3	-	-	-	-	-	3	-	3	2	-	3
CO2	3	3	3	2	-	-	-	-	-	-	-	3	2	-	2
CO3	2	1	3	2	1	-	-	-	•	-	-	3	2	•	3
CO4	2	1	2	3	-	•	•	-	I	-	•	3	3	I	3
CO5	3	2	3	2	1	-	-	-	-	-	-	3	2	-	2
1 - Low					2 –Medium				3 - High						

TEXTBOOKS:

- T1 P.N.Modi and S.M.Seth, Hydraulics, "Fluid Mechanics and Hydraulic Machinery, 15th Edition, Standard Book House, 2004.
- T2 Philip J, Robert W.fox, Fluid mechanics, 7th edition, John Wiley & sons, 2011.

REFERENCE BOOKS:

- R1 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", 9th Edition, laxmi publications
- R2 Banga & Sharma, "Hydraulic Machines", Edition, Khanna publishers, 6th Edition, 1999.
- **R3** Rama Durgaiah, "Fluid Mechanics and Machinery", Edition, New Age International, 1st edition, 2006
- R4 D.S.Kumar, "Fluid Mechanics and Fluid power engineering", 5th Edition, S.K.Kataria & Sons.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: FLUID STATITICS AND DIMENSIONAL ANALYSIS AND SIMILARITY

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to FMHM	1	12/09/2022		TLM3	
2.	Physical properties of fluids	1	13/09/2022		TLM1	
3.	Specific gravity,viscosity,surface tension,vapour pressure	1	15/09/2022		TLM1	
4.	Problems on physical properties	1	17/09/2022		TLM1	
5.	Manometers, classification	1	19/09/2022		TLM3	
6.	Problems on manometers	1	20/09/2022		TLM1	
7.	Dimensional analysis,rayleigh's method	1	22/09/2022		TLM1	
8.	Buckingham's Pi theorem method	1	24/09/2022		TLM1	
No.	of classes required to complete	8	No. of clas	ses takei	1:	

UNIT-II: FLUID STATICS AND FLUID DYNAMICS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly					
9.	Stream line, path line, streak line, stream tube	1	26/09/2022		TLM3						
10.	Classification of flows, equation of continuity for 1 dimensional flow	1	27/09/2022		TLM1						
11.	Surface and body forces, Euler's equation, Bernoulli's equation	1	29/09/2022		TLM1						
12.	Momentum equation and its application on pipe bend	1	30/09/2022		TLM1						
13.	Reynold's experiment	1	06/10/2022		TLM2						
14.	Darcy's formula	1	08/10/2022		TLM1						
15.	Minor losses in pipes	1	10/10/2022		TLM3						
16.	Problems on major and minor losses	1	11/10/2022		TLM1						
17.	Pipes in series and parallel	1	13/10/2022		TLM1						
18.	Total energy line and hydraulic gradient line	1	17/10/2022		TLM3						
19.	Venturi meter, orifice meter, pitot tube	1	18/10/2022		TLM1						
20.	Problems on venturi and orifice meter	1	20/10/2022		TLM1						
No.	of classes required to complete	e UNIT-II:	No. of classes required to complete UNIT-II: 12 No. of classes taken:								

UNIT-III: BOUNDARY LAYER FLOW AND IMPACT OF JETS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
21.	Laminar and turbulent boundary layer	1	22/10/2022		TLM2	
22.	Boundary layer thickness	1	25/10/2022		TLM1	
23.	displacement thickness	1	27/10/2022		TLM1	
24.	momentum thickness	1	29/10/2022		TLM1	
25.	energy thickness	1	31/10/2022		TLM3	
26.	Energy thickness	1	01/11/2022		TLM1	
27.	boundary layer separation	1	03/11/2022		TLM1	
28.	Problems on boundary layer thickness	1	05/11/2022		TLM1	

37.	Problems on radial vanes	1	29/11/2022	TLM3
37.	Problems on radial vanes	1	28/11/2022	TLM3
36.	Problems on moving plates	1	26/11/2022	TLM1
35.	Problems on moving plates	1	24/11/2022	TLM1
34.	Problems on moving plates	1	22/11/2022	TLM1
33.	Problems on stationary plates	1	21/11/2022	TLM3
32.	Problems on stationary plates	1	19/11/2022	TLM1
31.	Flow over radial vanes	1	17/11/2022	TLM1
30.	Jet striking centrally and a tip for symmetrically and unsymmetrically vanes, velocity diagrams	1	15/11/2022	TLM1
29.	Hydrodynamic forces of jets on stationary and moving flat, inclined, curved vanes	1	14/11/2022	TLM3

UNIT-IV: HYDRAULIC TURBINES AND PERFORMANCE OF THE HYDRAULIC TURBINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
39.	Classification of hydraulic turbines	1	01/12/2022		TLM2	
40.	Pelton wheel, work done, efficiency	1	03/12/2022		TLM2	
41.	Francis turbine, work done, efficiency	1	05/12/2022		TLM3	
42.	Kaplan turbine, work done, efficiency	1	06/12/2022		TLM1	
43.	Specific speed, specific quantities	1	08/12/2022		TLM1	
44.	Unit quantities, Draft tube- classification	1	12/12/2022		TLM3	
45.	Performance characteristic curves, governing of turbines	1	13/12/2022		TLM1	
46.	Problems on hydraulic turbines	1	15/12/2022		TLM1	
47.	Problems on hydraulic turbines	1	17/12/2022		TLM1	
48.	Problems on hydraulic turbines	1	19/12/2022		TLM3	
49.	Problems on hydraulic turbines	1	20/12/2022		TLM1	
50.	Problems on hydraulic turbines	1	22/12/2022		TLM1	
No.	of classes required to complete	UNIT-IV	12			

UNIT-V: CENTRIFUGAL PUMPS AND RECIPROCATING PUMPS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
51.	Working of centrifugal pump, types	1	24/12/2022		TLM2	
52.	Losses and efficiencies, specific speed	1	26/12/2022		TLM3	
53.	Pumps in series and pumps in parallel	1	27/12/2022		TLM1	
54.	Problems on centrifugal pumps	1	29/12/2022		TLM1	
55.	Problems on centrifugal pumps	1	31/12/2022		TLM1	
56.	Problems on centrifugal pumps	1	02/01/2023		TLM3	
57.	Main components and working of reciprocating pumps, types	1	03/01/2023		TLM3	
58.	Slip, negative slip	1	05/01/2023		TLM1	
59.	Problems on reciprocating pumps	1	07/01/2023		TLM1	
No. o	f classes required to complete	9	No. of clas	sses taker	1:	

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks				
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5				
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))					
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))					
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)					
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)					
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)					
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))					
Cumulative Internal Examination (CIE): M	<mark>30</mark>				
Semester End Examination (SEE)					
Total Marks = CIE + SEE	100				

PROGRAMME OUTCOMES (POs):

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Title	Course Instructor	Course InstructorCourse Coordinator		Head of the Department
Name of the Faculty	S.RAMI REDDY	S.RAMI REDDY	Dr.P.VIJAYA KUMAR	Dr.S.PICHI REDDY
Signature				

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Dr.P.Vijaya KumarCourse Name & Code: Thermodynamics & 20ME04L-T-P Structure: 3-1-0Program/Sem/Sec: B.Tech III Sem B/S

Credits: 3 **A.Y.:** 2022-23

PREREQUISITE: Engineering Physics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To provide an intuitive understanding of thermodynamics to emphasize on physics of thermodynamic systems and this covers the heat and work interactions. It also provides the insights on laws of thermodynamics and its applications, properties of pure substance, ideal gases and different thermodynamic cycles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Classify the various thermodynamic systems, properties and processes with examples and
COI	temperature scales of a system [Remembering Level –L1].
CO2	Differentiate open and closed system and formulate the heat and work transfer relations for
02	thermal systems [Understanding Level –L2].
CO3	Apply the laws of thermodynamics to find the thermodynamic properties and parameters of
03	various thermal systems [Applying Level-L3].
C04	Understand the properties of pure substance and gases and compute the non-reactive
C04	mixture behavior under different set of conditions [Understanding Level –L2].
CO5	Analyze the performance parameters of gas power, vapour power and refrigeration cycles
05	[Analyzing Level – L4].

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	1	-	-	-	-	-	-	-	-	1	2	-	-
CO2	3	3	2	3	-	-	-	-	2	-	-	2	3	-	1
CO3	3	1	1	3	-	-	-	-	1	-	-	2	3	-	2
CO4	3	3	2	2	-	-	-	3	-	-	I	2	1	-	3
CO5	3	3	-	3	-	-	-	-	3	-	-	3	2	-	3
1 - Low 2 -Medium						3 -	High								

TEXTBOOKS:

T1	P.K.Nag, "Engineering Thermodynamics"- McGraw-Hill. 5th Edition, 2013					
T2	Y.A. Cengel, and M.A.Boles, "Thermodynamics: An Engineering Approach", McGraw-Hill, 7th Edition, 2011.					
	7th Edition, 2011.					

REFERENCE BOOKS:

R1	G.J.Van Wylen & Sonntag, "Fundamentals of Thermodynamics", John Wiley& sons,
	publications Inc. 5th Edition, 1998.
R2	E.Rathakrishnan, "Fundamentals of Engineering Thermodynamics", PHI, 2nd Edition, 2010.
	2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basic Concepts and Zeroth Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	13-09-22		1	
2.	Basic Concepts, Classification of systems, Macroscopic & Microscopic approaches	1	14-09-22		1,2	
3.	System-Types - examples, Control mass and Control volume Properties of system	1	15-09-22		1,2	
4.	State, Path, Process, Cycle, path and point functions.	1	16-09-22		1,2	
5.	Equilibrium, reversible and irreversible processes, Quasistatic process, Applications of TD, Internal Energy, Specific heat, Enthalpy	1	20-09-22		1,2	
6.	Zeroth law of Thermodynamics Temperature scales – Temperature measurement, Comparison of thermometers	1	21-09-22		1,2	
7.	Constant volume gas thermometerNumericalProblemsOnTemperature scales.	1	22-09-22		1,2	
8.	Advantages of gas thermometers over liquid thermometers	1	23-09-22		1,2	
9.	Numerical problems on Internal energy, enthalpy, specific heat and latent heat, Assignement-1	1	27-09-22		1	
10	Tutorial -I	1	28-09-22		3	
No.	of classes required to complete U	No. of classes required to complete UNIT-I: 10 No. of classes taken:				

UNIT-II: First Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	First Law Analysis of Closed Systems : Introduction, First law for a closed system undergoing change of state and cycle	1	29-09-22		1,2	
12.	Representation of Thermodynamic processes on P-V planes	1	11-10-22		1,2	
13.	First Law Analysis of Closed System undergoing different process.	1	12-10-22		1,2	
14.	Different forms of stored energy, Forms of energy, Mechanical and Non mechanical forms of Work transfer	2	13-10-22		1,2	
15.	pdV work and other types of work transfer.	1	14-10-22		1,2	
16.	Applications of first law, PMM1 Numerical problems on work and	1	18-10-22		1	

	energy.					
17.	First Law Analysis of Open Systems : Thermodynamic analysis of control volume-conservation of mass, energy principle.	1	19-10-22		1,2	
18.	Steady Flow Energy Equation (SFEE), Steady Flow Engineering Devices-Nozzles, Diffusers.	1	20-10-22		1,2	
19.	Turbine, Compressors, Throttling Valves, Heat Exchangers, Limitations on first law of thermodynamics, PMM1.	1	21-10-22		1,2	
20.	Numerical Problems on SFEE	1	25-10-22		1	
21.	Tutorial -2	1	26-10-22		3	
No. o	f classes required to complete UN	IT-II: 11		No. of clas	ses taken	:

UNIT-III: Second Law of Thermodynamics

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22	SecondLawAnalysisofThermodynamics:Introduction,EnergyReservoirs,HeatEngines,Refrigerators, HeatPumps.	1	27-10-22		1,2	
23	Kelvin-Planks, Clausius statement of second law of thermodynamics.	1	28-10-22		1,2	
24	Numerical Problems on Second law of TD.	1	01-11-22		1	
25	Equivalence of Kelvin -Planck and Clausius statements.	1	02-11-22		1,2	
26	Perpetual Motion Machine-II, Carnot cycle.	1	03-11-22		1,2	
27	Carnot Theorem – Numerical problem.	1	04-11-22		1	
28	Entropy: Introduction, Clausius inequality, t-s property diagrams.	1	15-11-22		1,2	
29	Entropy change for ideal gases – Derivations.	1	16-11-22		1,2	
30	Isentropic relations for ideal gases, Principle of increase of entropy.	1	17-11-22		1,2	
31	Applications of Entropy- Third law ofThermodynamicsNumericalProblems on Entropy.	1	18-11-22		1,2	
32	Numerical Problems, Assignement-3.	1	22-11-22		1	
33	Tutorial -3	1	23-11-22		3	
	No. of classes required to compl	ete UNIT-	III: 12	No. of clas	ses taken	:

UNIT-IV: Properties of Pure Substances and Gases

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34.	Properties of Pure Substance: Introduction, Phases of pure substance.	1	24-11-22		1,2	
35.	<i>p-v, p-T, T-s</i> and <i>h-s</i> diagrams for pure substance, <i>p-v-T</i> Surface.	1	25-11-22		1,2	

No. of	No. of classes required to complete UNIT-IV: 10			No. of class	ses taken	1:
43.	Tutorial -4	1	08-12-22		3	
42.	Numerical Problems.	1	07-12-22		1,2	
41.	Internal energy, enthalpy and specific heats of gas mixtures, Entropy of gas mixtures.	1	06-12-22		1,2	
40.	Properties of mixture of gases – Dalton's law and Amagat's law of partial pressures.	1	02-12-22		1,2	
39.	PropertiesofIdealGases:Equationofstateofagas,Avogadro'slaw,Idealgas,perfectgas,realgas,realgas.statestatestatestate	1	01-12-22		1,2	
38.	Numerical Problems.	1	01-12-22		1	
37.	Phase change processes, Mollier diagram for a pure substance.	1	30-11-22		1,2,4,6	
36.	Properties of steam, quality or dryness fraction.	1	29-11-22		1,2	

UNIT-V: Thermodynamic Cycles

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completio n	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
44.	Introduction, working of Carnot vapour cycle, working of simple Rankine cycle	1	09-12-22		1,2	
45.	Problems on Carnot vapour cycle and simple Rankine cycle	1	13-12-22		1,2	
46.	Gas power cycles -Otto, Numerical Problems	1	14-12-22		1,2	
47.	Diesel cycle, Dual cycle - Numerical Problems	1	15-12-22		1,2	
48.	Brayton Cycles and its problems	1	16-12-22		1,2	
49.	RefrigerationCycles-ReversedCarnotcycle,NumericalProblems	1	20-12-22		1,2	
50.	Bell-Coleman cycle and simple vapour compression refrigeration Cycle (Theory)	1	21-12-22		1,2	
51.	Numerical Problems.	1	22-12-22		1	
52.	Numerical Problems.	1	23-12-22		1	
53.	Tutorial-5	1	27-12-22		3	
54.	Beyond syllabus	1	28-12-22		1,2	
55.	Beyond syllabus	1	29-12-22		1,2	
56.	Beyond syllabus	1	30-12-22		1,2	
No. of	f classes required to complete UI	NIT-V:13	•	No. of clas	ses taken	

Teaching	Teaching Learning Methods						
TLM1	M1Chalk and TalkTLM4Demonstration (Lab/Field Visit)						
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6 Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

ACADEMIC CALENDER:

Commencement	of Class work	12-09	9-2022
I Phase of Instructions	12-09-2022	05-11-2022	7 Weeks
I Mid Examinations	07-11-2022	12-11-2022	1 Week
II Phase of Instructions	14-11-2022	07-01-2023	7 Weeks
II Mid Examinations	02-01-2023	07-01-2023	1 Week
Preparation and Practical's	09-01-2023	14-01-2023	1 Week
Semester End Examinations	16-01-2023	28-01-2023	2 Weeks

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
	To apply the principles of manufacturing technology, scientific management towards
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design for evaluation of
	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Title Course Instructor	Course	Module	Head of the
	Coordinator	Coordinator	Department

Name of the Faculty	Dr.P.Ravindra Kumar	Dr.P.Ravindra Kumar	Dr.P.Vijay Kumar	Dr.S.Pichi Reddy		
Signature						

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

Part-A

PROGRAM	: B.Tech, III-Sem., MECH, Section-B							
ACADEMIC YEAR	: 2022-23							
COURSE NAME & CODE	: Metallurgy & Material Science -20ME05							
L-T-P STRUCTURE	: 3-0-0							
COURSE CREDITS	:3							
COURSE INSTRUCTOR	: Dr. S Pichi Reddy							
COURSE COORDINATOR: Dr. S Pichi Reddy								
PRE-REQUISITE	: Engineering physics, Engineering Chemistry							

COURSE OBJECTIVE:

The objectives of this course are to acquire knowledge on structure of metals and alloys, understand the concept of alloys and equilibrium diagrams; demonstrate the concept of heat treatment process.

COURSE OUTCOMES (CO):

After completion of the course students will be able to

CO1: Comprehend the structure of materials, alloys, and correlated the material properties with structures.

CO2: Illustrate the procedure of drawing the equilibrium diagrams and apply the principle of equilibrium diagrams in evaluating the properties of materials.

CO3: Recall the properties, applications of ferrous, non-ferrous metals and composite materials.

CO4: Apply the principle of mechanical working on metals and heat treatment on materials.

CO5: Identify the types of composite materials and the manufacturing processes of fiber reinforced composites.

COURSE ANTICOLATION MATRIX							un (
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	1	2	1					1		1	2
CO2	1	2	2	1	1	2	1					1		1	2
CO3	1	2	2	1	1	2	1					1		1	2
CO4	1	2	2	1	1	2	1					1		1	2
CO5	1	2	2	1	1	2	1					1		1	2
	-	~			-		-	-						-	

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** V.D.Kotgire, S.V.Kotgire, Material Science and Metallurgy, Everest Publishing House, 24thEdition, 2008.
- **T2** Sidney H. Avener, Introduction to Physical Metallurgy, Tata McGraw-Hill, 3rdEdition, 2011.

BOS APPROVED REFERENCE BOOKS:

- **R1** Richard A.Flinn, Paul Trojan, Engineering Materials and Their Applications, Jaico Publishing House, 4thEdition, 1999.
- **R2** William and callister, Materials Science and engineering, Wiley India private Ltd., 2011.
- R3 U.C Jindal and Atish Mozumber, Material since and metallurgy, Pearson education-2012

COURSE DELIVERY PLAN (LESSON PLAN): Section-B

UNIT-I: STRUCTURE OF METALS, CONSTITUTION OF ALLOYS

UNIT-I: STRUCTURE OF METALS, CONSTITUTION OF ALLOYS No. of Tentative Actual Teaching Learning Text H0										
S.No.	Topics to be covered	Classes	Date of	Actual Date of	Learning	Learning Outcome	Book	HOD Sign		
B •1 10 •	Topies to be covered	Required	Completion	Completion	Methods	COs	followed	Weekly		
1.	Introduction to Metallurgy and Materials - Course Educational Objective (CEO) & Course Outcomes (CO's)	01	12/9/2022		TLM1	CO1	T1,R6			
2.	Structure of metals Introduction	01	14/9/2022		TLM1	CO1	T2,R6	l		
3.	Body centered cubic, Face cantered cubic Structures	01	15/9/2022		TLM1	CO1	T2	l		
4.	closed packed hexagonal structure	01	16/9/2022		TLM1	CO1	T1	l		
5.	crystallographic planes	01	19/9/2022		TLM1	CO1	T1	l		
6.	Mechanism of crystallization of metals	01	21/9/2022		TLM1	CO1	T2,R1,R6	l		
7.	Grain and grain boundaries	01	22/9/2022		TLM1	CO1	T2,R1,R6	l		
8.	Effect of grain boundaries on the properties of metal / alloys	01	23/9/2022		TLM1	CO1	T2,R1	l		
9.	Necessity of alloying, Solid solutions	01	26/9/2022		TLM1	CO1	T2,R1	l		
10.	Interstitial Solid Solution and Substitution Solid Solution,	01	28/9/2022		TLM1	CO1	T2,R1	L		
11.	Hume Rothery rules.	01	30/9/2022		TLM1	CO1	T2,R1	l		
No. of	classes required to complete UNIT-I	11			No.	of classes ta	aken:	l .		
	UNIT	– II EOUI	LIBRIUM D	IAGRAMS				I		
12.	Experimental methods of construction of equilibrium diagrams	01	10/10/2022		TLM1	CO2	T2,R1			
13.	Classification of equilibrium diagrams	01	12/10/2022		TLM1	CO2	T2,R1	l		
14.	Isomorphous,eutectic equilibrium diagrams.	01	13/10/2022		TLM1	CO2	T2,R1	L		
15.	Partial eutectic equilibrium diagrams.	01	14/10/2022		TLM1	CO2	T2,R1	L		
16.	Equilibrium cooling and heating of alloys, lever rule	01	17/10/2022		TLM1	CO2	T2,R1	l		
17.	coring. Transformations in the solid state	01	19/10/2022		TLM1	CO2	T2,R1			
18.	Allotropy, Eutectic reaction	01	20/10/2022		TLM1	CO2	T2,R1	l		
19.	Eutectoid reaction	01	21/10/2022		TLM1	CO2	T2,R1	1		
20.	Peritectoid reaction	01	26/10/2022		TLM1	CO2	T2,R1			

21.	Study of Cu-Ni equilibrium diagrams.	01	27/10/2022	TLM1	CO2	T2,R1	
22.	Bi-Cd equilibrium diagrams.	01	28/10/2022	TLM1	CO2	-	
23.	Study of Iron-Iron carbide equilibrium diagram.	01	31/10/2022	TLM1	CO2	-	
No. of classes required to complete UNIT- II		12		No. of Classes taken:			

UNIT-III : STEELS, CAST IRONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
24.	Classification of steels, structure, properties and applications of plain carbon steel	01	2/11/2022		TLM1	CO3	T1,R1,R6	
25.	Low carbon steel	01	3/11/2022		TLM1	CO3	T2,R6	
26.	Medium carbon steel	01	4/11/2022		TLM1	CO3	T2,R6	
27.	High carbon steel & applications.	01	14/11/2022		TLM1	CO3	T2,R6	
28.	Structure, properties and applications of white cast iron	01	16/11/2022		TLM1	CO3	T1,T2,R1	
29.	Structure, properties and applications of malleable cast iron.	01	17/11/2022		TLM1	CO3	T1,T2,R1	
30.	Grey cast iron	01	18/11/2022		TLM1	CO3	-	
31.	Spheroidal graphite cast iron.	01	21/11/2022		TLM1	CO3	-	
32.	Structure, properties and applications of copper	01	23/11/2022		TLM1	CO3	T2,R1	
33.	Structure, properties and applications of copper alloys	01	24/11/2022		TLM1	CO3	T2,R1	
34.	Aluminium and its alloys	01	25/11/2022		TLM1	CO3	T2,R1	
No. of	classes required to complete UNIT-III	11		No. of classes taken:				

UNIT-IV : MECHANICAL WORKING, HEAT TREATMENT OF ALLOYS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
35.	Hot working, Cold working,	01	28/11/2022		TLM1	CO4	T1,R1,R6	
36.	Strain hardening	01	30/11/2022		TLM1	CO4	T1,R1,R6	
37.	Recovery, Recrystallisation	01	01/12/2022		TLM1	CO4	T1,R1,R6	
38.	Grain growth.	01	2/12/2022		TLM1	CO4	T1,R1,R6	

39.	Comparison of properties of cold worked parts	01	5/12/2022		TLM1	CO4	T2,R1	
40.	Comparison of properties of hot worked parts	01	7/12/2022		TLM1	CO4	T2,R1	
41.	Annealing, Normalizing	01	8/12/2022		TLM1	CO4	T1,R6	
42.	Hardening.	01	9/12/2022		TLM1	CO4	T1,R6	
43.	Construction of TTT diagram for eutectoid steel.	01	12/12/2022		TLM1	CO4	-	
44.	Harden ability-determination of harden ability by jominy end quench test	01	14/12/2022		TLM1	CO4	T1,T2,R1	
45.	Surface - hardening methods	01	15/12/2022		TLM1	CO4	T1,T2,R1	
46.	Age hardening treatment and application	01	16/12/2022		TLM1	CO4	T1,T2,R1	
No. of c	No. of classes required to complete UNIT-IV12No. of classes taken:							

UNIT-V : COMPOSITE MATERIALS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
47.	Classification of composites	01	19/12/2022		TLM1	CO5	T1,R6	
48.	various methods of component manufacture of fiber reinforced composites-Hand layup process	01	21/12/2022		TLM1	CO5	T1,R6	
49.	ilament winding process, SMC processes	01	22/12/2022		TLM1	CO5	T1,R6	
50.	Continuous pultrusion processes, Resin transfer moulding.	01	23/12/2022		TLM1	CO5	T1,R6	
51.	Introduction to metal ceramic mixtures	01	26/12/2022		TLM1	CO5	T1,R6	
52.	Metal – Matrix composites	01	28/12/2022		TLM1	CO5	-	
53.	C–Ccomposites, Applications of Composites	01	29/12/2022		TLM1	CO5	T1,R1,R6	
54.	Rule of mixture and numericals	01	30/12/2022		TLM1	CO5	T2,R1,R6	
No. of	No. of classes required to complete UNIT-V 8 No. of classes taken:							

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Revision for I Phase	09	5/11/2022		TLM1/ TLM4	-		
2.	Revision for II Phase	09	31/12/2022		TLM1/ TLM4	-		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
3.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		
4.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		
5.	Previous GATE and ESE Questions	01			TLM1/ TLM4	-		

Teach	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD	
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo	
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study	

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	12/09/2022	05/11/2022	8
I Mid Examinations	07/11/2022	12/11/2022	1
II Phase of Instructions	14/11/2022	31/12/2022	7
II Mid Examinations	02/01/2023	07/01/2023	1
Preparation and Practical	09/01/2023	14/01/2023	1
Semester End Examinations	16/01/2023	28/01/2023	2

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Online Quiz Examination-1	1,2	C1
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Online Quiz Examination-2	3,4,5	C2
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Quiz Examination: C	1,2,3,4,5	C=10
Evaluation of Attendance marks: D (As per the Academic Regulations)	-	D=5
Cumulative Internal Examination : E=A+B+C+D	1,2,3,4,5	E=40
Semester End Examinations: F	1,2,3,4,5	F=60
Total Marks: E+F	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

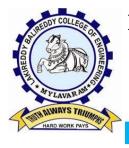
PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11.Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.


12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	Head of the Department

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. CH. Siva Sankara Babu

Course Name & Code : MECHANICS OF SOLIDS & 20 ME06

: 2-1-0

L-T-P Structure

Program/Sem/Sec : B.Tech/III/B

PREREQUISITE: Engineering Mechanics

Credits: 3 **A.Y.:** 2022-23

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of the course is to identify nature of the stress and compute the deformations in mechanical members due to various loads.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Compute the stresses and deformations of a member subjected to various types of loading. (Applying-L3)
CO2	Construct the shear force and bending moment diagrams along the length of beam. (Applying-L3)
CO3	Comprehend the variation of bending and shear stresses across the cross section of the beams. (Understanding-L2)
CO4	Analyze the structural members subjected to biaxial stresses. (Analyzing-L4)
CO5	Formulate the equations for stresses and deformations due to various loads. (Applying-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	-	-	-	-	-	-	-	-	-	2	-	-	3
CO2	3	3	1	-	-	-	-	-	I	-	-	2	I	-	3
CO3	3	2	-	-	-	-	-	I	I	-	-	2	I	-	3
CO4	3	2	1	-	-	1	-	I	I	-	-	2	I	-	3
CO5	3	2	-	-	-	-	-	-	-	-	-	2	-	-	3
		1	- Low			2	-Medi	um			3	- High			

TEXTBOOKS:

- T1 E.P. Popov, Engineering Mechanics of Solids, PHI Learning, 2009.
- T2 Sadhu Singh, Strength of Materials, Khanna Publishers, 2013.

REFERENCE BOOKS:

- **R1** S. Ramamrutham, Strength of Materials, Dhanpat Rai & Sons, 2011.
- **R2** M.L. Gambhir, Fundamentals of Solid Mechanics, PHI Learning, 2009.
- **R3** M. Chakraborti, "Strength of Materials", S.K.Kataria & Sons.
- R4 R.Subramanian, "Strength of Materials", Oxford University Press, 2010.
- **R5** R.K.Bansal, "Strength of Materials", Laxmi Publishers, 2013.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: SIMPLE STRESSES AND STRAINS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Mechanics of Solids - Course Educational Objective (CEO) & Course Outcomes (CO's)	1	12-09-2022		TLM1,2	
2.	Concept of Stress & Strain	1	14-09-2022		TLM2	
3.	Mechanical properties of Materials	1	16-09-2022		TLM2	
4.	Stress Strain diagrams for Mild Steel -Hooke's Law Evaluation of Proof stress by Offset method	1	17-09-2022		TLM2,4	
5.	Tutorial-I	1	19-09-2022		TLM3	
6.	Stresses, Strains & Deformations of a body due to axial force Factor of Safety	1	21-09-2022		TLM1	
7.	Deformation of Stepped bar due to axial loads	1	23-09-2022		TLM2	
8.	Stresses in composite bars & Problems	1	24-09-2022		TLM1	
9.	Tutorial-II	1	26-09-2022		TLM3	
10.	Lateral strain, Poisson's ratio & change in volume; Shear stress & shear strain	1	28-09-2022		TLM1	
11.	Relation between Young's Modulus and shear Modulus	1	30-09-2022		TLM1	
12.	Relation between Elastic Modulii & Problems	1	01-10-2022		TLM2	
13.	Assignment / Quiz (UNIT-I)	1	10-10-2022		TLM1	
No. o	f classes required to complete U	NIT-I: 13		No. of classes	s taken:	

UNIT-II: SHEAR FORCE AND BENDING MOMENT

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Introduction to Shear force and bending moment; Relation between Shear Force, Bending Moment & rate of Loading	1	12-10-2022		TLM1	
15.	Shear force & Bending moment Diagrams for cantilever beam subjected to Concentrated loads & UDL.	1	14-10-2022		TLM1	
16.	Shear force & Bending moment Diagrams for Simply supported beam subjected to Concentrated loads & UDL.	1	15-10-2022		TLM1	
17.	Tutorial-III	1	17-10-2022		TLM3	
18.	Estimation of Maximum bending moment for simply supported beam	1	19-10-2022		TLM1	
19.	Shear force & Bending moment	1	21-10-2022		TLM1	

21.	moment & point of contra flexure for Overhanging beams Tutorial-IV	1	26-10-2022	TLM3	
22.	Assignment / Quiz (UNIT-II)	1	28-10-2022	TLM1	
23.	Revision	1	29-10-2022	TLM1	
No. of	classes required to complete UNIT-	No. of classes taken:			

UNIT-III: STRESSES IN BEAMS AND SHEAR STRESSES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completi on	Teaching Learning Methods	HOD Sign Weekly		
24.	Theory of Simple bending, assumptions	1	31-10-2022		TLM1			
25.	Derivation of flexure equation- Section modulus and problems	1	02-11-2022		TLM1			
26.	Normal stresses due to flexure applications	1	04-11-2022		TLM1			
27.	Revision	1	05-11-2022		TLM1			
28.	Concept of shear stress variation over cross section due to flexural loads	1	14-11-2022		TLM1			
29.	Derivation of lateral shear stress	1	16-11-2022		TLM1			
30.	Shear stress distribution across rectangular & circular sections	1	18-11-2022		TLM1			
31.	Problems on distribution of Shear stress	1	19-11-2022		TLM1			
32.	Tutorial-V	1	21-11-2022		TLM3			
33.	Assignment / Quiz (UNIT-III)	1	23-11-2022		TLM1			
	No. of classes required to complete UNIT-III: 10 No. of classes taken:							

UNIT-IV: ANALYSIS OF COMBINED STRESSES

		No. of	Tentative	Actual	Teaching	HOD
S. No.	Topics to be covered	Classes	Date of	Date of	Learning	U
		Required	Completion	Completion	Methods	Weekly
	State of stress at a point, normal and					
34.	tangential stresses on inclined	1	25-11-2022		TLM1	
	planes					
35.	Problem on normal and tangential	1	26-11-2022		TLM1	
55.	stresses on inclined planes	-				
36.	Tutorial-VI	1	28-11-2022		TLM3	
37.	Principle stresses and their planes,	1	30-11-2022		TLM1	
57.	maximum shear stress plane	1	30-11-2022			
38.	Mohr's circle diagram	1	02-12-2022		TLM1	
39.	Problems on Mohr's circle	1	03-12-2022		TLM1	
40.	Tutorial-VII	1	05-12-2022		TLM3	
41.	Problems on Mohr's circle	1	07-12-2022		TLM1	
42.	Assignment / Quiz (UNIT-IV)	1	09-12-2022		TLM1	
43.	Revision	1	12-12-2022		TLM1	
44.	Videos	1	14-12-2022		TLM5	
No. o	No. of classes required to complete UNIT-IV: 11 No. of classes taken:					

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
45.	Derivation of Differential equation for elastic line (Deflection Equation)	1	16-12-2022		TLM1		
46.	Deflection & Slope equations for cantilever beam	1	17-12-2022		TLM1		
47.	Deflection & Slope equations for simply supported beam	1	19-12-2022		TLM1		
48.	Macaulay's method	1	21-12-2022		TLM1		
49.	Introduction to thin & thick shells, Hoop stress and longitudinal stresses for thin cylinders	1	23-12-2022		TLM2		
50.	Change in volume of thin cylinder	1	24-12-2022		TLM2		
51.	Derivation of Lame's equations of Thick cylinders; Problems on thick cylinders	1	26-12-2022		TLM1		
52.	Tutorial-VIII	1	28-12-2022		TLM3		
53.	Assignment / Quiz (UNIT-V)	1	30-12-2022		TLM1		
54.	Beyond Syllabus	1	31-12-2022		TLM2		
No. of	o. of classes required to complete UNIT-V: 11 No. of classes taken:						

UNIT-V: DEFLECTION OF BEAMS & THIN AND THICK CYLINDRICAL SHELLS

Teaching	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.
PO 12	Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal systems.
PSO 2	To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
PSO 3	To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Signature				
Name of the Faculty	Dr. Ch. Siva Sankara Babu	K. V. Viswanadh	B. Sudheer Kumar	Dr. S. Pichi Reddy
Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. Shaheda Niloufer	
Course Name & Code	: Environmental Science & 20MC03	
L-T-P Structure	: 2-0-0	Credits : 0
Program/Sem/Sec	: B.Tech., MECH-B., III-Sem., SEC-A	A.Y : 2021-22

PRE-REQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs): The purpose of this course is to provide a general background on developing an understanding of systems and cycles on the earth and how individual organisms live together in complex communities and how human activities influence our air, water and soil. It also helps in developing an understanding about our use of fossil fuels and effect on climate and sustainable management of natural resources.

COURSE OUTCOMES (COs): At the end of the course, students are able to

000101	L OUT COMILS (COS). The the one of the course, students are use to
CO 1	Identify environmental problems arising due to engineering and technological activities
	that help to be the part of sustainable solutions.
CO 2	Evaluate local, regional and global environmental issues related to resources and their
	sustainable management.
CO 3	Realize the importance of ecosystem and biodiversity for maintaining ecological
	balance.
CO 4	Acknowledge and prevent the problems related to pollution of air, water and soil.
CO5	Identify the significance of implementing environmental laws and abatement devices for
	environmental management.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	-	3	3	3	-	-	-	3	-	-	-
CO2	3	3	-	-	-	3	3	-	-	-	-	3	-	-	-
CO3	3	-	3	-	-	-	2	-	-	-	-	2	-	-	-
CO4	3	-	-	-	-	2	3	2	-	-	-	3	-	-	-
CO5	3	3	3	3	-	3	3	3	-	-	-	3	-	-	-

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Anubha Kaushik, C.P.Kaushik, "Perspectives in Environmental Studies", New age international publishers, 5th Edition, Delhi, 2016.
- T2 Mahua Basu, S. Xavier, "Fundamentals of Environmental Studies", Cambridge University Press, 1st Edition, Delhi, 2016.

REFERENCE BOOKS:

- **R1** S. Deswal, A. Deswal, "A Basic course in Environmental Studies", Educational & Technical Publishers, 2nd Edition, Delhi, 2014.
- R2 R. Rajagopalan, "Environmental Studies (From Crisis to Cure)", Oxford University Press,

2nd Edition, New Delhi, 2012.

- **R3** De, A.K, "Environmental Chemistry", New Age International (P) Limited, 5th Edition, New Delhi, 2003.
- **R4** Dr.K.V.S.G. Murali Krishna, "Environmental Studies", VGS Techno Series, 1st Edition, Vijayawada, 2010.
- **R5** G. Tyler Miller, Scott Spoolman, "Introduction to Environmental Studies", Cengage Learning, 13th Edition, New Delhi, 2009.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: NATURE AND SCOPE OF ENVIRONMENTAL PROBLEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction of course and course objectives. Introduction of components of Environment	1	12-09-2022		2	
2.	Population explosion and variations among Nations.	1	13-09-2022		2	
3.	ResettlementandRehabilitation-Issuesandpossible solutions	1	19-09-2022		2	
4.	Environmental Hazards	1	20-09-2022		2	
5.	Role of Information Technology in environmental management and human health.	1	26-09-2022		2	
No. of cla	asses required to complete UNIT	T-I: 5		No. of clas	ses taken:	

UNIT-II: NATURAL RESOURCES AND CONSERVATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction and classification of Natural resources, Forest Resources,	1	27-10-2022		2	
2.	Water Resources	1	10-10-2022		2	
3.	Mineral Resources	1	11-10-2022		2	
4.	Food Resources	1	17-10-2022		2	
5.	Food Resources	1	18-10-2022		2	
6.	Mineral Resources	1	25-10-2022		2	
No. o	f classes required to complete UN	IT-II: 6		No. of clas	sses taken:	

UNIT-III: ECOLOGY AND BIODIVERSITY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Definition, structure and functions of an ecosystem	1	31-10-2022		2	
2.	Food chains and Food webs, Ecological succession, Ecological pyramids, Bio-geo-chemical cycles Major Types of Ecosystems – Forest, Grassland, Desert Land & aquatic Ecosystem, Ecological Niche and Keystone Species, Bio- geographical classification of	1	01-11-2022		2	

	India. India as a mega diversity nation					
3.	I MID EXAMINATION	1	07-11-2022		2	
4.	I MID EXAMINATION		08-11-2022			
5.	Values of biodiversity- Direct and Indirect values. Threats to biodiversity; Assignment in Unit II	1	14-11-2022		2	
6.	Man and wild life conflicts. Endangered and endemic species of India	1	15-11-2022		2,3	
7.	Conservation of biodiversity: In- situ and Ex-situ conservation methods	1	21-11-2022		2	
No. c	of classes required to complete UN	IT-III: 6		No. of clas	ses taken:	

UNIT-IV : ENVIRONMENTAL POLLUTION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Air Pollution	1	22-11-2022		2	
2.	Causes, effects and control measures of: Water Pollution	1	28-11-2022		2	
3.	Causes, effects and control measures of: Soil Pollution,		29-11-2022		2	
4.	Noise Pollution		05-12-2022		2	
5.	Solid Waste Management	1	06-12-2022		2,3	
6.	Disaster Management- Floods, Cyclones, Earthquakes, Landslides and Tsunamis.	1	12-12-2022		2	
No. of	f classes required to complete UNI	T-IV: 6		No. of class	sses taken:	

UNIT-V : ENVIRONMENTAL MANAGEMENT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Sustainable Development	1	13-12-2022		2	
2.	Climate disruption- Greenhouse effect, ozone layer depletion and acid rain. Stockholm conference	1	19-12-2022		2,3	
3.	Environmental Impact Assessment (EIA)		20-12-2022		2	
4.	Green building, Environmental Law		26-12-2022		2	
5.	Revision	1	27-12-2022		2	
6.	II MID EXAMINATIONS		02-01-2023			
7.	II MID EXAMINATIONS	1	03-01-2023			
No. of classe	es required to complete UNI	[T-V: 05		No. of clas	ses taken:	

Teaching	g Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering				
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering				
	problems.				
	Problem analysis: Identify, formulate, review research literature, and analyze complex				
PO 2	engineering problems reaching substantiated conclusions using first principles of				
	mathematics, natural sciences, and engineering sciences.				
	Design/development of solutions: Design solutions for complex engineering problems and				
PO 3	design system components or processes that meet the specified needs with				
100	appropriate consideration for the public health and safety, and the cultural, societal and				
	environmental considerations.				
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research				
PO 4	methods including design of experiments, analysis and interpretation of data and synthesis of				
	the information to provide valid conclusions.				
	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern				
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities				
	with an understanding of the limitations.				
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to				
FUO	the professional engineering practice.				
	Environment and sustainability : Understand the impact of the professional engineering				
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of and need				
107	for sustainable development.				
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and				
PO 8	norms of the engineering practice.				
DO 0	Individual and team work: Function effectively as an individual, and as a member or leader				
PO 9	in diverse teams, and in multidisciplinary settings.				
	Communication: Communicate effectively on complex engineering activities with the				
DO 10	engineering community and with society at large, such as, being able to comprehend and write				
PO 10 effective reports and design documentation, make effective presentations and give and received					
	clear instructions.				
	Project management and finance: Demonstrate knowledge and understanding of the				
PO 11	engineering and management principles and apply these to one's own work, as a member and				
	leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in				
FU12	independent and life-long learning in the broadest context of technological change.				

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. Shaheda Niloufer	Dr. Shaheda Niloufer	Dr. Shaheda Niloufer	Dr. A. Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

Course Title
Instructors: FLUID MECHANICS AND HYDRAULIC MACHINERY LAB
: SRR/SUMRAcademic Year: 2022-23
Course & SEM: B.Tech&III
SectionBranch: MESection:B

Determine the discharge of various flow measuring devices, estimation of friction factor and performance parameters of hydraulic machines.

COURSE OUTCOMES:

CO1:

CO4:

After completion of the course students are able to:

Identify the need and use of various flow measuring devices.

(Understanding-L2)

CO2: Apply the Bernoulli's equation for energy balance of fluid flow system. (Applying - L3)

Determine the friction losses of fluid flow through different pipes.

CO3: (Applying-L3)

Evaluate the performance characteristics of hydraulic pumps, turbines and impact of

jets. (Applying-L3)

Course Articulation Matrix:

20ME55	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	-	3	-	-	-	-	1	-	-	2	-	-	3
CO2	2	2	2	3	-	-	-	-	1	-	-	2	-	-	-
CO3	-	-	1	3	-	-	-	-	-		-	2	-	-	-
CO4	2	2	3	1	-	-	-	-	1	-	-	2	-	-	3

Course Coordinator

ENGINEERING Accredited by NAA Approved by

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

Instructors : SRR/SUMR

Branch : ME

Academic Year: 2022-23 Course & SEM: B.Tech&III Section :B

LIST OF EXPERIMENTS:

PART-A: FLUID MECHANICS

Any 6 Experiments are required to be conducted

- 1. Verification of Bernoulli's Theorem (FM1)
- 2. Calibration of Venturimeter (FM2)
- 3. Calibration of Orifice meter (FM3)
- 4. Determination of friction factor for a given pipe line (FM4)
- 5. Calibration of V Notch (FM5)
- 6. Calibration of Mouthpiece apparatus (FM6)
- 7. Impact of jets on Vanes (FM7)

PART-B: HYDRAULIC MACHINERY

Any 6 Experiments are required to be conducted

- 1. Performance Test on Pelton Wheel (HM1)
- 2. Performance Test on Kaplan Turbine (HM2)
- 3. Performance Test on Single Stage Centrifugal Pump (HM3)
- 4. Performance Test on Reciprocating Pump(HM4)
- 5. Turbine flow meter(**HM5**)
- 6. Reynolds experiment.(HM6)

REFERENCES

Lab Manual

LAKIREDDY BALI REDDY COLLEGE OF **ENGINEERING**

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

Course Title	: FLUID MECHANICS AND HYDRAULIC MACHINERY LAB	Academic	Year: 2022-23
Instructors	: SRR/SUMR	Course &	SEM: B.Tech&III
Branch	: ME	Section	:B

Batches (Section – B)

Total No. of students: 21761A0333-362& 22765A0330 TO 22765A0362

Batch B1 : 21761A0333-362= 28

Batch B2 : 22765A0330 TO 22765A0362 = 33

Sub Batches of B1:

S. No	Batch	Registered Nos	Total
1	B1 ₁	21761A0333-21761A0337	5
2	B1 ₂	21761A0338-21761A0342	5
3	B1 ₃	21761A0343-21761A0348	5
4	B1 ₄	21761A0349-21761A0352	4
5	B1 ₅	21761A0353-21761A0357	5
6	B1 ₆	21761A0358-21761A0362	4
		28	

Sub Batches of B2:

S. No	Batch	Registered Nos	Total
1	B2 ₁	22765A0330-335	6
2	B2 ₂	22765A0336-341	6
3	B2 ₃	22765A0342-347	6
4	B2 ₄	22765A0348-352	5
5	B2 ₅	22765A0353-357	5
6	B1 ₆	22765A0358-362	5

Course Instructor HOD **Course Coordinator**

Module Coordinator

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

28

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

NOTIFICATION OF CYCLES

Course Title: FLUID MECHANICS AND HYDRAULIC MACHINERY LABInstructors: SRR/SUMRBranch: ME

Academic Year: 2022-23 Course & SEM: B.Tech&III Section :B

CYCLE-I

- 1. Verification of Bernoulli's Theorem
- 2. Calibration of Venturi meter
- 3. Calibration of Orifice meter.
- 4. Determination of friction factor for a given pipe line
- 5. Calibration of mouthpiece apparatus
- 6. Calibration of notch

7. Performance Test on Kaplan Turbine.

8. Performance Test on Single Stage Centrifugal Pump.

9. Performance Test on Reciprocating Pump.

10. Turbine flow meter.

11. Impact of jets on Vanes.

12. Performance Test on Pelton Wheel.

<u>Notification of Cycles (Section – B)</u>

CYCLE-II

Batche	Laboratory	Cycle	Experiment No.s
8 B1 &	FLUID MECHANICS	I	FM 1 to FM 6

B2	AND HYDRAULIC		
	MACHINARY LAB	II	HM 7 to HM 12

 Total No. of students : 21761A0333-362& 22765A0330 TO 22765A0362

 Batch B1
 : 21761A0333-362= 28

 Batch B2
 : 22765A0330 TO 22765A0362 =33

Course Instructor HOD **Course Coordinator**

Module Coordinator

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

VIVA QUESTIONS

Course Title: FLUID MECHANICS AND HYDRAULIC MACHINERY LABInstructors: SRR/SUMRBranch: ME

Academic Year: 2022-23 Course & SEM: B.Tech&III Section :B

- 1. Differentiate between Absolute and gauge pressures.
- 2. Mention two pressure measuring instruments.
- 3. What is the difference weight density and mass density?
- 4. What is the difference between dynamic and kinematic viscosity?
- 5. Differentiate between specific weight and specific volume.
- 6. Define relative density.
- 7. What is vacuum pressure?
- 8. What is absolute zero pressure?
- 9. Write down the value of atmospheric pressure head in terms of water and Hg.
- 10. Differentiate between laminar and turbulent flow.
- 11. How will you classify the flow as laminar and turbulent?
- 12. Mention few discharge measuring devices
- 13. Draw the venturimeter and mention the parts.
- 14. Why the divergent cone is longer than convergent cone in venturimeter?
- 15. Compare the merits and demerits of venturimeter with orifice meter.
- 16. Why Cd value is high in venturimeter than orifice meter?
- 17. What is orifice plate?
- 18. What do you mean by vena contracta?
- 19. Define coefficient of discharge.
- 20. Write down Darcy -weisback's equation.
- 21. What is the difference between friction factor and coefficient of friction?

- 22. What do you mean by major energy loss?
- 23. List down the type of minor energy losses.
- 24. Define turbine
- 25. What are the classifications of turbine
- 26. Define impulse turbine.
- 27. Define reaction turbine.
- 28. Differentiate between impulse and reaction turbine.
- 29. What is the function of draft tube?
- 30. Define specific speed of turbine.
- 31. What are the main parameters in designing a Pelton wheel turbine?
- 32. What is breaking jet in Pelton wheel turbine?
- 33. What is the function of casing in Pelton turbine
- 34. Draw a simple sketch of Pelton wheel bucket.
- 35. What is the function of surge tank fixed to penstock in Pelton turbine?
- 36. How the inlet discharge is controlled in Pelton turbine?
- 37. What is water hammer?
- 38. What do you mean by head race?
- 39. What do you mean by tail race?
- 40. What is the difference between propeller and Kaplan turbine?
- 41. Mention the parts of Kaplan turbine.
- 42. Differentiate between inward and outward flow reaction turbine.
- 43. What is the difference between Francis turbine and Modern Francis turbine?
- 44. What is mixed flow reaction turbine? Give an example.
- 45. Why draft tube is not required in impulse turbine?
- 46. How turbines are classified based on head. Give example.
- 47. How turbines are classified based on flow. Give example
- 48. How turbines are classified based on working principle. Give example. 49. What does velocity triangle indicates?
- 50. Draw the velocity triangle for radial flow reaction turbine.
- 51. Draw the velocity triangle for tangential flow turbine.
- 52. Mention the type of characteristic curves for turbines.
- 53. How performance characteristic curves are drawn for turbine.
- 54. Mention the types of efficiencies calculated for turbine.
- 55. Define pump.
- 56. How pumps are classified?
- 57. Differentiate pump and turbine.
- 58. Define Rotodynamic pump.
- 59. Define Positive displacement pump.
- 60. Differentiate between Rotodynamic and positive displacement pump.
- 61. Define cavitation in pump.
- 62. What is the need for priming in pump?
- 63. Give examples for Rotodynamic pump
- 64. Give examples for Positive displacement pump.
- 65. Mention the parts of centrifugal pump.
- 66. Mention the type of casing used in centrifugal pump.

- 67. Why the foot valve is fitted with strainer?
- 68. Why the foot valve is a non return type valve?
- 69. Differentiate between volute casing and vortex casing.
- 70. What is the function of volute casing?
- 71. What is the function of guide vanes?
- 72. Why the vanes are curved radially backward?
- 73. What is the function of impeller?
- 74. Mention the types of impeller used.
- 75. Define specific speed of pump.
- 76. Mention the type of characteristic curves for pump
- 77. How performance characteristic curves are drawn for pump.
- 78. Mention the parts of reciprocating pump.
- 79. What is the function of air vessel?
- 80. What is slip of reciprocating pump?
- 81. What is negative slip?
- 82. What is the condition for occurrence of negative slip?
- 83. What does indicator diagram indicates?
- 84. What is the difference between actual and ideal indicator diagram?
- 85. Briefly explain Gear pump.
- 86. Differentiate between internal gear pump and external gear pump.
- 87. Briefly explain vane pump.
- 88. What is rotary pump?
- 89. Draw the velocity triangle for centrifugal pump.
- 90. Draw the indicator diagram fro reciprocating pump.
- 91. What is the amount of work saved by air vessel?
- 92. Mention the merits and demerits of centrifugal pump.
- 93. Mention the merits and demerits of reciprocating pump.
- 94. What is separation in reciprocating pump?
- 95. How separation occurs in reciprocating pump?
- 96. Differentiate single acting and double acting reciprocating pump.

Course Instructor HOD **Course Coordinator**

Module Coordinator

LAKIREDDY BALI REDDY COLLEGE OF

ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

Course Title	: FLUID MECHANICS AND HYDRAULIC MACHINERY LAB	Academic Ye	ear: 2022-23
Instructors	: SRR/SUMR	Course & SE	M: B.Tech&III
Branch	: ME	Section	:B

Notification of Cycles (Section – B)

Batche	Laboratory	Cycle	Experiment No.s
S			
B1 &	FLUID MECHANICS AND HYDRAULIC	Ι	FM 1 to FM 6
B2	MACHINARY LAB	II	HM 7 to HM 12

 Total No. of students : 21761A0333-362& 22765A0330 TO 22765A0362

 Batch B1
 : 21761A0333-362= 28

 Batch B2
 : 22765A0330 TO 22765A0362 =33

Course Instructor HOD **Course Coordinator**

Module Coordinator

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

		Schedule of <u>F</u>	LUID MEC	HANICS AN	D HYDRAU	LIC MACH	INERY LAB	 (Section – B)	
Course Title	: FLUID N	MECHANICS A	AND HYDRA	ULIC MACH	INERY LAB	Academic Y	Year: 2022-23		
Instructors	: SRR/SU	MR				Course & SEM: B.Tech&III			
Branch	: ME					Section	:B		
		Date			Experimen	t (Batch-1)			
		Cycle-I	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6	
		14/09/2022	Demon	stration of all	experiments,	CEOs and CO	Ds of the Labo	ratory	
		21/09/2022	B1	B2	B3	B4	B5	B6	
		28/09/2022	B2	B3	B4	B5	B6	B1	
		12/10/2022	B3	B4	B5	B6	B1	B2	
		19/10/2022	B4	B5	B6	B1	B2	B3	
		26/10/2022	B5	B6	B1	B2	B3	B4	
		02/11/2022	B6	B1	B2	B3	B4	B5	
		09/11/2022			I MID EXAN	AINATIONS		-	
		Cycle-II	Ex - 7	Ex – 8	Ex – 9	Ex – 10	Ex – 11	Ex – 12	
		16/11/2022	B1	B2	B3	B4	B5	B6	
		23/11/2022	B2	B3	B4	B5	B6	B1	
		30/11/2022	B3	B4	B5	B6	B1	B2	
		07/12/2022	B4	B5	B6	B1	B2	B3	
		14/12/2022	B5	B6	B1	B2	B3	B4	
		21/12/2022	B6	B1	B2	B3	B4	B5	
		28/12/2022			REPET	TITION			
		04/01/2023		Ι	NTERNAL EX	XAMINATIO	N		

S. No	Batch	Registered Nos	Total	S. No	Batch	Registered Nos	Total
1	B11	21761A0333-37	5	4	B14	21761A0349-52	4
2	B12	21761A0338-42	5	5	B15	21761A0353-57	5
3	B13	21761A0343-48	5	6	B16	21761A0358-62	4

Course Instructor

Course Coordinator

Module Coordinator

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

		<u>Schedule of </u>	FLUID MEC	HANICS AN	D HYDRAU	LIC MACH	INERY LAB	(Section – B)
Course Title Instructors	: SRR/SU	MECHANICS A MR	AND HYDRA	ULIC MACH	INERY LAB	Course & S	Year: 2022-23 SEM: B.Teché	
Branch	: ME	· · · · · · · · · · · · · · · · · · ·				Section	:B	
		Date			Experimen	t (Batch-2)		
		Cycle-I	Ex - 1	Ex – 2	Ex – 3	Ex – 4	Ex – 5	Ex – 6
		16/09/2022	Demor	nstration of all	experiments,	CEOs and CO)s of the Labo	ratory
		23/09/2022	B1	B2	B3	B4	B5	B6
		30/09/2022	B2	B3	B4	B5	B6	B1
		14/10/2022	B3	B4	B5	B6	B1	B2
		21/10/2022	B4	B5	B6	B1	B2	B3
		28/10/2022	B5	B6	B1	B2	B3	B4
		04/11/2022	B6	B1	B2	B3	B4	B5
		11/11/2022			I MID EXAN	AINATIONS	-	
		Cycle-II	Ex - 7	Ex – 8	Ex – 9	Ex – 10	Ex – 11	Ex – 12
		18/11/2022	B1	B2	B3	B4	B5	B6
		25/11/2022	B2	B3	B4	B5	B6	B1
		02/12/2022	B3	B4	B5	B6	B1	B2
		09/12/2022	B4	B5	B6	B1	B2	B3
		16/12/2022	B5	B6	B1	B2	B3	B4
		23/12/2022	B6	B1	B2	B3	B4	B5
		30/12/2022			REPET	TITION		
		06/01/2023		I	NTERNAL EX	KAMINATIO	N	

Batches:

S. No	Batch	Registered Nos	Total	S. No	Batch	Registered Nos	Total
1	B21	22765A0330-335	6	4	B24	22765A0348- 352	5
2	B22	22765A0336-341	6	5	B25	22765A0353- 357	5
3	B23	22765A0342-347	6	6	B26	22765A0358- 362	5

Course Instructor

Course Coordinator

Module Coordinator

HoD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mrs. B.Udaya Lakshmi, Mr.K.Venkateswara Reddy								
Course Name & Code : Mechanics of Solids and Metallurgy Lab & 20ME56								
L-T-P Structure Program/Sem/Sec	: 0-0-3 :B.Tech/III/B	Regulation : R20 Credits: 1.5 A.Y.: 2022-23						

PREREQUISITE: Mechanics of solids, Metallurgy and Material science

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of the course is to determine various mechanical properties of materials by testing under different load conditions and observe the microstructure of various materials and perform heat treatment of materials.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Evaluate the mechanical properties of materials by conducting various tests.									
COI	(Applying-L3)									
CO2	Estimate the behavior of various materials under different loading.									
02	(Understanding-L2)									
CO3	Identify the material by observing the microstructure. (Remembering-L1)									
CO4	Perform the hardness test and heat treatment of steels. (Applying-L3)									

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	1	2	3	-	-	2	-	-	-	-	2	-	-	3
CO2	3	2	2	3	-	-	2	-	-	-	-	2	-	-	3
CO3	3	-	2	3	-	-	-	-	-		-	1	-	3	-
CO4	3	-	2	3	1	-	-	-	-	-	-	2	-	3	-
	1 - Low 2 -Me				-Medi	ium			3	- High					

References:

Lab Manual

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

LIST OF EXPERIMENTS

At least 12 experiments are to be conducted:

PART-A: MECHANICS OF SOLIDS

Any 6 Experiments are required to be conducted

- 1. Compression test on helical spring. (MOS1)
- 2. Tension test on mild steel rod. (MOS2)
- 3. Double shear test on metals. (MOS3)
- 4. Torsion test on mild steel rod. (MOS4)
- 5. Impact test on metal specimen. (a) Izod Impact Test (b) Charpy Impact Test (MOS5)
- 6. Hardness test on metals. (a) Rockwell Hardness Test (b) Brinell Hardness Test (MOS6)
- 7. Deflection test on beams. (a) Cantilever Beam (b) Simply Supported beam (MOS7)
- 8. Compression test on brittle materials. (MOS8)

PART-B: METALLURGY

Any 6 Experiments are required to be conducted

- 1. Preparation and study of the microstructure of Cu & Al. (MET1)
- 2. Preparation and study of the microstructure of steels. (MET2)
- 3. Preparation and Study of the microstructures of cast iron. (MET3)
- 4. Preparation and Study of the microstructures of brass. (MET4)
- 5. Hardenability of steels by Jominy end quench test. (MET5)
- 6. Hardness of various treated and untreated steels. (MET6)
- 7. Study of Age hardening of Al-Cu alloy. (MET7)
- 8. Study of Fe-Fe3C equilibrium diagram. (MET8)
- 9. Study of T-T-T diagram for eutectoid steel. (MET9)
- 10. Fabrication of FRP Composite by Hand Lay-up method. (MET10)
- 11. Fabrication of FRP Composite by Vacuum bag moulding. (MET11)

REFERENCES

Lab Manual

						Datti-i Sti					
S.n	Date					Bat	ches			-	-
0	Date	B1 ₁	B12	B13	B1 ₄	B1 ₅	B1 ₆	B17	B1 ₈	B1 9	B1 ₁₀
1	16/09/2022				Demo	onstration o	f MOS & MN	/IS Lab			
2	23/09/2022	MET – 1	MET – 2	MET – 3	MET – 4	MET – 5	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MOS - 6
3	30/09/2022	MET – 2	MET – 3	MET – 4	MET – 5	MET – 6	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MOS - 7
4	14/10/2022	MET – 3	MET – 4	MET – 5	MET – 6	MET – 1	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MOS - 2
5	21/10/2022	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MET – 1	MET – 2	MET – 3	MET – 4	MET – 5
6	28/10/2022	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MET – 2	MET – 3	MET – 4	MET – 5	MET – 6
7	04/11/2022	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MET – 3	MET – 4	MET – 5	MET – 6	MET – 1
07	07-11-2022 to I Mid Examinations										
1	2-11-2022										
8	18/11/2022	MET – 4	MET – 5	MET – 6	MET – 1	MET – 2	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MOS - 3
9	25/11/2022	MET – 5	MET – 6	MET – 1	MET – 2	MET – 3	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MOS - 4
10	02/12/2022	MET – 6	MET – 1	MET – 2	MET – 3	MET – 4	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MOS - 5
11	09/12/2022	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MET – 4	MET – 5	MET – 6	MET – 1	MET – 2
12	16/12/2022	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MET – 5	MET – 6	MET – 1	MET – 2	MET – 3
13	23/12/2022	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MET – 6	MET – 1	MET – 2	MET – 3	MET – 4
14	30/12/2022					Internal E	xamination				
	-01-2023 to 7-01-2023	II Mid Examinations									
No. of	f classes requi	red to co	mplete:					No. of clas	ses taken	:	

Batch-I Schedule

Batches:

S. No	Batch	Batch Registered Nos				
1	B1 ₁	21761A0333-335	3			
2	B1 ₂	21761A0336-338	3			
3	B1 ₃	21761A0339-341	3			
4	B14	21761A0342-344	3			
5	B1 ₅	21761A0345 -348	3			

S. No	Batch	Batch Registered Nos			
6	B1 ₆	21761A0349 -351	3		
7	B17	21761A0352 -354	3		
8	B1 ₈	21761A0355 -357	3		
9	B19	21761A0358 - 360	3		
10	B1 ₁₀	21761A0362,	3		
		22765A0330 - 331			

Batch-II Schedule

S.	Date					Bate	ches				
no	Date	B21	B2 ₂	B2₃	B2 ₄	B2 ₅	B2 ₆	B27	B2 ₈	B2 9	B2 ₁₀
1	14/09/2022				Demoi	nstration of	MOS & MN	1S Lab			
2	21/09/2022	MET – 1	MET – 2	MET – 3	MET – 4	MET – 5	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MOS - 6
3	28/09/2022	MET – 2	MET – 3	MET – 4	MET – 5	MET – 6	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MOS - 7
4	12/10/2022	MET – 3	MET – 4	MET – 5	MET – 6	MET – 1	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MOS - 2
5	19/10/2022	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MET – 1	MET – 2	MET – 3	MET – 4	MET – 5
6	26/10/2022	MOS - 3	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MET – 2	MET – 3	MET – 4	MET – 5	MET – 6
7	02/11/2022	MOS - 4	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MET – 3	MET – 4	MET – 5	MET – 6	MET – 1
-	7-11-2022 to 12-11-2022		I Mid Examinations								
8	16/11/2022	MET – 4	MET – 5	MET – 6	MET – 1	MET – 2	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MOS - 3
9	23/11/2022	MET – 5	MET – 6	MET – 1	MET – 2	MET – 3	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MOS - 4
10	30/11/2022	MET – 6	MET – 1	MET – 2	MET – 3	MET – 4	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MOS - 5
11	07/12/2022	MOS - 5	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MET – 4	MET – 5	MET – 6	MET – 1	MET – 2
12	14/12/2022	MOS - 6	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MET – 5	MET – 6	MET – 1	MET – 2	MET – 3
13	21/12/2022	MOS - 7	MOS - 2	MOS - 3	MOS - 4	MOS - 5	MET – 6	MET – 1	MET – 2	MET – 3	MET – 4
14	28/12/2022					Internal Ex	amination				
-	2-01-2023 to 07-01-2023		II Mid Examinations								
	No. of classe	s require	d to comp	lete:					No. of cl	asses tak	en:

Batches:

S. No	Batch	Registered Nos	Total
1	B21	22765A0332-334	3
2	B2 ₂	22765A0335-337	3
3	B2 ₃	22765A0338-340	3
4	B24	22765A0341-343	3
5	B25	22765A0344-346	3

S. No	Batch	Registered Nos	Total
6	B2 ₆	22765A0347-349	3
7	B27	22765A0350-352	3
8	B2 ₈	22765A0353-355	3
9	B29	22765A0356-358	3
10	B2 ₁₀	22765A0359-362	4

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
Record = \mathbf{B}	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.
PEU I	Mathematics, Science and Mechanical Engineering.
	To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.
FEU 2	successful in multidisciplinary activities.
PEO 3	To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
PO 1	fundamentals, and an engineering specialization to the solution of complex							
	engineering problems.							
	Problem analysis: Identify, formulate, review research literature, and analyse							
PO 2	complex engineering problems reaching substantiated conclusions using first							
	principles of mathematics, natural sciences, and engineering sciences.							
	Design/development of solutions: Design solutions for complex engineering							
PO 3	problems and design system components or processes that meet the specified needs							
PU 3	with appropriate consideration for the public health and safety, and the cultural,							
	societal, and environmental considerations.							
	Conduct investigations of complex problems: Use research-based knowledge and							
PO 4	research methods including design of experiments, analysis and interpretation of data,							
	and synthesis of the information to provide valid conclusions.							
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and							
PO 5	modern engineering and IT tools including prediction and modelling to complex							
	engineering activities with an understanding of the limitations.							
	The engineer and society: Apply reasoning informed by the contextual knowledge to							
PO 6	assess societal, health, safety, legal and cultural issues and the consequent							
	responsibilities relevant to the professional engineering practice.							
	Environment and sustainability: Understand the impact of the professional							
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the							
	knowledge of, and need for sustainable development.							
DO C	Ethics : Apply ethical principles and commit to professional ethics and responsibilities							
PO 8	and norms of the engineering practice.							

PO 9	Individual and team work: Function effectively as an individual, and as a member or
10,5	leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend
PO 10	and write effective reports and design documentation, make effective presentations,
	and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
1011	member and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
	To apply the principles of manufacturing technology, scientific management towards
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty					
Signature					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.T.N.V.S PRAVEEN/Mr.P VEERA SWAMY

Course Name & Code : Python Programming Lab(20AD53)

L-T-P Structure	: 0-0-3
Program/Sem/Sec	:B.Tech/III/B

Regulation: R20 **Credits: 2 A.Y.:** 2022-23

PREREQUISITE: Basic Knowledge of Programming.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of the course is to determine various mechanical properties of materials by testing under different load conditions and observe the microstructure of various materials and perform heat treatment of materials.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

	Evaluate the mechanical properties of materials by conducting various tests.								
CO1	(Applying-L3)								
CO 2	Estimate the behavior of various materials under different loading.								
CO2	(Understanding-L2)								
CO3	Identify the material by observing the microstructure. (Remembering-L1)								
CO4	Perform the hardness test and heat treatment of steels. (Applying-L3)								

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	2	1	2	3	-	-	2	-	-	-	-	2	-	-	3
CO2	3	2	2	3	-	-	2	-	-	-	-	2	-	-	3
CO3	3	-	2	3	-	-	-	-	-		-	1	-	3	-
CO4	3	-	2	3	1	-	-	-	-	-	-	2	-	3	-
1 - Low					2	-Medi	um			3	- High				

References:

Lab Manual

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

LIST OF EXPERIMENTS

At least 12 experiments are to be conducted:

PART-A: MODULE 1 TO MODULE 4

Any 6	Experiments are required to be conducted	
1.	Language Basics of Python	(LTSD1)
2.	Module 1 program on list	(LTSD2)
3.	Exercise Problems on Lists	(LTSD3)
4.	Module 2 program on Tuples.	(LTSD4)
5.	Exercise program on Tuples.	(LTSD5)
6.	Module 3&4 on Sets and Dictionaries	(LTSD6)
7.	Exercise program on Sets.	(LTSD7)
8.	Exercise Program on Dictionaries.	(LTSD8)
	<u>PART-B: MODULE 5 TO MODULE 8</u>	
Any 6	Experiments are required to be conducted	
1.	Module 5 program on functions and recursion.	(FSRM1)
2.	Exercise program on functions and recursion.	(FSRM2)
3.	Module 6 program on Strings.	(FSRM3)
4.	Exercise program on strings.	(FSRM4)
5.	Module 7 program on Regular expression.	(FSRM5)
6.	Exercise program on Regular Expressions.	(FSRM6)
7.	Module 8 programs on MatplotLib.	(FSRM7)

REFERENCES Lab Manual

Batch-I Schedule (21761A0333-362)

S.No.	Date			Ва	tch					
5.100.		A1	A2	A3	A4	A5	A6			
	15-09-2022		Demonstration of LTSD & FSRM Lab							
1	22-09-2022	LTSD1	LTSD2	LTSD3	FSRM1	FSRM2	FSRM3			
2	29-09-2022	LTSD2	LTSD3	LTSD1	FSRM2	FSRM3	FSRM1			
3	13-10-2022	LTSD1	LTSD1	LTSD2	FSRM3	FSRM1	FSRM2			
4	20-10-2022	FSRM1	FSRM2	FSRM3	LTSD1	LTSD2	LTSD3			
5	27-10-2022	FSRM2	FSRM3	FSRM1	LTSD2	LTSD3	LTSD1			
6	03-11-2022	FSRM3	FSRM1	FSRM2	LTSD1	LTSD1	LTSD2			
	07-11-2022									
	to 12/11/22	I Mid Examinations								
7	17-11-2022	LTSD4	LTSD5	LTSD6	FSRM4	FSRM5	FSRM6			
8	24-11-2022	LTSD5	LTSD6	LTSD4	FSRM5	FSRM6	FSRM4			
9	01-12-2022	LTSD6	LTSD4	LTSD5	FSRM6	FSRM4	FSRM5			
10	08-12-2022	FSRM4	FSRM5	FSRM6	LTSD4	LTSD5	LTSD6			
11	15-12-2022	FSRM5	FSRM6	FSRM4	LTSD5	LTSD6	LTSD4			
12	22-12-2022	FSRM6	FSRM4	FSRM5	LTSD6	LTSD4	LTSD5			
	29-12-2022			Internal Ex	kamination					
	02-01-2022									
	To 07/01/22			II Mid Exa	minations					

Batches:

S. No	Batch	Registered Nos	Total
1	A1	21761A0333-337	5
2	A2	21761A0338-342	5
3	A3	21761A0343-348	5

S. No	Batch	Registered Nos	Total
4	A4	21761A0349-353	5
5	A5	21761A0354-358	5
6	A6	21761A0359-361	5

Batch-II Schedule (21761A0362 & Lateral Entry Students)

S.No.	Date		Batch				
5.100.	Date	A1	A2	A3	A4	A5	A6
	15-09-2022		Dei	monstration of	LTSD & MMS	Lab	
1	22-09-2022	LTSD1	LTSD2	LTSD3	FSRM1	FSRM2	FSRM3
2	29-09-2022	LTSD2	LTSD3	LTSD1	FSRM2	FSRM3	FSRM1
3	13-10-2022	LTSD1	LTSD1	LTSD2	FSRM3	FSRM1	FSRM2
4	20-10-2022	FSRM1	FSRM2	FSRM3	LTSD1	LTSD2	LTSD3
5	27-10-2022	FSRM2	FSRM3	FSRM1	LTSD2	LTSD3	LTSD1
6	03-11-2022	FSRM3	FSRM1	FSRM2	LTSD1	LTSD1	LTSD2
	07-11-2022		· · · · · · ·				
	to 12/11/22	I Mid Examinations					
7	17-11-2022	LTSD4	LTSD5	LTSD6	FSRM4	FSRM5	FSRM6
8	24-11-2022	LTSD5	LTSD6	LTSD4	FSRM5	FSRM6	FSRM4
9	01-12-2022	LTSD6	LTSD4	LTSD5	FSRM6	FSRM4	FSRM5
10	08-12-2022	FSRM4	FSRM5	FSRM6	LTSD4	LTSD5	LTSD6
11	15-12-2022	FSRM5	FSRM6	FSRM4	LTSD5	LTSD6	LTSD4
12	22-12-2022	FSRM6 FSRM4 FSRM5 LTSD		LTSD6	LTSD4	LTSD5	
	29-12-2022	Internal Examination					
	02-01-2022						
	To 07/01/22			II Mid Exa	minations		

Batches:

S. No	Batch	Registered Nos	Total
1	Α7	21761A0362- 22765A0333	5
2	A8	22765A0334- 22765A0339	5
3	A9	22765A0340- 22765A0344	5

S. No	Batch	Registered Nos	Total
4	A10	22765A0346- 22765A0350	5
5	A11	22765A0352- 22765A056	5
6	A12	22765A0358- 22765A0361	6

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A=05
Record = \mathbf{B}	1,2,3,4,5,6,7,8	B=05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

The Objective of the Python course is to lead the students from the basics of writing and running Python scripts in problem-solving and to design and implement the modules and understands the working of classes and objects in python.

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyse complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
105	appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.

P0 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
10,7	leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend
1010	and write effective reports and design documentation, make effective presentations,
	and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAM SPECIFIC OUTCOMES

PSO 1	The ability to apply Software Engineering practices and strategies in software project
	development using an open-source programming environment for the success of the organization.
PSO 2	The ability to design and develop computer programs in networking, web applications andIoT as per society's needs.
PSO 3	To inculcate an ability to analyze, design, and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. T N V S Praveen	Dr. Y . Vijay Bhaskar Reddy	Dr. K. Naga Prasnthi	Dr. S. PichiReddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I) ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. http://cse.lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: A.Dhanunjay Kumar/B.Sudheer Kumar/M.Oli : Technical Drawing using Drafting Package La	
L-T-P Structure Program/Sem/Sec	: 1-0-2 : B.Tech., Mech., III-Sem., B/S	Credits : 2 A.Y : 2022-23
PRE-REQUISITE	: Engineering Graphics	

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to improve the skill sets of students in drafting packages (Auto CAD/CATIA) and enable them to draw the diagrams related to mechanical engineering components/applications.

COURSE OUTCOMES (COs): At the end of the course, the student shall be able to

CO 1	Understand the	e Auto-CAD	basics	for	2D	sketches	used	in	industries
	(Understanding	g - L2)							
CO 2	Draw the machin	ne component	s using 3	3D mo	odelli	ng comma	nds. (A	pply	ving –L3)
CO 3	Edit the 3D solid	Models using	solid ed	liting	com	mands. (Ur	dersta	ndi	ng - L2)
CO 4	Extract the Orth	ographic vie	ws of th	e mo	dels	in Wire F	rame, S	Surfa	ace & Solid
LU 4	Modelling. (App	lying –L3)							

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3				2					2		1		3	3
CO2	2				3					2		1		3	3
CO3	2				3					2		1		3	3
CO4	2				3					2		1		3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Programs to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	HOD Sign Weekly
1.	Introduction to Technical Drawing using Drafting Package-CEO&COs	04	15.09.2022		TLM2	CO- 1,2,3,4	
2.	Demonstration to AutoCAD Software	04	21.09.2022		TLM4	CO- 1,2,3,4	
3.	Exercise on Basic Drawing Commands (Exp-1)	04	29.09.2022		TLM4	CO-1	
4.	Exercise on Modify Commands (Exp-2)	04	13.10.2022		TLM4	CO-1	
5.	Exercise on isometric views (Exp-3)	04	20.10.2022		TLM4	CO-1	
6.	Exercise on 3D Modelling Commands-I (Exp-4)	04	27-10-2022		TLM4	CO-2	
7.	Exercise on 3D Modelling Commands-II (Exp-5)	04	03-11-2022		TLM4	CO-2	
8.	Exercise on 3D Modelling Commands-III (Exp-6)	04	17-11-2022		TLM4	CO-2	
9.	Exercise on 3D Solid Editing Commands-I (Exp-7)	04	24-11-2022		TLM4	CO-3	
10.	Exercise on 3D Solid Editing Commands-II (Exp-8)	04	01-12-2022		TLM4	CO-3	
11.	Extraction of Wire-Frame & Solid Models from 3D Models (Exp-9)	04	08-12-2022		TLM4	CO-4	
12.	Extraction of Ortho Graphics Views from 3D model-I (Exp-10)	04	17-12-2022		TLM4	CO-4	
13.	Repetition	04	22-12-2022		TLM4	CO-4]
14.	Internal Exam	04	29-12-2022		-	-	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

LIST OF EXPERIMENTS:

Exp. No.	Name of the Experiment	Related CO
MES-1	Exercise on Basic Drawing Commands	CO1
MES2	Exercise on Modify Commands	CO1
MES3	Exercise on isometric views	CO1
MES4	Exercise on 3D Modelling Commands-I	CO2
MES5	Exercise on 3D Modelling Commands-II	CO2
MES6	Exercise on 3D Modelling Commands-III	CO2
MES7	Exercise on 3D Solid Editing Commands-I	CO3
MES8	Exercise on 3D Solid Editing Commands-II	CO3
MES9	Extraction of Wire-Frame & Solid Models from 3D Models	CO4
MES10	Extraction of Ortho Graphics Views from 3D model-I	CO4

NOTIFICATION OF CYCLES

Cycle	Exp. No.	Name of the Experiment	Related CO
	MES-1	Exercise on Basic Drawing Commands	CO1
Cycle-1	MES2	Exercise on Modify Commands	CO1
	MES3	Exercise on isometric views	CO1
	MES4	Exercise on 3D Modelling Commands-I	CO2
Cycle-2	MES5	Exercise on 3D Modelling Commands-II	CO2
	MES6	Exercise on 3D Modelling Commands-III	CO2
Cycle-3	MES7	Exercise on 3D Solid Editing Commands-I	CO3
	MES8	Exercise on 3D Solid Editing Commands-II	CO3
Cycle-4	MES9	Extraction of Wire-Frame & Solid Models from 3D Models	CO4
- ,	MES10	Extraction of Ortho Graphics Views from 3D model-I	CO4

PART-C

	<u>martic</u>
PROGR	AMME OUTCOMES (POs):
	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
P01	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
P02	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems
PO3	and design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
504	Conduct investigations of complex problems: Use research-based knowledge and
P04	research methods including design of experiments, analysis and interpretation of data, and
	synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
P05	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
DOC	The engineer and society : Apply reasoning informed by the contextual knowledge to
P06	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice Environment and sustainability : Understand the impact of the professional engineering
P07	
P07	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
P08	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
	Individual and team work : Function effectively as an individual, and as a member or
P09	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
P010	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
	Project management and finance : Demonstrate knowledge and understanding of the
P011	engineering and management principles and apply these to one's own work, as a member
run	and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for, and have the preparation and ability to engage
P012	in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the principles of thermal sciences to design and develop various thermal
	systems.
	To apply the principles of manufacturing technology, scientific management towards
PSO 2	improvement of quality and optimization of engineering systems in the design, analysis
	and manufacturability of products.
	To apply the basic principles of mechanical engineering design for evaluation of
PSO 3	performance of various systems relating to transmission of motion and power,
	conservation of energy and other process equipment.
L	

Course Instructor	Course Coordinator	Module Coordinator	HOD
A.Dhanunjay Kumar	Mr. K.V.Viswanadh	Mr.B.Sudheer Kumar	Dr.S.Pichi Reddy