

Course Name & Code	: Microprocessors and Microcontrollers – 20EC15
L-T-P Structure	: 3-0-0
Credits	: 3
Program	: B.Tech.,
A.Y	: 2023 – 24
Course Instructor	: Dr. BVNR Siva Kumar, Associate Professor

Pre requisite:

Course Educational Objective: In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the architecture of 8086, 8051 and ARM Controller (Understand)
CO 2	Apply Assembly Language instructions for Processor and Controller based applications (Apply)
CO 3	Analyze the operating modes and interrupt structures of processors and controllers (Analyze)
CO 4	Develop the ARM based interfacing systems for Real time applications (Apply)

CO's / PO's					Co	urse N	ame w	ith cod	le : N	1PMC,	20EC15	6				
PO1	PO2	PO3	PO4	PO5	PO	6 PO	7	PO8	PO9	PO1	0 PO1	.1 P	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-		1	-	3	-
CO2	3	2	1	1	-	-	-	-	-	-	-		1	-	3	-
CO3	2	3	2	1	-	-	-	-	-	-	-		2	-	3	-
CO4	1	2	3	2	-	-	-	-	-	-	-		2	-	3	-

Prescribed Syllabus:

UNIT-I: 8086 MICROPROCESSOR [9 HRS]

Architecture, Pin diagram, Register organization, Minimum mode and Maximum mode, timing diagrams. Addressing modes, Instruction set, Interrupt vector table, Assembly language programming - data transfer, arithmetic, logical and decision making operations.

UNIT- II: 8051 MICROCONTROLLER [8 HRS]

Architecture, Input/output Ports, Registers, Counter and Timers, Serial port, Interrupts, addressing modes, instruction set and Programming - data transfer, arithmetic, logical and decision making operations.

UNIT – III: ARM ARCHITECTURE & PROGRAMMING MODEL [9 HRS]

History, Architecture, ARM design philosophy, Registers, Program status register, Instruction pipeline, Interrupts and vector table, ARM processor families, Instruction set: Data processing instructions, Addressing modes, Branch, Load-Store instructions, PSR instructions, and Conditional instructions.

UNIT - IV: ARM PROGRAMMING [8 HRS]

Assembly programming, General structure of assembly language, Writing programs, Branch instructions, Loading constrains, load and store instructions, Read only and read/write Memory, Multiple Register Load and

Store.

UNIT – V: INTERFACING ARM WITH EXTERNAL PERIPHERALS [8 HRS]

Interfacing - A/D and D/A converter, LEDs, Switches, Relays, LCD, Stepper Motors, Real Time Clock, Serial Communication, GSM and GPS.

Text Books:

1. Ray and Burchandi, "Advanced Microprocessors and Interfacing", Tata McGraw-Hill.

2. M.A.Mazidi,S.Naimi and S.Naimi, "The AVR Microcontroller and Embedded Systems Using Assembly and C", 1st Edition Pearson Publications, 2013.

Reference Books:

1. N.Sentil Kumar, M.Saravanan, S.Jeevananthan, "Microprocessors and Microcontrollers", Oxford University Press, 2010.

2. Dhananjay V. Gadre, "Programming and Customizing The AVR Microcontroller", Tata McGraw-Hill publications, 2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): VI Sem, A Section

	UNIT-I: 8086 MICROPROCESSOR [1	4 HRS				
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	1-20 bits table.	1	07-12-2023		TLM 1	,, comy
2.	Register organization	1	08-12-2023		TLM 1	
3.	Data Transfer Instructions, ALP	1	09-12-2023		TLM 1	
4.	Arithmetic Instructions, ALP	1	13-12-2023		TLM 1	
5.	Logical Instructions, ALP	1	14-12-2023		TLM 1	
6.	Flags, Instructions	1	15-12-2023		TLM 1	
7.	Instructions	1	16-12-2023		TLM 1	
8.	Addressing modes	1	20-12-2023		TLM 1	
9.	ALP s	1	21-12-2023		TLM 1	
10.	Architecture	1	22-12-2023		TLM 1	
11.	Pin Functionality	1	23-12-2023		TLM 1	
11.	Minimum mode	1	27-12-2023		TLM 1	
12.	Timing Diagrams	1	28-12-2023		TLM 1	
13.	Interrupt vector table	1	29-12-2023		TLM 1	
14.	Maximum mode	1	30-12-2023		TLM 1	

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
	r	Required	Completion	Completion	Methods	Weekly
15	Architecture, Registers, Flags	1	03-01-2024		TLM 1	
16.	Memory Map, SFRs, I / O Ports	1	04-01-2024		TLM 1	
17.	Addressing modes, Instructions, ALP	1	05-01-2024		TLM 1	
18.	Instructions, ALP	1	06-01-2024		TLM 1	
19.	Counter and Timers	1	10-01-2024		TLM 1	
20.	Serial port, Interrupts	1	11-01-2024		TLM 1	
21.	8086 & 8051Revision	1	12-01-2024		TLM 1	

	<mark>UNIT – III: ARM ARCHITECTURE & I</mark>	PROGRAM	MING MOD	EL [10 HRS	5]	
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22.	Registers, Program status register		18-01-2024		TLM 1	
23.	Instruction pipeline, Interrupts and vector table		19-01-2024		TLM 1	
24.	History & Architecture		20-01-2024		TLM 1	
25.	ARM design philosophy		24-01-2024		TLM 2	
26.	Revise Unit I	1	25-01-2024			
27.	Revise Unit II	1	27-01-2024			
28.	Mid paper solutions	1	07-02-2024			
29.	ARM Architecture	1	08-02-2024		TLM 2	
30.	ARM processor families	1	09-02-2024		TLM 1	
31.	Instruction set: Data processing instructions	1	10-02-2024		TLM 1	
32.	Addressing modes	1	14-02-2024		TLM 1	
33.	Branch, Load-Store instructions	1	15-02-2024		TLM 1	
34.	PSR instructions, and Conditional instructions	1	16-02-2024		TLM 1	
35.	Comparison of Programs	1	17-02-2024		TLM 1]

	<mark>UNIT – IV: ARM PROG</mark>	RAMMIN	G [8 HRS]			
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Assembly programming,	1	21-02-2024		TLM 1	
37.	General structure of assembly language,	1	22-02-2024		TLM 1	
38.	Writing programs,	1	23-02-2024		TLM 1	
39.	Branch instructions	1	24-02-2024		TLM 1	
40.	Loading constrains	1	28-02-2024		TLM 1	
41.	load and store instructions	1	29-02-2024		TLM 1	
42.	Read only and read/write Memory	1	01-03-2024		TLM 1	
43.	Multiple Register Load and Store	1	02-03-2024		TLM 1	
		•		•		

	UNIT – V: INTERFACING ARM WITH EXTERNAL PERIPHERALS [8 HRS]									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
44.	Interfacing - A/D converter	1	06-03-2024		TLM 1					
45.	Interfacing - D/A converter	1	07-03-2024		TLM 1					
46.	Interfacing - LEDs & Switches	1	13-03-2024		TLM 1					
47.	Interfacing – Relays & LCD	1	14-03-2024		TLM 1					
48.	Interfacing - Stepper Motors	1	15-03-2024		TLM 1					
49.	Interfacing - Real Time Clock	1	16-03-2024		TLM 1					
50.	Interfacing - Serial Communication	1	20-03-2024		TLM 1					

51.	Interfacing - GSM and GPS	1	21-03-2024	TLM 1
	Revision	1	22-03-2024	
	Revision	1	23-03-2024	

	BEYOND THE SYLLABUS							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	MSP430 Instruction Set	1	27-03-2024		TLM 2			
2.	MSP430 Digital in-outs	1	28-03-2024		TLM 2			
3.	MSP430 Timer, Communication	1	30-03-2024		TLM 2			

Teachin	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

<u>PART – C</u> Academic Calendar: 2023 – 24 (VI Semester)

B.Tech VI Semester - 2021 Admitted E	Batch						
Class work Commence From	rom 04-12-2024						
Description	From	То	Weeks				
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks				
I Mid Examinations	29-01-2024	03-02-2024	1 Week				
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks				
II Mid Examinations	01-04-2024	06-04-2024	1 Week				
Preparation & Practicals	08-04-2024	13-04-2024	1 Week				
Semester End Examinations	15-04-2024	27-04-2024	2 Weeks				
Internship	29-04-2024	22-06-2024	6 Weeks				

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE)	
80% of Max($(M1+Q1+A1)$, $(M2+Q2+A2)$) + 20% of Min($(M1+Q1+A1)$,	30
(M2+Q2+A2))	
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

CO 1	Understand the architecture of	Describe, Explain, Paraphrase, Restate ,Associate,				
	8086, 8051 and ARM Controller	Contrast, Summarize, Differentiate, Interpret, Discuss				
	(Understand)					
CO 2	Apply Assembly Language	Calculate, Predict, Apply, Solve, Illustrate, Use,				
	instructions for Processor and	Demonstrate, Determine, Model, Experiment, Show,				
	Controller based applications	Examine, Modify				
	(Apply)					
CO 3	Analyze the operating modes and	Classify, Outline, Break down, Categorize, Analyze,				
	interrupt structures of processors	Diagram, Illustrate, Infer, Select				
	and controllers (Analyze)					
CO 4	Develop the ARM based	Categorize, Analyze, Illustrate, Infer Select				
	interfacing systems for Real time					
	applications (Apply)					

<u> PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
DO 1 0	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
DO 11	receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor & Coordinator

Module Coordinator

[Mr. B.V.N.R.Siva Kumar]

[Dr.P.LACHI REDDY]

[Dr.Y. AMAR BABU]

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Smt.M.Ramya HarikaCourse Name & Code: VLSI DESIGN- 20EC16L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech., ECE., VI-Sem., Section- A

Credits: 3 A.Y : 2023-24

PRE-REQUISITE: Electronic Devices and Circuits, Digital Circuits

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on IC Fabrication Technologies and gives a complete idea about combinational and sequential sub system CMOS circuit designs used in VLSI Design. This course also gives the complete information regarding design tools and CMOS testing techniques.

COURSE OUTCOMES (CO): At the end of the course, students will be able to

CO1:	Understand semiconductor technology and MOS fabrication process (L2-Understand)
CO2:	Apply layout design rules for NMOS, CMOS logic circuit designs. (L3-Apply)
CO3:	Analyze the IC building blocks. (L4-Analyze)
CO4:	Apply CMOS testing techniques to test different digital designs. (L3-Apply)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2		PO4	PO5		PO7				PO11	PO1 2	PSO1	PSO2	PSO3
C01	2	1	1	-	-	-	-	-	-	-	-	3	-	-	-
CO2	2	1	1	-	-	-	-	-	-	-	-	3	-	2	-
CO3	2	3	2	-	-	-	-	-	-	-	-	3	-	4	-
CO4	2	2	1	-	-	-	-	-	-	-	-	3	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, Essentials of VLSI circuits and systems, PHI Publishers, 2005.
- T2 "Design of Analog CMOS Integrated Circuits", Behzad Razavi, TMH, 2007.

BOS APPROVED REFERENCE BOOKS:

- **R1** Neil. H. E. Weste and Kamaran Eshraghian, Principles of CMOS VLSI Design (2/e), Pearson Education Publishers, 3rdEdition.
- R2 Wayne Wolf, Modern VLSI Design (3/e), Pearson Education Publishers.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: IC FABRICATION TECHNOLOGY & BASIC ELECTRICAL PROPERTIES OF MOS AND BICMOS CIRCUITS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	IC fabrication Technology: Silicon semiconductor technology–wafer processing	1	04.12.2023			
2.	Oxidation, epitaxy, Lithography	1	06.12.2023			
3.	ion implantation, Diffusion, silicon gate process	1	07.12.2023			
4.	NMOS fabrication	1	09.12.2023			
5.	CMOS fabrication	1	11.12.2022			
6.	BiCMOS technology, Comparison between CMOS and bipolar technologies	1	13.12.2023			
7.	Basic Electrical Properties of MOS and BiCMOS Circuits	1	14.12.2023			
8.	Ids –Vds relationships	1	16.12.2023			
9.	MOS transistor threshold Voltage, MOS transistor gm, gds	1	18.12.2023			
10.	Pass transistor	1	20.12.2023			
11.	NMOS Inverter, Various pull up	1	21.12.2023			
12.	CMOS Inverter analysis and design	1	23.12.2023			
13.	BiCMOS Inverters	1	27.12.2023			
14.	Assignment	1	28.12.2023			
	classes required to ete UNIT-I :	18	No.	of classes take	n:	

UNIT-II : VLSI CIRCUIT DESIGN PROCESSES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
15.	VLSI Circuit Design Processes: VLSI design flow	1	30.12.2023			

16.	MOS Layers, Stick Diagrams	1	03.01.2024			
17.	Design Rules and Layout, 5µm CMOS	1	04.01.2024			
18.	Design rules for wires, Design rules for Contacts, transistor	1	06.01.2024			
19.	Layout Diagrams for NMOS, CMOS Inverters and Gates,	1	08.01.2024			
20.	Scaling of MOS circuits, Limitations of Scaling	1	10.01.2024			
21.	Basic Circuit Concepts: Sheet Resistance	1	11.01.2024			
22.	Area Capacitance calculations	1	13.01.2024			
23.	Inverter Delays	1	15.01.2024			
24.	Assignment	1	17.01.2024			
No. of classes required to complete UNIT-II 14				No. of classes	taken:	

UNIT-III : DIGITAL IC BUILDING BLOCKS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	HOD Sign Weekly
25.	Digital IC Building Blocks: Logic gates: combinational logic functions	1	18.01.2024			
26.	Static complementary gates	1	20.01.2024			
27.	Switch logic	1	22.01.2024			
28.	Standard cell based layout	1	24.01.2024			
29.	Logic and interconnect design	1	25.01.2024			
30.	power optimization	1	27.01.2024			
31.	Realization of Latches and Flip-Flops using switch logic	1	05.02.2024			
32.	Sub system design flow	1	07.02.2024			

33.	4x4 array multiplier	1	08.02.2024				
34.	Design of 4bit ALU using adder	1	10.02.2024				
35.	Synchronous up/down counters, Registers	1	12.02.2024				
36.	Assignment	1	14.02.2024				
No. of classes required to complete UNIT-III		12	No. of classes taken:				

UNIT-IV : ANALOG IC BUILDING BLOCKS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
37.	Introduction	1	15.02.2024			•
38.	Analog IC Building Blocks: MOS Diode/Active resistor	1	17.02.2024			
39.	Simple current sinks, Basic current mirrors	1	19.02.2024			
40.	Advanced current mirrors	1	21.02.2024			
41.	Current and Voltage references	1	22.02.2024			
42.	Band-gap references	1	24.02.2024			
43.	Op-Amp, One Stage OP-Amp.	1	26.02.2024			
44.	Two Stage OP-Amp	1	28.02.2024			
45.	Gain boosting	1	29.02.2024			
46.	Common Mode Feedback	1	02.03.2024			
47.	Noise in Op Amps	1	04.03.2024			
48.	Assignment	1	06.03.2024			
No. of classes required to complete UNIT-IV		12		No. of	classes take	n:

UNIT-V : TEST AND TESTABILITY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Introduction	1	07.03.2024			
48.	Test and Testability : System Partitioning	1	09.03.2024			

49.	Layout and Testability, Reset/Initialization	1	11.03.2024	
50.	Design for Testability (DFT)	1	13.03.2024	
51.	Testing Combinational Logic	1	14.03.2024	
53.	Testing Sequential Logic	1	16.03.2024	
55.	Practical Design for Test Guidelines	2	18.03.2024 20.03.2024	
56.	Scan Design Techniques	1	21.03.2024	
57.	Built-In-Self-Test (BIST),	1	23.03.2024	
58.	Future Trends	1	27.03.2024	
59.	Assignment	1	28.03.2024	
	No. of classes required to complete UNIT-V:			No. of classes taken

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
60.	Introduction to FINFET	1	30.03.2024			

Teaching Learning Methods							
TLM1	Chalk and Talk	Demonstration (Lab/Field Visit)					
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks			
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5			
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15			
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10			
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5			
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15			
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10			
Cumulative Internal Examination (CIE) =				
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30			
20% of Min((M1+Q1+A1), (M2+Q2+A2))				
Semester End Examination (SEE)(Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)				
Total Marks = $CIE + SEE$	100			

PART-D

PROGRAMME OUTCOMES (POs):

INUUI	XAMINE OUTCOMES (105):
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
D O -	relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or
РО	leader in diverse teams, and in multidisciplinary settings. Communication : Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend
10	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
РО	Project management and finance : Demonstrate knowledge and understanding of the
11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
РО	Life-long learning : Recognize the need for, and have the preparation and ability to
12	engage in independent and life-long learning in the broadest context of technological
	change.
PROGR	AMME SPECIFIC OUTCOMES (PSOs):
PSO	Communication: Design and develop modern communication technologies for building
1	the inter disciplinary skills to meet current and future needs of industry.
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic
2	Circuits or systems and Implement real time applications in the field of VLSI and
	Embedded Systems using relevant tools
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realize the
3	issues related to real time applications

Course Instructor Course Coordinator		Module Coordinator	HOD	
Smt.M.RamyaHarika	Smt.T.Kalpana	Dr. P Lachi Reddy	Dr.Y.Amar Babu	

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT & MECH) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>COURSE HANDOUT</u> <u>PART-A</u>

Course Name & Code	: MICROWAVE ENGINEERING-20EC17
L-T-P Structure	: 3-0-0
Credits	: 3
Program	: B.Tech.,
A.Y	: 2023 – 24

Pre requisite: Vector calculus, Coordinate Systems, Basics of electromagnetics

Course Educational Objective: This course provides the knowledge on different types of waveguides and resonators. The course will give an idea about microwave communication in terms of various bands, advantages, applications. The course also gives the complete information regarding the microwave tubes and passive devices along with microwave bench setup and microwave measurements.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the microwave sources, components and measurements of microwave parameters
	(Understand – L2)
CO 2	Develop the TE, TM fields in waveguides and microwave signals using microwave tubes and
	solid-state devices (Apply – L3)
CO 3	Apply the properties of S-parameters to model the S-matrix of waveguide components (Apply
	- L3)
CO 4	Analyze the flow of microwave fields in waveguides, components and efficiency of microwave
	tubes (Analyze – L4)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO3	3	2	1	1	1	-	-	-	-	-	-	1	3	-	-
CO4	3	3	2	1	1	-		-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS

1. Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.

2. David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4th Edition.

REFERENCE BOOKS

1. M Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi $5{\rm th}$ Edition

2. Jordan and Balmain, "Electromagnetic fields and Radiating systems", Pearson education.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

	UNIT-I:[9HRS]									
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign				
		Required	Completion	Completion	Methods	Weekly				
1.	Introduction, Microwave Spectrum and Bands	1	08-12-2023							
2.	Advantages and Applications of Microwaves	1	09-12-2023							
3.	Rectangular Waveguides: Impossibility of TEM waves in waveguides	1	12-12-2023							
4.	Transverse Magnetic and Transverse Electric Waves in Rectangular Waveguides	1	13-12-2023							
5.	Field Expressions, characteristics of TE and TM Waves-Cutoff frequency	1	15-12-2023							
6.	Dominant mode in Rectangular Waveguides, phase velocity, group velocity	1	16-12-2023							
7.	relation between cutoff, guided and free space wavelengths	1	19-12-2023							
8.	Wave impedances for TE and TM cases.	1	20-12-2023							
9.	Circular Waveguides: TM and TE waves in circular guides	1	22-12-2023							
10.	Field Expressions, Dominant mode in circular waveguide.	1	23-12-2023							
11.	Tutorial /Assignment	1	26-12-2023							

	UNIT- II: [8 HRS]									
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign				
		Required	Completion	Completion	Methods	Weekly				
12.	Resonators: Rectangular cavity resonators	1	27-12-2023							
13.	Circular cavity resonators	1	29-12-2023							
14.	Field Expressions, Re-entrant Cavities	1	30-12-2023							
15.	Microwave Tubes: Limitations of conventional tubes at microwave frequencies	1	02-01-2024							
16.	Klystron Tubes: Two Cavity Klystrons – Structure	1	03-01-2024							
17.	Microwave tubes – O type and M type classifications	1	05-01-2024							
18.	Velocity Modulation Process and Applegate Diagram,	1	06-01-2024							
19.	Reflex Klystrons – Structure, Applegate Diagram and Principle of working,	1	09-01-2024							

20.	Power Output, Efficiency, output Characteristics	1	10-01-2024		
21.	Tutorial/Assignment	1	12-01-2024		

	UNIT – III[9 HRS]								
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
22.	Helix TWT: Types and Characteristics of Slow Wave Structures;	1	17-01-2024						
23.	Structure of TWT	1	19-01-2024						
24.	Amplification Process in TWT	1	20-01-2024						
25.	M-Type Tubes: Cross-field effects	1	23-01-2024						
26.	Magnetrons – Different Types	1	24-01-2024						
27.	8-Cavity Cylindrical Travelling Wave Magnetron	1	27-01-2024						
28.	Hull Cut-off and Hartee Conditions	1	06-02-2024						
29.	PI-Mode Operation in Magnetrons	1	07-02-2024						
30.	Strapping in Magnetrons	1	09-02-2024						
31.	Tutorial,/Assignment	1	10-02-2024						

	UNIT – IV[8 HRS]							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
32.	Microwave Solid State Devices: Negative resistance region	1	13-02-2024					
33.	Classification, Applications	1	14-02-2024					
34.	Transferred Electron Devices: Gunn Diode Principle,	1	16-02-2024					
35.	Two Valley Model Theory	1	17-02-2024					
36.	RWH Theory, Characteristics.	1	20-02-2024					
37.	Avalanche Transit Time Devices: IMPATT diode Principle of Operation and Characteristics,	1	21-02-2024					
38.	TRAPATT Diodes Principle of Operation and Characteristics,	1	23-02-2024					
39.	IMPATT, TRAPATT Diodes expressions	1	24-02-2024					
40.	Tutorial,/Assignment	1	27-02-2024					

	UNIT – V [8 HRS]						
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
41.	Waveguide Components: Scattering matrix	1	28-02-2024				
42.	Formulation and Properties. S Matrix	1	01-03-2024				
43.	Calculations for E plane and H plane Tees	1	02-03-2024				
44.	Calculations for Magic Tee, Directional Coupler	1	05-03-2024				
45.	Fundamentals of branch line, rat-race couplers	1	06-03-2024				
46.	microwave filters. Ferrites– Composition and Characteristics,	1	09-03-2024				
47.	Faraday Rotation; Ferrite Components – Gyrator	1	12-03-2024				
48.	Isolator, Circulator. Microwave attenuators.	1	13-03-2024				
49.	Isolator, Circulator. Microwave attenuators.	1	15-03-2024				

50.	Microwave Measurements: Description of Microwave Bench setup ,precautions	16-03-2024	
51.	Measurement of Attenuation	19-03-2024	
52.	Measurement of Frequency, VSWR.	20-03-2024	
53.	Measurement of Impedance, Power.	22-03-2024	
54.	Tutorial,/Assignment	23-03-2024	
55.	Revision	26-03-2024	

	BEYOND THE SYLLABUS & REVISION							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
56.	Microwave devices in RADAR communication	1	27-03-2024					
57.	RF Microwave Passive Devices	1	29-03-2024					
58.	Microwave devices in satellite communication	1	30-03-2024					

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

<u> PART – C</u>

Academic Calendar: 2022 – 23 (VI Semester) B.Tech VI Semester - 2020 Admitted Batch

B.Tech VI Semester - 2020 Admitted Ba	ıtch						
Class work Commence From		21-02-2022					
Description	From	То	Weeks				
I Phase of Instructions	26-12-2022	18-02-2023	8 Weeks				
I Mid Examinations	20-02-2023	25-02-2023	1 Week				
II Phase Instructions	27-02-2023	22-04-2023	8 Weeks				
II Mid Examinations	24-04-2023	29-04-2023	1 Week				
Preparation & Practicals	01-05-2023	06-05-2023	1 Week				
Semester End Examinations	08-05-2023	20-05-2023	2 Weeks				
Internship	22-05-2023	01-07-2023	6 Weeks				

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) 80% of Max((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1), (M2+Q2+A2))	30
Semester End Examination (SEE) (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

<u>PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering
107.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 10	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits
	or systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor

Course Coordinator

Module Coordinator

Dr. Y.V.N.R. SWAMY

DEPARTMENT OF ELECTRONICS& COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor	: V.V.Rama Krishna		
Course Name & Code	: Satellite Communications & 20EC19		
L-T-P Structure	: 3-0-0	Credit	ts: 3
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Section- A	A.Y	: 2023-24

PRE-REQUISITE: Analog Communications & Digital Communications.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the technical knowledge of orbital dynamics, launching of satellite in to the orbit, various subsystems used in space segment, uplink and downlink aspects of satellite. This course will also give an idea about different multiple access techniques, design requirements for the selection of earth station and various real time applications.

COURSE OUTCOMES (CO): At the end of the course, students will be able to

CO1:	Understand the orbital mechanics, concepts of satellite communication and its applications (Understand $-L2$)
CO2:	Summarize the concepts of satellite space segment, earth segment and satellite services (Understand $-L2$)
CO3:	Examine the satellite link budget calculations and orbital dynamics (Apply – L3)
CO4:	Apply the multiple-access techniques and mobile services for satellite Communications $(Apply - L3)$

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	-	-	-	-	3	3	-	-	-	-	1	1	-	-
CO2	1	1	1	-	-	3	1	-	-	-	-	1	2	-	-
CO3	1	-	1	2	-	-	-	-	-	-	-	-	2	-	-
CO4	1	1	1	-	-	3	1	-	-	-	-	-	2	-	-

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Timothy Pratt, Charles Bostian, Jeremy Allnutt , "Satellite communications", John Wiley & Sons,2nd edition, 2003.
- T2 Dennis Roddy , "Satellite communications", Tata McGraw Hills, 4th Edition, 2009.

REFERENCE BOOKS:

- **R1** D.C Agarwal , "Satellite communications", Khanna Publications, 5th Edition, 2006.
- **R2** M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2nd Edition, 2005.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I : Introduction to Satellite Communication

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course. Course Outcomes	1	05-12-23		TLM1	
2.	Need of satellite communication	1	06-12-23		TLM1	
3.	Definition of a satellite and orbit	1	08-12-23		TLM1	
4.	Frequency allocations for satellite services	1	09-12-23		TLM1	
5.	General structure of satellite communication system	1	12-12-23		TLM1	
6.	Merits and demerits of satellite communication	1	13-12-23		TLM1	
7.	Types of launch vehicles: ELV &RLV	1	15-12-23		TLM1	
8.	Types of launch vehicles: ELV &RLV	1	16-12-23		TLM1	
9.	Problems	1	19-12-23		TLM1	
No. of	classes required to complete UN	IT-I: 9		No. of classes	taken:	

UNIT-II : Orbital Dynamics and Satellite Launching:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
10.	Introduction	1	20-12-23		TLM1	
11.	Kepler's Laws	1	22-12-23		TLM1	
12.	Definitions of Terms for EarthOrbiting Satellites	1	23-12-23		TLM1	
13.	Orbital Elements, Apogee and Perigee Heights	1	26-12-23		TLM1	
14.	Effects of non spherical earth, Atmospheric drag	1	27-12-23		TLM1	
15.	Orbital perturbations-need for station keeping	1	29-12-23		TLM3	
16.	Non geostationary orbits and geostationary orbits	1	30-12-23		TLM1	
17.	Orbital effects; Doppler shift, Range variation	1	02-01-24		TLM1	
18.	solar eclipse and sun transit outage	1	03-01-24		TLM1	
19.	Look angle determination: elevation angle and azimuth angle calculation,	1	05-01-24		TLM1	
20.	launching of geostationary satellites.	1	06-01-24		TLM1	
21.	Problems	1	09-01-24		TLM1	

UNIT-III : Space Segment and Link Design:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22.	Introduction to space segment	1	10-01-24		TLM1	
23.	Power supply, Attitude and orbital control: spinning satellite stabilization and momentum wheel stabilization	1	12-01-24		TLM1	
24.	Station keeping, Thermal control	1	17-01-24		TLM1	
25.	TT&C subsystem, Transponders,	1	19-01-24		TLM1	
26.	The wideband receiver, The input demultiplexer	1	20-01-24		TLM1	
27.	The power amplifier, Antenna subsystem	1	23-01-24		TLM1	
28.	Equivalent Isotropic Radiated Power, Free-space transmission, Feeder losses	1	24-01-24		TLM1	-
29.	Antenna misalignment losses, Fixed atmospheric and ionospheric losses	1	06-02-24		TLM1	
30.	Link power budget equation, System Noise	1	07-02-24		TLM1	
31.	Carrier-to-Noise Ratio, The Uplink	1	09-02-24		TLM1	
32.	Saturation flux density, Input backoff	1	10-02-24		TLM1	
33.	Downlink, Output back-off	1	13-02-24		TLM1	
34.	Combined Uplink and Downlink C/N Ratio	1	14-02-24		TLM1	
No. of UNIT	classes required to complete	13	No. of classes taken:			

UNIT-IV: Earth Segment and Satellite Access

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Introduction	1	16-02-24		TLM1	
36.	Design requirements for the selection of earth segment	1	17-02-24		TLM1	
37.	Transmit only earth station	1	20-02-24		TLM1	

38.	Receive only earth station	1	21-02-24	TLM1	
39.	Transmit -Receive (T/R) earth station.	1	23-02-24	TLM1	
40.	Single Access, Preassigned FDMA	1	24-02-24	TLM1	
41.	Demand-Assigned FDMA	1	27-02-24	TLM1	
42.	Spade System, TDMA	1	28-02-24	TLM1	
43.	Preassigned TDMA	1	01-03-24	TLM1	
44.	Demand-assigned TDMA,	1	02-03-24	TLM1	
45.	Satellite-Switched TDMA, CDMA.	1	05-03-24	TLM1	
No. of UNIT-	classes required to complete IV	11		No. of classes taken:	

UNIT-V Satellite Services & Applications

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
46.	Introduction	1	06-03-24		TLM1	
47.	Global Positioning System	1	08-03-24		TLM1	
48.	architecture and location principle	1	09-03-24		TLM1	
49.	Direct Broadcast Satellite (DBS/DTH)-Home receiver block (Indoor & Outdoor Unit)	1	13-03-24		TLM1	
50.	Satellite Mobile Services	1	15-03-24		TLM1	
51.	VSAT	1	16-03-24		TLM1	
52.	MSAT	1	19-03-24		TLM1	
53.	RADARSAT	1	20-03-24		TLM1	
54.	IRNSS constellation	1	22-03-24		TLM1	
55.	Orbcomm, Iridium	1	23-03-24		TLM1	
No. o UNIT-	of classes required to complete V:	10		No. of classes taken		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
56.	Free space optics	1	27-03-24		TLM1	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	04-12-2023	27-01-2024	8
I Mid Examinations	29-01-2024	03-02-2024	1
II Phase of Instructions	05-02-2024	30-03-2024	8
II Mid Examinations	01-04-2024	06-04-2024	1
Preparation and Practical's	08-04-2024	13-04-2024	1
Semester End Examinations	15-04-2024	27-04-2024	2

PART-C

EVALUATION PROCESS:

Evaluation Task	Mark
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) =	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30
20% of Min((M1+Q1+A1), (M2+Q2+A2))	
Semester End Examination (SEE)(Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering										
	undamentals, and an engineering specialization to the solution of complex engineering roblems.										
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex										
102	engineering problems reaching substantiated conclusions using first principles of mathematics,										
	natural sciences, and engineering sciences.										
PO 3	Design/development of solutions: Design solutions for complex engineering problems and										
	design system components or processes that meet the specified needs with appropriate										
	consideration for the public health and safety, and the cultural, societal, and environmental										
PO 4	considerations.										
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of										
	methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.										
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern										
100	engineering and IT tools including prediction and modelling to complex engineering activities										
	with an understanding of the limitations										
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess										
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to										
	the professional engineering practice										
PO 7	Environment and sustainability: Understand the impact of the professional engineering										
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need										
DO 0	for sustainable development.										
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and										
PO 9	norms of the engineering practice. Individual and team work : Function effectively as an individual, and as a member or leader in										
109	diverse teams, and in multidisciplinary settings.										
PO 10	Communication : Communicate effectively on complex engineering activities with the										
	engineering community and with society at large, such as, being able to comprehend and write										
	effective reports and design documentation, make effective presentations, and give and receive										
	clear instructions.										
PO 11	Project management and finance: Demonstrate knowledge and understanding of the										
	engineering and management principles and apply these to one's own work, as a member and										
DO 12	leader in a team, to manage projects and in multidisciplinary environments.										
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change										
	independent and life-long learning in the broadest context of technological change.										

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the							
	inter disciplinary skills to meet current and future needs of industry.							
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or							
	systems and Implement real time applications in the field of VLSI and Embedded Systems							
	using relevant tools							

PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
V.V.Rama Krishna	Dr.P.Venkata Rao	Dr.M.V.Sudhakar	Dr.Y.Amar Babu

LAKIREDDY BALIREDDYCOLLEGE OFENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier-I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. And Affiliated to JNTUK, Kakinada L.B.REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr.V.Sankararao, Sr. Assistant Professor	
Course Name & Code	: Operations Research Techniques - 20ME83	Regulation: R20
L-T-P Structure	: 4-0-0	Credits: 03
Program/Sem/Sec	: B.Tech- ECE VI Sem A/S	A.Y.: 2023-24
PREREQUISITE	: Nil	

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this course is to introduce the concepts of formulating an engineering problem into mathematical model to develop an optimal solution.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Apply linear programming approach for optimizing the objectives of industrial oriented problems. (Applying-L3)								
CO2	Formulate and solve transportation models and assignment models. (Applying-L3)								
CO3	Implement the strategies in competitive situations and able to sequence the jobs to be processed on machines. (Applying-L3)								
CO4	Identify the replacement period of the equipment and analyze the waiting situations in an organization. (Applying-L3)								
	Determine the optimum inventory level and resolve the complex problem into simple problems by dynamic programming approach and apply optimum strategies. (Applying-L3)								

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3				3			3		3	
CO2	3	3	1	2	1				3			3		3	
CO3	3	3	3	2	1				3			3		3	
CO4	3	2	3	2	3				1			3		3	
CO5	2	3	3	2	1				1			3		3	

TEXT BOOKS:

T1	S.D Sharma, —Operation Researchl, Kedar Nath and RamNath - Meerut, 2008.
T2	Operations Research / N.V.S. Raju / SMS, 2009.

REFERENCE BOOKS:

R1	Singiresu S Rao, Engineering Optimization: Theory and Practice, A Wiley- Interscience Publication, 4th edition, 2009.
	Hiller & Libermann, Introduction to O.R (TMH), 9 th EDITION, 2009.
	Kantiswarup. P.K.Gupta, Man Mohan, Operations Research, Sultan Chand & Sons, Educational Publications, New Delhi, 14th Edition, 2008.
R4	A.M.Natarajan, P.Balasubramani, A. Tamilarasi, Operations Research, Pearson Education, 2 nd edition, 2014.
R5	Taha, Introduction to O.R .PHI, 9 th edition, 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: INTRODUCTION & LINEAR PROGRAMMING PROBLEM

S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	INTRODUCTION: Introduction To ORT & CEO, COs	1	05.12.2023		TLM1/TLM2	
2.	Operations Research Models, Phases & Applications	1	06.12.2023		TLM1/TLM2	
3.	Linear Programming Problem (LPP): Formulation	1	07.12.2023		TLM1	
4.	Numericals	1	08.12.2023		TLM1	
5.	Graphical Solution For Special Cases Of LPP	1	12.12.2023		TLM1	
6.	Simplex Method	1	13.12.2023		TLM1	
7.	Numericals	1	14.12.2023		TLM1	
8.	Numericals	1	15.12.2023		TLM1	
9.	Big M Method	1	19.12.2023		TLM1	
10.	Numericals	1	20.12.2023		TLM1	
11.	Two Phase Simplex Method	1	21.12.2023		TLM1	
12.	Numericals	1	22.12.2023		TLM1	
13.	Big M method	1	26.12.2023		TLM1	
14.	Numericals	1	27.12.2023		TLM1	
	of classes required to complete [T-I:	14		No. of class	es taken:	

UNIT-II: TRANSPORTATION & ASSIGNMENT PROBLEMS

S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1 1 7	Introduction To TP, Terminology, Formulation	1	28.12.2023		TLM1/TLM2	
16.	Standard Form, Unbalanced TP	1	29.12.2023		TLM1	
17.	Numericals	1	02.01.2024		TLM1	
18.	IBFS: NWCM, LCM, VAM	1	03.01.2024		TLM1	
19.	Numericals	1	04.01.2024		TLM1	
20.	Test For Optimality: Stepping Stone Method, Modified Distribution Method (MODI Method)		05.01.2024		TLM1	

21. Numericals	1	09.01.2024	TLM1	
22. Degeneracy in TP, Numericals	1	10.01.2024	TLM1	
23. Introduction to Assignment Problem	1	11.01.2024	TLM1	
24. Variants of Assignment Problems	1	12.01.2024	TLM1	
25. Optimal Solution, Numericals	1	16.01.2024	TLM1	
26. Travelling Salesmen Problem	1	17.01.2024	TLM1	
27. Numericals	1	18.01.2024	TLM1	
No. of classes required to complete UNIT-II	13		No. of classes taken:	

UNIT-III: GAME THEORY AND JOB SEQUENCING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Introduction to Games Theory: Terminology	1	19.01.2024		TLM1/TLM2	
1 /9	Minimax or Maxmini Criterion,Optimal Strategy	1	23.01.2024		TLM1	
30.	Solution of games with saddle point	1	24.01.2024		TLM1	
	Rectangular games without saddle point, Numericals	1	25.01.2024		TLM1	
32.	2x2 games	1	06.02.2024		TLM1	
	mx2, 2xn, mxn games, Dominance Principle,	1	07.02.2024		TLM1	
	Graphical approach, Numericals	1	08.02.2024		TLM1	
	Job Sequencing: n jobs through 2 nachines,	1	09.02.2024		TLM1	
36.	n jobs through 3 machines,	1	13.02.2024		TLM1	
37.	2 jobs through m machines	1	14.02.2024		TLM1	
38.	Numericals	1	15.02.2024		TLM1	
39.	Graphical model	1	16.02.2024		TLM1	
	of classes required to complete T-III	12		No. of classes	taken:	

UNIT-IV: THEORY OF REPLACEMENT AND WAITING LINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	THEORY OF REPLACEMENT: Introduction, Replacement of Equipment that Deteriorates Gradually	1	20.02.2024		TLM1/TLM2	
41.	Numericals	1	21.02.2024		TLM1	
42.	Replacement of Equipment that fails suddenly, Numericals	1	22.02.2024		TLM1	
43.	Numericals	1	23.02.2024		TLM1	
44.	Group Replacement Policy	1	27.02.2024		TLM1/TLM2	
45.	Numericals	1	28.02.2024		TLM1	
46.	Introduction to Queuing Theory	1	29.02.2024		TLM1/TLM2	
47.	Single Channel – Poisson arrivals –	1	01.03.2024		TLM1	

	UNIT-IV					
No. of classes required to complete		12		No. of classes	taken:	
51.	Numericals	1	08.03.2024		TLM1	
50.	Numericals	1	07.03.2024		TLM1	
49.	Single Channel – Poisson arrivals – exponential service times – with finite population, Numericals	1	06.03.2024		TLM1/TLM2	
48.	Numericals	1	05.03.2024		TLM1	
	exponential service times – with infinite population, Derivation					

UNIT-V: INVENTORY MODELS AND DYNAMIC PROGRAMMING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
172	INVENTORY MODELS- terminology, EOQ	1	12.03.2024		TLM1/TLM2	
53.	Instantaneous Production, finite, continuous demand	1	13.03.2024		TLM1/TLM2	
54.	Shortages not Allowed	1	14.03.2024		TLM1	
55.	Purchase inventory models with one price break	1	15.03.2024		TLM1	
56.	Purchase inventory models with multiple price breaks	1	19.03.2024		TLM1	
57.	Numericals	1	20.03.2024		TLM1	
78	DYNAMIC PROGRAMMING (DP): Introduction To DP	1	21.03.2024		TLM1/TLM2	
59.	Bellman's Principle of Optimality, Applications of Dynamic Programming	1	22.03.2024		TLM1/TLM2	
60.	Capital Budgeting Problem, Numericals	1	26.03.2024		TLM1	
61.	linear programming problem	1	27.03.2024		TLM1	
62.	Shortest path problems	1	28.03.2024		TLM1	
63.	Numericals	1	29.03.2024		TLM1	
No. c UNI	f classes required to complete Г- V	12		No. of classes	taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration(Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/ MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Academic Calendar

•

Description	From	То	Weeks
I Phase of Instructions	04-12-2023	27-01-2024	8
I MID Examinations	29-01-2024	03-02-2024	1
II Phase of Instructions	05-02-2024	30-03-2024	8
II MID Examinations	01-04-2024	06-04-2024	1
Preparation and Practicals	08-04-2024	13-04-2024	1
Semester End Examinations	15-04-2024	27-04-2024	2

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II-Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1),(M2+Q2+A2))+20% of Min((M1+Q1+A1),(M2+Q2+A2))	<u>M=30</u>
Cumulative Internal Examination (CIE):M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE+SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	To Attain a solid foundation in Electronics & Communication Engineering fundamentals with
PEO 1	an attitude to pursue continuing education.
	To Function professionally in the rapidly changing world with advances in technology.
PEO 3	To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices.
I LO J	Communication Engineering principles, tools and practices.
PEO 4	
FEO 4	To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner.

PROGRAMME OUTCOMES (POs):

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

DCO 1	Design and develop modern communication technologies for building the interdisciplinary skills to meet current and future needs of industry.
PS0 1	skills to meet current and future needs of industry.
	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real
PSO 2	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools.
	Apply the Signal processing techniques to synthesize and realize the issues related to real
PSO 3	Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr.V.Sankararao	Mr.V.Sankararao	Dr.M.B.S.Sreekara Reddy	Dr.M.B.S.Sreekara Reddy
Signature				

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PARI-A
: Microprocessors and Microcontrollers Lab – 20EC59
: 0-0-3
: 1.5
: B. Tech. VI Semester ECE-A Section
: 2023 – 24
: Dr. B.V.N.R. Siva Kumar

COURSEOBJECTIVE:

In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: At the end of the course, student will be able to:

CO1	Demonstrate the MASM/TASM tool for developing Assembly Language Programs.
CO2	Apply the Assembly Language instructions of Processor and Controller for logical operations.
CO3	Develop the ARM based interfacing systems for Real time applications.
CO4	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	2	-	1	1	-	-	-	2	-	2	-
CO2	3	3	3	2	2	-	1	1	-	-	-	3	-	3	-
CO3	3	3	3	3	3	-	1	1	-	-	-	3	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels: 1 or 2 or 3.

If there is no correlation: **put'-'**

1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High).

PART-B LAB SCHEDULE (LESSONPLAN): Section-A

LIST OF EXPERIMENTS (Minimum 12 Experiments to be conducted)

S. No.	Experiments to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
		CYCLE-	1			
1.	Introduction to Lab	3	08-12-2023		TLM2	
2.	Display, comparison and reverse the	3	15-12-2023		TLM8	
	string					
3.	Factorial using Procedures	3	22-12-2023		TLM8	
4.	Sorting the signed and unsigned numbers	3	29-12-2023		TLM8	
5.	Checking the given string for Palindrome	3	05-01-2024		TLM8	
6.	Arithmetic operations like Addition,	3	12-01-2024			
	Subtraction, Multiplication and Division				TLM8	
7.	Byte checking by using 8051, Addition of series of numbers	3	19-01-2024		TLM8	
8.	Checking the given numbers for Odd or	3	02-02-2024		TLM8	
	Even					
		CYCLE-2	2]		
9.	Interfacing of A/D and D/A converter	3	09-02-2024		TLM8	
10.	Interfacing of LEDs and Switches, Interfacing of LCD	3	16-02-2024		TLM8	
11.	Interfacing of Stepper Motor	3	23-02-2024		TLM8	
12.	Interfacing of traffic Light controller	3	01-03-2024		TLM8	
13.	Interfacing of Real Time Clock	3	15-03-2024		TLM8	
14.	Data loggers –Roll over display	3	22-03-2024		TLM8	
15.	Internal Lab Exam	3	29-03-2024		TLM8	
No. of	classes required to complete:	45	No. of classes co	onducted:	1	<u> </u>

PART-C

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD				
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo				
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study				

Academic Calendar: 2023 – 24 (VI Semester)

B. Tech VI Semester - 2021 Admitted Batch						
Class work Commence From	04-12-2023					
Description	From	То	Weeks			
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks			
I Mid Examinations	29-01-2024	03-02-2024	1 Week			
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks			
II Mid Examinations	01-04-2024	06-04-2024	1 Week			
Preparation & Practical's	08-04-2024	13-04-2024	1 Week			
Semester End Examinations	15-04-2024	24-04-2024	2 Weeks			
Internship	29-04-2024	22-06-2024	8 Weeks			

EVALUATIONPROCESS:

Evaluation Task	COs	Marks
Day to Day work	1,2,3,4	A=10
Internal Lab Examination	1,2,3,4	B=5
Total Internal Marks (A+B)		C=15
Semester End Examinations	1,2,3,4	D=35
Total Marks : C+D	1,2,3,4	50

<u> PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering for demonstrate and an engineering engineering to the solution of complex engineering.
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
DO 4	considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
PO 7:	the professional engineering practice
PO /:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
- ••	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

KUMAR]

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course InstructorCourse CoordinatorModule CoordinatorHOD[Dr. B V N R SIVA[Mr. K.SASI BHUSHAN][Dr. P. LACHI REDDY][Dr. Y. AMAR BABU]

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT & MECH) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.M.Ramya Harika	
Course Name & Code	: VLSI DESIGN LAB- 20EC60	
L-T-P Structure	: 0-0-3	Credits: 1.5
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Section- A	A.Y : 2023-24

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The course explores the design and implementation aspects of various combinational and sequential circuits used in VLSI Design. It also develops the knowledge in VLSI Front End and Back End Design in semicustom and full-custom design.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Implement combinational and sequential circuits on FPGA/CPLD boards. (Apply – L3)
CO2	Design the Combinational and Sequential logic using NMOS and CMOS Technology. (Apply – L3)
CO3	Analyze combinational and sequential circuits using Static CMOS logic from schematic to layout. (Analyze –L4)
CO4	Adapt effective communication, presentation and report writing skills. (Apply – L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO2	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO3	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3		1	-	-	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

<u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN):

Batch-1							
Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	07.12.2023			
		Сус	le – I				
1	Experiment – 1	CO1	3	14.12.2023			
2	Experiment – 2	CO1	3	21.12.2023			
3	Experiment – 3	CO1	3	28.12.2023			
4	Experiment – 4	CO2,CO3	3	04.01.2024			
5	Experiment – 5	CO2,CO3	3	11.01.2024			
6	Experiment – 6	CO2,CO3	3	18.01.2024			
		Cycl	le – II		·	·	
7	Experiment – 7	CO2,CO3	3	25.01.2024			
8	Experiment – 8	CO2,CO3	3	08.02.2024			
9	Experiment – 9	CO2,CO3	3	15.02.2024			
10	Experiment – 10	CO2,CO3	3	22.02.2024			
11	Experiment – 11	CO2,CO3	3	29.02.2024			
12	Experiment beyond syllabus	CO2,CO3	3	07.03.2024			
13	Revision	CO2,CO3	3	21.03.2024			
14	Internal Examination		3	20.04.2024			

Batch-2

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	04.12.2023	•		
		С	ycle – I	1	1	1	
1	Experiment – 1	CO1	3	11.12.2023			
2	Experiment – 2	CO1	3	18.12.2023			
3	Experiment – 3	CO1	3	08.01.2024			
4	Experiment – 4	CO2,CO3	3	15.01.2024			
5	Experiment – 5	CO2,CO3	3	22.02.2024			
		C	ycle – II				
7	Experiment – 6	CO2,CO3	3	05.02.2024			
8	Experiment – 7	CO2,CO3	3	12.02.2024			
9	Experiment – 8	CO2,CO3	3	19.02.2024			
10	Experiment – 9	CO2,CO3	3	26.02.2024			
11	Experiment – 10	CO2,CO3	3	04.03.2024			
12	Experiment beyond syllabus	CO2,CO3	3	11.03.2024			
	Internal Examination		3	18.03.2024			

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Implementation of Carry-Look-Ahead adder.	7	Design and analysis of CMOS NAND gate
2	Implementation of 4x4 Array Multiplier.	8	Design and analysis of Full Adder
3	Implementation of a 4-bit ALU.	9	Design and analysis of Decoder
4	Design and analysis of NMOS Inverter.	10	Design and analysis of 8- bit Binary Counter.
5	Design and analysis of CMOS Inverter	11	Design and analysis of Shift Register
6	Design and analysis of CMOS NOR gate		

Teaching Learning Methods			
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

Part - C

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work $= \mathbf{A}$	1,2,3,4,5,6,7,8	A = 05
Record = B	1,2,3,4,5,6,7,8	B = 05
Internal Test $= \mathbf{C}$	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
DO 4	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
DO 5	information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
PO 6:	with an understanding of the limitations The engineer and society : Apply reasoning informed by the contextual knowledge to assess
PU 0:	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
	professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering
107.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
	sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms
2000	of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mrs.M.Ramya Harika	Mrs.M.Ramya Harika	Dr. P Lachi Reddy	Dr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT & MECH) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

Part-A

PROGRAM	: B.Tech., VI-Sem., ECE-A
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE L-T-P STRUCTURE	: Microwave Engineering Lab- 20EC61 : 0-0-3
COURSE CREDITS	: 1.5
COURSE INSTRUCTOR	: Dr.K.Rani Rudrama / Dr. V.Ravi Sekhar Reddy
	Mr. P. James Vijay

COURSE COORDINATOR : Dr. K. Rani Rudrama

COURSE OBJECTIVES: This Lab deals with the measurements of the EM signals at microwave frequency range. It involves measurement of frequency, wavelength, VSWR, Impedance and scattering parameters of various microwave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of software tool i.e. HFSS is also introduced and microwave devices will be verified by evaluating the related parameters.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

- CO1 : Demonstrate the functions of microwave bench setup (**Understand L2**)
- CO2 : Examine the properties of microwave passive devices using HFSS (Apply L3)
- CO3 : Estimate the frequency, wavelength, VSWR, impedance and scattering parameters of microwave devices (Apply L3)
- CO4 : Adapt effective communication, presentation and report writing skills(Apply L3)

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COs	PO1	P02	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	1	1	1	1	3	-	-	-	-	-	-	1	3	-	-
CO3	2	2	-	3	2	-	-	-	-	-	-	-	3	-	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part-B

Batch-1

S. No.	Experiments	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Learning Outcome COs	Teaching Learning Methods	HOD Sign Weekly
1	Demonstration	3	04-12-2023		-	TLM1	
2	Experiment-1	3	11-12-2023		COs 1,3,4	TLM4	
3	Experiment-2	3	18-12-2023		COs 1,3,4	TLM4	
4	Experiment -3	3	01-01-2024		COs1,3,4	TLM4	
5	Experiment-4	3	08-01-2024		COs 1,3,4	TLM4	
6	Experiment-9	3	15-01-2024		COs 2,4	TLM4	
7	Experiment-10	3	22-01-2024		COs2,4	TLM4	
8	Experiment-5	3	05-02-2024		COs1,3,4	TLM4	
9	Experiment-6	3	12-02-2024		COs 1,3,4	TLM4	
10	Experiment-7	3	19-02-2024		COs 1,3,,4	TLM4	
11	Experiment-8	3	26-02-2024		COs 1,3,4	TLM4	
12	Experiment-11	3	04-03-2024		COs 2,4	TLM4	
13	Experiment-12	3	11-03-2024		COs 2,4	TLM4	
14	Revision	3	18-03-2024		COs 2,4	TLM4	
15	Internal exam	3	25-03-2024				

Batch-2

		No. of	Tentative	Actual	Learning	Teaching	HOD
S. No.	Experiments	Classes	Date of	Date of	Outcome	Learning	Sign
		Required	Completion	Completion	COs	Methods	Weekly
1.	Demonstration	3	07-12-2023		COs 1,4	TLM1	
2.	Experiment-1	3	14-12-2023		COs 1,4	TLM4	
3.	Experiment-2	3	21-12-2023		COs 1,4	TLM4	
4.	Experiment-3	3	28-12-2024		COs 3,4	TLM4	
5.	Experiment-4	3	04-01-2024		COs2,4	TLM4	
6.	Experiment-9	3	11-01-2024		COs 2,4	TLM4	
7.	Experiment-10	3	18-01-2024		COs 2,4	TLM4	
8.	Experiment-5	3	25-01-2024		COs 1,3,4	TLM4	
9.	Experiment-6	3	08-02-2024		COs 1,3,4	TLM4	
10.	Experiment-7	3	15-02-2024		COs 1,3,4	TLM4	
11.	Experiment-8	3	22-02-2024		COs 1,3,4	TLM4	
12.	Experiment-11	3	29-02-2024		COs 2,4	TLM4	
13.	Experiment-12	3	07-03-2024		COs 2,4	TLM4	
14.	Revision	3	14-03-2024				
15.	Revision	3	21-03-2024				
16.	Internal exam	3	28-03-2024				

List of Experiments:

Exp. No	Experiments to be conducted	Exp. No	Experiments to be conducted
	CYCLE-1		CYCLE-2
1.	Reflex Klystron Characteristics.	5.	Directional coupler characteristics
2.	Gunn diode Characteristics	6.	Impedance and frequency measurement
3.	Attenuation measurement	7.	Scattering parameters of circulator
4.	VSWR measurement	8.	Scattering parameters of Magic tee
9.	Scattering parameters of branch line coupler	11.	Design and S-parameter measurement of microwave band stop filter
10	Scattering parameters of rat-race coupler	12.	Design and S-parameter measurement of microwave Balun

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

Part - C

EVALUATION PROCESS:

Evaluation Task	Cos	Marks
Day to Day Work	1,2,3,4	A=10
Record	1,2,3,4	B=10
Viva Voce	1,2,3,4	C=5
Internal Exam	1,2,3,4	D=10
Attendance	-	E=5
Cumulative Internal Examination :	1,2,3,4	A+B+C+D+E=40
Semester End Examinations	1,2,3,4	F=60
Total Marks: A+B+C+D+E+F	1,2,3,4	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education.

PEO2: To Function professionally in the rapidly changing world with
PEO3: To Contribute to the needs of the society in solving technical problems using
Communication Engineering principles, toolsadvances in technology
Electronics &
and practices.
addresses issues in a
responsive, ethical, and innovative manner?

PROGRAMME OUTCOMES (POs)

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8: Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.

PSO2: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools

PSO3: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Mrs. K.RaniRudrama	Mrs.K.RaniRudrama	Dr.B.Y.V.N.R.Swamy	Dr.Y.Amar Babu
Course Instructor	Course Coordinator	Module Coordinator	HOD

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor	: N Dharmachari	
Course Name & Code L-T-P Structure	: VLSI Design Automation – 20ECH3 : 3-1-0	Credits: 4
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Honors	A.Y : 2023-24

PRE-REQUISITE: VLSI Design

COURSE EDUCATIONAL OBJECTIVES (CEOs):

In this course student will learn about the design cycles, various techniques on Partitioning, Placement and Routing and addressing their problems

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand need for VLSI physical design automation. (Understand – L2)
CO 2	Analyze VLSI automation algorithms for partitioning (Apply – L3)
CO 3	Formulate placement, floor planning and pin assignment problems and simulate. (Apply – L3)
CO 4	Resolve routing issues using various algorithms (Analyze – L4)
CO 5	Illustrate physical design cycle for FPGAs (Analyze – L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-		-	-	1	-	2	-
CO2	1	2	2	1	2	-	-	-	-	-	-	1	-	2	-
CO3	1	2	3	1	2	-	-	-	-	-	-	2	-	3	-
CO4	1	2	3	2	3	-	-	-	-	-	-	2	-	3	-
CO5	3	2	3	2	3	-	-	-	-	-	-	2	-	3	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

TEXT BOOK:

1. Naveed Shervani, "Algorithms for VLSI Physical Design Automation", Springer Publisher, Third edition

REFERENCE BOOKS:

1. ChristophnMeinel& Thorsten Theobold, "Algorithm and Data Structures for VLSI Design", KAP, 2002.

2. Rolf Drechsheler :"Evolutionary Algorithm for VLSI", Second edition.

3. Trimburger, "Introduction to CAD for VLSI", Kluwer Academic publisher, 2002

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-A UNIT-I: VLSI Physical Design Automation

	11-1. VESI Physical Design Automation	No. of	Tentative	Actual	Teaching	HOD
S.No.	Topic/s	Classes	Date of	Date of	Learning	Sign
	-	Required	Completion	Completion	Methods	Weekly
1.	General Interaction & Introduction to the course	1	05-12-2023		-	
2.	Course Objective and Outcomes, POs, PSOs and Mapping with COs	1	07-12-2023		-	
3.	Introduction	1	12-12-2023		TLM1	
4.	VLSI Design cycle	1	14-12-2023		TLM2	
5.	New trends in VLSI design cycle	2	16-12-2023		TLM2	
6.	New trends in Physical design cycle	1	19-12-2023		TLM2	
7.	Design styles	1	21-12-2023		TLM2	
8.	Full custom Basic terminology	2	23-12-2023		TLM2	
9.	Complex issues	1	26-12-2023		TLM2	
10.	Basic algorithms	1	28-12-2023		TLM2	
11.	Basic data structures, and algorithms	2	30-12-2023		TLM2	
No. of classes required to complete UNIT- I		14	No. of classes taken			

UNIT-II: VLSI Automation Algorithms

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Partitioning: problem formulation	1	02-01-2024		TLM2	
2.	Classification of partitioning algorithms	1	04-01-2024		TLM2	
3.	Group migration algorithms	3	06-01-2024 09-01-2024		TLM2	
4.	Simulated annealing & evolution.	2	11-01-2024 16-01-2024		TLM2	
5.	Other partitioning algorithms	3	18-01-2024 20-01-2024		TLM2	
No. of UNIT	classes required to complete -II	10	No. of	en		

UNIT-III: Placement, Floor Planning & Pin Assignment

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Problem formulation	1	23-01-2024		TLM2	
2.	Simulation base placement algorithms	1	25-01-2024		TLM2	
3.	Other placement algorithms	2	27-01-2024		TLM2	
4.	Constraint based floor planning	2	06-02-2024 08-02-2024		TLM2	

5.	floor planning algorithms for mixed block & cell design	1	13-02-2024	TLM2	
6.	General & channel pin assignment	1	15-02-2024	TLM2	
No. of classes required to complete UNIT-III		08	No	. of classes taken	

UNIT-IV: Global Routing, Detailed Routing and Over The Cell Routing & Via Minimization

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Problem formulation	2	17-02-2024		TLM2	
2.	Classification of global routing algorithms	1	20-02-2024		TLM2	
3.	Problem formulation, Classification of Detailed routing algorithms	1	22-02-2024		TLM2	
4.	Maze routing algorithm, line probe algorithm	2	24-02-2024		TLM2	
5.	Steiner Tree based algorithms, ILP based approaches	1	27-02-2024		TLM2	
6.	Single layer routing algorithms	1	29-02-2024		TLM2	
7.	Two layer channel routing algorithms	2	02-03-2024		TLM2	
8.	Three layer channel routing algorithms, Switchbox routing algorithms	1	05-03-2024		TLM2	
9.	Two layers over the cell routers	1	07-03-2024		TLM2	
10.	Constrained & unconstrained via minimization	1	12-03-2024		TLM2	
No. of UNIT	classes required to complete -IV	13	No.	of classes take	en	

UNIT-V: Physical design Automation of FPGAs

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	14-03-2024		TLM2	
2.	FPGA Technologies	2	16-03-2024		TLM2	
3.	Physical design cycle for FPGAs, Partitioning	1	19-03-2024		TLM2	
4.	Routing	1	21-03-2024		TLM2	
5.	Routing algorithms for the non- segmented model	2	23-03-2024		TLM2	
6.	Routing algorithms for segmented model	1	26-03-2024		TLM2	
7.	routing algorithms for staggered model	1	28-03-2024		TLM2	
No. of UNIT	classes required to complete -V	09	No. of classes taken			

Contents beyond the Syllabus

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Semi-custom IC design flow	2	30-03-2024		TLM4	

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4 Demonstration (Lab/Field Visit)		
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS:

Evaluation Task	Mark	
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5	
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15	
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10	
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5	
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15	
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10	
Cumulative Internal Examination (CIE) =		
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30	
20% of Min((M1+Q1+A1), (M2+Q2+A2))		
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)		
Total Marks = $CIE + SEE$	100	

PART-D

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
	natural sciences, and engineering sciences.					
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and					
	design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental					
	considerations.					
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research					
	methods including design of experiments, analysis and interpretation of data, and synthesis of the					
	information to provide valid conclusions.					
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern					
	engineering and IT tools including prediction and modelling to complex engineering activities					
	with an understanding of the limitations					
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess					
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the					
	professional engineering practice					
PO 7:	Environment and sustainability: Understand the impact of the professional engineering					
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for					
	sustainable development.					
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms					
	of the engineering practice.					

PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Mr. N.Dharmachari Course Coordinator Mr. N.Dharmachari Module Coordinator Dr. P.Lachi Reddy HOD Dr. Y. Amar Babu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Name & Code	: Microprocessors and Microcontrollers – 20EC15
L-T-P Structure	: 4-0-0
Credits	: 3
Program	: B.Tech.,
A.Y	: 2023 – 24

Pre requisite:

Course Educational Objective: In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the architecture of 8086, 8051 and ARM Controller (Understand)
CO 2	Apply Assembly Language instructions for Processor and Controller based applications (Apply)
CO 3	Analyze the operating modes and interrupt structures of processors and controllers (Analyze)
CO 4	Develop the ARM based interfacing systems for Real time applications (Apply)

CO's /		Course Name with code : MPMC,20EC15													
PO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-	1	-	3	-
CO2	3	2	1	1	-	-	-	-	-	-	-	1	-	3	-
CO3	2	3	2	1	-	-	-	-	-	-	-	2	-	3	-
CO4	1	2	3	2	-	-	-	-	-	-	-	2	-	3	-

Prescribed Syllabus:

UNIT-I: 8086 MICROPROCESSOR [9 HRS]

Architecture, Pin diagram, Register organization, Minimum mode and Maximum mode, timing diagrams. Addressing modes, Instruction set, Interrupt vector table, Assembly language programming - data transfer, arithmetic, logical and decision making operations.

UNIT- II: 8051 MICROCONTROLLER [8 HRS]

Architecture, Input/output Ports, Registers, Counter and Timers, Serial port, Interrupts, addressing modes, instruction set and Programming - data transfer, arithmetic, logical and decision making operations.

UNIT - III: ARM ARCHITECTURE & PROGRAMMING MODEL [9 HRS]

History, Architecture, ARM design philosophy, Registers, Program status register, Instruction pipeline, Interrupts and vector table, ARM processor families, Instruction set: Data processing instructions, Addressing modes, Branch, Load-Store instructions, PSR instructions, and Conditional instructions.

UNIT - IV: ARM PROGRAMMING [8 HRS]

Assembly programming, General structure of assembly language, Writing programs, Branch instructions, Loading constrains, load and store instructions, Read only and read/write Memory, Multiple Register Load and Store.

UNIT - V: INTERFACING ARM WITH EXTERNAL PERIPHERALS [8 HRS]

Interfacing - A/D and D/A converter, LEDs, Switches, Relays, LCD, Stepper Motors, Real Time Clock, Serial Communication, GSM and GPS.

Text Books:

1. Ray and Burchandi, "Advanced Microprocessors and Interfacing", Tata McGraw-Hill.

2. M.A.Mazidi,S.Naimi and S.Naimi, "The AVR Microcontroller and Embedded Systems Using Assembly and C", 1st Edition Pearson Publications, 2013.

Reference Books:

1. N.Sentil Kumar, M.Saravanan, S.Jeevananthan, "Microprocessors and Microcontrollers", Oxford University Press, 2010.

2. Dhananjay V. Gadre, "Programming and Customizing The AVR Microcontroller", Tata McGraw-Hill publications, 2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

	UNIT-I: 8086 MICR	OPROCI	ESSOR			
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Architecture	1	04-12-2023	-	TLM1	
2.	Pin diagram	1	06-12-2023		TLM2	
3.	Register organization	1	07-12-2023		TLM1	
4.	Minimum mode and Maximum mode, timing diagrams	1	09-12-2023		TLM2	
5.	Addressing modes	1	11-12-2023		TLM1	
6.	Instruction set	1	13-12-2023		TLM1	
7.	Interrupt vector table	1	14-12-2023		TLM1	
8.	Assembly language programming - data transfer, arithmetic operations	2	16-12-2023 18-12-2023		TLM1 TLM3	
9.	Assembly language programming - logical and decision making operations	2	20-12-2023 21-12-2023		TLM1 TLM3	
10.	Tutorial,/Assignment	1	23-12-2023		TLM3	

	UNIT- II: 8051 MICR	ROCONTR	ROLLER			
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Architecture	1	27-12-2023		TLM1	
12.	Input/output Ports	1	28-12-2023		TLM1	
13.	Registers, Counter and Timers	1	30-12-2023		TLM1	
14.	Serial port, Interrupts	1	03-01-2024		TLM1	
15.	Addressing modes	1	04-01-2024		TLM1	
16.	Instruction set	2	06-01-2023 08-01-2023		TLM1	
17.	Programming - data transfer, arithmetic operations	2	10-01-2024 17-01-2024		TLM1 TLM3	
18.	Programming - logical and decision making operations	1	18-01-2024		TLM1 TLM3	
19.	Tutorial,/Assignment	1	20-01-2024		TLM3	

	<mark>UNIT – III: ARM ARCHITECTUR</mark> I	E & PROG	RAMMING N	MODEL		
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
20.	History & Architecture	1	22-01-2024		TLM1	
21.	ARM design philosophy	1	24-01-2024		TLM1	
22.	Registers, Program status register	1	25-01-2024		TLM1	
23.	Instruction pipeline, Interrupts and vector table	1	27-01-2024		TLM1	
24.	ARM processor families	1	05-02-2024		TLM1	
25.	Instruction set: Data processing instructions	1	07-02-2024		TLM2	
26.	Addressing modes	1	08-02-2024		TLM1	
27.	Branch, Load-Store instructions	1	10-02-2024		TLM2	
28.	PSR instructions, and Conditional instructions	1	12-02-2024		TLM2	
29.	Tutorial,/Assignment	1	14-02-2024		TLM1	

	<mark>UNIT – IV: ARM P</mark> F	ROGRAM	MING			
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
30.	Assembly programming,	1	15-02-2024		TLM3	
31.	General structure of assembly language	1	17-02-2024		TLM1	
32.	Writing programs	3	19-02-2024		TLM1	
33.	Branch instructions	1	24-02-2024		TLM1	
34.	Loading constrains	1	26-02-2024		TLM1	
35.	load and store instructions	1	28-02-2024		TLM1	
36.	Read only and read/write Memory	1	29-02-2024		TLM1	
37.	Multiple Register Load and Store	1	02-03-2024		TLM1	
38.	Tutorial,/Assignment	1	04-02-2024		TLM3	

	<mark>UNIT – V: INTERFACING ARM WI</mark>	TH EXTE	RNAL PERIP	HERALS		
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
39.	Interfacing - A/D converter	1	06-03-2024		TLM3	
40.	Interfacing - D/A converter	1	07-03-2024		TLM3	
41.	Interfacing - LEDs & Switches	1	09-03-2024		TLM3	
42.	Interfacing – Relays & LCD	1	11-03-2024		TLM3	
43.	Interfacing - Stepper Motors	1	13-03-2024		TLM3	
44.	Interfacing - Real Time Clock	1	14-03-2024		TLM3	
45.	Interfacing - Serial Communication	1	16-03-2024		TLM3	
46.	Interfacing - GSM and GPS	1	18-03-2024		TLM3	
47.	Tutorial,/Assignment	1	20-03-2024		TLM3	

	BEYOND THE SYLLABUS & REVISION							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
48.	LPC1769/LPC2148 Instruction Set	2	21-03-2024		TLM2			
49.	LPC1769/LPC2148 Programming	2	25-03-2024		TLM2			
50.	LPC1769/LPC2148 Interfacing	1	30-03-2024		TLM2			

Teachin	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

<u> PART – C</u>

Academic Calendar: 2023 – 24 (VI Semester)

B.Tech VI Semester - 2020 Admitted Batch

Class work Commence From	21-02-2022						
Description	From	То	Weeks				
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks				
I Mid Examinations	29-01-2024	03-02-2024	1 Week				
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks				
II Mid Examinations	01-04-2024	06-04-2024	1 Week				
Preparation & Practicals	08-04-2024	13-04-2024	1 Week				
Semester End Examinations	15-04-2024	24-04-2024	2 Weeks				
Internship			6 Weeks				

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE)	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30
20% of Min((M1+Q1+A1), (M2+Q2+A2))	
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

CO 1	Understand the architecture of	Describe, Explain, Paraphrase, Restate ,Associate,
	8086, 8051 and ARM Controller	Contrast, Summarize, Differentiate, Interpret, Discuss
	(Understand)	
CO 2	Apply Assembly Language	Calculate, Predict, Apply, Solve, Illustrate, Use,
	instructions for Processor and	Demonstrate, Determine, Model, Experiment, Show,
	Controller based applications	Examine, Modify
	(Apply)	
CO 3	Analyze the operating modes and	Classify, Outline, Break down, Categorize, Analyze,
	interrupt structures of processors	Diagram, Illustrate, Infer, Select
	and controllers (Analyze)	
CO 4	Develop the ARM based	Categorize, Analyze, Illustrate, Infer Select
	interfacing systems for Real time	
	applications (Apply)	

$\mathbf{PART} - \mathbf{D}$

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
DO 0	for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
DO 0	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
DO 10	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
FU 11:	engineering and management principles and apply these to one's own work, as a member and
PO 12:	leader in a team, to manage projects and in multidisciplinary environments.Life-long learning: Recognize the need for, and have the preparation and ability to engage in
FU 12:	independent and life-long learning in the broadest context of technological change.
	muchendent and me-iong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits
	or systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor

Course Coordinator

Module Coordinator

HOD

[Mr. K.SASI BHUSHAN] [Mr. B.V.N.R.Siva Kumar] [Dr.P.LACHI REDDY]

[Dr.Y. AMAR BABU]

DEPARTMENT OF ELECTRONICS& COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

: Dr. G. Srinivasulu	
: VLSI DESIGN–20EC16	
: 3-0-0	Credits: 3
: B.Tech., ECE., VI-Sem., Section- B	A.Y : 2023-24
	: VLSI DESIGN- 20EC16 : 3-0-0

PRE-REQUISITE: Electronic Devices and Circuits, Digital Circuits

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on IC Fabrication Technologies and gives a complete idea about combinational and sequential sub system CMOS circuit designs used in VLSI Design. This course also gives the complete information regarding design tools and CMOS testing techniques.

COURSE OUTCOMES (CO): At the end of the course, students will be able to

CO1:	Understand semiconductor technology and MOS fabrication process (L2-Understand)
CO2:	Apply layout design rules for NMOS, CMOS logic circuit designs. (L3-Apply)
CO3:	Analyze the IC building blocks. (L4-Analyze)
CO4:	Apply CMOS testing techniques to test different digital designs. (L3-Apply)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	-	-	-	-	-	-	3	-	-	-
CO2	2	1	1	-	-	-	-	-	-	-	-	3	-	2	-
CO3	2	3	2	-	-	-	-	-	-	-	-	3	-	4	-
CO4	2	2	1	-	-	-	-	-	-	-	-	3	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, Essentials of VLSI circuits and systems, PHI Publishers, 2005.
- T2 "Design of Analog CMOS Integrated Circuits", Behzad Razavi, TMH, 2007.

BOS APPROVED REFERENCE BOOKS:

- **R1** Neil. H. E. Weste and Kamaran Eshraghian, Principles of CMOS VLSI Design (2/e), Pearson Education Publishers, 3rdEdition.
- R2 Wayne Wolf, Modern VLSI Design (3/e), Pearson Education Publishers.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: IC Fabrication Technology & Basic Electrical Properties of MOS & BiCMOSCircuits

S.No.	<i>T</i> opics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	IC fabrication Technology: Silicon semiconductor technology–wafer processing	1	04.12.2023			

2.	Oxidation, epitaxy, Lithography	1	05.12.2023
3.	ion implantation, Diffusion,silicon gate process	1	06.12.2023
4.	NMOS fabrication	1	09.12.2023
5.	CMOS fabrication	1	11.12.2022
6.	BiCMOS technology, Comparison between CMOS and bipolar technologies	1	12.12.2023
7.	Basic Electrical Properties of MOS and BiCMOS Circuits	1	13.12.2023
8.	Ids-Vds relationships	1	16.12.2023
9.	MOS transistor threshold Voltage, MOS transistor gm,gds	1	18.12.2023
10.	Pass transistor	1	19.12.2023
11.	NMOS Inverter, Various pull up	1	20.12.2023
12.	CMOS Inverter analysis and design	1	23.12.2023
13.	BiCMOS Inverters	1	26.12.2023
14.	Assignment	1	27.12.2023
	classes required to ete UNIT-I :	18	No. of classes taken:

UNIT-II: VLSI Circuit Design Processes

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
0.1100	Topies to be covered	Required	Completion	Completion	Methods	Weekly
	VLSI Circuit Design		30.12.2023			
15.	Processes: VLSI	1				
	design flow					
16.	MOS Layers, Stick Diagrams	1	02.01.2024			
17.	Design Rules and Layout, 5µm CMOS	1	03.01.2024			
	Design rules for wires, Design rules		06.01.2024			
18.	for Contacts, transistor	1				
	Layout Diagrams for		08.01.2024			
19.	NMOS, CMOS	1	00.01.2024			
	Inverters and Gates,	-				
	Scaling of MOS		090.01.2024			
20.	circuits, Limitations	1				
	of Scaling					
	Basic Circuit		10.01.2024			
21.	Concepts: Sheet	1				
	Resistance					
22.	Area Capacitance calculations	1	13.01.2024			

23.	Inverter Delays	1	15.01.2024			
24.	Assignment	1	17.01.2024			
	classes required to ete UNIT-II	14		No. of classes	taken:	

UNIT-III : Digital IC Building Blocks

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	HOD Sign Weekly
25.	Digital IC Building Blocks: Logic gates: combinational logic functions	1	20.01.2024			
26.	Static complementary gates	1	22.01.2024			
27.	Switch logic	1	23.01.2024			
28.	Standard cell based layout	1	23.01.2024			
29.	Logic and interconnect design	1	24.01.2024			
30.	power optimization	1	27.01.2024			
31.	Realization of Latches and Flip-Flops using switch logic	1	05.02.2024			
32.	Sub system design flow	1	06.02.2024			
33.	4x4 array multiplier	1	07.02.2024			
34.	Design of 4bit ALU using adder	1	10.02.2024			
35.	Synchronous up/down counters, Registers	1	12.02.2024			
36.	Assignment	1	13.02.2024			
	classes required to te UNIT-III	12	No. of classes	taken:		·

UNIT-IV : Analog IC Building Blocks

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
	•	Required	Completion	Completion	Methods	Weekly
37.	Introduction	1	14.02.2024			
38.	Analog IC Building Blocks: MOS Diode/Active resistor	1	17.02.2024			
39.	Simple current sinks, Basic current mirrors	1	19.02.2024			
40.	Advanced current mirrors	1	20.02.2024			
41.	Current and Voltage references	1	21.02.2024			
42.	Band-gap references	1	24.02.2024			
43.	Op-Amp, One Stage OP-Amp.	1	26.02.2024			

44.	Two Stage OP-Amp	1	27.02.2024			
45.	Gain boosting	1	28.02.2024			
46.	Common Mode Feedback	1	02.03.2024			
47.	Noise in Op Amps	1	04.03.2024			
48.	Assignment	1	05.03.2024			
	No. of classes required to complete UNIT-IV			No. of	classes take	n:

UNIT-V: TEST AND TESTABILITY

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
47.	Introduction	1	06.03.2024			
48.	Test and Testability : System Partitioning	1	09.03.2024			
49.	Layout and Testability, Reset/Initialization	1	11.03.2024			
50.	Design for Testability (DFT)	1	12.03.2024			
51.	Testing Combinational Logic	1	13.03.2024			
53.	Testing Sequential Logic	1	16.03.2024			
55.	Practical Design for Test Guidelines	2	18.03.2024 19.03.2024			
56.	Scan Design Techniques	1	20.03.2024			
57.	Built-In-Self-Test (BIST),	1	23.03.2024			
58.	Future Trends	1	25.03.2024			
59.	Assignment	1	26.03.2024			
	f classes required to e UNIT-V:	12		No. of classes	s taken	

Contents beyond the Syllabus

S.No.	Topics to be covered		No. of Classes Required	Tentative Date of Completion		Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
60.	0. Introduction to FINFET		1	30.02	3.2024				
Teaching	Learni	ng Methods							
TLM1		Chalk and Talk			TLM4	Demonstrat	Demonstration (Lab/Field Visit)		
TLM2		PPT			TLM5	ICT (NPTE	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3 Tutorial		TLM6		Group Disc	Group Discussion/Project				
PART-C									

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15

II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) =	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30
20% of Min((M1+Q1+A1), (M2+Q2+A2))	
Semester End Examination (SEE)(Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
	and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
	and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design
	system components or processes that meet the specified needs with appropriate consideration for the
	public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods
	including design of experiments, analysis and interpretation of data, and synthesis of the information
	to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities with an
	understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal,
	health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in
107	societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
100	the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO	Communication : Communicate effectively on complex engineering activities with the engineering
10	community and with society at large, such as, being able to comprehend and write effective
	reports and design documentation, make effective presentations, and give and receive clear
	instructions.
PO	Project management and finance: Demonstrate knowledge and understanding of the engineering
11	and management principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
12	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	Communication: Design and develop modern communication technologies for building the inter
1	disciplinary skills to meet current and future needs of industry.
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
2	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
3	related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
Dr. G. Srinivasulu	Smt.T.Kalpana	Dr. P Lachi Reddy	Dr.Y.Amar Babu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. V.Ravi Sekhara Reddy, Assoc. Professor
Course Name & Code	: MICROWAVE ENGINEERING-20EC17
L-T-P Structure	: 3-0-0
Credits	: 3
Program/Sem/Sec	: B. Tech. VI-Sem., ECE-B Sec
A.Y	: 2023 – 24

Pre requisite: Vector calculus, Coordinate Systems, Basics of electromagnetics

Course Educational Objective: This course provides the knowledge on different types of waveguides and resonators. The course will give an idea about microwave communication in terms of various bands, advantages, applications. The course also gives the complete information regarding the microwave tubes and passive devices along with microwave bench setup and microwave measurements.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the microwave sources, components and measurements of microwave parameters
	(Understand – L2)
CO 2	Develop the TE, TM fields in waveguides and microwave signals using microwave tubes and
	solid-state devices (Apply – L3)
CO 3	Apply the properties of S-parameters to model the S-matrix of waveguide components (Apply
	– L3)
CO 4	Analyze the flow of microwave fields in waveguides, components and efficiency of microwave
	tubes (Analyze – L4)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO3	3	2	1	1	1	-	-	-	-	-	-	1	3	-	-
CO4	3	3	2	1	1	-		-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS

1. Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.

2. David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4th Edition.

REFERENCE BOOKS

1. M Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi 5th Edition

2. Jordan and Balmain, "Electromagnetic fields and Radiating systems", Pearson education.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):B

	UNIT-I:[11HRS]									
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign				
		Required	Completion	Completion	Methods	Weekly				
1.	Introduction, Microwave Spectrum and Bands	1	05-12-2023		TLM1					
2.	Advantages and Applications of Microwaves	1	06-12-2023		TLM1					
3.	Rectangular Waveguides: Impossibility of TEM waves in waveguides	1	07-12-2023		TLM1					
4.	Transverse Magnetic and Transverse Electric Waves in Rectangular Waveguides	1	08-12-2023		TLM1					
5.	Field Expressions, characteristics of TE and TM Waves-Cutoff frequency	1	12-12-2023		TLM1					
6.	Dominant mode in Rectangular Waveguides, phase velocity, group velocity	1	13-12-2023		TLM1					
7.	relation between cutoff, guided and free space wavelengths	1	14-12-2023		TLM1					
8.	Wave impedances for TE and TM cases.	1	15-12-2023		TLM1					
9.	Circular Waveguides: TM and TE waves in circular guides	1	19-12-2023		TLM1					
10.	Field Expressions, Dominant mode in circular waveguide.	1	20-12-2023		TLM2					
11.	Tutorial,/Assignment	1	21-12-2023		TLM1					

	U	NIT- II: [10	HRS]			
		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
12.	Resonators: Rectangular cavity resonators	1	22-12-2023		TLM1	
13.	Circular cavity resonators	1	26-12-2023		TLM1	
14.	Field Expressions, Re-entrant Cavities	1	27-12-2023		TLM1	
15.	Microwave Tubes: Limitations of conventional tubes at microwave frequencies	1	28-12-2023		TLM1	
16.	Klystron Tubes: Two Cavity Klystrons – Structure	1	29-12-2023		TLM1	
17.	Microwave tubes – O type and M type classifications	1	02-01-2024		TLM2	
18.	Velocity Modulation Process and Applegate Diagram,	1	03-01-2024		TLM1	

19.	Reflex Klystrons – Structure, Applegate Diagram and Principle of working,	1	04-01-2024	TLM1	
20.	Power Output, Efficiency, output Characteristics	1	05-01-2024	TLM1	
21.	Tutorial,/Assignment	1	09-01-2024	TLM1	

	U	NIT – III[10	HRS]			
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22.	Helix TWT: Types and Characteristics of Slow Wave Structures;	1	10-01-2024		TLM1	
23.	Structure of TWT	1	11-01-2024		TLM1	
24.	Amplification Process in TWT	1	18-01-2024		TLM1	
25.	M-Type Tubes: Cross-field effects	1	19-01-2024		TLM2	
26.	Magnetrons – Different Types	1	23-01-2024		TLM1	
27.	8-Cavity Cylindrical Travelling Wave Magnetron	1	24-01-2024		TLM1	
28.	Hull Cut-off and Hartee Conditions	1	25-01-2024		TLM1	
29.	PI-Mode Operation in Magnetrons	1	06-02-2024		TLM1	
30.	Strapping in Magnetrons	1	07-02-2024		TLM1	
31.	Tutorial,/Assignment	1	08-02-2024		TLM1	

UNIT – IV[9 HRS]										
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
32.	Microwave Solid State Devices: Negative resistance region	1	09-02-2024		TLM1					
33.	Classification, Applications	1	13-02-2024		TLM1					
34.	Transferred Electron Devices: Gunn Diode Principle,	1	14-02-2024		TLM2					
35.	Two Valley Model Theory	1	15-02-2024		TLM1					
36.	RWH Theory, Characteristics.	1	16-02-2024		TLM1					
37.	Avalanche Transit Time Devices: IMPATT diode Principle of Operation and Characteristics,	1	20-02-2024		TLM1					
38.	TRAPATT Diodes Principle of Operation and Characteristics,	1	21-02-2024		TLM1					
39.	IMPATT, TRAPATT Diodes expressions	1	22-02-2024		TLM1					
40.	Tutorial,/Assignment	1	23-02-2024		TLM1					

	UNIT – V [15 HRS]											
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly						
41.	Waveguide Components: Scattering matrix	1	27-02-2024		TLM1							

42.	Formulation and Properties. S Matrix	1	28-02-2024	TLM1
43.	Calculations for E plane and H plane Tees	1	29-02-2024	TLM1
44.	Calculations for Magic Tee, Directional Coupler	1	01-03-2024	TLM1
45.	Fundamentals of branch line, rat-race couplers	1	05-03-2024	TLM1
46.	microwave filters. Ferrites– Composition and Characteristics,	1	06-03-2024	TLM1
47.	Faraday Rotation; Ferrite Components – Gyrator	1	07-03-2024	TLM1
48.	Isolator, Circulator. Microwave attenuators.	1	12-03-2024	TLM1
49.	Isolator, Circulator. Microwave attenuators.	1	13-03-2024	TLM1
50.	Microwave Measurements: Description of Microwave Bench setup ,precautions	2	14-03-2024 15-03-2024	TLM2
51.	Measurement of Attenuation, Frequency, VSWR	2	19-03-2024 20-03-2024	TLM1
52.	Measurement of Impedance, Power.	1	21-03-2024	TLM1
53.	Tutorial,/Assignment	1	22-03-2024	TLM1

	BEYOND THE SYLLABUS & REVISION [3 HRS]											
S.No.	Topics to be covered	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly							
54.	Microwave devices in RADAR communication	1	26-03-2024		TLM1							
55.	RF Microwave Passive Devices	1	27-03-2024		TLM1							
56.	Microwave devices in sattelite communication	1	28-03-2024		TLM1							

Teaching Learning Methods									
TLM1	Chalk and Talk TLM4 Demonstration (Lab/Field Visit)								
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial TLM		Group Discussion/Project						

1113	Tutoriai		Houp Discussion/Proj	ect							
<u>PART – C</u> Academic Calendar: 2022 – 23 (VI Semester)											
B.Tech VI Semester - 2021 Admitted Batch											
Class work Commence From 04-12-2023											
	Description	From	То	Weeks							
I Ph	ase of Instructions	04-12-2023	27-01-2023	8 Weeks							
I M	id Examinations	29-01-2023	03-02-2023	1 Week							
II P	hase Instructions	05-02-2023	30-03-2023	8 Weeks							
II N	1id Examinations	01-04-2023	06-04-2023	1 Week							
Prep	paration & Practicals	08-04-2023	13-04-2023	1 Week							
Sen	nester End Examinations	15-04-2023	27-04-2023	2 Weeks							
Inte	rnship	29-04-2023	22-06-2023	8 Weeks							

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE)	
80% of Max($(M1+Q1+A1)$, $(M2+Q2+A2)$) + 20% of Min($(M1+Q1+A1)$,	30
(M2+Q2+A2))	
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

<u>PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO F	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
PO 6:	with an understanding of the limitations
PU 0:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering
107.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
D O 15	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits
	or systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor

Course Coordinator

Module Coordinator

HOD

[Dr.K.RANI RUDRAMA]

[Dr. M.V.SUDHAKAR]

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

Electronics & Communication Engineering

COURSE HANDOUT

PART-A

Name of Course Instructor:Dr. M.V.SudhakarCourse Name & Code: SATELLITE COMMUNICATIONS, 20EC19L-T-P Structure:3-0-0Program/Sem/Sec: B.Tech/VI/B

Credits: 3 **A.Y.:** 2023-2024

PREREQUISITE: Analog Communications & Digital Communications

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the technical knowledge of orbital dynamics, launching of satellite in to the orbit, various subsystems used in space segment, uplink and downlink aspects of satellite. This course will also give an idea about different multiple access techniques, design requirements for the selection of earth station and various real time applications.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the orbital mechanics, concepts of satellite communication and its applications (Understand – L2)							
CO2	Summarize the concepts of satellite space segment, earth segment and satellite services (Understand – L2)							
CO3	Examine the satellite link budget calculations and orbital dynamics (Apply – L3)							
CO4	Apply the multiple-access techniques and mobile services for satellite Communications (Apply – L3)							

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	3	3	-	-	-	-	1	1	-	-
CO2	1	1	1	-	-	3	1	-	-	-	-	1	2	-	-
CO3	1	-	1	2	I	•	-	-	•	-	•	•	2	•	•
CO4	1	1	1	-	I	3	3	-	•	-	•	•	2	•	•
1 - Low 2 - Medium								3	- High						

TEXT BOOKS:

T1. Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons, 2nd edition, 2003..

T2. Dennis Roddy , "Satellite communications", Tata McGraw Hills, 4th Edition, 2009.

REFERENCE BOOKS:

R1	D.C Agarwal, "Satellite communications", Khanna Publications, 5th Edition, 2006.
R2	M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2nd
	Edition, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Introduction, COs	1	04-12-23				
2.	Need of satellite communication	1	05-12-23				
3.	Definition of a satellite and orbit	1	06-12-23				
4.	Different types of satellite orbits	1	09-12-23				
5.	Frequency allocations for satellite communication	1	11-12-23				
6.	General structure of satellite communication system	1	12-12-23				
7.	Merits and demerits of satellite communication	1	13-12-23				
8.	types of launch vehicles: ELV &RLV.	1	16-12-23				
9.	Applications of satellite communication	1	18-12-23				
10.	Advantages	1	19-12-23				
No.	No. of classes required to complete UNIT-I: 10 No. of classes taken:						

UNIT-I: Introduction to Satellite Communication

UNIT-II: Orbital Dynamics and Satellite Launching

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Kepler's Laws	1	20-12-23			
12.	Definitions of Terms for Earth- Orbiting Satellites	1	23-12-23			
13.	Orbital Elements,	1	26-12-23			
14.	Apogee and Perigee Heights	1	27-12-23			
15.	Effects of non spherical earth, Atmospheric drag	1	30-01-24			
16.	Orbital perturbations-need for station keeping	1	02-01-24			
17.	Non geostationary orbits and geostationary orbits	1	03-01-24			
18.	Orbital effects: Doppler shift, Range variation	1	06-01-24			
19.	solar eclipse and sun transit outage	1	08-01-24			
20.	launching of geostationary satellites.	1	09-01-24			
21.	Look angle determination	1	10-01-24			
22.	elevation angle and azimuth angle calculation	1	13-01-24			
No.	No. of classes required to complete UNIT-II: 12 No. of classes taken:					

UNIT-III: Space Segment and Link Design

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
23.	Introduction to space segment	1	20-01-24				
24.	Power supply unit	1	22-01-24				
25.	Attitude and orbital control	1	23-01-24				
26.	spinning satellite stabilization and momentum wheel stabilization	1	24-01-24				
27.	Station keeping	1	27-01-24				
28.	Thermal control	1	05-02-24				
29.	TT&C subsystem	1	06-02-24				
30.	Transponders, The wideband receiver, The input demultiplexer, The power amplifier	1	07-02-24				
31.	Antenna subsystem, Equivalent Isotropic Radiated Power, Free-space transmission	1	10-02-24				
32.	Feeder losses, Antenna misalignment losses, Fixed atmospheric and ionospheric losses	1	12-02-24				
33.	Link power budget equation, System Noise, Carrier-to-Noise Ratio	1	13-02-24				
34.	The Uplink, Saturation flux density, Input backoff, Downlink	1	14-02-24				
35.	Output back-off, Combined Uplink and Downlink C/N Ratio.	1	17-02-24				
	No. of classes required to complete UNIT-III: 13 No. of classes taken:						

UNIT-IV: Earth segment and Satellite access

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Design requirements for the selection of earth segment	1	19-02-24			
37.	Transmit only earth station, Receive only earth station	1	20-02-24			
38.	Transmit -Receive (T/R) earth station	1	21-02-24			
39.	Single Access	1	24-02-24			
40.	Preassigned FDMA	1	26-02-24			
41.	Demand-Assigned FDMA	1	27-02-24			
42.	Spade System, TDMA	1	28-03-24			
43.	Preassigned TDMA	1	02-03-24			
44.	Demand-assigned TDMA	1	04-03-24			
45.	Satellite-Switched TDMA	1	05-03-24			
46.	CDMA	1	06-03-24			
No.	of classes required to complete l	11	No. of clas	ses taker	1:	

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Different types of satellite services	1	09-03-24			
48.	Global Positioning System	1	11-03-24			
49.	architecture and location principle	1	12-03-24			
50.	Direct Broadcast Satellite	1	13-03-24			
51.	DBS/DTH	1	16-03-24			
52.	Home receiver block (Indoor & Outdoor Unit)	1	18-03-24			
53.	Satellite Mobile Services	1	19-03-24			
54.	VSAT, MSAT	1	20-03-24			
55.	RADARSAT	1	23-03-24			
56.	IRNSS constellation	1	25-03-24			
57.	Orbcomm, Iridium	1	26-03-24			
58.	Revision	1	27-03-24			
No. o	f classes required to complet					

Concepts beyond the syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
59.	Case study on latest Indian satellite launching and services	1	30-03-24			

Teaching Learning Methods								
TLM1Chalk and TalkTLM4Demonstration (Lab/Field Visit								
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	IMME OUTCOMES (POS):
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations
	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice
DO -	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
PO 8	norms of the engineering practice.
	Individual and team work: Function effectively as an individual, and as a member or leader in
PO 9	diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
PO 10	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
1012	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using
1002	relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
P30 3	related to real time applications

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	Dr. M.V.Sudhakar	Dr. P. Venkat rao	Dr. M.V Sudhakar	Dr. Y.Amar babu	
Signature					

LAKIREDDY BALIREDDYCOLLEGE OFENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier-I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. And Affiliated to JNTUK, Kakinada L.B.REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF MECHANICAL ENGINEERING

<u>COURSE HANDOUT</u> <u>PART-A</u>

Name of Course Instructor : Mr.Mallikarjuna Rao Dandu, Sr. Assistant Professor

Course Name & Code	: Operations Research Techniques - 20ME83	Regulation: R20
L-T-P Structure	: 4-0-0	Credits: 03
Program/Sem/Sec	: B.Tech- ECE VI Sem B/S	A.Y.: 2023-24
PREREQUISITE	: Nil	

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this course is to introduce the concepts of formulating an engineering problem into mathematical model to develop an optimal solution.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Apply linear programming approach for optimizing the objectives of industrial oriented problems. (Applying-L3)
	Formulate and solve transportation models and assignment models. (Applying-L3)
CO3	Implement the strategies in competitive situations and able to sequence the jobs to be processed on machines. (Applying-L3)
CO4	Identify the replacement period of the equipment and analyze the waiting situations in an organization. (Applying-L3)
CO5	Determine the optimum inventory level and resolve the complex problem into simple problems by dynamic programming approach and apply optimum strategies. (Applying-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3				3			3		3	
CO2	3	3	1	2	1				3			3		3	
CO3	3	3	3	2	1				3			3		3	
CO4	3	2	3	2	3				1			3		3	
CO5	2	3	3	2	1				1			3		3	

TEXT BOOKS:

T1	S.D Sharma, —Operation Research ^I , Kedar Nath and RamNath - Meerut, 2008.
T2	Operations Research / N.V.S. Raju / SMS, 2009.

REFERENCE BOOKS:

R1	Singiresu S Rao, Engineering Optimization: Theory and Practice, A Wiley- Interscience Publication, 4th edition, 2009.
	Hiller & Libermann, Introduction to O.R (TMH), 9 th EDITION, 2009.
R3	Kantiswarup. P.K.Gupta, Man Mohan, Operations Research, Sultan Chand & Sons, Educational Publications, New Delhi, 14th Edition, 2008.
R4	A.M.Natarajan, P.Balasubramani, A. Tamilarasi, Operations Research, Pearson Education, 2 nd edition, 2014.
R5	Taha, Introduction to O.R .PHI, 9 th edition, 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A UNIT-I: INTRODUCTION & LINEAR PROGRAMMING PROBLEM

	NIT-I: INTRODUCTION & LIN					TROD
S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	INTRODUCTION : Introduction To ORT & CEO, COs	1	04.12.2023		TLM1/TLM2	
2.	Operations Research Models, Phases & Applications	1	06.12.2023		TLM1/TLM2	
3.	Linear Programming Problem (LPP): Formulation	1	07.12.2023		TLM1	
4.	Numericals	1	09.12.2023		TLM1	
5.	Graphical Solution For Special Cases Of LPP	1	11.12.2023		TLM1	
6.	Simplex Method	1	13.12.2023		TLM1	
7.	Numericals	1	14.12.2023		TLM1	
8.	Numericals	1	16.12.2023		TLM1	
9.	Big M Method	1	18.12.2023		TLM1	
10.	Numericals	1	20.12.2023		TLM1	
11.	Two Phase Simplex Method	1	21.12.2023		TLM1	
	Numericals	1	23.12.2023		TLM1	
13.	Big M method	1	27.12.2023		TLM1	
	Numericals	1	28.12.2023		TLM1	
No. of classes required to complete UNIT-I:14No. of classes taken:					es taken:	

UNIT-II: TRANSPORTATION & ASSIGNMENT PROBLEMS

S.		No. of	Tentative	Actual Date	Teaching	HOD
No	Topics to be covered	Classes	Date of	of Completion	Learning Methods	Sign Weelsly
	Introduction To TP, Terminology,	Required	•	compiction		Weekly
	Formulation	1	30.12.2023		TLM1/TLM2	
16.	Standard Form, Unbalanced TP	1	03.01.2024		TLM1	
17.	Numericals	1	04.01.2024		TLM1	
	IBFS: NWCM, LCM, VAM	1	06.01.2024		TLM1	
19.	Numericals	1	08.01.2024		TLM1	
20.	Test For Optimality: Stepping Stone Method, Modified Distribution Method (MODI Method)		10.01.2024		TLM1	
21.	Numericals	1	11.01.2024		TLM1	
22.	Degeneracy in TP, Numericals	1	13.01.2024		TLM1	
23.	Introduction to Assignment Problem	1	11.01.2024		TLM1	
24.	Variants of Assignment Problems	1	17.01.2024		TLM1	
25.	Optimal Solution, Numericals	1	18.01.2024		TLM1	
26.	Travelling Salesmen Problem	1	20.01.2024		TLM1	
27.	Numericals	1	22.01.2024		TLM1	
No. UNI	of classes required to complete T-II	13		No. of classes	taken:	

UNIT-III: GAME THEORY AND JOB SEQUENCING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Introduction to Games Theory: Terminology	1	23.01.2024		TLM1/TLM2	
/9	Minimax or Maxmini Criterion,Optimal Strategy	1	24.01.2024		TLM1	
30.	Solution of games with saddle point	1	25.01.2024		TLM1	
	Rectangular games without saddle point, Numericals	1	27.01.2024		TLM1	
32.	2x2 games	1	05.02.2024		TLM1	
	mx2, 2xn, mxn games, Dominance Principle,	1	07.02.2024		TLM1	
	Graphical approach, Numericals	1	08.02.2024		TLM1	
1 1	Job Sequencing: n jobs through 2 nachines,	1	10.02.2024		TLM1	
36.	n jobs through 3 machines,	1	12.02.2024		TLM1	
37.	2 jobs through m machines	1	14.02.2024		TLM1	
38.	Numericals	1	15.02.2024		TLM1	
39.	Graphical model	1	17.02.2024		TLM1	
	of classes required to complete T-III	12		No. of classes	taken:	

UNIT-IV: THEORY OF REPLACEMENT AND WAITING LINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	THEORY OF REPLACEMENT: Introduction, Replacement of Equipment that Deteriorates Gradually	1	19.02.2024		TLM1/TLM2	
41.	Numericals	1	21.02.2024		TLM1	
42.	Replacement of Equipment that fails suddenly, Numericals	1	22.02.2024		TLM1	
43.	Numericals	1	24.02.2024		TLM1	
44.	Group Replacement Policy	1	26.02.2024		TLM1/TLM2	
45.	Numericals	1	28.02.2024		TLM1	
46.	Introduction to Queuing Theory	1	29.02.2024		TLM1/TLM2	
47.	Single Channel – Poisson arrivals – exponential service times – with infinite population, Derivation	1	02.03.2024		TLM1	
48.	Numericals	1	04.03.2024		TLM1	
49.	Single Channel – Poisson arrivals – exponential service times – with finite population, Numericals	1	06.03.2024		TLM1/TLM2	
50.	Numericals	1	07.03.2024		TLM1	
51.	Numericals	1	09.03.2024		TLM1	
No. 0 UNI	f classes required to complete Γ-IV	12		No. of classes	taken:	

	Γ-V: INVENTORY MODELS A	No. of	Tentative	Actual Date	Taaahina	HOD
S. No.	Topics to be covered	Classes	Date of Completion	of Completion	Teaching Learning Methods	Sign Weekly
י ר	INVENTORY MODELS- terminology, EOQ	1	11.03.2024		TLM1/TLM2	
	Instantaneous Production, finite, continuous demand	1	13.03.2024		TLM1/TLM2	
54.	Shortages not Allowed	1	14.03.2024		TLM1	
55.	Purchase inventory models with one price break	1	16.03.2024		TLM1	
	Purchase inventory models with multiple price breaks	1	18.03.2024		TLM1	
	Numericals	1	20.03.2024		TLM1	
58.	DYNAMIC PROGRAMMING (DP): Introduction To DP	1	21.03.2024		TLM1/TLM2	
59.	Bellman's Principle of Optimality, Applications of Dynamic Programming	1	23.03.2024		TLM1/TLM2	
	Capital Budgeting Problem, Numericals	1	27.03.2024		TLM1	
61.	linear programming problem	1	28.03.2024		TLM1	
62.	Shortest path problems	1	30.03.2024		TLM1	
63.	Numericals	1	30.03.2024		TLM1	
No. (UNI	of classes required to complete Γ-V	12		No. of classes	taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration(Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/ MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

Academic Calendar

•

Description	From	То	Weeks
I Phase of Instructions	04-12-2023	27-01-2024	8
I MID Examinations	29-01-2024	03-02-2024	1
II Phase of Instructions	05-02-2024	30-03-2024	8
II MID Examinations	01-04-2024	06-04-2024	1
Preparation and Practicals	08-04-2024	13-04-2024	1
Semester End Examinations	15-04-2024	27-04-2024	2

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II-Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1),(M2+Q2+A2))+20% of Min((M1+Q1+A1),(M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE):M	30
Semester End Examination (SEE)	70
Total Marks = CIE+SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	To Attain a solid foundation in Electronics & Communication Engineering fundamentals with
PEO 1	an attitude to pursue continuing education.
	To Function professionally in the rapidly changing world with advances in technology.
PEO 3	To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices.
I EO J	Communication Engineering principles, tools and practices.
PEO 4	To Examples loadenship qualities, at lovels appropriate to their experience, which addresses
FEO 4	issues in a responsive, ethical, and innovative manner.

PROGRAMME OUTCOMES (POs):

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Design and develop modern communication technologies for building the interdisciplinary skills to meet current and future needs of industry.
	skills to meet current and future needs of industry.
	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real
PSO 2	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools.
PSO 3	Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of	Mr.Mallikarjuna	Mr.V.Sankararao	Dr.M.B.S.Sreekara	Dr.M.B.S.Sreekara	
the Faculty	Rao Dandu		Reddy	Reddy	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

Course Name & Code	PART-A : Microprocessors and Microcontrollers Lab – 20EC59
L-T-P Structure	: 0-0-3
Credits	: 1.5
Program	: B.Tech VI Semester ECE-B Section.,
A.Y	: 2023 – 24

COURSEOBJECTIVE:

In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: At the end of the course, student will be able to:

CO1	DemonstratetheMASM/TASMtoolfordevelopingAssemblyLanguagePrograms.
CO2	Apply the Assembly Language instructions of Processor and Controller for logical operations.
CO3	Develop the ARM based interfacing systems for Real time applications.
CO4	Adapt effective communication, presentation and report writing skills.

COURSEARTICULATIONMATRIX(CorrelationbetweenCos&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	2	-	1	1	-	-	-	2	-	2	-
CO2	3	3	3	2	2	-	1	1	-	-	-	3	-	3	-
CO3	3	3	3	3	3	-	1	1	-	-	-	3	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels: 1or2or3.
If there is no correlation: put'-'
1-Slight(Low), 2-Moderate(Medium), 3-Substantial(High).

PART-B LABSCHEDULE(LESSONPLAN):Section-B

LISTOFEXPERIMENTS (Minimum12Experimentstobeconducted)

		No.of	Tentative	Actual	Teaching	HOD	
S.No.	Experiments to be conducted	Classes	Date of	Date of	Learning	Sign	
		Required	Completion	Completion	Methods	Weekly	
		CYCLE-	1				
1.	Introduction to Lab	3	04-12-2023		TLM2		
2.	Display, comparison and reverse the	3	11-12-2023		TLM8		
	string						
3.	Factorial using Procedures	3	18-12-2023		TLM8		
4.	Sorting the signed and unsigned numbers	3	01-01-2024		TLM8		
5.	Checking the given string for Palindrome	3	08-01-2024		TLM8		
6.	Arithmetic operations like Addition,	3	22-01-2024				
	Subtraction, Multiplication and Division				TLM8		
7.	Byte checkingbyusing8051	3	29-01-2024		TLM8		
8.	Addition of series of numbers	3	05-02-2024		TLM8		
9.	Checking the given numbers for Odd or	3	12-02-2024		TLM8		
	Even						
			СҮС	LE-2			
10.	Interfacing of A/D and D/A converter	3	19-02-2024		TLM8		
11.	Interfacing of LEDs and Switches	3	26-02-2024		TLM8		
12.	Interfacing of LCD	3	04-03-2024		TLM8		
13.	Interfacing of Stepper Motors	3	11-03-2024		TLM8		
14.	Interfacing of traffic Light controller	3	11-03-2024		TLM8		
15.	Interfacing of RealTime Clock	3	18-03-2024		TLM8		
16.	Data loggers –Roll over display	3	18-03-2024		TLM8		
17.	Internal Lab Exam	3	25-03-2024		TLM8		
No.of c	lasses required to complete:	51	No.of classes co	nducted:	l	l	

PART-C

Teaching	Learning Methods				
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study

Academic Calendar: 2023 – 24 (VI Semester)

Class work Commence From		21-02-2022	
Description	From	То	Weeks
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks
I Mid Examinations	29-01-2024	03-02-2024	1 Week
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks
II Mid Examinations	01-04-2024	06-04-2024	1 Week
Preparation & Practicals	08-04-2024	13-04-2024	1 Week
Semester End Examinations	15-04-2024	24-04-2024	2 Weeks
Internship			6 Weeks

EVALUATIONPROCESS:

Evaluation Task	COs	Marks
Day to Day work	1,2,3,4	A=10
Internal Lab Examination	1,2,3,4	B=5
Total Internal Marks (A+B)		C=15
Semester End Examinations	1,2,3,4	D=35
Total Marks : C+D	1,2,3,4	50

PART – D

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader
20.10	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
DO 11	receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor Course Coordinator Module Coordinator

HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT & MECH) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. G. Srinivasulu	
Course Name & Code	: VLSI DESIGN LAB- 20EC60	
L-T-P Structure	: 0-0-3	Cre
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Section- B	Α.

Credits: 1.5 A.Y : 2023-24

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The course explores the design and implementation aspects of various combinational and sequential circuits used in VLSI Design. It also develops the knowledge in VLSI Front End and Back End Design in semicustom and full-custom design.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1 Implement combinational and sequential circuits on FPGA/CPLD boards. (Apply – L3)

CO2 Design the Combinational and Sequential logic using NMOS and CMOS Technology. (Apply – L3)

CO3 Analyze combinational and sequential circuits using Static CMOS logic from schematic to layout. (Analyze –L4)

CO4 Adapt effective communication, presentation and report writing skills. (Apply – L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO2	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO3	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3		1	-	-	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Batch-1

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	05.12.2023			
Cycle – I							
1	Experiment – 1	CO1	3	12.12.2023			
2	Experiment – 2	CO1	3	19.12.2023			
3	Experiment – 3	CO1	3	26.12.2023			

4	Experiment – 4	CO2,CO3	3	02.01.2024		
5	Experiment – 5	CO2,CO3	3	09.01.2024		
6	Experiment – 6	CO2,CO3	3	16.01.2024		
		Cycl	e – II	·		
7	Experiment – 7	CO2,CO3	3	23.01.2024		
8	Experiment – 8	CO2,CO3	3	06.02.2024		
9	Experiment – 9	CO2,CO3	3	13.02.2024		
10	Experiment – 10	CO2,CO3	3	22.02.2024		
11	Experiment – 11	CO2,CO3	3	27.02.2024		
12	Experiment beyond syllabus	CO2,CO3	3	05.03.2024		
13	Revision	CO2,CO3	3	19.03.2024		
14	Internal Examination		3	26.04.2024		

Batch-2

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	08.12.2023			
		С	ycle – I				
1	Experiment – 1	CO1	3	15.12.2023			
2	Experiment – 2	CO1	3	22.12.2023			
3	Experiment – 3	CO1	3	29.12.2023			
4	Experiment – 4	CO2,CO3	3	05.01.2024			

5	Experiment – 5	CO2,CO3	3	12.01.2024		
		Cy	ycle – II			
7	Experiment – 6	CO2,CO3	3	02.02.2024		
8	Experiment – 7	CO2,CO3	3	09.02.2024		
9	Experiment – 8	CO2,CO3	3	16.02.2024		
10	Experiment – 9	CO2,CO3	3	23.02.2024		
11	Experiment – 10	CO2,CO3	3	01.03.2024		
12	Experiment beyond syllabus	CO2,CO3	3	08.03.2024		
	Internal Examination		3	15.03.2024		

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Implementation of Carry-Look-Ahead adder.	7	Design and analysis of CMOS NAND gate
2	Implementation of 4x4 Array Multiplier.	8	Design and analysis of Full Adder
3	Implementation of a 4-bit ALU.	9	Design and analysis of Decoder
4	Design and analysis of NMOS Inverter.	10	Design and analysis of 8- bit Binary Counter.
5	Design and analysis of CMOS Inverter	11	Design and analysis of Shift Register
6	Design and analysis of CMOS NOR gate		

Teaching	Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			
	Bort C					

<u> Part - C</u>

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work $= \mathbf{A}$	1,2,3,4,5,6,7,8	A = 05
Record $=$ B	1,2,3,4,5,6,7,8	B = 05
Internal Test $= \mathbf{C}$	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	$\mathbf{D} = 35$
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
	natural sciences, and engineering sciences.					
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and					
	design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental					
DO 4	considerations.					
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research					
	methods including design of experiments, analysis and interpretation of data, and synthesis of the					
DO 5	information to provide valid conclusions.					
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern					
	engineering and IT tools including prediction and modelling to complex engineering activities					
DO ()	with an understanding of the limitations					
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the					
	professional engineering practice					
PO 7:	Environment and sustainability : Understand the impact of the professional engineering					
107.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for					
	sustainable development.					
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms					
100	of the engineering practice.					
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader in					
	diverse teams, and in multidisciplinary settings.					
PO 10:	Communication: Communicate effectively on complex engineering activities with the					
	engineering community and with society at large, such as, being able to comprehend and write					
	effective reports and design documentation, make effective presentations, and give and receive					
	clear instructions.					
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a member and					
	leader in a team, to manage projects and in multidisciplinary environments.					
PO 12:	Life-long learning: Recognize the need for and have the preparation and ability to engage in					
	independent and life-long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor Dr. G. Srinivasulu Course Coordinator Mrs.M.Ramya Harika Module Coordinator Dr. P Lachi Reddy HOD Dr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

COURSE HANDOUT

Part-A

PROGRAM	: B.Tech., VI-Sem., ECE-B
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE L-T-P STRUCTURE	: Microwave Engineering Lab– 20EC61 : 0-0-3
COURSE CREDITS	: 1.5
COURSE INSTRUCTOR	: Dr. V.Ravisekhara Reddy/Dr. B.Y.V.N.R. Swamy /Mr.M.Samba Siva Reddy
COURSE COORDINATOR	: Dr. B.Y.V.N.R. Swamy

COURSE OBJECTIVES: This Lab deals with the measurements of the EM signals at microwave frequency range. It involves measurement of frequency, wavelength, VSWR, Impedance and scattering parameters of various microwave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of software tool i.e. HFSS is also introduced and microwave devices will be verified by evaluating the related parameters.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

- CO1 : Demonstrate the functions of microwave bench setup (Understand L2)
- CO2 : Examine the properties of microwave passive devices using HFSS (Apply L3)
- CO3 : Estimate the frequency, wavelength, VSWR, impedance and scattering parameters of microwave devices (Apply - L3)
- CO4 : Adapt effective communication, presentation and report writing skills (Apply L3)

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	1	1	1	1	3	-	-	-	-	-	-	1	3	-	-
CO3	2	2	-	3	2	-	-	-	-	-	-	-	3	-	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part-B

Batch-1

S. No.	Experiments	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Learning Outcome COs	Teaching Learning Methods	HOD Sign Weekly
1	Demonstration	3	05.12.2023		-	TLM1	
2	Experiment-1	3	12.12.2023		COs 1,3,4	TLM4	
3	Experiment-2	3	19.12.2023		COs 1,3,4	TLM4	
4	Experiment -3	3	26.12.2023		COs1,3,4	TLM4	
5	Experiment-4	3	02.01.2024		COs 1,3,4	TLM4	
6	Experiment-9	3	09.01.2024		COs 2,4	TLM4	
7	Experiment-10	3	23.01.2024		COs2,4	TLM4	
8	Experiment-5	3	06.02.2024		COs1,3,4	TLM4	
9	Experiment-6	3	13.02.2024		COs 1,3,4	TLM4	
10	Experiment-7	3	20.02.2024		COs 1,3,,4	TLM4	
11	Experiment-8	3	27.02.2024		COs 1,3,4	TLM4	
12	Experiment-11	3	05.03.2024		COs 2,4	TLM4	
13	Experiment-12	3	12.03.2024		COs 2,4	TLM4	
13	Revision	3	19.04.2024				
14	Internal exam	3	26.04.2024				

Batch-2

S. No.	Experiments	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Learning Outcome COs	Teaching Learning Methods	HOD Sign Weekly
1.	Demonstration	3	08.12.2023		COs 1,4	TLM1	
2.	Experiments-1	3	15.12.2023		COs 1,4	TLM4	
3.	Experiment-2	3	22.12.2023		COs 1,4	TLM4	
4.	Experiment-3,4	3	29.12.2023		COs 3,4	TLM4	
5.	Experiment-9	3	05.01.2024		COs2,4	TLM4	
6.	Experiment-10	3	19.01.2024		COs 2,4	TLM4	
7.	Experiment-5	3	09.02.2024		COs 2,4	TLM4	
8.	Experiment-6	3	16.02.2024		COs 1,3,4	TLM4	
9.	Experiment-7,8	3	23.02.2024		COs 1,3,4	TLM4	
10.	Experiment-11,12	3	01.03.2024		COs 1,3,4	TLM4	
11.	Revision	3	15.03.2024				
12.	Internal exam	3	22.03.2024				

List of Experiments:

Exp. No	Experiments to be conducted	Exp. No	Experiments to be conducted
	CYCLE-1		CYCLE-2
1.	Reflex Klystron Characteristics.	5	Directional coupler characteristics
2.	Gunn diode Characteristics	6	Impedance and frequency measurement
3.	Attenuation measurement	7	Scattering parameters of circulator
4.	VSWR measurement	8	Scattering parameters of Magic tee
9.	Scattering parameters of branch line coupler	11	Design and S-parameter measurement of microwave band stop filter
10	Scattering parameters of rat-race coupler	12	Design and S-parameter measurement of microwave balun

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

Part	-	С
Lart		\mathbf{c}

EVALUATION PROCESS:

Evaluation Task	Cos	Marks
Day to Day Work	1,2,3,4	A=5
Record	1,2,3,4	B=5
Internal Exam	1,2,3,4	C=5
Cumulative Internal Examination :	1,2,3,4	A+B+C=15
Semester End Examinations	1,2,3,4	D=35
Total Marks: A+B+C+D	1,2,3,4	50

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education.

PEO2: To Function professionally in the rapidly changing world with advances in technologyPEO3: To Contribute to the needs of the society in solving technical problems usingadvances in technologyCommunicationEngineeringprinciples,toolsandPEO4: To Exercise leadership qualities, at levels appropriate to their experience, whichaddresses issues in a

PROGRAMME OUTCOMES (POs)

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8: Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.

PSO2: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools

PSO3: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
[Dr. V.RAVI SEKHARA REDDY]	[Dr. B.Y.V.N.R.SWAMY]	[Dr. M.V.SUDHAKAR]	[Dr. Y. AMAR BABU]

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT & MECH) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.T.Kalpana	
Course Name & Code	: VLSI DESIGN LAB- 20EC60	
L-T-P Structure	: 0-0-3	Credits: 1.5
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Section- C	A.Y : 2023-24

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The course explores the design and implementation aspects of various combinational and sequential circuits used in VLSI Design. It also develops the knowledge in VLSI Front End and Back End Design in semicustom and full-custom design.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Implement combinational and sequential circuits on FPGA/CPLD boards. (Apply – L3)
CO2	Design the Combinational and Sequential logic using NMOS and CMOS Technology. (Apply – L3)
CO3	Analyze combinational and sequential circuits using Static CMOS logic from schematic to layout. (Analyze –L4)
CO4	Adapt effective communication, presentation and report writing skills. (Apply – L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO2	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO3	2	1	2	2	3	-	-	-	-	-	-	-	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3		1	-	-	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Batch-1(21761A04D0 to 21761A04G5) Saturday– AN

	Dutch I(21/01/10400		4G5) Saturda			
Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	09.12.2023			
		Cyc	ele – I				
1	Experiment – 1	CO1	3	16.12.2023			-
2	Experiment – 2	CO1	3	23.12.2023			
3	Experiment – 3	C01	3	30.12.2023			
4	Experiment – 4	CO2,CO3	3	06.01.2024			
5	Experiment – 5	CO2,CO3	3	20.01.2024			
6	Experiment – 6	CO2,CO3	3	27.01.2024			
		Cycl	le – II				-
7	Experiment – 7	CO2,CO3	3	10.02.2024			
8	Experiment – 8	CO2,CO3	3	17.02.2024			_
9	Experiment – 9	CO2,CO3	3	24.02.2024			
10	Experiment – 10	CO2,CO3	3	02.03.2024			
11	Experiment – 11	CO2,CO3	3	09.03.2024			
12	Experiment beyond syllabus	CO2,CO3	3	16.03.2024			
	Revision		3	23.03.2024			
	Internal Examination		3	30.03.2024			

Batch-2 (21761A04G6 to 21761A04J4 & 22765A0416 to 22765A0423) Wednesday – FN $\,$

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
	Introduction to VLSI Lab experiments, COs, POs and PSOs		3	06.12.2023						
Cycle – I										
1	Experiment – 1	CO1	3	13.12.2023						
2	Experiment – 2	CO1	3	20.12.2023						
3	Experiment – 3	CO1	3	27.12.2023						
4	Experiment – 4	CO2,CO3	3	03.01.2024						
5	Experiment – 5	CO2,CO3	3	10.01.2024						
6	Experiment – 6	CO2,CO3	3	17.01.2024						
	L	С	ycle – II			I	_			
7	Experiment – 7	CO2,CO3	3	24.01.2024						
8	Experiment – 8	CO2,CO3	3	07.02.2024						
9	Experiment – 9	CO2,CO3	3	14.02.2024						
10	Experiment – 10	CO2,CO3	3	21.02.2024						
11	Experiment – 11	CO2,CO3	3	28.02.2024						
12	Experiment beyond syllabus	CO2,CO3	3	06.03.2024						
	Revision		3	13.03.2024						
	Revision		3	20.03.2024						
	Internal Examination		3	27.03.2024						

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Implementation of Carry-Look-Ahead adder.	7	Design and analysis of CMOS NAND gate
2	Implementation of 4x4 Array Multiplier.	8	Design and analysis of Full Adder
3	Implementation of a 4-bit ALU.	9	Design and analysis of Decoder
4	Design and analysis of NMOS Inverter.	10	Design and analysis of 8- bit Binary Counter.
5	Design and analysis of CMOS Inverter	11	Design and analysis of Shift Register
6	Design and analysis of CMOS NOR gate		

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Part - C

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work $= \mathbf{A}$	1,2,3,4,5,6,7,8	A = 05
Record = B	1,2,3,4,5,6,7,8	B = 05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	$\mathbf{D} = 35$
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmenta considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need fo sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mrs.T.Kalpana	Mrs.M.Ramya Harika	Dr. P Lachi Reddy	Dr. Y. Amar Babu

DEPARTMENT OF ELECTRONICS& COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Smt.T.KalpanaCourse Name & Code:VLSI DESIGN- 20EC16L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech., ECE., VI-Sem., Section- C

Credits: 3 A.Y : 2023-24

PRE-REQUISITE: Electronic Devices and Circuits, Digital Circuits

COURSE EDUCATIONAL OBJECTIVES (CEOs):This course provides the knowledge on IC Fabrication Technologies and gives a complete idea about combinational and sequential sub system CMOS circuit designs used in VLSI Design. This course also gives the complete information regarding design tools and CMOS testing techniques.

COURSE OUTCOMES (CO): At the end of the course, students will be able to

CO1:	Understandsemiconductor technology and MOS fabrication process (L2-Understand)
CO2:	Apply layout design rules for NMOS, CMOS logic circuit designs. (L3-Apply)
CO3:	Analyze the IC building blocks. (L4-Analyze)
CO4·	Annly CMOS testing techniques to test different digital designs (13-Annly)

COURSE ARTICULATION MATRIX (Correlation between COs&POs PSOs):

	COURSE ANTICULATION MATRIX (Correlation between COS&FOS,FSOS):														
COs	РО 1	РО 2	РО 3	РО 4	РО 5	PO 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	1	1	-	-	-	-	-	-	-	-	3	-	-	-
CO2	2	1	1	-	-	-	-	-	-	-	-	3	-	2	-
CO3	2	3	2	-	-	-	-	-	-	-	-	3	-	4	-
CO4	2	2	1	-	-	-	-	-	-	-	-	3	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, Essentials of VLSI circuits and systems, PHI Publishers, 2005.
- T2 "Design of Analog CMOS Integrated Circuits", Behzad Razavi, TMH, 2007.

BOS APPROVED REFERENCE BOOKS:

- **R1** Neil. H. E. Weste and Kamaran Eshraghian, Principles of CMOS VLSI Design (2/e), Pearson Education Publishers, 3rdEdition.
- R2 Wayne Wolf, Modern VLSI Design (3/e), Pearson Education Publishers.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I : IC FABRICATION TECHNOLOGY & BASIC ELECTRICAL PROPERTIES OF MOS AND BICMOS CIRCUITS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	IC fabrication Technology: Silicon semiconductor technology–wafer	1	06.12.2023	Completion	Wittious	WEEKIY
	processing Oxidation, epitaxy		07.12.2023			
2.		1				
3.	Lithography, ion implantation	1	08.12.2023			
4.	Diffusion, ,silicon gate process	1	09.12.2023			
5.	NMOS and CMOS fabrication	1	13.12.2023			
б.	BiCMOS technology	1	14.12.2023			
7.	Comparison between CMOS and bipolar technologies	1	15.12.2023			
8.	Basic Electrical Properties of MOS and BiCMOS Circuits	1	16.12.2023			
9.	Basic Electrical Properties of MOS and BiCMOS Circuits	1	20.12.2023			
10.	Ids-Vds relationships	1	21.12.2023			
11.	MOS transistor threshold Voltage	1	22.12.2023			
12.	MOS transistor gm, gds	1	23.12.2023			
13.	Pass transistor, NMOS Inverter	1	27.12.2023			
14.	Various pull up,	1	28.12.2023			
15.	CMOS Inverter analysis and design	1	29.12.2023			
16.	BiCMOS Inverters	1	30.12.2023			
17.	Assignment	1	03.01.2024			
	classes required to ete UNIT-I :	17	No.	of classes take	n:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
18.	VLSI Circuit Design Processes: VLSI design flow	1	04.01.2024			
19.	MOS Layers, Stick Diagrams	1	05.01.2024			
20.	Design Rules and Layout, 5µm CMOS	1	06.01.2024			
21.	Design rules for wires, Contacts, Transistor	1	10.01.2024			
22.	Layout Diagrams for NMOS, CMOS Inverters and Gates	1	11.01.2024			
23.	Scaling of MOS circuits	1	12.01.2024			
24.	Limitations of Scaling	1	17.01.2024			
25.	Basic Circuit Concepts: Sheet Resistance	1	18.01.2024			
26.	Area Capacitance calculations, Inverter Delays	1	19.01.2024			
27.	Assignment	1	20.01.2024			
	classes required to ete UNIT-II	10		No. of classes	taken:	1

UNIT-II : VLSI CIRCUIT DESIGN PROCESSES

UNIT-III : DIGITAL IC BUILDING BLOCKS

S.N 0.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	HOD Sign Weekly
28.	Digital IC Building Blocks: Logic gates: combinational logic functions	1	24.01.2024			
29.	Static complementary gates, Switch logic	1	25.01.2024			
30.	Standard cell based layout	1	26.01.2024			
31.	Logic and interconnect design	1	27.01.2024			
32.	power optimization	1	07.02.2024			
33.	Realization of Latches and Flip-Flops using switch logic	1	08.02.2024			

34.	Sub system design flow	1	09.02.2024
35.	4x4 array multiplier	1	10.02.2024
36.	Design of 4bit ALU using adder	1	14.02.2024
37.	Synchronous up/down counters, Registers	1	15.02.2024
38.	Assignment	1	16.02.2024
	f classes required to lete UNIT-III	11	No. of classes taken:

UNIT-IV : ANALOG IC BUILDING BLOCKS

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	•	Required	Completion	Completion	Methods	Weekly
39.	Introduction	1	17.02.2024			
40.	Analog IC Building Blocks: MOS Diode/Active resistor	1	21.02.2024			
41.	Simple current sinks	1	22.02.2024			
42.	Basic current mirrors	1	23.02.2024			
43.	Advanced current mirrors	1	24.02.2024			
44.	Current and Voltage references	1	28.02.2024			
45.	Band-gap references	1	29.02.2024			
46.	Op-Amp, One Stage OP-Amp.	1	01.03.2024			
47.	Two Stage OP-Amp, Gain boosting	1	02.03.2024			
48.	Common Mode Feedback, Noise in Op Amps	1	06.03.2024			
49.	Assignment	1	07.03.2024			
No. of	classes required to				1	1
	ete UNIT-IV	11		No. of	classes take	n:

UNIT-V : TEST AND TESTABILITY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Introduction	1	09.03.2024			
48.	Test and Testability : System Partitioning	1	13.03.2024			
49.	Layout and Testability	1	14.03.2024			

50.	Reset/Initialization	1	15.03.2024		
51.	Design for Testability (DFT)	1	16.03.2024		
52.	Design for Testability (DFT)	1	20.03.2024		
53.	Testing Combinational Logic	1	21.03.2024		
54.	Testing Sequential Logic	1	22.03.2024		
55.	Practical Design for Test Guidelines	1	23.03.2024		
56.	Scan Design Techniques	1	27.03.2024		
57.	Built-In-Self-Test (BIST), Future Trends	1	28.03.2024		
58.	Assignment	1	29.03.2024		
complet	f classes required to e UNIT-V:	12		1	

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
60.	Introduction to Low Power VLSI	1	30.03.2024			

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

EVALUATION PROCESS:

PART-C

	1
Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) =	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30
20% of Min((M1+Q1+A1), (M2+Q2+A2))	
Semester End Examination (SEE)(Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
D O A	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data
	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professiona
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO	Communication: Communicate effectively on complex engineering activities with the
10	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO	Project management and finance: Demonstrate knowledge and understanding of the
11	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments
PO	Life-long learning: Recognize the need for, and have the preparation and ability to
12	engage in independent and life-long learning in the broadest context of technological
	change.
ROGR	AMME SPECIFIC OUTCOMES (PSOs):
PSO	Communication: Design and develop modern communication technologies for
1	building the inter disciplinary skills to meet current and future needs of industry.
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic
2	Circuits or systems and Implement real time applications in the field of VLSI and
	Embedded Systems using relevant tools
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realized

3	the issues related to real time applications	

Course Instructor	Course Coordinator	Module Coordinator	HOD
Smt.T.Kalpana	Smt.T.Kalpana	Dr. P Lachi Reddy	Dr.Y.Amar Babu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. B Siva Hari Prasad, Assoc. Professor
Course Name & Code	: MICROWAVE ENGINEERING-20EC17
L-T-P Structure	: 3-0-0
Credits	: 3
Program/Sem/Sec	: B. Tech. VI-Sem., ECE-C Sec
A.Y	: 2023 – 24

Pre requisite: Vector calculus, Coordinate Systems, Basics of electromagnetics

Course Educational Objective: This course provides the knowledge on different types of waveguides and resonators. The course will give an idea about microwave communication in terms of various bands, advantages, applications. The course also gives the complete information regarding the microwave tubes and passive devices along with microwave bench setup and microwave measurements.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the microwave sources, components and measurements of microwave parameters
	(Understand – L2)
CO 2	Develop the TE, TM fields in waveguides and microwave signals using microwave tubes and
	solid-state devices (Apply – L3)
CO 3	Apply the properties of S-parameters to model the S-matrix of waveguide components (Apply
	– L3)
CO 4	Analyze the flow of microwave fields in waveguides, components and efficiency of microwave
	tubes (Analyze – L4)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO3	3	2	1	1	1	-	-	-	-	-	-	1	3	-	-
CO4	3	3	2	1	1	-		-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS

1. Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.

2. David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4th Edition.

REFERENCE BOOKS

1. M Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi $5{\rm th}$ Edition

2. Jordan and Balmain, "Electromagnetic fields and Radiating systems", Pearson education.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):C

	UNIT-I:[1]	1HRS]				
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction, Microwave Spectrum and Bands	1	05-12-2023		TLM1	
2.	Advantages and Applications of Microwaves	1	06-12-2023		TLM1	
3.	Rectangular Waveguides: Impossibility of TEM waves in waveguides	1	07-12-2023		TLM1	
4.	Transverse Magnetic and Transverse Electric Waves in Rectangular Waveguides	1	08-12-2023		TLM1	
5.	Field Expressions, characteristics of TE and TM Waves-Cutoff frequency	1	12-12-2023		TLM1	
6.	Dominant mode in Rectangular Waveguides, phase velocity, group velocity	1	13-12-2023		TLM1	
7.	relation between cutoff, guided and free space wavelengths	1	14-12-2023		TLM1	
8.	Wave impedances for TE and TM cases.	1	15-12-2023		TLM1	
9.	Circular Waveguides: TM and TE waves in circular guides	1	19-12-2023		TLM1	
10.	Field Expressions, Dominant mode in circular waveguide.	1	20-12-2023		TLM2	
11.	Tutorial,/Assignment	1	21-12-2023		TLM1	

	U	NIT- II: [10	HRS]			
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
12.	Resonators: Rectangular cavity resonators	1	22-12-2023		TLM1	
13.	Circular cavity resonators	1	26-12-2023		TLM1	
14.	Field Expressions, Re-entrant Cavities	1	27-12-2023		TLM1	
15.	Microwave Tubes: Limitations of conventional tubes at microwave frequencies	1	28-12-2023		TLM1	
16.	Klystron Tubes: Two Cavity Klystrons – Structure	1	29-12-2023		TLM1	
17.	Microwave tubes – O type and M type classifications	1	02-01-2024		TLM2	
18.	Velocity Modulation Process and Applegate Diagram,	1	03-01-2024		TLM1	

19.	Reflex Klystrons – Structure, Applegate Diagram and Principle of working,	1	04-01-2024	TLM1	
20.	Power Output, Efficiency, output Characteristics	1	05-01-2024	TLM1	
21.	Tutorial,/Assignment	1	09-01-2024	TLM1	

	UNIT – III[10 HRS] No. of Tentative Actual Teaching H									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
22.	Helix TWT: Types and Characteristics of Slow Wave Structures;	1	10-01-2024		TLM1					
23.	Structure of TWT	1	11-01-2024		TLM1					
24.	Amplification Process in TWT	1	18-01-2024		TLM1					
25.	M-Type Tubes: Cross-field effects	1	19-01-2024		TLM2					
26.	Magnetrons – Different Types	1	23-01-2024		TLM1					
27.	8-Cavity Cylindrical Travelling Wave Magnetron	1	24-01-2024		TLM1					
28.	Hull Cut-off and Hartee Conditions	1	25-01-2024		TLM1					
29.	PI-Mode Operation in Magnetrons	1	06-02-2024		TLM1					
30.	Strapping in Magnetrons	1	07-02-2024		TLM1					
31.	Tutorial,/Assignment	1	08-02-2024		TLM1					

	UNIT – IV[<mark>9 HRS]</mark>				
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
32.	Microwave Solid State Devices: Negative resistance region	1	09-02-2024		TLM1	
33.	Classification, Applications	1	13-02-2024		TLM1	
34.	Transferred Electron Devices: Gunn Diode Principle,	1	14-02-2024		TLM2	
35.	Two Valley Model Theory	1	15-02-2024		TLM1	
36.	RWH Theory, Characteristics.	1	16-02-2024		TLM1	
37.	Avalanche Transit Time Devices: IMPATT diode Principle of Operation and Characteristics,	1	20-02-2024		TLM1	
38.	TRAPATT Diodes Principle of Operation and Characteristics,	1	21-02-2024		TLM1	
39.	IMPATT, TRAPATT Diodes expressions	1	22-02-2024		TLM1	
40.	Tutorial,/Assignment	1	23-02-2024		TLM1	

	UNIT – V [15 HRS]									
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
41.	Waveguide Components: Scattering matrix	1	27-02-2024		TLM1					

42.	Formulation and Properties. S Matrix	1	28-02-2024	TLM1
43.	Calculations for E plane and H plane Tees	1	29-02-2024	TLM1
44.	Calculations for Magic Tee, Directional Coupler	1	01-03-2024	TLM1
45.	Fundamentals of branch line, rat-race couplers	1	05-03-2024	TLM1
46.	microwave filters. Ferrites– Composition and Characteristics,	1	06-03-2024	TLM1
47.	Faraday Rotation; Ferrite Components – Gyrator	1	07-03-2024	TLM1
48.	Isolator, Circulator. Microwave attenuators.	1	12-03-2024	TLM1
49.	Isolator, Circulator. Microwave attenuators.	1	13-03-2024	TLM1
50.	Microwave Measurements: Description of Microwave Bench setup ,precautions	2	14-03-2024 15-03-2024	TLM2
51.	Measurement of Attenuation, Frequency, VSWR	2	19-03-2024 20-03-2024	TLM1
52.	Measurement of Impedance, Power.	1	21-03-2024	TLM1
53.	Tutorial,/Assignment	1	22-03-2024	TLM1

	BEYOND THE SYLLABUS & REVISION [3 HRS]						
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
54.	Microwave devices in RADAR communication	1	26-03-2024		TLM1		
55.	RF Microwave Passive Devices	1	27-03-2024		TLM1		
56.	Microwave devices in sattelite communication	1	28-03-2024		TLM1		

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

1113	Tutorial		roup Discussion/Proj	ect			
<u>PART – C</u> Academic Calendar: 2022 – 23 (VI Semester)							
B.Tech VI Semester - 2021 Admitted Batch							
Cla	ss work Commence From		04-12-2023				
	Description	From	То	Weeks			
I Ph	ase of Instructions	04-12-2023	27-01-2023	8 Weeks			
ΙM	id Examinations	29-01-2023	03-02-2023	1 Week			
II P	hase Instructions	05-02-2023	30-03-2023	8 Weeks			
II N	Iid Examinations	01-04-2023	06-04-2023	1 Week			
Prep	paration & Practicals	08-04-2023	13-04-2023	1 Week			
Sen	nester End Examinations	15-04-2023	27-04-2023	2 Weeks			
Inte	rnship	29-04-2023	22-06-2023	8 Weeks			

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE)	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1),	30
(M2+Q2+A2))	
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

<u>PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering			
	problems.			
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex			
	engineering problems reaching substantiated conclusions using first principles of mathematics,			
	natural sciences, and engineering sciences.			
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and			
	design system components or processes that meet the specified needs with appropriate			
	consideration for the public health and safety, and the cultural, societal, and environmental			
	considerations.			
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of			
	the information to provide valid conclusions.			
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern			
	engineering and IT tools including prediction and modeling to complex engineering activities			
D O (with an understanding of the limitations			
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to			
	the professional engineering practice			
PO 7:	Environment and sustainability : Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need			
PO 8:	for sustainable development. Ethics : Apply ethical principles and commit to professional ethics and responsibilities and			
PU ð:	norms of the engineering practice.			
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader			
109.	in diverse teams, and in multidisciplinary settings.			
PO 10:	Communication : Communicate effectively on complex engineering activities with the			
1010.	engineering community and with society at large, such as, being able to comprehend and			
	write effective reports and design documentation, make effective presentations, and give and			
	receive clear instructions.			
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the			
	engineering and management principles and apply these to one's own work, as a member and			
	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in			
	independent and life-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits
	or systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor

Course Coordinator

Module Coordinator

HOD

[Dr. B SIVA HARI PRASAD]

[Dr. K. RANI RUDRAMA]

[Dr. M.V.SUDHAKAR]

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

COURSE HANDOUT

Part-A

PROGRAM	: B.Tech., VI-Sem., ECE-C
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE L-T-P STRUCTURE	: Microwave Engineering Lab– 20EC61 : 0-0-3
COURSE CREDITS	: 1.5
COURSE INSTRUCTOR	: Dr. B.Y.V.N.R. Swamy /Dr. K. Rani Rudrama /Mr. M. Samba Siva Reddy
COURSE COORDINATOR	Dr. B.Y.V.N.R. Swamy

COURSE OBJECTIVES: This Lab deals with the measurements of the EM signals at microwave frequency range. It involves measurement of frequency, wavelength, VSWR, Impedance and scattering parameters of various microwave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of software tool i.e. HFSS is also introduced and microwave devices will be verified by evaluating the related parameters.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

- CO1 : Demonstrate the functions of microwave bench setup (Understand – L2)
- CO2 : Examine the properties of microwave passive devices using HFSS (Apply L3)
- CO3 : Estimate the frequency, wavelength, VSWR, impedance and scattering parameters of microwave devices (Apply - L3)
- CO4 : Adapt effective communication, presentation and report writing skills (Apply L3)

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	1	1	1	1	3	-	-	-	-	-	-	1	3	-	-
CO3	2	2	-	3	2	-	-	-	-	-	-	-	3	-	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part-B

Batch-1

S. No.	Experiments	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Learning Outcome COs	Teaching Learning Methods	HOD Sign Weekly
1	Demonstration	3	06.12.2023		-	TLM1	
2	Experiment-1	3	13.12.2023		COs 1,3,4	TLM4	
3	Experiment-2	3	20.12.2023		COs 1,3,4	TLM4	
4	Experiment -3	3	27.12.2023		COs1,3,4	TLM4	
5	Experiment-4	3	03.01.2024		COs 1,3,4	TLM4	
6	Experiment-9	3	10.01.2024		COs 2,4	TLM4	
7	Experiment-10	3	24.01.2024		COs2,4	TLM4	
8	Experiment-5	3	07.02.2024		COs1,3,4	TLM4	
9	Experiment-6	3	14.02.2024		COs 1,3,4	TLM4	
10	Experiment-7	3	21.02.2024		COs 1,3,4	TLM4	
11	Experiment-8	3	28.02.2024		COs 1,3,4	TLM4	
12	Experiment-11	3	06.03.2024		COs 2,4	TLM4	
13	Experiment-12	3	13.03.2024		COs 2,4	TLM4	
13	Revision	3	20.04.2024				
14	Internal exam	3	27.04.2024				

Batch-2

S. No.	Experiments	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Learning Outcome COs	Teaching Learning Methods	HOD Sign Weekly
1.	Demonstration	3	09.12.2023		COs 1,4	TLM1	
2.	Experiments-1	3	16.12.2023		COs 1,4	TLM4	
3.	Experiment-2	3	23.12.2023		COs 1,4	TLM4	
4.	Experiment-3,4	3	30.12.2023		COs 3,4	TLM4	
5.	Experiment-9	3	06.01.2024		COs2,4	TLM4	
6.	Experiment-10	3	20.01.2024		COs 2,4	TLM4	
7.	Experiment-5	3	10.02.2024		COs 2,4	TLM4	
8.	Experiment-6	3	17.02.2024		COs 1,3,4	TLM4	
9.	Experiment-7,8	3	24.02.2024		COs 1,3,4	TLM4	
10.	Experiment-11,12	3	02.03.2024		COs 1,3,4	TLM4	
11.	Revision	3	16.03.2024				
12.	Internal exam	3	23.03.2024				

List of Experiments:

Exp. No	Experiments to be conducted	Exp. No	Experiments to be conducted
	CYCLE-1		CYCLE-2
1.	Reflex Klystron Characteristics.	5	Directional coupler characteristics
2.	Gunn diode Characteristics	6	Impedance and frequency measurement
3.	Attenuation measurement	7	Scattering parameters of circulator
4.	VSWR measurement	8	Scattering parameters of Magic tee
9.	Scattering parameters of branch line coupler	11	Design and S-parameter measurement of microwave band stop filter
10	Scattering parameters of rat-race coupler	12	Design and S-parameter measurement of microwave balun

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

Part	-	С
		~

EVALUATION PROCESS:

Evaluation Task	Cos	Marks
Day to Day Work	1,2,3,4	A=5
Record	1,2,3,4	B=5
Internal Exam	1,2,3,4	C=5
Cumulative Internal Examination :	1,2,3,4	A+B+C=15
Semester End Examinations	1,2,3,4	D=35
Total Marks: A+B+C+D	1,2,3,4	50

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education.

PEO2: To Function professionally in the rapidly changing world with advances in technology
PEO3: To Contribute to the needs of the society in solving technical problems using
Communication Engineering principles, tools and practices.
PEO4: To Exercise leadership qualities, at levels appropriate to their experience, which
responsive, ethical, and innovative mannerTo Exercise leadership qualities, at levels appropriate to their experience, which
addresses issues in a

PROGRAMME OUTCOMES (POs)

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. **PO8: Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.

PSO2: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools

PSO3: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
[Dr. B.Y.V.N.R. SWAMY]	[Dr. B.Y.V.N.R. SWAMY]	[Dr. M.V.SUDHAKAR]	[Dr. Y. AMAR BABU]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Name & Code	: Microprocessors and Microcontrollers – 20EC15
L-T-P Structure	: 4-0-0
Credits	: 3
Program	: B.Tech.
A.Y	: 2023 – 24
Course Instructor	: Dr. P. Lachi Reddy

Pre requisite: Digital Logic Circuits

Course Educational Objective: In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: (COs): At the end of the course, students are able to:

CO 1	Understand the architecture of 8086, 8051 and ARM Controller (Understand)
CO 2	Apply Assembly Language instructions for Processor and Controller based applications (Apply)
CO 3	Analyze the operating modes and interrupt structures of processors and controllers (Analyze)
CO 4	Develop the ARM based interfacing systems for Real time applications (Apply)

CO's /						Course	Name	e with	code :	МРМС,	20EC15				
PO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-	1	-	3	-
CO2	3	2	1	1	-	-	-	-	-	-	-	1	-	3	-
CO3	2	3	2	1	-	-	-	-	-	-	-	2	-	3	-
CO4	1	2	3	2	-	-	-	-	-	-	-	2	-	3	-

Prescribed Syllabus:

UNIT-I: 8086 MICROPROCESSOR [9 HRS]

Architecture, Pin diagram, Register organization, Minimum mode and Maximum mode, timing diagrams. Addressing modes, Instruction set, Interrupt vector table, Assembly language programming - data transfer, arithmetic, logical and decision making operations.

UNIT- II: 8051 MICROCONTROLLER [8 HRS]

Architecture, Input/output Ports, Registers, Counter and Timers, Serial port, Interrupts, addressing modes, instruction set and Programming - data transfer, arithmetic, logical and decision making operations.

UNIT - III: ARM ARCHITECTURE & PROGRAMMING MODEL [9 HRS]

History, Architecture, ARM design philosophy, Registers, Program status register, Instruction pipeline, Interrupts and vector table, ARM processor families, Instruction set: Data processing instructions, Addressing modes, Branch, Load-Store instructions, PSR instructions, and Conditional instructions.

UNIT - IV: ARM PROGRAMMING [8 HRS]

Assembly programming, General structure of assembly language, Writing programs, Branch instructions, Loading constrains, load and store instructions, Read only and read/write Memory, Multiple Register Load and Store.

UNIT - V: INTERFACING ARM WITH EXTERNAL PERIPHERALS [8 HRS]

Interfacing - A/D and D/A converter, LEDs, Switches, Relays, LCD, Stepper Motors, Real Time Clock, Serial Communication, GSM and GPS.

Text Books:

- 1. Ray and Burchandi, "Advanced Microprocessors and Interfacing", Tata McGraw-Hill.
- 2. M.A.Mazidi,S.Naimi and S.Naimi, "The AVR Microcontroller and Embedded Systems Using Assembly and C", 1st Edition Pearson Publications, 2013.

Reference Books:

- N.Sentil Kumar, M.Saravanan, S.Jeevananthan, "Microprocessors and Microcontrollers", Oxford University Press, 2010.
- 2. Dhananjay V. Gadre, "Programming and Customizing The AVR Microcontroller", Tata McGraw-Hill publications, 2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

	UNIT-I: 8086 MICROPROCESSOR							
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Architecture	1	04-12-2023	Completion	TLM1	WECKIY		
2.	Pin diagram	1	05-12-2023		TLM2			
3.	Register organization	1	06-12-2023		TLM1			
4.	Minimum mode and Maximum mode, timing diagrams	1	11-12-2023		TLM2			
5.	Addressing modes	1	12-12-2023		TLM1			
6.	Instruction set	1	13-12-2023		TLM1			
7.	Interrupt vector table	1	16-12-2023		TLM1			
8.	Assembly language programming - data transfer, arithmetic operations	2	18-12-2023 19-12-2023		TLM1 TLM3			
9.	Assembly language programming - logical and decision making operations	2	20-12-2023 23-12-2023		TLM1 TLM3			
10.	Tutorial,/Assignment	1	23-12-2023		TLM3			

	UNIT- II: 8051 MICROCONTROLLER								
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
11.	Architecture	1	26-12-2023		TLM2				
12.	Input/output Ports	1	27-12-2023		TLM2				
13.	Registers, Counter and Timers	1	30-12-2023		TLM2				
14.	Serial port, Interrupts	1	02-01-2024		TLM2				
15.	Addressing modes	1	03-01-2024		TLM2				
16.	Instruction set	2	06-01-2023 08-01-2023		TLM2				
17.	Programming - data transfer, arithmetic operations	2	09-01-2024 10-01-2024		TLM2 TLM3				
18.	Programming - logical and decision making operations	1	20-01-2024		TLM2 TLM3				
19.	Tutorial,/Assignment	1	22-01-2024		TLM3				

	UNIT – III: ARM ARCHITECTURE & PROGRAMMING MODEL								
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
20.	History & Architecture	1	23-01-2024		TLM2				
21.	ARM design philosophy	1	24-01-2024		TLM2				
22.	Registers, Program status register	1	27-01-2024		TLM2				
23.	Instruction pipeline, Interrupts and vector table	1	05-02-2024		TLM2				
24.	ARM processor families	1	06-02-2024		TLM2				
25.	Instruction set: Data processing instructions	1	07-02-2024		TLM2				
26.	Addressing modes	1	12-02-2024		TLM2				
27.	Branch, Load-Store instructions	1	13-02-2024		TLM2				
28.	PSR instructions, and Conditional instructions	1	14-02-2024		TLM2				
29.	Tutorial,/Assignment	1	17-02-2024		TLM3				

	UNIT – IV: ARM PROGRAMMING									
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
30.	Assembly programming,	1	19-02-2024		TLM1					
31.	General structure of assembly language	1	20-02-2024		TLM1					
32.	Writing programs	1	21-02-2024		TLM1					
33.	Branch instructions	1	24-02-2024		TLM1					
34.	Loading constrains	1	26-02-2024		TLM1					
35.	load and store instructions	1	27-02-2024		TLM1					
36.	Read only and read/write Memory	1	28-02-2024		TLM1					
37.	Multiple Register Load and Store	1	02-03-2024		TLM1					
38.	Tutorial,/Assignment	1	04-02-2024		TLM3					

	UNIT – V: INTERFACING ARM WITH EXTERNAL PERIPHERALS									
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
39.	Interfacing - A/D converter	1	05-03-2024		TLM2					
40.	Interfacing - D/A converter	1	06-03-2024		TLM2					
41.	Interfacing - LEDs & Switches	1	11-03-2024		TLM2					
42.	Interfacing – Relays & LCD	1	12-03-2024		TLM2					
43.	Interfacing - Stepper Motors	1	13-03-2024		TLM2					
44.	Interfacing - Real Time Clock	1	16-03-2024		TLM2					
45.	Interfacing - Serial Communication	1	18-03-2024		TLM2					
46.	Interfacing - GSM and GPS	1	19-03-2024		TLM2					
47.	Tutorial,/Assignment	1	20-03-2024		TLM2					

	BEYOND THE SYLLABUS & REVISION								
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
48.	LPC1769/LPC2148 Instruction Set	1	23-03-2024		TLM1				
49.	LPC1769/LPC2148 Programming	1	26-03-2024		TLM1				
50.	LPC1769/LPC2148 Interfacing	1	27-03-2024		TLM1				

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

<u>PART – C</u>

Academic Calendar: 2023 – 24 (VI Semester)

B.Tech VI Semester - 2020 Admitted Batch							
Class work Commence From		21-02-2022					
Description	From	То	Weeks				
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks				
I Mid Examinations	29-01-2024	03-02-2024	1 Week				
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks				
II Mid Examinations	01-04-2024	06-04-2024	1 Week				
Preparation & Practicals	08-04-2024	13-04-2024	1 Week				
Semester End Examinations	15-04-2024	27-04-2024	2 Weeks				
Internship	29-04-2024	22-06-2024	8 Weeks				

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III-Half of the Syllabus)	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III-Half of the Syllabus)	M1=15
I-Quiz Examination (Units-I, II & UNIT-III-Half of the Syllabus)	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE)	30
80% of Max((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1), (M2+Q2+A2))	50
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

CO 1	Understand the architecture of 8086, 8051	Describe, Explain, Paraphrase, Restate,
	and ARM Controller (Understand)	Associate, Contrast, Summarize, Differentiate,
		Interpret, Discuss
CO 2	Apply Assembly Language instructions	Calculate, Predict, Apply, Solve, Illustrate,
	for Processor and Controller based	Use, Demonstrate, Determine, Model,
	applications (Apply)	Experiment, Show, Examine, Modify
CO 3	Analyze the operating modes and	Classify, Outline, Break down, Categorize,
	interrupt structures of processors and	Analyze, Diagram, Illustrate, Infer, Select
	controllers (Analyze)	
CO 4	Develop the ARM based interfacing	Categorize, Analyze, Illustrate, Infer Select
	systems for Real time applications	
	(Apply)	

$\mathbf{PART} - \mathbf{D}$

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering				
	fundamentals, and an engineering specialization to the solution of complex engineering				
	problems.				
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex				
	engineering problems reaching substantiated conclusions using first principles of mathematics,				
	natural sciences, and engineering sciences.				
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and				
	design system components or processes that meet the specified needs with appropriate				
consideration for the public health and safety, and the cultural, societal, and envi					
	considerations.				
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research				
	methods including design of experiments, analysis and interpretation of data, and synthesis of				
	the information to provide valid conclusions.				
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern				
	engineering and IT tools including prediction and modeling to complex engineering activities				
	with an understanding of the limitations				
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess				
societal, health, safety, legal and cultural issues and the consequent responsibilities re-					
	the professional engineering practice				
PO 7:	Environment and sustainability: Understand the impact of the professional engineering				
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need				
	for sustainable development.				
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and				
	norms of the engineering practice.				
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader				
	in diverse teams, and in multidisciplinary settings.				
PO 10:	Communication: Communicate effectively on complex engineering activities with the				
	engineering community and with society at large, such as, being able to comprehend and				
	write effective reports and design documentation, make effective presentations, and give and				
DO 11	receive clear instructions.				
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the				
	engineering and management principles and apply these to one's own work, as a member and				
DO 15	leader in a team, to manage projects and in multidisciplinary environments.				
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in				
	independent and life-long learning in the broadest context of technological change.				

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits
	or systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor

Course Coordinator Module Coordinator

HOD

[Dr. P. LACHI REDDY]

[Mr. B.V.N.R.Siva Kumar] [Dr.P. LACHI REDDY] [Dr. Y. AMAR BABU]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Course Name & Code	: Microprocessors and Microcontrollers Lab – 20EC59
L-T-P Structure	: 0-0-3
Credits	: 1.5
Program	: B. Tech. VI Semester ECE-C Section
A.Y	: 2023 - 24
Course Instructor	: Dr. P. Lachi Reddy

COURSEOBJECTIVE:

In this course student will learn about the architecture of 8086 Microprocessor, 8051 Microcontroller and ARM, programming using assembly language, interfacing of devices for real time applications.

Course Outcomes: At the end of the course, student will be able to:

CO1	Demonstrate the MASM/TASM tool for developing Assembly Language Programs.
CO2	Apply the Assembly Language instructions of Processor and Controller for logical operations.
CO3	Develop the ARM based interfacing systems for Real time applications.
CO4	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	2	-	1	1	-	-	-	2	-	2	-
CO2	3	3	3	2	2	-	1	1	-	-	-	3	-	3	-
CO3	3	3	3	3	3	-	1	1	-	-	-	3	-	3	-
CO4	-	-	-	2	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels: 1 or 2 or 3.

If there is no correlation: put'-'

1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High).

PART-B LAB SCHEDULE (LESSONPLAN): Section-C

LIST OF EXPERIMENTS (Minimum 12 Experiments to be conducted)

S. No.	Experiments to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
		CYCLE-	1	1	I	
1.	Introduction to Lab	3	05-12-2023		TLM2	
2.	Display, comparison and reverse the	3	12-12-2023		TLM8	
	string					
3.	Factorial using Procedures	3	19-12-2023		TLM8	
4.	Sorting the signed and unsigned numbers	3	26-12-2024		TLM8	
5.	Checking the given string for Palindrome	3	02-01-2024		TLM8	
6.	Arithmetic operations like Addition,	3	09-01-2024			
	Subtraction, Multiplication and Division				TLM8	
7.	Byte checking by using 8051, Addition of series of numbers	3	23-01-2024		TLM8	
8.	Checking the given numbers for Odd or	3	06-02-2024		TLM8	
	Even					
		CYCLE-2	2	1	I	
9.	Interfacing of A/D and D/A converter	3	13-02-2024		TLM8	
10.	Interfacing of LEDs and Switches, Interfacing of LCD	3	20-02-2024		TLM8	
11.	Interfacing of Stepper Motor	3	27-02-2024		TLM8	
12.	Interfacing of traffic Light controller	3	05-03-2024		TLM8	
13.	Interfacing of Real Time Clock	3	12-03-2024		TLM8	
14.	Data loggers –Roll over display	3	19-03-2024		TLM8	
15.	Internal Lab Exam	3	26-03-2024		TLM8	
No. of	classes required to complete:	45	No. of classes co	onducted:		

PART-C

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD			
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo			
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study			

Academic Calendar: 2023 – 24 (VI Semester)

B. Tech VI Semester - 2021 Admitted Batch						
Class work Commence From		21-02-2022				
Description	From	То	Weeks			
I Phase of Instructions	04-12-2023	27-01-2024	8 Weeks			
I Mid Examinations	29-01-2024	03-02-2024	1 Week			
II Phase Instructions	05-02-2024	30-03-2024	8 Weeks			
II Mid Examinations	01-04-2024	06-04-2024	1 Week			
Preparation & Practicals	08-04-2024	13-04-2024	1 Week			
Semester End Examinations	15-04-2024	24-04-2024	2 Weeks			
Internship	29-04-2024	22-06-2024	8 Weeks			

EVALUATIONPROCESS:

Evaluation Task	COs	Marks
Day to Day work	1,2,3,4	A=10
Internal Lab Examination	1,2,3,4	B=5
Total Internal Marks (A+B)		C=15
Semester End Examinations	1,2,3,4	D=35
Total Marks : C+D	1,2,3,4	50

<u>PART – D</u>

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	Engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO F	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
D O (with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
DO 7	the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
FU 0;	norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader
109.	in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the
1010.	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
1011,	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
10120	independent and life-long learning in the broadest context of technological change.
	macpendent and me tong tearning in the broudest context of teenhological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Course Instructor Course Coordinator Module Coordinator

HOD

[Dr. P. LACHI REDDY] [Mr. K.SASI BHUSHAN] [Dr. P. LACHI REDDY] [Dr. Y. AMAR BABU]

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

Electronics & Communication Engineering

COURSE HANDOUT

PART-A

Name of Course Instructor:Dr. P. Venkat RaoCourse Name & Code: SATELLITE COMMUNICATIONS, 20EC19L-T-P Structure:3-0-0Program/Sem/Sec: B.Tech/VI/C

Credits: 3 **A.Y.:** 2023-2024

PREREQUISITE: Analog Communications & Digital Communications

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the technical knowledge of orbital dynamics, launching of satellite in to the orbit, various subsystems used in space segment, uplink and downlink aspects of satellite. This course will also give an idea about different multiple access techniques, design requirements for the selection of earth station and various real time applications.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the orbital mechanics, concepts of satellite communication and its applications (Understand – L2)
CO2	Summarize the concepts of satellite space segment, earth segment and satellite services (Understand – L2)
CO3	Examine the satellite link budget calculations and orbital dynamics (Apply – L3)
CO4	Apply the multiple-access techniques and mobile services for satellite Communications (Apply – L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	1	-	-	-	-	3	3	-	-	-	-	1	1	-	-
CO2	1	1	1	-	-	3	1	-	-	-	-	1	2	-	-
CO3	1	-	1	2	-	-	-	-	-	-	-	-	2	-	-
CO4	1	1	1	-	-	3	3	-	-	-	-	-	2	-	-
1 - Low 2 - Medium						3	- High								

TEXT BOOKS:

T1. Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons, 2nd edition, 2003..

T2. Dennis Roddy , "Satellite communications", Tata McGraw Hills, 4th Edition, 2009.

REFERENCE BOOKS:

R1	D.C Agarwal, "Satellite communications", Khanna Publications, 5th Edition, 2006.
R2	M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2nd
	Edition, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Satellite Communication

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, COs	1	04-12-23			
2.	Need of satellite communication	1	05-12-23			
3.	Definition of a satellite and orbit	1	07-12-23			
4.	Different types of satellite orbits	1	11-12-23			
5.	Frequency allocations for satellite communication	1	12-12-23			
6.	General structure of satellite communication system	1	12-12-23			
7.	Merits and demerits of satellite communication	1	14-12-23			
8.	types of launch vehicles: ELV &RLV.	1	18-12-23			
9.	Applications of satellite communication	1	19-12-23			
10.	Satellite sub systems	1	19-12-23			
No. of classes required to complete UNIT-I: 10				No. of clas	ses taker	1:

UNIT-II: Orbital Dynamics and Satellite Launching

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Kepler's Laws	1	21-12-23			
12.	Definitions of Terms for Earth- Orbiting Satellites	1	26-12-23			
13.	Orbital Elements,	1	26-12-23			
14.	Apogee and Perigee Heights	1	28-12-23			
15.	Effects of non spherical earth, Atmospheric drag	1	01-01-23			
16.	Orbital perturbations-need for station keeping	1	02-01-23			
17.	Non geostationary orbits and geostationary orbits	1	02-01-23			
18.	Orbital effects: Doppler shift, Range variation	1	04-01-23			
19.	solar eclipse and sun transit outage	1	08-01-23			
20.	launching of geostationary satellites.	1	09-01-23			
21.	Look angle determination	1	11-01-23			
22.	elevation angle and azimuth angle calculation	1	16-01-23			
No.	of classes required to complete	12	No. of clas	sses taker	:	

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
23.	Introduction to space segment	1	16-01-23			
24.	Power supply unit	1	18-01-23			
25.	Attitude and orbital control	1	22-01-23			
26.	spinning satellite stabilization and momentum wheel stabilization	1	23-01-23			
27.	Station keeping	1	23-01-23			
28.	Thermal control	1	25-01-23			
29.	TT&C subsystem	1	05-02-23			
30.	Transponders, The wideband receiver, The input demultiplexer, The power amplifier	1	06-02-23			
31.	Antenna subsystem, Equivalent Isotropic Radiated Power, Free-space transmission	1	06-02-23			
32.	Feeder losses, Antenna misalignment losses, Fixed atmospheric and ionospheric losses	1	08-02-23			
33.	Link power budget equation, System Noise, Carrier-to-Noise Ratio	1	12-02-23			
34.	The Uplink, Saturation flux density, Input backoff, Downlink	1	13-02-23			
35.	Output back-off, Combined Uplink and Downlink C/N Ratio.	1	13-02-23			
	No. of classes required to comp	lete UNIT	-III: 13	No. of clas	sses take	1:

UNIT-III: Space Segment and Link Design

UNIT-IV: Earth segment and Satellite access

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Design requirements for the selection of earth segment	1	15-02-23			
37.	Transmit only earth station, Receive only earth station	1	19-02-23			
38.	Transmit -Receive (T/R) earth station	1	20-02-23			
39.	Single Access	1	20-02-23			
40.	Preassigned FDMA	1	22-02-23			
41.	Demand-Assigned FDMA	1	26-02-23			
42.	Spade System, TDMA	1	27-02-23			
43.	Preassigned TDMA	1	27-02-23			
44.	Demand-assigned TDMA	1	04-03-23			
45.	Satellite-Switched TDMA	1	05-03-23			
46.	CDMA	1	05-03-23			
No. of classes required to complete UNIT-IV: 11				No. of clas	ses taker	1:

UNIT-V: Satellite Services & Applications

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Different types of satellite services	1	07-03-23			
48.	Global Positioning System	1	11-03-23			
49.	architecture and location principle	1	12-03-23			
50.	Direct Broadcast Satellite	1	12-03-23			
51.	DBS/DTH	1	14-03-23			
52.	Home receiver block (Indoor & Outdoor Unit)	1	18-03-23			
53.	Satellite Mobile Services	1	19-03-23			
54.	VSAT, MSAT	1	19-03-23			
55.	RADARSAT	1	21-03-23			
56.	IRNSS constellation	1	26-03-23			
57.	Orbcomm, Iridium	1	26-03-23			
58.	Revision	1	28-03-23			
No. of classes required to complete UNIT-V: 12						

Concepts beyond the syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
59.	Case study on latest Indian satellite launching and services	1	28-03-23			

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
P30 1	inter disciplinary skills to meet current and future needs of industry.
	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
PSO 2	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
PSU 3	related to real time applications

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. P. Venkat Rao	Dr. P. Venkat rao	Dr. M.V Sudhakar	Dr. Y.Amarbabu
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001 : 2018, 50001 : 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

FRESHMAN ENGINEERING DEPARTMENT COURSE HANDOUT

PART-A

Name of Course Instructor : M Anuradha						
Course Name & Code	: Soft Skills & 20HSS1					
L-T-P Structure	: 1-0-2					
Program/Sem/Sec	: B. Tech- VI SEM ECE C					
Academic Year	: 2023-24					

Credits: 02

PREREQUISITE: NIL

Course Educational Objectives:

The Soft Skills Laboratory course equips students with required behavioral, interpersonal & Intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self-confidence, esteem, and acceptability in professional circles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	To Develop self-awareness and personality traits for professional growth.	L2
CO2	Work effectively in multi-disciplinary and heterogeneous teams through knowledge of teamwork, Inter-personal relationships, conflict management and leadership quality.	L3
CO3	Communicate through verbal/oral communication with good listening skills and empathy.	L3
CO4	Apply skills required to qualify in recruitment tests, Interviews & other professional assignments.	L3

COURSE ARTICULATION MATRIX (Correlation between COs & POs)

		Programme Outcomes										
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
PO's →												
CO1.					2			3	3	3		2
CO2.		2			2			3	3	3		3
CO3.					2			3	3	3		3
CO4.					2			3	3	3		
1 = Sli	1 = Slight (Low) 2= Moderate (Medium) 3 =						=					
	Substantial (High)											

List of Activities:

1.Personality Development Skills

Role of language in Personality – How language reflects, impacts Personality – Using gender- neutral language in MNCs – being Culturally-Sensitive-Personality Traits - Grooming & Dress code

Activities: Group Discussion/Role play/Presentations (authentic materials: Newspapers, pamphlets and News Clippings)

2.Impactful Communication

Activities: Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/ Elocution on Interpretation of given quotes/ Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

3.Professional Skills:

Career Planning- job vs. career- goal setting- SWOT Analysis-Time management – self-management – stress-management.

Activities: SWOT analysis of the self/Goal Setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

REFERENCES:

- 1. Edward Holffman, "Ace the Corporate Personality", McGraw Hill,2001
- 2. Adrian Furnham, Personality and Intelligence at Work, Psyc 2. hology Press, 2008.
- 3. M.Ashraf Rizvi, "Effective Technical Communication", 1st edition, Tata

C Graw Hill, 2005.

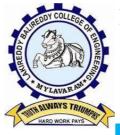
- 4. Ace of Soft skills Gopalaswamy Ramesh, Pearson Education India, 2018
- 5. Soft Skills for the Workplace, Good heart Willcox Publisher · 2020.
- 6. How to Win Friends and Influence People, Dale Carnegie · 2020

Software: Walden InfoTech

COURSE DELIVERY PLAN (LESSON PLAN)

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
	Activity-1: Role of language in Personality- How language reflects, impacts Personality – Using gender	1+2	07/12/2023		TLM- 1,2& 6.	
	Neutral language in MNCs – Being Culturally-Sensitive- Personality Traits- Grooming & Dress code	1+2	14/12/2023		TLM- 1,2 &6.	
	Role-play	1+2	21/12/2023		TLM- 1, 2& 6.	
	Group Discussion	1+2	28/12/2023		TLM- 1,2& 6.	
	Presentations	1+2	04/01/2024		TLM- 1,2& 6.	

Activity-2: Impactful	1+2	11/01/2024	TLM-
Communication			1,2& 6.
Extempore - Story Telling			
Extempore -Group Discussion	1+2	18/01/2024	TLM-
			1,2& 6.
Elocution on Interpretation of	1+2	25/01/2024	TLM-
given quotes			1,2& 6.
Critical Appreciation and	1+2	08/02/20	TLM-
Textual Analysis/ Writing			1, 2& 6.
Reviews on short story/	1+2	15/02/2024	TLM-
book/videos/ Social Media			1,2& 6.
profiling/ Pronunciation Practice			
Activity-3: Professional Skills:	1+2	22/02/2024	TLM-
Career Planning			1,2& 6.
Job vs. career- goal setting	1+2	29/02/2024	TLM-
			1, 2& 6.
Critical Appreciation and	1+2	07/03/2024	TLM-
Textual Analysis/ Writing			1,2& 6.
Stress-management.	1+2	14/03/2024	TLM-
			1,2& 6.
Presentation/Writing Report	1+2	21/03/2024	TLM-
/Listening exercises			1,2& 6.
Effective Resume-Writing and	1+2	28/03/2024	TLM-
presentation			1,2& 6.
Interview Skills: Mock	1+2	04/04/2024	TLM-
Interviews /Video samples.			1, 2& 6.


Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to

	assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the
PO 8	knowledge of, and need for sustainable development Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	M. Anuradha	Dr. R. Padma Venkat	Dr. R. Padma Venkat	Dr. A. Ramireddy
Signature				

LAKIREDDY BALIREDDYCOLLEGE OFENGINEERING

(AUTONOMOUS)

AccreditedbyNAAC&NBA(UnderTier-

I),ISO9001:2015CertifiedInstitutionApprovedbyAICTE,NewDelhi.

AndAffiliatedtoJNTUK, Kakinada

L.B.REDDYNAGAR, MYLAVARAM, NTR DIST., A.P.-521230.

Phone:08659-222933,Fax:08659-222931

DEPARTMENTOFELECTRONICS & COMMUNICATIONS ENGINEERING

COURSEHANDOUT

PART-A

Name of Course Instru	ctor :Kamala Priya B, Assistant Professor	
Course Name & Code	:Operations Research Techniques-20ME83	Regulation:R20
L-T-P Structure	: 4-0-0	Credits:03
Program/Sem/Sec	: B.Tech- ECE VI Sem C/S	A.Y.: 2023-24
PREREQUISITE	: Nil	

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this course is to introduce the concepts of formulating an engineering problem into mathematical model to develop an optimal solution.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Apply linear programming approach for optimizing the objectives of industrial oriented problems. (Applying-L3)
CO2	Formulate and solve transportation models and assignment models. (Applying-L3)
CO3	Implement the strategies in competitive situations and able to sequence the jobs to be processed on machines. (Applying-L3)
CO4	Identify the replacement period of the equipment and englyze the waiting situations in an
CO5	Determine the optimum inventory level and resolve the complex problem into simple problems by dynamic programming approach and apply optimum strategies. (Applying-L3)

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3				3			3		3	
CO2	3	3	1	2	1				3			3		3	
CO3	3	3	3	2	1				3			3		3	
CO4	3	2	3	2	3				1			3		3	
CO5	2	3	3	2	1				1			3		3	

TEXTBOOKS:

T1	S.D Sharma, —Operation Research ^{II} , Kedar Nath and RamNath - Meerut, 2008.
T2	Operations Research / N.V.S. Raju / SMS, 2009.

REFERENCE BOOKS:

D1	Singiresu S Rao, Engineering Optimization: Theory and Practice, A Wiley- Interscience Publication,
	4th edition, 2009.
R2	Hiller & Libermann, Introduction to O.R (TMH), 9 th EDITION, 2009.
R3	Kantiswarup. P.K.Gupta, Man Mohan, Operations Research, Sultan Chand & Sons, Educational
КЭ	Publications, New Delhi, 14th Edition, 2008.
D4	A.M.Natarajan, P.Balasubramani, A. Tamilarasi, Operations Research, Pearson Education,
R4	2^{nd} edition, 2014.
R5	Taha, Introduction to O.R .PHI, 9 th edition, 2010.

PART-B

COURSEDELIVERY PLAN (LESSONPLAN): Section-A

UNIT-I:INTRODUCTION &LINEAR PROGRAMMING PROBLEM

S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	of	TeachingLear ningMethods	HOD Sign Weekly
1.	INTRODUCTION : Introduction To ORT & CEO, COs	1	04.12.2023		TLM1/TLM2	
2.	Operations Research Models, Phases & Applications	1	04.12.2023		TLM1/TLM2	
3.	Linear Programming Problem (LPP): Formulation	1	06.12.2023		TLM1	
4.	Numericals	1	08.12.2023		TLM1	
5.	Graphical Solution For Special Cases Of LPP	1	11.12.2023		TLM1	
6.	Simplex Method	1	11.12.2023		TLM1	
7.	Numericals	1	13.12.2023		TLM1	
8.	Numericals	1	15.12.2023		TLM1	
9.	Big M Method	1	18.12.2023		TLM1	
10.	Numericals	1	18.12.2023		TLM1	
11.	Two Phase Simplex Method	1	20.12.2023		TLM1	
12.	Numericals	1	22.12.2023		TLM1	
13.	Big M method	1	27.12.2023		TLM1	
14.	Numericals	1	29.12.2023		TLM1	
	of classes required to complete [T-I:	14		No. of class	es taken:	

UNIT-II: TRANSPORTATION & ASSIGNMENT PROBLEMS

S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	ActualDate of Completion	Teaching Learning Methods	HOD Sign Weekly
1 1 2	Introduction To TP, Terminology, Formulation	1	03.01.2024		TLM1/TLM2	
16.	Standard Form, Unbalanced TP	1	05.01.2024		TLM1	
17.	Numericals	1	08.01.2024		TLM1	
18.	IBFS:NWCM, LCM, VAM	1	08.01.2024		TLM1	
19.	Numericals	1	10.01.2024		TLM1	
20.	Test For Optimality: Stepping Stone Method, Modified Distribution Method (MODI Method)		12.01.2024		TLM1	

21.	Numericals	1	17.01.2024	TLM1	
22.	Degeneracy in TP, Numericals	1	19.01.2024	TLM1	
23.	Introduction to Assignment Problem	1	22.01.2024	TLM1	
1 /4	Variants of Assignment Problems	1	22.01.2024	TLM1	
25.	Optimal Solution, Numericals	1	24.01.2024	TLM1	
26.	Travelling Salesmen Problem	1	26.01.2024	TLM1	
27.	Numericals	1	05.02.2024	TLM1	
No.	of classes required to complete	13		No. of classes taken:	
UNI	T-II				

UNIT-III: GAME THEORY AND JOB SEQUENCING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	ActualDate of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Introduction to Games Theory: Terminology	1	05.02.2024		TLM1/TLM2	
29.	Minimax or Maxmini Criterion,Optimal Strategy	1	07.02.2024		TLM1	
30.	Solution of games with saddle point	1	09.02.2024		TLM1	
	Rectangular games without saddle point, Numericals	1	12.02.2024		TLM1	
32.	2x2 games	1	12.02.2024		TLM1	
	mx2, 2xn, mxn games, Dominance Principle,	1	14.02.2024		TLM1	
	Graphical approach, Numericals	1	16.02.2024		TLM1	
1 1	Iob Sequencing: n jobs through 2 nachines,	1	19.02.2024		TLM1	
36.	n jobs through 3 machines,	1	19.02.2024		TLM1	
37.	2 jobs through m machines	1	21.02.2024		TLM1	
38.	Numericals	1	23.02.2024		TLM1	
39.	Graphical model	1	26.02.2024		TLM1	
	of classes required to complete T-III	12		No. of classes	taken:	

UNIT-IV: THEORY OF REPLACEMENT AND WAITING LINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	ActualDate of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	THEORY OF REPLACEMENT: Introduction, Replacement of Equipment that Deteriorates Gradually	1	26.02.2024		TLM1/TLM2	
41.	Numericals	1	28.02.2024		TLM1	
42.	Replacement of Equipment that fails suddenly, Numericals	1	01.03.2024		TLM1	
43.	Numericals	1	04.03.2024		TLM1	
44.	Group Replacement Policy	1	04.03.2024		TLM1/TLM2	
45.	Introduction to Queuing Theory	1	06.03.2024		TLM1/TLM2	
46.	Single Channel – Poisson arrivals – exponential service times – with	1	08.03.2024		TLM1	

	infinite population, Derivation					
	Single Channel – Poisson arrivals – exponential service times – with finite population, Numericals	1	11.03.2024		TLM1/TLM2	
No. (UNI	of classes required to complete Γ-IV	08		No. of classes	taken:	

UNIT-V: INVENTORY MODELS AND DYNAMIC PROGRAMMING

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	ActualDate of Completion	Teaching Learning Methods	HOD Sign Weekly
4X	INVENTORY MODELS- terminology, EOQ	1	11.03.2024		TLM1/TLM2	
1 4 9	Instantaneous Production, finite, continuous demand	1	13.03.2024		TLM1/TLM2	
50.	Shortages not Allowed	1	15.03.2024		TLM1	
	Purchase inventory models with one price break	1	18.03.2024		TLM1	
	Purchase inventory models with multiple price breaks	1	20.03.2024		TLM1	
1 1 1	DYNAMIC PROGRAMMING (DP): Introduction To DP	1	22.03.2024		TLM1/TLM2	
54.	Bellman's Principle of Optimality, Applications of Dynamic Programming	1	25.03.2024		TLM1/TLM2	
	Capital Budgeting Problem, Numericals	1	25.03.2024		TLM1	
56.	linear programming problem	1	27.03.2024		TLM1	
57.	Shortest path problems	1	29.03.2024		TLM1	
No. a UNI	f classes required to complete Γ-V	10		No. of classes	taken:	

Teaching	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration(Lab/Field Visit)						
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

Academic Calendar

Description	From	То	Weeks
I Phase of Instructions	04-12-2023	27-01-2024	8
I MID Examinations	29-01-2024	03-02-2024	1
II Phase of Instructions	05-02-2024	30-03-2024	8
II MID Examinations	01-04-2024	06-04-2024	1
Preparation and Practicals	08-04-2024	13-04-2024	1
Semester End Examinations	15-04-2024	27-04-2024	2

PART-C

EVALUATION PROCESS (R20Regulation):

Evaluation Task	Marks				
Assignment-I (Units-I,II & UNIT-III(Half of the Syllabus))	A1=5				
I-Descriptive Examination (Units-I,II & UNIT-III (Half of the Syllabus))					
I-QuizExamination(Units-I,II&UNIT-III(HalfoftheSyllabus))					
Assignment-II(Unit-III(RemainingHalfoftheSyllabus),IV&V)	A2=5				
II-DescriptiveExamination(UNIT-III(RemainingHalfoftheSyllabus),IV&V)	M2=15				
II-QuizExamination(UNIT-III(RemainingHalfoftheSyllabus),IV&V)					
$\frac{MidMarks=80\% of Max((M1+Q1+A1),(M2+Q2+A2))+20\% of Min((M1+Q1+A1),(M2+Q2+A2))}{))}{}$	<mark>M=30</mark>				
CumulativeInternalExamination(CIE):M	<mark>30</mark>				
SemesterEndExamination(SEE)	<mark>70</mark>				
TotalMarks=CIE+SEE	100				

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	To Attain a solid foundation in Electronics & Communication Engineering fundamentals with
PEO 1	an attitude to pursue continuing education.
	To Function professionally in the rapidly changing world with advances in technology.
PEO 3	To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices.
I EO 3	Communication Engineering principles, tools and practices.
PEO 4	To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner.
PEO 4	issues in a responsive, ethical, and innovative manner.

PROGRAMME OUTCOMES (POs):

	Engineeringknowledge:Applythe knowledge
PO1	ofmathematics, science, engineering fundamentals, and an engineering
	specializationtothesolution
	of complex engineering problems. Problemanalysis:Identify, formulate,
PO2	reviewresearchliterature, and analyse complex engineering problems reaching substa
102	ntiated conclusions using first principles of mathematics, natural sciences, and
	engineering sciences.
	Design/development of solutions : Design solutions for complex engineering
PO3	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-
PO4	based knowledge and research methods including design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid conclusions.
	Moderntoolusage: Create, select, and apply appropriate techniques, resources, and
PO5	modern engineering and IT tools including prediction and modeling to complex engineering
	activities with an understanding of the limitations.
	Theengineerandsociety : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities
PO6	relevant to the professional engineering practice.
	Environmentandsustainability : Understand the impact of the professional
PO7	engineering solutions in societal and environmental contexts, and demonstrate the
107	knowledge of, and need for sustainable development.
DOO	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
PO8	norms of the engineering practice.
PO9	Individualandteamwork: Function effectively as an individual, and as a member or
107	leader in diverse teams, and in multidisciplinary settings.
DOLL	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and
PO10	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
	Project management and finance: Demonstrate knowledge and
PO11	understanding of the ring and management principles and apply these to one's own work, as
	a member and leader in a team, to manage projects and in multidisciplinary environments.
	Life-longlearning: Recognize the need for, and have the preparation and ability to
PO12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMMESPECIFICOUTCOMES(PSOs):

	Design and develop modern communication technologies for building the interdisciplinary
	skills to meet current and future needs of industry.
	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real
PSO 2	Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools.
PSO 3	Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

Title	CourseInstructor	CourseCoordinator	ModuleCoordinator	Head of theDepartmen t
Name of the Faculty	Kamala Priya B	Mr.V.Sankararao	Dr.M.B.S.Sreekara Reddy	Dr.M.B.S.Sreekara Reddy
Signature				

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor	: N Dharmachari	
Course Name & Code L-T-P Structure	: VLSI Design Automation – 20ECH3 : 3-1-0	Credits: 4
Program/Sem/Sec	: B.Tech., ECE., VI-Sem., Honors	A.Y : 2023-24

PRE-REQUISITE: VLSI Design

COURSE EDUCATIONAL OBJECTIVES (CEOs):

In this course student will learn about the design cycles, various techniques on Partitioning, Placement and Routing and addressing their problems

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand need for VLSI physical design automation. (Understand – L2)
CO 2	Analyze VLSI automation algorithms for partitioning (Apply – L3)
CO 3	Formulate placement, floor planning and pin assignment problems and simulate. (Apply – L3)
CO 4	Resolve routing issues using various algorithms (Analyze – L4)
CO 5	Illustrate physical design cycle for FPGAs (Analyze – L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-		-	-	1	-	2	-
CO2	1	2	2	1	2	-	-	-	-	-	-	1	-	2	-
CO3	1	2	3	1	2	-	-	-	-	-	-	2	-	3	-
CO4	1	2	3	2	3	-	-	-	-	-	-	2	-	3	-
CO5	3	2	3	2	3	-	-	-	-	-	-	2	-	3	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

TEXT BOOK:

1. Naveed Shervani, "Algorithms for VLSI Physical Design Automation", Springer Publisher, Third edition

REFERENCE BOOKS:

1. ChristophnMeinel& Thorsten Theobold, "Algorithm and Data Structures for VLSI Design", KAP, 2002.

2. Rolf Drechsheler :"Evolutionary Algorithm for VLSI", Second edition.

3. Trimburger, "Introduction to CAD for VLSI", Kluwer Academic publisher, 2002

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-A UNIT-I: VLSI Physical Design Automation

	11-1. VESI Physical Design Automation	No. of	Tentative	Actual	Teaching	HOD
S.No.	Topic/s	Classes	Date of	Date of	Learning	Sign
	-	Required	Completion	Completion	Methods	Weekly
1.	General Interaction & Introduction to the course	1	05-12-2023		-	
2.	Course Objective and Outcomes, POs, PSOs and Mapping with COs	1	07-12-2023		-	
3.	Introduction	1	12-12-2023		TLM1	
4.	VLSI Design cycle	1	14-12-2023		TLM2	
5.	New trends in VLSI design cycle	2	16-12-2023		TLM2	
6.	New trends in Physical design cycle	1	19-12-2023		TLM2	
7.	Design styles	1	21-12-2023		TLM2	
8.	Full custom Basic terminology	2	23-12-2023		TLM2	
9.	Complex issues	1	26-12-2023		TLM2	
10.	Basic algorithms	1	28-12-2023		TLM2	
11.	Basic data structures, and algorithms	2	30-12-2023		TLM2	
No. of I	classes required to complete UNIT-	14	No. of	f classes take	n	

UNIT-II: VLSI Automation Algorithms

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Partitioning: problem formulation	1	02-01-2024		TLM2	
2.	Classification of partitioning algorithms	1	04-01-2024		TLM2	
3.	Group migration algorithms	3	06-01-2024 09-01-2024		TLM2	
4.	Simulated annealing & evolution.	2	11-01-2024 16-01-2024		TLM2	
5.	Other partitioning algorithms	3	18-01-2024 20-01-2024		TLM2	
No. of UNIT	classes required to complete -II	10	No. of	f classes take	en	

UNIT-III: Placement, Floor Planning & Pin Assignment

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Problem formulation	1	23-01-2024		TLM2	
2.	Simulation base placement algorithms	1	25-01-2024		TLM2	
3.	Other placement algorithms	2	27-01-2024		TLM2	
4.	Constraint based floor planning	2	06-02-2024 08-02-2024		TLM2	

5.	floor planning algorithms for mixed block & cell design	1	13-02-2024	TLM2	
6.	General & channel pin assignment	1	15-02-2024	TLM2	
No. of classes required to complete UNIT-III		08	No	. of classes taken	

UNIT-IV: Global Routing, Detailed Routing and Over The Cell Routing & Via Minimization

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Problem formulation	2	17-02-2024		TLM2	
2.	Classification of global routing algorithms	1	20-02-2024		TLM2	
3.	Problem formulation, Classification of Detailed routing algorithms	1	22-02-2024		TLM2	
4.	Maze routing algorithm, line probe algorithm	2	24-02-2024		TLM2	
5.	Steiner Tree based algorithms, ILP based approaches	1	27-02-2024		TLM2	
6.	Single layer routing algorithms	1	29-02-2024		TLM2	
7.	Two layer channel routing algorithms	2	02-03-2024		TLM2	
8.	Three layer channel routing algorithms, Switchbox routing algorithms	1	05-03-2024		TLM2	
9.	Two layers over the cell routers	1	07-03-2024		TLM2	
10.	Constrained & unconstrained via minimization	1	12-03-2024		TLM2	
No. of UNIT	classes required to complete -IV	13	No.	of classes take	en	

UNIT-V: Physical design Automation of FPGAs

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	14-03-2024		TLM2	
2.	FPGA Technologies	2	16-03-2024		TLM2	
3.	Physical design cycle for FPGAs, Partitioning	1	19-03-2024		TLM2	
4.	Routing	1	21-03-2024		TLM2	
5.	Routing algorithms for the non- segmented model	2	23-03-2024		TLM2	
6.	Routing algorithms for segmented model	1	26-03-2024		TLM2	
7.	routing algorithms for staggered model	1	28-03-2024		TLM2	
No. of UNIT	classes required to complete -V	09	No. of classes taken			

Contents beyond the Syllabus

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Semi-custom IC design flow	2	30-03-2024		TLM4	

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4 Demonstration (Lab/Field Visit)	
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS:

Evaluation Task	Mark
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) =	
80% of Max((M1+Q1+A1), (M2+Q2+A2)) +	30
20% of Min((M1+Q1+A1), (M2+Q2+A2))	
Semester End Examination (SEE) (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering problems.			
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex			
	engineering problems reaching substantiated conclusions using first principles of mathematics,			
	natural sciences, and engineering sciences.			
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and			
	design system components or processes that meet the specified needs with appropriate			
	consideration for the public health and safety, and the cultural, societal, and environmental			
	considerations.			
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of the			
	information to provide valid conclusions.			
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern			
	engineering and IT tools including prediction and modelling to complex engineering activities			
	with an understanding of the limitations			
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the			
	professional engineering practice			
PO 7:	Environment and sustainability: Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for			
	sustainable development.			
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms			
	of the engineering practice.			

PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader in			
	diverse teams, and in multidisciplinary settings.			
PO 10:	Communication: Communicate effectively on complex engineering activities with the			
	engineering community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and receive			
	clear instructions.			
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the			
	engineering and management principles and apply these to one's own work, as a member and			
	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12:	Life-long learning: Recognize the need for and have the preparation and ability to engage in			
	independent and life-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Mr. N.Dharmachari Course Coordinator Mr. N.Dharmachari Module Coordinator Dr. P.Lachi Reddy HOD Dr. Y. Amar Babu