LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: M.KARTHIK KUMAR

Course Name & Code: Basic Civil and Mechanical Engineering &23CM01L-T-P Structure: 3-0-0Credits: 3Program/Sem/Sec: B.Tech, II SEM- ECE_A SECA.Y.: 2023-24

PREREQUISITE: NIL

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.
- Introduction to basic civil engineering materials and construction techniques.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1:	Describe various sub-divisions of Civil Engineering and to appreciate their role in societal development. (Understand)
CO2:	Outline the concepts of surveying and obtain the theoretical measurement of distances, angles and levels through surveying. (Understand)
CO3:	Classify the various materials used in construction and highway engineering and identify their appropriate usage as per the needs. (Understand)
CO4:	Illustrate the fundamental principles involved in transportation network system, their individual components and their engineering importance. (Understand)
CO5:	Explain the quality parameters of various water sources and functions of selected water storage and conveyance structures. (Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	1	•	-	-	2	-	2	-	-	-	-	-	2	-	2
CO2	-	-	-	-	2	-	2	-	-	-	-	-	-	-	-
CO3	1	-	-	-	2	-	2	-	-	-	-	-	-	-	2
CO4	1	-	-	-	1	-	-	-	-	-	-	3	-	-	-
CO5	-	-	-	-	1	-	-	-	-	1	-	-	-	-	-
1 - Low				2	-Med	ium			3	- High					

Textbooks:

1. Basic Civil Engineering, M.S.Palanisamy, , Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.

- 2. Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition.
- 3. Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

Reference Books:

- 1. Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
- 2. Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
- 3. Irrigation Engineering and Hydraulic Structures Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
- 4. Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
- 5. Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basics of Civil Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction CO's & PO's, Subject	1	13-2-24		TLM2	
2.	Basics of Civil Engineering: Role of Civil Engineers in Society	1	15-2-24		TLM2	
3.	Various Disciplines of Civil Engineering- Structural Engineering-	1	16-2-24		TLM2	
4.	Geo-technical- Transportation Engineering	1	17-2-24		TLM2	
5.	Engineering, Hydraulics and Water Resources Engineering	1	19-2-24		TLM2	
6.	Environmental Engineering-Scope of each discipline -	1	20-2-24		TLM2	
7.	Building Construction and Planning-	1	22-2-24		TLM2	
8.	Construction Materials-Cement -types	1	23-3-24		TLM2	
9.	Aggregate types- Bricks- classifications, Steel-properties - types	1	24-4-24		TLM2	
10.	Cement concrete- Applications	1	26-2-24		TLM2	
11.	Introduction to Prefabricated construction Techniques	1	27-2-24		TLM2	
No.	of classes required to complete UN	No. of class	ses taken:			

UNIT-II: Surveying

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Introduction Surveying	1	29-2-24		TLM2	
13.	Objectives of Surveying, Horizontal Measurements	1	1-3-24		TLM2	
14.	Compass Surveying overview- Angular Measurements and Introduction to Bearings	1	2-3-24		TLM2	
15.	Simple problems on bearings	1	4-3-24		TLM1	

16.	-Problems -practice	1	5-3-24	TLM1
17.	Levelling introduction	1	7-3-24	TLM1
18	Levelling instruments used for	1	11-3-24	TLM2
10.	levelling	1	11521	1 11/12
10	Simple problems on levelling and	1	12-3-24	TIM2
19.	bearings	T	12-3-24	I LIVIZ
20.	problems on levelling	1	14-3-24	TLM2
21.	Problems -practice	1	15-3-24	TLM2
22.	Contour mapping	1	16-3-24	TLM2
No.	of classes required to complete UM	No. of classes taken:		

UNIT-III: Transportation Engineering & Water Resources and Environmental Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
23.	Transportation Engineering Importance of Transportation in Nation's economic development	1	18-3-24		TLM2	
24.	Types of Highway Pavements	1	19-3-24		TLM2	
25.	Flexible Pavements - Rigid Pavements	1	21-3-24		TLM2	
26.	Simple Differences	1	22-3-24		TLM2	
27.	Basics of Harbour, Tunnel	1	23-3-24		TLM2	
28.	Basics of Airport, and Railway Engineering	1	26-3-24		TLM2	
29.	Water Resources and Environmental Engineering Introduction, -	1	27-3-24		TLM2	
30.	Sources of water	1	28-3-24		TLM2	
31.	Quality of water- Specifications	1	30-3-24		TLM2	
32.	Introduction to Hydrology	1	1-4-24		TLM2	
33.	Rainwater Harvesting-Water Storage	1	2-4-24		TLM2	
34.	Conveyance Structures	1	4-4-24		TLM2	
35.	(Simple introduction to Dams and Reservoirs),	1	6-4-24		TLM2	
36.	Mid-II exams					
No. of classes required to complete UNIT-III:13 No. of classes taken:						

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks			
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5			
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))				
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))				
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5			
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)				
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)				
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>			
Cumulative Internal Examination (CIE): M	<mark>30</mark>			
Semester End Examination (SEE)	<mark>70</mark>			
Total Marks = CIE + SEE	100			

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage
	in independent and life-long learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyse and design various systems using analytical and software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	M.KARTHIK KUMAR	B.RAMAKRISHNA	Dr.C.Rajamallu	Dr.J.Venkateswara rao
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Mr.S.VijayaDasaradhaCourse Name & Code: Chemistry&23FE02L-T-P Structure:3-0-0Program/Sem/Sec: B.Tech/I-Sem/ECE-A

Credits:03 A.Y.:2023-24

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enable the students to understand the fundamental concepts of chemistry and to provide them with the knowledge of industrial problems and finding the solutions.
- To strengthen the basic concepts of bonding models, advanced engineering materials, electrochemistry, batteries and polymers.
- To introduce instrumental methods and their applications.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the fundamentals of quantum mechanics and molecular orbital energy
	diagrams for molecules (Understand)
CO2	Summarize the suitability of advanced materials like semiconductors, superconductors,
	super capacitors and nano materials, in advanced fields (Understand)
CO3	Apply Nernst equation in calculating cell potentials and understand conductometric,
	potentiometric titrations, electrochemical sensors and compare batteries for different
	applications (Understand)
CO4	Outline the importance of polymers and conducting polymers in advanced technologies
	(Understand)
C05	Understand the fundamentals of UV-Visible, IR spectroscopic techniques and basic
	principles of chromatographic techniques (Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

POs COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	2	2	2	-	2	2	-	-	-	-	2
CO3	3	3	2	2	-	2	2	-	-	-	-	2
CO4	3	2	2	2	-	2	2	-	-	-	-	2
CO5	3	2	1	1	-	-	-	-	-	-	-	1
1	1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High)											

Textbooks:

1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.

2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference: Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: STRUCTURE AND BONDING

MODELS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fundamentals Of Quantum Mechanics	1	13-02-2024		TLM1	
2.	Fundamentals Of Quantum Mechanics	1	14-02-2024		TLM1	
3.	Schrodinger Wave Equation	1	15-02-2024		TLM1	
4.	Significance of Ψ and Ψ^2	1	16-02-2024		TLM2	
5.	Particle In one dimensional box	1	20-02-2024		TLM1	
6.	Molecular Orbital Theory – Bonding in Homo and Hetero nuclear Diatomic Molecules	1	21-02-2024		TLM1	
7.	Energy level diagrams of O_2 and N_2	1	22-02-2024		TLM2	
8.	Energy level diagrams of CO and NO	1	23-02-2024		TLM1	
9.	π -molecular orbitals of butadiene	1	27-02-2024		TLM1	
10.	π -molecular orbitals of benzene	1	28-02-2024		TLM1	
11.	Calculation of Bond order	1	29-02-2024		TLM2	
12.	Practice of Molecular orbital diagrams	1	01-03-2024		TLM1	
13.	Revision	1	05-03-2024		TLM1	
14.	Revision	1	06-03-2024		TLM1	
No. of	classes required to complete UN	·	No. of classes	taken:		

UNIT-II: MODERN ENGINEERING MATERIALS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Semiconductors - Introduction	1	07-03-2024		TLM1	
2.	Semiconductors - Basic concept&applications	1	12-03-2024		TLM1	
3.	Super conductors - Introduction	1	13-03-2024		TLM2	
4.	Super conductors - Basic concept&applications	1	14-03-2024		TLM1	
5.	Supercapacitors - Introduction	1	15-03-2024		TLM1	
6.	Supercapacitors - Basic concept- classification&applicatio ns	1	19-03-2024		TLM1	
7.	Nano materials - Introduction	1	20-03-2024		TLM2	
8.	Nano materials - classification	1	21-03-2024		TLM2	
9.	Nano materials - properties and applications of fullerenes	1	22-03- 2024&26- 03-24		TLM2	
10.	Nano materials - carbon nano tubes and graphine nanoparticles	1	27-03- 2024&28- 03-24		TLM2	
No. of	classes required to complete	UNIT-II: 12		No. of classes	taken:	

UNIT-III: ELECTROCHEMISTRY AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction Electrochemical cell	1	10-04-2024		TLM1	
2.	Nernst equation derivation	1	12-04-2024		TLM1	
3.	Applications of Nernst equation.	1	16-04-2024		TLM1	
4.	Cell potential calculations and numerical problems	1	18-04-2024		TLM1	
5.	Potentiometry- potentiometric titrations (redox titrations)	1	19-04-2024		TLM1	
6.	Concept of conductivity, conductivitycell, conductometric titrations (acid-base titrations)	1	23-04-2024		TLM2	
7.	Electrochemical sensors – potentiometric sensors with examples,	1	24-04-2024		TLM1	

	amperometric sensors with examples					
8.	Primary cells – Zinc-air battery, Secondary cells – lithium-ion batteries- working of the batteries including cell reactions	1	25-04-2024		TLM1	
9.	Fuel cells, hydrogen- oxygenfuel cell– working of the cells	1	26-04-2024		TLM2	
10.	PolymerElectrolyte Membrane Fuel cells (PEMFC)	1	30-04-2024		TLM1	
No. of	classes required to complete	UNIT-III: 10		No. of classes	taken:	

UNIT-IV: POLYMER CHEMISTRY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to polymers, functionality of monomers	1	01-05-2024		TLM1	
2.	Chain growth and step growth polymerization, coordination polymerization, with specific examples	1	02-05-2024		TLM1	
3.	Mechanisms of polymer formation	1	03-05-2024		TLM2	
4.	Plastics –Thermo and Thermosetting plastics	1	07-05-2024		TLM1	
5.	Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon- 6,6, carbon fibres	1	08-05-2024& 09-05-2024		TLM1	
6.	Elastomers–Buna-S, Buna- N–preparation, properties and applications	1	10-05-2024& 14-05-2024		TLM2	
7.	Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications	1	15-05-2024		TLM1	
8.	Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA)	1	16-05-2024& 17-05-24		TLM1	
No. of	classes required to complete	UNIT-IV: 11		No. of classes	taken:	

UNIT-V: INSTRUMENTAL METHODS AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Electromagnetic spectrum	1	21-05-2024		TLM1	

2.	Absorption of radiation: Beer-Lambert's law	1	22-05-2024	TLM1	
3.	UV-Visible Spectroscopy	1	23-05-2024	TLM1	
4.	electronic transition, Instrumentation	1	24-05-2024	TLM1	
5.	IR spectroscopies, fundamental modes	1	28-05-2024	TLM2	
6.	selection rules, Instrumentation	1	29-05-2024	TLM1	
7.	Chromatography-Basic Principle	1	30-05-2024	TLM2	
8.	Classification-HPLC: Principle, Instrumentation and Applications	1	31-05-2024	TLM1	

No. of classes required to complete UNIT-V: 08

No. of classes taken:

TOPICS BEYOND THE SYLLABUS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Applications of semiconductors, superconductors and nanomaterials in advanced technologies.	1	31-05-2024		TLM1	

Teaching	Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II)	A1=5
I-Descriptive Examination (Units-I, II)	M1=15
I-Quiz Examination (Units-I, II)	Q1=10
Assignment-II (Unit-III, IV & V)	A2=5
II- Descriptive Examination (UNIT-III, IV & V)	M2=15
II-Quiz Examination (UNIT-III, IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineeringproblemsreachingsubstantiatedconclusionsusingfirstprinciplesofmathematics natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	$appropriate {\it consideration} for the public health and safety, and the cultural, societal, and environ$
	mentalconsiderations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
DO (engineering activities with an understanding of the limitations
PU 0	assess societal health safety legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need forsustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
DO O	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, beingable to comprehend
	and write effective reports and design documentation, make effective presentations, and give an
	dreceiveclear
DO 11	Instructions. Project management and finance: Demonstrate knowledge and understanding of
FUII	theengineeringandmanagementnrinciplesandapplythesetoone'sownwork asamemberandle
	aderinateam,
	to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	cnange.

Title	Course Instructor	Course InstructorCourse Coordinator		Head of the Department	
Name of the Faculty	Mr.S.VijayaDasaradha	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy	
Signature					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I),

ISO 21001 : 2018, 50001 : 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

FRESHMAN ENGINEERING DEPARTMENT

COURSE HANDOUT

Part-A

PROGRAM	: I B. Tech., II-Sem., ECE - A
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE	: Differential Equations & Vector Calculus
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Dr. K.R. Kavitha
COURSE COORDINATOR	: Dr. K.R. Kavitha
PRE-REQUISITES	: Basics of Vectors, Differentiation, Integration

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enlighten the learners in the concept of differential equations and multivariable calculus
- To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

- CO1: Solve the differential equations related to various engineering fields -L3
- CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations L3
- CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence L3
- CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus -L3

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO1

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	3	1	-	-	-	-	-	-	-	-	-	1
CO3	3	2	-	-	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017.
- **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018.

BOS APPROVED REFERENCE BOOKS:

- **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018.
- R2 Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018.
- **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018.
- **R4** R.K. Jain and S.R.K. Iyengar, "*Advanced Engineering Mathematics*", 5th Edition (9th reprint), Alpha Science International Ltd., 2021.
- **R5** B. V. Ramana, "*Higher Engineering Mathematics*", 3rd Edition McGraw Hill Education, 2017.

Part-B

	COURSE	E DELIVERY	Y PLAN (LES	SON PLAN	[) :	
	No. of	Tentative	Actual	Teaching	Learning	, r
be covered	Classes	Date of	Date of	Learning	Outcome	I

S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to the course	1	12-02-2024		TLM2			
2.	Course Outcomes, Program Outcomes	1	12-02-2024		TLM2			

UNIT-I: Differential Equations of first order and first degree

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
3.	Introduction to UNIT I	1	13-02-2024		TLM1	CO1	T1,T2	
4.	Linear Differential equation	1	14-02-2024		TLM1	CO1	T1,T2	
5.	Bernoulli's DE	1	17-02-2024		TLM1	CO1	T1,T2	
6.	Exact DE	1	19-02-2024		TLM1	CO1	T1,T2	
7.	Exact DE	1	19-02-2024		TLM1	CO1	T1,T2	
8.	Non-exact DE Type I	1	20-02-2024		TLM1	CO1	T1,T2	
9.	Non-exact DE Type II	1	21-02-2024		TLM1	CO1	T1,T2	
10.	Non-exact DE Type III	1	24-02-2024		TLM1	CO1	T1,T2	
11.	Non-exact DE Type IV	1	26-02-2024		TLM1	CO1	T1,T2	
12.	Newton's Law of cooling	; 1	26-02-2024		TLM1	CO1	T1,T2	
13.	Newton's Law of cooling	; 1	27-02-2024		TLM1	CO1	T1,T2	
14.	Law of natural growth an decay	d 1	28-02-2024		TLM1	CO1	T1,T2	
15.	Law of natural growth an decay	d 1	02-03-2024		TLM1	CO1	T1,T2	
16.	Electrical circuits	1	04-03-2024		TLM1	CO1	T1,T2	
17.	TUTORIAL - I	1	04-03-2024		TLM3	CO1	T1,T2	
No. o comp	f classes required to lete UNIT-I	14				No. of class	ses taken:	

UNIT-II: Linear Differential equations of higher order (Constant Coefficients)

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
18.	Introduction to UNIT II	1	05-03-2024		TLM1	CO1	T1,T2	
19.	Solving a homogeneous DE	1	06-03-2024		TLM1	CO1	T1,T2	
20.	Solving a homogeneous DE	1	11-03-2024		TLM1	CO1	T1,T2	
21.	Finding Particular Integral, P.I for e^{ax+b}	1	11-03-2024		TLM1	CO1	T1,T2	
22.	P.I for Cos bx, or sin bx	1	12-03-2024		TLM1	CO1	T1,T2	
23.	P.I for polynomial function	1	13-03-2024		TLM1	CO1	T1,T2	

24.	P.I for $e^{ax+b}v(x)$	1	16-03-2024	TLM1	CO1	T1,T2	
25.	P.I for $x^k v(x)$	1	18-03-2024	TLM1	CO1	T1,T2	
26.	Method of Variation of parameters	1	18-03-2024	TLM1	CO1	T1,T2	
27.	Method of Variation of parameters	1	19-03-2024	TLM1	CO1	T1,T2	
28.	Simultaneous linear equations	1	20-03-2024	TLM1	CO1	T1,T2	
29.	Simultaneous linear equations	1	23-03-2024	TLM1	CO1	T1,T2	
30.	L-C-R circuits	1	26-03-2024	TLM1	CO1	T1,T2	
31.	Simple Harmonic motion	1	27-03-2024	TLM1	CO1	T1,T2	
32.	TUTORIAL - II	1	30-03-2024	TLM3	CO1	T1,T2	
N	o. of classes required to complete UNIT-II	14			No. of classe	es taken:	

I MID EXAMINATIONS (01-04-2024 TO 06-04-2024)

UNIT-III: Partial Differential Equations

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
33.	Introduction to Unit III	1	08-04-2024		TLM1	CO2	T1,T2	
34.	Formation of PDE by elimination of arbitrary constants	1	08-04-2024		TLM1	CO2	T1,T2	
35.	Formation of PDE by elimination of arbitrary functions	1	10-04-2024		TLM1	CO2	T1,T2	
36.	Formation of PDE by elimination of arbitrary functions	1	15-04-2024		TLM1	CO2	T1,T2	
37.	Solving of PDE	1	15-04-2024		TLM1	CO2	T1,T2	
38.	Lagrange's Method	1	16-04-2024		TLM1	CO2	T1,T2	
39.	Lagrange's Method	1	20-04-2024		TLM1	CO2	T1,T2	
40.	Homogeneous Linear PDE with constant coefficients	1	22-04-2024		TLM1	CO2	T1,T2	
41.	TUTORIAL - III	1	22-04-2024		TLM3	CO2	T1,T2	
No	of classes required to complete UNIT-III	09			No. of class	es taken:		

UNIT-IV: Vector Differentiation

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
42.	Introduction to UNIT IV	1	23-04-2024		TLM1	CO3	T1,T2	
43.	Vector Differentiation	1	24-04-2024		TLM1	CO3	T1,T2	
44.	Gradient	1	27-04-2024		TLM1	CO3	T1,T2	
45.	Directional Derivative	1	29-04-2024		TLM1	CO3	T1,T2	

46.	Directional Derivative	1	29-04-2024	TLM1	CO3	T1,T2	
47.	Divergence	1	30-04-2024	TLM1	CO3	T1,T2	
48.	Curl	1	01-05-2024	TLM1	CO3	T1,T2	
49.	Problems	1	04-05-2024	TLM1	CO3	T1,T2	
50.	Solenoidal fields, Irrotational fields, potential surfaces	1	06-05-2024	TLM1	CO3	T1,T2	
51.	Solenoidal fields, Irrotational fields, potential surfaces	1	06-05-2024	TLM1	CO3	T1,T2	
52.	Laplacian, second order operators	1	07-05-2024	TLM1	CO3	T1,T2	
53.	Vector Identities	1	08-05-2024	TLM1	CO3	T1,T2	
54.	Vector Identities	1	11-05-2024	TLM1	CO3	T1,T2	
55.	TUTORIAL IV	1	13-05-2024	TLM3	CO3	T1,T2	
No. of classes required to complete UNIT-IV		14			No. of clas	sses taken:	

UNIT-V: Vector Integration

S. No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book	HOD Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
57.	Introduction to Unit-V	1	13-05-2024		TLM1	CO4	T1,T2	
58.	Line Integral	1	14-05-2024		TLM1	CO4	T1,T2	
59.	Circulation	1	15-05-2024		TLM1	CO4	T1,T2	
60.	Work done	1	18-05-2024		TLM1	CO4	T1,T2	
61.	Surface Integral	1	20-05-2024		TLM1	CO4	T1,T2	
62.	Flux	1	20-05-2024		TLM1	CO4	T1,T2	
63.	Volume Integral	1	21-05-2024		TLM1	CO4	T1,T2	
64.	Green's Theorem	1	22-05-2024		TLM1	CO4	T1,T2	
65.	Green's Theorem	1	25-05-2024		TLM1	CO4	T1,T2	
66.	Stoke's Thoerem	1	27-05-2024		TLM1	CO4	T1,T2	
67.	Divergence Theorem	1	28-05-2024		TLM1	CO4	T1,T2	
68.	TUTORIAL - V	1	27-05-2024		TLM3	CO4	T1,T2	
No	o. of classes required to complete UNIT-V	12			No. of class	ses taken:		
	Content beyond the S	yllabus					1	1
a ••	Topics to be	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S. No	· covered	Classes	Date of Completion	Date of Completion	Learning	Outcome	Book	Sign Weelsly
69.	Non-homogeneous Linear PDE with constant coefficients	2	29-05-2024 01-06-2024	Completion	TLM2	CO2	T1,T2	VV CEKIY
	No. of classes	2			No. of clas	ses taken:		

II MID EXAMINATIONS (03-06-2024 TO 08-06-2024)

Τ

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)				

TLM3 Tutorial

TLM6 Group Discussion/Project

PART-CEVALUATION PROCESS (R23 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II)	A1=5
I-Descriptive Examination (Units-I, II)	M1=15
I-Quiz Examination (Units-I, II)	Q1=10
Assignment-II (Unit-III, IV & V)	A2=5
II- Descriptive Examination (UNIT-III, IV & V)	M2=15
II-Quiz Examination (UNIT-III, IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE):	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = $CIE + SEE$	100

PART-D PROGRAMME OUTCOMES (POs):

and an engineering	specialization to the solution of complex engineering problems.
Problem analysis:	Identify, formulate, review research literature and analyze complex engineering
PO 2 problems reaching	substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sc	ences.
Design/developme	nt of solutions: Design solutions for complex engineering problems and design
PO 3 system components	or processes that meet the specified needs with appropriate consideration for the
public health and s	afety and the cultural, societal and environmental considerations.
Conduct investig	ations of complex problems: Use research-based knowledge and research
PO 4 methods including	design of experiments, analysis and interpretation of data and synthesis of the
information to prov	ide valid conclusions.
Modern tool usa	ge: Create, select, and apply appropriate techniques, resources, and modern
PO 5 engineering and IT	tools including prediction and modeling to complex engineering activities with
an understanding o	f the limitations
The engineer and	society: Apply reasoning informed by the contextual knowledge to assess societal,
PO 6 health, safety, legal	and cultural issues and the consequent responsibilities relevant to the professional
engineering practic	e
Environment and	sustainability: Understand the impact of the professional engineering solutions
PO 7 in societal and env	ironmental contexts and demonstrate the knowledge of and need for sustainable
development.	
Ethics: Apply ethic	al principles and commit to professional ethics and responsibilities and norms of
the engineering pra	ctice.
PO 0 Individual and te	am work: Function effectively as an individual and as a member or leader in
diverse teams and i	n multidisciplinary settings.
Communication:	Communicate effectively on complex engineering activities with the engineering
PO 10 community and wi	th society at large, such as being able to comprehend and write effective reports
and design docume	ntation, make effective presentations and give and receive clear instructions.
Project managem	ent and finance: Demonstrate knowledge and understanding of the engineering
PO 11 and management p	rinciples and apply these to one's own work, as a member and leader in a team,
to manage projects	and in multidisciplinary environments.
BO 12 Life-long learning	: Recognize the need for and have the preparation and ability to engage in
independent and life	e-long learning in the broadest context of technological change.

Dr. K.R. Kavitha	Dr. K.R. Kavitha	Dr. A. RAMI REDDY	Dr. A. RAMI REDDY
Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC with 'A' Grade, ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada.

L.B.REDDY NAGAR, MYLAVARAM. NTR District, AP, India. 521230.

hodads@lbrce.ac.in , ads@lbrce.ac.in , Phone: 08659-222933, Fax: 08659-222931 DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE HANDOUT PART-A

Name of Course Instructor Course Name & Code L-T-P Structure Program/Sem/Sec

: Dr. B. Rajendra Prasad : Introduction to Programming (23CS01) : 3-0-0 : B.Tech./I/A

Credits: 3 A.Y.: 2023-24

PRE-REQUISITE: NIL

COURSE EDUCATIONAL OBJECTIVE (CEO):

- To introduce students to the fundamentals of computer programming.
- To provide hands-on experience with coding and debugging.
- To foster logical thinking and problem-solving skills using programming.
- To familiarize students with programming concepts such as data types, control structures, functions, and arravs.
- To encourage collaborative learning and teamwork in coding projects

COURSE OUTCOMES (COS): At the end of the course, the student will be able to:

CO1.	Understand basics of computers, the concept of algorithm and	Understand –
C01:	algorithmic thinking.	Level 2
CO2:	Analyze a problem and develop an algorithm to solve it.	Analyze – Level
		4
CO3:	Implement various algorithms using the C programming language.	Apply – Level 3
CO.4.	Understand many advanced features of Classes	Understand –
C04:	Understand more advanced leatures of C language.	Level 2
COF.	Develop problem-solving skills and the ability to debug and	Apply – Level 3
C05:	optimize the code.	

COURSE ARTICULATION MATRIX (Correlation between COs. POs & PSOs):

										,		,			
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
1 – Low				2 – Medium				3 – High							

TEXTBOOKS:

- T1: The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1988dition, 2015
- Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-Hill Education, T2: 1996

REFERENCE BOOKS:

- **R1:** Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008.
- **R2:** Programming in C, ReemaThareja, Oxford, 2016, 2nd edition
- **R3:** C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT – I: Introduction to Programming and Problem Solving

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Discussion of CEO's and CO's	1	14-02-2024			
2.	History of Computers	1	15-02-2024			
3	Basic organization of a computer: ALU,	2	16-02-2024			
5.	input-output units.	<u></u>	17-02-2024			
4.	Memory, program counter	1	19-02-2024			
5.	Introduction to Programming Languages,	1	21-02-2024			
6.	Basics of a Computer Program- Algorithms	1	22-02-2024			
7.	Flowcharts (Using Dia Tool), pseudo code.	1	23-02-2024			
8.	Introduction to Compilation and Execution	1	24-02-2024			
9.	Primitive Data Types	1	26-02-2024			
10.	Variables, and Constants, Basic Input and Output operations	1	28-02-2024			
11.	Type Conversion, and Casting	1	29-02-2024			
12.	Problem solving techniques: Algorithmic approach, characteristics of algorithm	1	01-03-2024			
13.	Problem solving strategies: Top-down approach, Bottom-up approach	1	02-03-2024			
14	Time and space complexities of algorithms.	1	04-03-2024			
No.	of classes required to complete	e UNIT – I	: 15	No. of clas	sses take	n:

UNIT – II: Control Structures

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
15.	Simple sequential programs Conditional Statements	1	06-03-2024			
16.	if, if-else	2	07-03-2024 09-03-2024			
17.	switch.	1	11-03-2024			
18.	Example programs on Decision Making and Branching	1	13-03-2024			
19.	Loops: while , Example programs	2	14-03-2024 15-03-2024			
20.	do-while, for, Example programs	2	16-03-2024 18-03-2024			
21.	on Loops	2	20-03-2024			
22.	Break and Continue	2	21-03-2024			
23.	Example programs on Loops	2	22-03-2024 23-03-2024			
24.	Revision	1	27-03-2024			
No.	of classes required to complete	No. of cla	sses take	n:		

UNIT – III: Arrays and Strings

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
25.	Arrays Introduction, Declaration	1	28-03-2024	oompretton		
26.	Array indexing, Accessing elements	1	30-03-2024			
27.	memory model	1	08-04-2024			
28.	programs with array of integers	1	10-04-2024			
29.	Introduction to two dimensional arrays	1	12-04-2024			
30.	2D Array indexing, Accessing elements	1	15-04-2024			
31.	programs with 2D arrays	1	18-04-2024			
32.	Introduction to Strings	1	19-04-2024			
33.	Reading and Writing Operations on Strings	1	20-04-2024			
34.	String Handling Functions	1	22-04-2024			
35.	Example Programs using Strings	1	24-04-2024			
No.	of classes required to complete	No. of clas	sses take	n:		

UNIT – IV: Pointers & User Defined Data types

S. No.	Topics to be covered	No. of Classe s Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Introduction to Pointers	1	25-04-2024			
37.	dereferencing and address operators	1	26-04-2024			
38.	pointer and address arithmetic	1	27-04-2024			1
39.	array manipulation using pointars	2	29-04-2024			1
	array manipulation using pointers		01-05-2024			l
40.	User-defined data types	1	02-05-2024			l
41.	Structures , Definition and	2	03-05-2024			1
	Initialization		04-05-2024			1
42.	Example programs	1	06-05-2024			l
43.		2	08-05-2024			l
	Unions		09-05-2024			l
44.	Example programs	1	10-05-2024			1
45.	Revision	1	13-05-2024			l
No.	of classes required to complete	No. of clas	sses takei	n:		

UNIT – V:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of	Teaching Learning Methods	HOD Sign Weekly
				Completion		
46.	Introduction to Functions	1	15-05-2024			
47.	Function Declaration and Definition	1	16-05-2024			
48.	Function call Return Types	1	17-05-2024			
49.	Arguments	1	18-05-2024			
50	modifying parameters inside functions	2	20-05-2024			
50.	using pointers	-	22-05-2024			
51.	arrays as parameters	1	23-05-2024			
52.	Scope and Lifetime of Variables	1	24-05-2024			

53.	Introduction to Files	1	25-05-2024			
54.	Basics of File Handling	1	27-05-2024			
55.	Operations on Files	1	29-05-2024			
No.	of classes required to complete	No. of clas	sses take	n:		

Content Beyond the Syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
56.	Application Development using C	1	30-05-2024			
57.	Introduction to Data Structures	1	31-05-2024			

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3TutorialTLM6		TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks					
Assignment – I (Units-I, II)						
I – Descriptive Examination (Units-I, II)						
I – Quiz Examination (Units-I, II)						
Assignment – II (Unit-III, IV & V)						
II – Descriptive Examination (UNIT-III, IV & V)						
II – Quiz Examination (UNIT-III, IV & V)						
Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1), (M2+Q2+A2))						
Cumulative Internal Examination (CIE): M						
Semester End Examination (SEE)	<mark>70</mark>					
Total Marks = CIE + SEE	<mark>100</mark>					

PART-D

PROG	RAMME OUTCOMES (POs):
	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
P01	fundamentals, and an engineering specialization to the solution of complex
	engineeringproblems.
	Problem analysis: Identify, formulate, review research literature, and analyze
P02	complexengineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems and
P03	design system components or processes that meet the specified needs with appropriate
	environmental considerations
	Conduct investigations of complex problems: Use research based knowledge and
P04	research methods including design of experiments, analysis and interpretation of dataand
101	synthesis of the information to provide valid conclusions.
	Modern tool usage: Create select and apply appropriate techniques resources andmodern
P05	engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society : Apply reasoning informed by the contextual knowledge to
P06	assess societal, health, safety, legal and cultural issues, and the consequent
	responsibilitiesrelevant to the professional engineering practice
	Environment and sustainability: Understand the impact of the professional
P07	engineeringsolutions in societal and environmental contexts, and demonstrate the knowledge
	of, andneed for sustainable development.
PU8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
100	of the engineering practice.
P09	Individual and teamwork: Function effectively as an individual, and as a member orleader in
107	diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
P010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give
	Project management and finance : Demonstrate knowledge and understanding of the
P011	engineering and management principles and apply these to one's own work, as a member
-	and leader in a team, to manage projects and in multidisciplinary environments.
DO12	Life-long learning: Recognize the need for and have the preparation and ability to engaging
FU12	independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1	To apply the fundamental engineering knowledge, computational principles, and methods for extracting knowledge from data to identify, formulate and solve real time problems.
PSO2	To develop multidisciplinary projects with advanced technologies and tools to address social and environmental issues.
PSO3	To provide a concrete foundation and enrich their abilities for Employment and Higher studies in Artificial Intelligence and Data science with ethical values.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department		
Name of the Faculty	Dr.B.Rajendra Prasad	Dr. B. Srinivasa Rao	Mr. S. Siva Rama Krishna	Dr.Y.Amar Babu		
Signature						

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ECE

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr.G.VenkataRao, Associate Professor

Course Name & Code	: NETWORK ANALYSIS -

L-T-P Structure Program/Sem/Sec : 3-0-0

ec : B. Tech. II-Sem., ECE-A Sec

Regulation: R23 **Credits:** 03 **A.Y.:** 2023-24

PRE REQUISITE: Fundamentals of Basic Electrical circuits.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

• To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits

- To impart knowledge on applying appropriate theorem for electrical circuit analysis
- To explain transient behavior of circuits in time and frequency domains

• To teach concepts of resonance • To introduce open circuit, short circuit, transmission, hybrid parameters and their inter relationship.

Course Outcomes (COs): At the end of the course, students are able to

CO1	Apply fundamental laws and theorems to compute electrical variables of DC circuits (Apply)
CO2	Analyze electrical networks during transients in the Laplace domain (Apply)
CO3	Apply fundamental laws and theorems to compute electrical variables of AC electrical circuits (Apply)
CO4	Analyse resonance circuits (Analyse)
CO5	Evaluate variables associated with magnetic circuits (Apply)
CO6	Compute the parameters of a two-port network (Apply)

Course Articulation Matrix (Correlation between COs&POs,PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	-	-	-	-	-	-	-	-	-	2	2	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	2	1	2	-
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	2	1	2	-
CO6	2	2	2	-	-	-	-	-	-	-	-	1	1	2	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1-Slight(Low),2-Moderate(Medium),3-Substantial (High).

TEXT BOOK(S):

T1	Network Analysis – ME Van Valkenburg, Prentice Hall of India, revised 3rd Edition,
	2019.
T2	Engineering Circuit Analysis by William H. Hayt, Jack Kemmerly, Jamie Phillips,
	Steven M. Durbin, 9 Edition 2020.
T3	Network lines and Fields by John. D. Ryder 2 nd Edition, PHI

REFERENCE BOOK(S):

- **R1** D. Roy Choudhury, Networks and Systems, New Age International Publications, 2013.
- **R2** Joseph Edminister and Mahmood Nahvi, Electric Circuits, Schaum's Outline Series, 7th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2017
- **R3** Fundamentals of Electric Circuits by Charles K. Alexander and Matthew N. O. Sadiku, McGraw-Hill Education.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN)

UNIT-I:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to course, Course Outcomes, Introduction to UNIT-I	1	13/02/24			
2.	Types of circuit components, Types of Sources	1	14/02/24			
3.	Source Transformations	1	15/02/24			
4.	Mesh analysis	1	16/02/24			
5.	And Nodal analysis	1	17/02/24			
6.	problem solving with resistances only including dependent sources also	1	20/02/24			
7.	Principal of Duality with examples	1	21/02/24			
8.	Network Theorems: Superposition, Thevenin's Norton's theorem.	1	22/02/24			
9.	Milliman's, Reciprocity, Compensation theorem	1	23/02/24			
10.	Max Power Transfer, Tellegens theorems	1	24/02/24			
No. of classes required to complete UNIT-I: 10 No. of classes						

UNIT-II:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Transients: First order differential equations	1	28/02/24			
12.	Definition of time constants, R-L circuit, RC circuit with DC excitation, evaluating initial conditions procedure	1	29/02/24			
13.	second order differential equations, homogeneous, non- homogenous	1	01/03/24			
14.	problem-solving using R-L-C elements with DC excitation	1	02/03/24			
15.	problem-solving using R-L-C elements with AC excitation	1	05/03/24			
16.	Response as related to s-plane rotation of roots	1	06/03/24			
17.	Laplace transform: introduction, Laplace transformation,	1	12/03/24			Page 2 of !

	basic theorems					
18.	problem solving using Laplace transform, partial fraction expansion	1	13/03/24			
19.	Heaviside's expansions	1	14/03/24			
20.	problem solving using Laplace transform	1	15/03/24			
21.	Problems	1	16/03/24			
No.	No. of classes required to complete UNIT-II: 11			No. of class	ses taken:	

UNIT-III:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
	Steady State Analysis of A.C		19/03/24				
22.	Circuits: Impedance concept,	1					
	phase angle						
23.	series R-L, R-C,	1	20/03/24				
	R-L-C circuits problem solving	_					
24	series R-L, R-C, R-LC circuits	1	21/03/24				
	problem solving	-					
25.	series R-L, R-C, R-L-C circuits	1	22/03/24				
	problem solving	-					
	Complex impedance and phasor		23/03/24				
26	notation for R-L, R-C, R-L-C	1					
20.	problem solving using mesh and	-					
	nodal analysis						
	Complex impedance and phasor		26/03/24				
27	notation for R-L, R-C, R-L-C	1					
27.	problem solving using mesh and	-					
	nodal analysis						
28.	Star-Delta conversion	1	27/03/24				
29	problem solving using Laplace	1	28/03/24				
<i>2)</i> .	transforms also	1					
30	problem solving using Laplace	1	29/03/24				
50.	transforms also	Ţ		<u> </u>			
No.	No. of classes required to complete UNIT-III: 09 No. of classes taken:						

UNIT-IV:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
31.	Resonance: Introduction, Definition of Q	1	09/04/24			
32.	Series resonance, Bandwidth of series resonance	1	10/04/24			
33.	Parallel resonance	1	11/04/24			
34.	General case-resistance present in both branches, anti-resonance at all frequencies.	1	12/04/24			
35.	Coupled Circuits: Self-inductance, Mutual inductance	1	16/04/24			
36.	Coefficient of coupling, analysis of coupled circuits,	1	17/04/24			
37.	Natural current, Dot rule of coupled circuits,	1	18/04/24			Page 3 of !

39.	circuits- problem solving problems	1	20/04/24			
No. of classes required to complete UNIT-IV: 09			No. of class	es taken:		

UNIT-V:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	Two-port Networks: Relationship of two port networks	1	23/04/24			
41.	Z-parameters, Y-parameters	1	24/04/24			
42.	Transmission line parameters, h- parameters	1	25/04/24			
43.	Relationships Between parameter Sets	1	26/04/24			
44.	Parallel & series connection of two port networks, cascading of two port networks	1	27/04/24			
45.	problem solving using dependent sources also	1	01/05/24			
46.	Image and iterative impedances	1	02/05/24			
47.	Image and iterative transfer constants	1	03/05/24			
48.	Insertion loss. Attenuators and pads	1	04/05/24			
49.	Lattice network and its parameters. Impedance matching networks	1	05/05/24			
No.	No. of classes required to complete UNIT-V: 10 No. of classes taken:					

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
53.	Applications of Network theorems	2			TLM1	
Teaching Learning Methods						

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To Attain a solid foundation in Electronics & Communication Engineering
	fundamentals with an attitude to pursue continuing education
PEO 2	To Function professionally in the rapidly changing world with advances in
	technology
PEO 3	To Contribute to the needs of the society in solving technical problems using
	Electronics & Communication Engineering principles, tools and practices
PEO 4	To Exercise leadership qualities, at levels appropriate to their experience, which
	addresses issues in a responsive, ethical, and innovative manner?

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,							
	engineering fundamentals, and an engineering specialization to the solution of							
	complex engineering problems							
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze							
	complex engineering problems reaching substantiated conclusions using first							
	principles of mathematics, natural sciences, and engineering sciences							
PO 3	Design/development of solutions : Design solutions for complex engineering							
	problems and design system components or processes that meet the specified							
	needs with appropriate consideration for the public health and safety, and the							
	cultural, societal, and environmental considerations							
PO 4	Conduct investigations of complex problems : Use research-based knowledge							
	and research methods including design of experiments, analysis and							
	interpretation of data, and synthesis of the information to provide material							
	conclusions							

PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources,							
	and modern engineering and IT tools including prediction and modelling to							
	complex engineering activities with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual							
	knowledge to assess societal, health, safety, legal and cultural issues and the							
	consequent responsibilities relevant to the professional engineering practice							
PO 7	Environment and sustainability: Understand the impact of the professional							
	engineering solutions in societal and environmental contexts, and demonstrate							
	the knowledge of, and need for sustainable development							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and							
	responsibilities and norms of the engineering practice							
PO 9	Individual and team work: Function effectively as an individual, and as a							
	member or leader in diverse teams, and in multidisciplinary settings							
PO 10	Communication: Communicate effectively on complex engineering activities							
	with the engineering community and with society at large, such as, being able to							
	comprehend and write effective reports and design documentation, make							
	effective presentations, and give and receive clear instructions							
PO 11	Project management and finance: Demonstrate knowledge and understanding							
	of the engineering and management principles and apply these to one's own							
	work, as a member and leader in a team, to manage projects and in							
	multidisciplinary environments							
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability							
	to engage in independent and life-long learning in the broadest context of							
	technological change							
	$\mathbf{MME} \in \mathbf{CDEC}(\mathbf{E}) \subset \mathbf{OUTCOMEC} (\mathbf{DCO_{C}}).$							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Design and develop modern communication technologies for building the inter							
	disciplinary skills to meet current and future needs of industry							
PSO 2	Design and Analyze Analog and Digital Electronic Circuits or systems and							
	Implement real time applications in the field of VLSI and Embedded Systems using							
	relevant tools							
PSO 3	Apply the Signal processing techniques to synthesize and realize the issues related							
	to real time applications							

Date:

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	Mr.G.Venkata Rao	Mr.G.Venkata Rao	Dr. G. Srinivasulu	Dr. Y. Amar Babu	
Signature					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING(AUTONOMOUS) Accredited by NAAC with 'A' Grade An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcsm@lbrce.ac.in, csmoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (AI&ML)

COURSEHANDOUT PART-A

NameofCourseInstructor	:Dr. B. Rajendra Prasad	
CourseName&Code	: Computer Programming Lab (20CS51)	
L-T-PStructure	: 0-0-3	Credits:1.5
Program/Sem/Sec	: B.Tech.–ECE/II-Sem-A	A.Y. :2023-24

PRE-REQUISITE: Fundamentals of Mathematics.

COURSE EDUCATIONAL OBJECTIVE (CEO): The course aims to give students hands – on experience and train them on the concepts of the C- programming language.

COURSEOUTCOMES(COs): Attheendofthecourse,thestudentwillbeable to:

CO1 :	Read, understand, and trace the execution of programs written in C language. (Understand)	Apply-Level2
CO2 :	Select the right control structure for solving the problem. (Apply)	Apply-Level3
CO3 :	Develop C programs which utilize memory efficiently using programming constructs like pointers. (Apply)	Apply-Level3
CO4 :	Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C.(Apply).	Apply-Level3
CO5:	Improve individual / teamwork skills, communication and report writing skills with ethical values.	

COURSEARTICULATIONMATRIX(CorrelationbetweenCOs,POs&PSOs):

						(
COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	-	-	3	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
CO3	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
C04	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
C05	-	-	-	-	-	-	-	2	2	2	2	2	-	-	-
1 –Low					2	-Med	ium			3	– High				

PART-B

COURSEDELIVERYPLAN (LESSONPLAN):

		No.ofCl	asses	_		
S. No.	Programstobecovered	Required as per theSchedu le	Taken	Date ofCompletio n	Method	
1.	Week1: Familiarization with programming environment	03		13-02-2024	DM5	
2.	Week2: Problem-solving using Algorithms and Flow charts.	03		20-02-2024	DM5	
3.	Week3:Exercise Programs on Variable types and type conversions	03		27-02-2024	DM5	
4.	Week4:Exercise Programs on Operators and the precedence and as associativity.	03		05-03-2024	DM5	
5.	Week5:Exercise Programs on Branching and logical expressions	03		12-03-2024	DM5	
6.	Week6:Exercise Programs on Loops, while and for loops	03		19-03-2024	DM5	
7.	Week7: Exercise Programs on 1 D Arrays & searching.	03		26-03-2024	DM5	
8.	Week8:ExerciseProgramson2 D arrays, sorting and Strings.	03		16-04-2024	DM5	
9.	Week9: ExerciseProgramsonPointers, structures and dynamic memory allocation	03		23-04-2024	DM5	
10.	Week10:ExerciseProgramson Bit fields, Self-Referential Structures, Linked lists	03		30-04-2024	DM5	
11.	Week 11:ExerciseProgramson Functions, call by value, scope and extent.	03		07-05-2023	DM5	
12.	Week 12: Exercise Programs on Recursion, the structure of recursive calls	03		14-05-2024	DM5	
13.	Week 13: Exercise Programs on Call by reference, dangling pointers	03		21-05-2024	DM5	
14.	Week 14: Exercise Programs on File handling.	03		28-05-2024	DM5	
15.	Lab Internal	03		04-06-2024	DM5	

Delivery Methods							
DM1	ChalkandTalk	DM4	Assignment/Test/Quiz				
DM2	ICTTools	DM5	Laboratory/Field Visit				
DM3	Tutorial	DM6	Web-based Learning				

PART-C

PROGRAMMEOUTCOMES(POs):

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
P02	Problem analysis: Identify,formulate,reviewresearchliterature,andanalyzecomplexengineeringproblemsreachings ubstantiatedconclusionsusingfirstprinciplesof mathematics,naturalsciences,andengineeringsciences.
P03	Design/development of solutions : Design solutions for complex engineering problemsanddesignsystemcomponentsorprocesses that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and Environmental considerations.
P04	Conduct investigations of complex problems : Use research-basedknowledgeand Researchmethodsincludingdesignofexperiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
P05	Modern tool usage : Create,select,andapplyappropriatetechniques,resources,andmodernengineeringandITtoolsincl udingpredictionandmodellingtocomplex Engineeringactivitieswithanunderstandingofthelimitations
P06	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilitiesrelevanttothe professional engineeringpractice
P07	Environmentandsustainability :Understandtheimpactoftheprofessionalengineeringsolutionsi nsocietalandenvironmentalcontexts,anddemonstratetheknowledgeof,and Needforsustainabledevelopment.
P08	Ethic s: Apply ethical principles and commit to professional ethics and responsibilities andnorms of theengineeringpractice.
P09	Individualandteamwork : Function effectively as an individual, and as a member or leader indiverse teams, and inmultidisciplinary settings.
P010	Communication :Communicateeffectivelyoncomplexengineeringactivitieswiththeengineering community and with society at large, such as, being able to comprehend andwriteeffectivereportsanddesigndocumentation,makeeffectivepresentations,andgive Andreceiveclearinstructions.
P011	Projectmanagementandfinance :Demonstrateknowledgeandunderstandingofthe Engineeringandmanagementprinciplesandapplythesetoone'sown work, asamember andleaderinateam,tomanageprojectsandinmultidisciplinaryenvironments.
P012	Life-long learning : Recognize the need for and have the preparation and ability to engageinindependentandlife-long learning inthebroadestcontextof technologicalchange.

PROGRAMMESPECIFICOUTCOMES(PSOs):

PSO1	The ability to apply Software Engineering practices and strategies in software projectdevelopmentusingopen-sourceprogrammingenvironmentforthesuccessoforganization.
PSO2	The ability to design and develop computer programs in networking, web applications andIoT asper the societyneeds.
PSO3	Toinculcateanability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the
			Coordinator	Department
Name of the Faculty	Dr.B.Rajendra Prasad	Dr. B. Srinivas Rao	Mr.A.S.R.C.Murthy	Dr.Y. Amar Babu
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Mr.S.VijayaDasaradhaCourse Name & Code: Chemistry Lab&23FE52L-T-P Structure:0-0-3Program/Sem/Sec: B.Tech/I-sem/ECE-A

Credits:1.5 A.Y. :2023-24

Pre requisites: Nil

Course Educational Objective:

- To enable the students to perform different types of volumetric titrations.
- It provides an overview of preparation of polymers, nanomaterials and analytical techniques.

Course Outcomes: After completion of the course, the students will be able to,

- **CO1:** Distinguish different types of titrations in volumetric analysis after performing the experiments listed in the syllabus. (Analyze)
- **CO2:** Acquire practical knowledge related to preparation of Bakelite and nanomaterials. (Apply)
- **CO3:** Measure the strength of acid present in Pb-Acid battery. (Apply)
- CO4: Determine the cell constant and conductance of solutions. (Apply)

C05: Analyze organic compounds by using UV-Visible and IR spectroscopy. (Apply)

POs COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	2	-	-	-	1	2	-	-	-	-	-
CO2	3	-	1	-	-	2	1	-	-	-	-	-
CO3	3	2	1	-	-	-	2	-	-	-	-	-
CO4	3	1	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	2	-	-	-	-	-	-	-
1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High))						

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial(High).

Bos Approved Lab Manual

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Experiment	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	HOD Sign Weekly
1.	Introduction to Engineering chemistry lab	3	15-02-2024		TLM1		
2.	Preparation of a Bakelite	3	22-02-2024		TLM4	C01	
3.	Determination of amount of HCl using standard Na ₂ CO ₃ solution	3	29-02-2024		TLM4	C01	
4.	Determination of Strength of an acid in Pb-Acid battery	3	07-03-2024		TLM4	C01	
5.	Estimation of Ferrous Iron by Dichrometry	3	14-03-2024		TLM4	C01	
6.	Conductometric titration of strong acid vs. strong base	3	21-03-2024		TLM4	C01	
7.	Conductometric titration of weak acid vs. strong base	3	28-03-2024		TLM4	C01	
8.	Potentiometry - determination of redox potentials and emfs	3	18-04-2024		TLM4	C01	
9.	Preparation of nanomaterials by precipitation method	3	25-04-2024		TLM4	C02	
10.	Verify Lambert-Beer's law	3	02-05-2024		TLM4	CO4	
11.	Wavelength measurement of sample through UV-Visible Spectroscopy	3	09-05-2024		TLM4	C04	
12.	Identification of simple organic compounds by IR	3	16-05-2024		TLM4	CO4	
13.	Revision	3	23-05-2024		TLM4	CO4	
14	Internal Exam	3	30-05-2024		TLM4	C04	
	Total						

Teach	eaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

Part - C

EVALUATION PROCESS:

According to Academic Regulations of R20 Distribution and Weightage of Marks for Laboratory Courses is as follows.

(a) <u>Continuous Internal Evaluation(CIE)</u>:

✓ The continuous internal evaluation for laboratory course is based on the following parameters:

Evaluation Task	Marks
Day-to-Day Work	A1 = 10
Record & Observation	B1 = 5
Internal Exam	C1 = 15
Cumulative Internal Examination (CIE): (A1+B1+C1)	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and researchmethodsincludingdesignofexperiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course Instructor	Course Coordina tor	Module Coordinator	Head of the Department
Name of the Faculty	Mr.S.VijayaDasaradha	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor	: Mr. G.Venkata Rao		
Course Name & Code	: Network Analysis and Simulation Laboratory-2	23EC51	
L-T-P Structure	: 0-0-3	Credit	s:1.5
Program/Sem/Sec	: B.Tech., ECE., II-Sem., Section- A	A.Y	: 2023-24

PRE-REQUISITE: Basic Electrical Engineering Concepts

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To gain hands on experience in verifying Kirchoff's laws and network theorems
- To analyze transient behavior of circuits
- To study resonance characteristics
- To determine 2-port network parameters

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Demonstrate fundamental circuit laws, network theorems, node and mesh analysis of electrical circuits (Apply)
CO2	Design resonance circuit for given specifications (Analyze)
CO3	Measure time constants of RL & RC circuits (Apply)
CO4	Analyze the 1 st and 2 nd order circuits with respect to parameter variation (Analyze)
CO5	Characterize and model the network in terms of all network parameters (Apply)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	2	-	-	-	-	2	1	2	2	1	-
CO2	2	2	-	1	2	-	-	-	-	2	2	2	3	1	-
CO3	2	2	-	1	1	-	-	-	-	2	1	2	1	2	-
CO4	2	3	-	1	2	-	-	-	-	2	1	2	2	2	-
CO5	2	2	-	1	2	-	-	-	-	2	2	2	1	2	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section – C

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
	Introduction to NA Lab experiments, COs, POs and PSOs		3	19-02-24		TLM1		
		Cycle –	- I			l		
1	Experiment – 1	CO1,CO4	3	26-02-24		TLM4	•	
2	Experiment – 2	CO1,CO4	3	04-03-24		TLM4		
3	Experiment – 3	CO1,CO4	3	11-03-24		TLM4		
4	Experiment – 4	CO1,CO4	3	18-03-24		TLM4		
5	Experiment – 5	CO1,CO4	3	25-03-24		TLM4	•	
6	Experiment – 6	CO2,CO4	3	01-04-24		TLM4	•	
Cycle – II								
7	Experiment – 7	CO1,CO4	3	08-04-24		TLM4		
8	Experiment – 8	CO1,CO4	3	15-04-24		TLM4		
9	Experiment – 9	CO2,CO4	3	29-04-24		TLM4	•	
10	Experiment – 10	CO3,CO4	3	06-05-24		TLM4	-	
11	Experiment – 11	CO3,CO4	3	13-05-24		TLM4	•	
12	Experiment – 12	CO3,CO4	3	20-05-24		TLM4		
13	Experiment beyond the syllabus		3	27-05-24		TLM4		
	Internal Examination		3	03-06-24				

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Study of components of a circuit and	7	To study the transient and steady state response of a
			and studying their effects on responses
2	Verification of mesh and nodal analysis for	8	Find the Q Factor and Bandwidth of a Series and
	AC circuits		Parallel Resonance circuit
3	Verification of Superposition, Thevenin's &	9	Determination of open circuit (Z) and short circuit
	Norton theorems for AC circuits		(Y) parameters
4	Verification of maximum power transfer	10	Determination of hybrid (H) and transmission
	theorem for AC circuits		(ABCD) parameters
5	Study of DC transients in RL, RC and RLC	11	Determination of hybrid (H) and transmission
	circuits		(ABCD) parameters
6	To study frequency response of various 1st	12	To measure two port parameters of a twin-T network
	order RL & RC networks		and study its frequency response.

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Part - C

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work = \mathbf{A}	1,2,3,4,5,6,7,8	A = 10
Record = B	1,2,3,4,5,6,7,8	B = 05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 15
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	30
Semester End Examinations = D	1,2,3,4,5,6,7,8	70
Total Marks: $A + B + C + D = CIE + SEE$		100

PART-D

ROGRAMI	ME OUTCOMES (POs):
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor
Mr. G. Venkata Rao

Course Coordinator Mr.K.V.Ashok Module CoordinatorHODDr. G.SrinivasuluDr. Y. Amar Babu

HEDDY COLLEGE OF THE DUP COLLEGE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Dr. V.ParvathiCourse Name & Code:Chemistry & 23FE02L-T-P Structure:3-0-0Program/Sem/Sec: B.Tech/IIsem/ ECE B

Credits:03 A.Y. :2023-24

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enable the students to understand the fundamental concepts of chemistry and to provide them with the knowledge of industrial problems and finding the solutions.
- To strengthen the basic concepts of bonding models, advanced engineering materials, electrochemistry, batteries and polymers.
- To introduce instrumental methods and their applications.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the fundamentals of quantum mechanics and molecular orbital energydiagrams for molecules(Understand)
CO2	Summarize the suitability of advanced materials like semiconductors, superconductors, superconductors, super capacitors and nano materials, in advanced fields(Understand)
CO3	Apply Nernst equation in calculating cell potentials and understand conductometric,potentiometric titrations, electrochemical sensors and compare batteries for differentapplications(Understand)
CO4	Outline the importance of polymers and conducting polymers in advancedtechnologies(Understand)
C05	Understand the fundamentals of UV-Visible, IR spectroscopic techniques and basicprinciples of chromatographic techniques(Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

POs COs	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	2	2	2	-	2	2	-	-	-	-	2
CO3	3	3	2	2	-	2	2	-	-	_	-	2
CO4	3	2	2	2	-	2	2	-	-	-	-	2
C05	3	2	1	1	-	-	-	-	-	_	-	1
1	1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High)											

Textbooks:

1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.

2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference: Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: STRUCTURE AND BONDING MODELS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.		1	13 -02-2024		TLM1	
2.	Bridge Course	1	14-02-2024		TLM1	
3.		1	16-02-2024		TLM1	
4.	Fundamentals Of Quantum Mechanics	1	19-02-2024		TLM1	
5.	Fundamentals Of Quantum Mechanics	1	20-02-2024		TLM1	
6.	Schrodinger Wave Equation & Significance of Ψ and Ψ^2	1	21-02-2024		TLM1	
7.	Particle In one dimensional box	1	23-02-2024		TLM1	
8.	Molecular Orbital Theory – Bonding in Homo- and Heteronuclear Diatomic Molecules	1	26-02-2024		TLM1	
9.	Practice of examples	1	27-02-2024		TLM1	
10.	Practice of examples	1	28-02-2024		TLM1	
11	Practice of examples	1	01-03-2024		TLM1	
12	Energy level diagrams of O_2 and CO	1	04-03-2024		TLM1	
13	π -molecular orbitals of butadiene	1	05-03-2024		TLM1	
14	π -molecular orbitals of benzene	1	07-03-2024		TLM1	
No. of classes required to complete UNIT-I: 14 No. of classes taken:					taken:	

UNIT-II: MODERN ENGINEERING MATERIALS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Semiconductors - Introduction	1	11-03-2024		TLM1		
2.	Semiconductors - Basic concept&applications	1	12-03-2024		TLM1		
3.	Super conductors - Introduction	1	13-03-2024		TLM1		
4.	Super conductors - Basic concept&applications	1	15-03-2024		TLM1		
5.	Supercapacitors - Introduction	1	18-03-2024		TLM1		
6.	Supercapacitors - Basic concept- classification&applicatio ns	1	19-03-2024		TLM1		
7.	Nano materials - Introduction	1	20-03-2024		TLM2		
8.	Nano materials - classification	1	22-03-2024		TLM2		
9.	Nano materials - properties and applications of fullerenes	1	26-03-2024		TLM2		
10	Nano materials - carbon nano tubes and graphene nanoparticles	1	27-03-2024				
No. of	classes required to complete	No. of classes required to complete UNIT-II: 10 No. of classes taken:					

UNIT-III: ELECTROCHEMISTRY AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Mid I Analysis	1	08-04-2024		TLM2	
2.	Electrochemical cell, Nernst equation.	1	10-04-2024		TLM1	
3.	Cell potential calculations and numerical problems	1	12-04-2024		TLM1	
4.	Continuenumerical problems.	1	15-04-2024		TLM1	
5.	Potentiometry- potentiometric titrations (redox titrations)	1	16-04-2024		TLM1	
6.	Concept of conductivity, conductivitycell,conducto metric titrations (acid- base titrations)	1	19-04-2024		TLM1	
7.	Electrochemical sensors – potentiometric sensors with examples,	1	22-04-2024		TLM1	

	amperometric sensors with examples					
8.	Primary cells – Zinc-air battery, Secondary cells – - working of the batteries including cell reactions	1	23-04-2024		TLM1	
9	lithium-ion batteries working of the batteries including cell reactions	1	24-04-2024		TLM1	
10	Fuel cells, hydrogen- oxygen fuel cell– working of the cells	1	26-04-2024		TLM1	
11	Polymer electrolyte membrane fuel cells (PEMFC)	1	29-04-2024		TLM1	
No. of classes required to complete UNIT-III: 11				No. of classes	taken:	

UNIT-IV: POLYMER CHEMISTRY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to polymers, functionality of monomers	1	30-04-2024		TLM1	
2.	Chain growth and step growth polymerization, coordination polymerization, with specific examples	1	01-05-2024		TLM1	
3.	Mechanisms of polymer formation	1	03-04-2024		TLM1	
4.	Plastics –Thermo and Thermosetting plastics	1	06-04-2024		TLM1	
5.	Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon- 6,6, carbon fibres	1	07-04-2024		TLM1	
6.	Elastomers–Buna-S, Buna- N–preparation, properties and applications	1	08-04-2024		TLM1	
7.	Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications	1	10-04-2024		TLM1	
8.	Contd conducting polymers.	1	13-04-2024		TLM1	
9	Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA)	1	14-04-2024		TLM1	

No. of classes required to complete UNIT-IV: 9		No. of classes	taken:		

UNIT-V: INSTRUMENTAL METHODS AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Electromagnetic spectrum	1	15-05-2024		TLM2	
2.	Absorption of radiation: Beer-Lambert's law	1	17-05-2024		TLM2	
3.	UV-Visible Spectroscopy	1	20-05-2024		TLM2	
4.	electronic transition, Instrumentation	1	21-05-2024		TLM2	
5.	IR spectroscopies, fundamental modes	1	22-05-2024		TLM2	
6.	selection rules, Instrumentation	1	24-05-2024		TLM2	
7.	Chromatography-Basic Principle	1	27-05-2024		TLM2	
8.	Classification-HPLC: Principle, Instrumentation and Applications	1	28-05-2024		TLM2	
No. of classes required to complete UNIT-V: 8			No. of	classes take	n:	

TOPICS BEYOND THE SYLLABUS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Applications of semiconductors, superconductors and nanomaterials in advanced technologies.	1	29-05-2024		TLM2	
2	Applications of polymers in advanced technologies .	1	31-05-2024		TLM2	

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II)	A1=5
I-Descriptive Examination (Units-I, II)	M1=15
I-Quiz Examination (Units-I, II)	Q1=10
Assignment-II (Unit-III, IV & V)	A2=5
II- Descriptive Examination (UNIT-III, IV & V)	M2=15
II-Quiz Examination (UNIT-III, IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineeringproblems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineeringproblemsreachingsubstantiatedconclusionsusingfirstprinciplesofmathematics natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriateconsiderationforthepublichealthandsafety,andthecultural,societal,andenviron mentalconsiderations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethic s: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, beingable to comprehend andwriteeffectivereportsanddesigndocumentation,makeeffectivepresentations,andgivean dreceiveclear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of theengineeringandmanagementprinciplesandapplythesetoone'sownwork,asamemberandle aderinateam, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. V.Parvathi	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor:Dr. V.ParvathiCourse Name & Code: Chemistry Lab&23FE52L-T-P Structure:0-0-3Program/Sem/Sec: B.Tech/ II sem/ ECE B

Credits:1.5 A.Y. :2023-24

Pre requisites: Nil

Course Educational Objective:

- To enable the students to perform different types of volumetric titrations.
- It provides an overview of preparation of polymers, nanomaterials and analytical techniques.

Course Outcomes: After completion of the course, the students will be able to,

- **CO1:** Distinguish different types of titrations in volumetric analysis after performing the experiments listed in the syllabus. (Analyze)
- **CO2:** Acquire practical knowledge related to preparation of Bakelite and nanomaterials. (Apply)
- **CO3:** Measure the strength of acid present in Pb-Acid battery. (Apply)
- **CO4:** Determine the cell constant and conductance of solutions. (Apply)

C05: Analyze organic compounds by using UV-Visible and IR spectroscopy. (Apply)

POs COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	
C01	3	2	-	-	-	1	2	-	-	-	-	-	
CO2	3	-	1	-	-	2	1	-	-	-	-	-	
CO3	3	2	1	-	-	-	2	-	-	-	-	-	
CO4	3	1	-	-	-	-	-	-	-	-	-	-	
CO5	3	2	-	-	2	-	-	-	-	-	-	-	
1	L = Slig	ght (Lo	w)	2 =	Mode	rate (M	ledium	l)	3 = Substantial (High)				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial(High).

Bos Approved Lab Manual

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Experiment	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	HOD Sign Weekly
1.	Introduction to Engineering chemistry lab	3	16-02-2024		TLM1		
2.	Demonstration of volumetric analysis	3	23-02-2024		TLM4	C01	
3.	Preparation of a Bakelite	3	23-02-2024		TLM4	C02	
4.	Determination of amount of HCl using standard Na2CO3 solution	3	15-03-2024		TLM4	C01	
5.	Determination of Strength of an acid in Pb-Acid battery	3	22-03-2024		TLM4	C03	
6.	Estimation of Ferrous Iron by Dichrometry	3	12-04-2024		TLM4	C01	
7.	Conductometric titration of strong acid vs. strong base	3	19-04-2024		TLM4	C04	
8.	Conductometric titration of weak acid vs. strong base	3	26-04-2024		TLM4	C04	
9	Determination of alkalinity And conc of individual ions	3	03-05-2024		TLM4	C01	
10.	Estimation of Ferrous Iron by permanganometry	3	10-05-2024		TLM4	C01	
11.	Estimation of total hardness of water by EDTA method	3	17-05-2024		TLM4	C02	
12.	Measurement of pH//Revision/ Experiment for absentees for regular lab.	3	24-05-2024		TLM4	CO4	
13	Internal Exam	3	31-05-2024				

Part - C

EVALUATION PROCESS:

According to Academic Regulations of R20 Distribution and Weightage of Marks for Laboratory Courses is as follows.

(a) Continuous Internal Evaluation(CIE):

✓ The continuous internal evaluation for laboratory course is based on the following parameters:

Evaluation Task	Marks
Day-to-Day Work	A1 = 10
Record & Observation	B1 = 5
Internal Exam	C1 = 15
Cumulative Internal Examination (CIE): (A1+B1+C1)	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineeringsciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and researchmethodsincludingdesignofexperiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of thelimitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineeringpractice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineeringpractice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clearinstructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr.V.Parvathi	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001 : 2018, 50001 : 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

FRESHMAN ENGINEERING DEPARTMENT

COURSE HANDOUT

 Part-A
1 41 6 7 1

PROGRAM	: I B. Tech., I-Sem., CSE-D
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE	: Differential Equations & Vector Calculus
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: G.VIJAYA LAKSHMI
COURSE COORDINATOR	: Dr. K.R.Kavitha
PRE-REOUISITES	: Basics of Vectors, Differentiation, Integration

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enlighten the learners in the concept of differential equations and multivariable calculus
- To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

- CO1: Solve the differential equations related to various engineering fields -L3
- CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations L3
- CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence L3
- CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus L3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	3	1	-	-	-	-	-	-	-	-	-	1
CO3	3	2	-	-	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017.
- **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018.

BOS APPROVED REFERENCE BOOKS:

- **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018.
- R2 Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018.
- **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018.
- **R4** R.K. Jain and S.R.K. Iyengar, "*Advanced Engineering Mathematics*", 5th Edition (9th reprint), Alpha Science International Ltd., 2021.
- **R5** B. V. Ramana, *"Higher Engineering Mathematics"*, 3rd Edition McGraw Hill Education, 2017.

Part-B

	COURSE DELIVERY PLAN (LESSON PLAN):												
S. No	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning Mothoda	Learning Outcome	Text Book	HOD Sign Wooldw					
		Requirea	Completion	Completion	Methods	COs	Ionowea	weekiy					
1.	Introduction to the course	1	12-02-2024		TLM2								
2.	Course Outcomes, Program Outcomes	1	13-02-2024		TLM2								

UNIT-I: Differential Equations of first order and first degree

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
3.	Introduction to UNIT I	1	14-02-2024		TLM1	CO1	T1,T2	
4.	Linear Differential equation	1	15-02-2024		TLM1	CO1	T1,T2	
5.	Bernoulli's DE	1	17-02-2024		TLM1	CO1	T1,T2	
6.	Exact DE	1	19-02-2024		TLM1	CO1	T1,T2	
7.	Exact DE	1	20-02-2024		TLM1	CO1	T1,T2	
8.	Non-exact DE Type I	1	21-02-2024		TLM1	CO1	T1,T2	
9.	Non-exact DE Type II	1	22-02-2024		TLM1	CO1	T1,T2	
10.	Non-exact DE Type III	1	24-02-2024		TLM1	CO1	T1,T2	
11.	Non-exact DE Type IV	1	26-02-2024		TLM1	CO1	T1,T2	
12.	Newton's Law of cooling	g 1	27-02-2024		TLM1	CO1	T1,T2	
13.	Newton's Law of cooling	g 1	28-02-2024		TLM1	CO1	T1,T2	
14.	Law of natural growth ar decay	nd 1	29-02-2024		TLM1	CO1	T1,T2	
15.	Law of natural growth ar decay	nd 1	02-03-2024		TLM1	CO1	T1,T2	
16.	Electrical circuits	1	04-03-2024		TLM1	CO1	T1,T2	
17.	TUTORIAL - I	1	05-03-2024		TLM3	CO1	T1,T2	
No. or comp	f classes required to lete UNIT-I	15				No. of class	ses taken:	

UNIT-II: Linear Differential equations of higher order (Constant Coefficients)

S .		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
18.	Introduction to UNIT II	1	06-03-2024		TLM1	CO1	T1,T2	
19.	Solving a homogeneous DE	1	07-03-2024		TLM1	CO1	T1,T2	
20.	Solving a homogeneous DE	1	11-03-2024		TLM1	CO1	T1,T2	
21.	Finding Particular Integral, P.I for e^{ax+b}	1	12-03-2024		TLM1	CO1	T1,T2	
22.	P.I for Cos bx, or sin bx	1	13-03-2024		TLM1	CO1	T1,T2	
23.	P.I for polynomial function	1	14-03-2024		TLM1	CO1	T1,T2	

24.	P.I for $e^{ax+b}v(x)$	1	16-03-2024	TLM1	CO1	T1,T2	
25.	P.I for $x^k v(x)$	1	18-03-2024	TLM1	CO1	T1,T2	
26.	Method of Variation of parameters	1	19-03-2024	TLM1	CO1	T1,T2	
27.	Method of Variation of parameters	1	20-03-2024	TLM1	CO1	T1,T2	
28.	Simultaneous linear equations	1	21-03-2024	TLM1	CO1	T1,T2	
29.	Simultaneous linear equations	1	23-03-2024	TLM1	CO1	T1,T2	
30.	L-C-R circuits	1	26-03-2024	TLM1	CO1	T1,T2	
31.	TUTORIAL - II	1	27-03-2024	TLM3	CO1	T1,T2	
32.	Simple Harmonic motion	1	28-03-2024	TLM1	CO1	T1,T2	
33.	Revision	1	30-03-2024	TLM1	CO1		
N	lo. of classes required to complete UNIT-II	14			No. of class	es taken:	

I MID EXAMINATIONS (01-04-2024 TO 06-04-2024)

UNIT-III: Partial Differential Equations

S. No	Topics to be covered	No. of	Tentative Date of	Actual Date of	Teaching	Learning	Text Book	HOD Sign
110.	Toples to be covered	Required	Completion	Completion	Methods	COs	followed	Weekly
34.	Introduction to Unit III	1	08-04-2024		TLM1	CO2	T1,T2	
35.	Formation of PDE by elimination of arbitrary constants	1	10-04-2024		TLM1	CO2	T1,T2	
36.	Formation of PDE by elimination of arbitrary functions	1	13-04-2024		TLM1	CO2	T1,T2	
37.	Formation of PDE by elimination of arbitrary functions	1	15-04-2024		TLM1	CO2	T1,T2	
38.	Solving of PDE	1	16-04-2024		TLM1	CO2	T1,T2	
39.	Lagrange's Method	1	18-04-2024		TLM1	CO2	T1,T2	
40.	Lagrange's Method	1	20-04-2024		TLM1	CO2	T1,T2	
41.	Homogeneous Linear PDE with constant coefficients	1	22-04-2024		TLM1	CO2	T1,T2	
42.	TUTORIAL - III	1	23-04-2024		TLM3	CO2	T1,T2	
No. of classes required to complete UNIT-III		09			No. of class	es taken:		

UNIT-IV: Vector Differentia

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
43.	Introduction to UNIT IV	1	24-04-2024		TLM1	CO3	T1,T2	
44.	Vector Differentiation	1	25-04-2024		TLM1	CO3	T1,T2	
45.	Gradient	1	27-04-2024		TLM1	CO3	T1,T2	

46.	Directional Derivative	1	29-04-2024	TLM1	CO3	T1,T2	
47.	Directional Derivative	1	30-04-2024	TLM1	CO3	T1,T2	
48.	Divergence	1	01-05-2024	TLM1	CO3	T1,T2	
49.	Curl	1	02-05-2024	TLM1	CO3	T1,T2	
50.	Problems	1	04-05-2024	TLM1	CO3	T1,T2	
51.	Solenoidal fields, Irrotational fields, potential surfaces	1	06-05-2024	TLM1	CO3	T1,T2	
52.	Solenoidal fields, Irrotational fields, potential surfaces	1	07-05-2024	TLM1	CO3	T1,T2	
53.	Laplacian, second order operators	1	08-05-2024	TLM1	CO3	T1,T2	
54.	Vector Identities	1	09-05-2024	TLM1	CO3	T1,T2	
55.	TUTORIAL IV	1	13-05-2024	 TLM3	CO3	T1,T2	
No. of classes required to complete UNIT-IV		13			No. of clas	sses taken:	

UNIT-V: Vector Integration

S		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
D. No	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
INU.		Required	Completion	Completion	Methods	COs	followed	Weekly
57.	Introduction to Unit-V	1	14-05-2024		TLM1	CO4	T1,T2	
58.	Line Integral	1	15-05-2024		TLM1	CO4	T1,T2	
59.	Circulation	1	16-05-2024		TLM1	CO4	T1,T2	
60.	Work done	1	18-05-2024		TLM1	CO4	T1,T2	
61.	Surface Integral	1	20-05-2024		TLM1	CO4	T1,T2	
62.	Surface Integral	1	21-05-2024		TLM1	CO4	T1,T2	
63.	Flux	1	22-05-2024		TLM1	CO4	T1,T2	
64.	Green's Theorem	1	23-05-2024		TLM1	CO4	T1,T2	
65.	Green's Theorem	1	25-05-2024		TLM1	CO4	T1,T2	
66.	Stoke's Thoerem	1	27-05-2024		TLM1	CO4	T1,T2	
67.	Divergence Theorem	1	28-05-2024		TLM1	CO4	T1,T2	
68.	TUTORIAL - V	1	29-05-2024		TLM3	CO4	T1,T2	
No. of classes required to complete UNIT-V		12			No. of class	ses taken:		
	Content beyond the Syl	llabus						

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly		
69.	Non-homogeneous Linear PDE with constant coefficients	2	30-05-2024 01-06-2024		TLM2	CO2	T1,T2			
	No. of classes	2			No. of clas	ses taken:				
	II MID EXAMINATIONS (03-06-2024 TO 08-06-2024)									

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

<u>PART-C</u>EVALUATION PROCESS (R23 Regulation):

Assignment-I (Units-I, II) Al=5 LDescriptive Examination (Units-I, II) M1=15 I-Quiz Examination (Units-I, II) Q1=10 Assignment-II (Unit-III, IV & V) A2=5 II-Descriptive Examination (UNIT-III, IV & V) Q2=10 Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Cumulative Internal Examination (SIB) 70 Total Marks = CIE + SEE 100 Pol I Engineering Rowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. Pol 1 Engineering Rowledge: Apply the knowledge of complex engineering problems. Polema nalysis: Identify, formulate, review research hierature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 5 societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the profession	Evaluat	ion Task	Marks						
I-Descriptive Examination (Units-I, II) M1=15 I-Quiz Examination (Units-I, II) Q1=10 Assignment-II (Unit-III, IV & V) M2=15 II-Descriptive Examination (UNIT-III, IV & V) M2=15 II-Quiz Examination (UNIT-III, IV & V) M2=15 II-Quiz Examination (UNIT-III, IV & V) M2=15 II-Quiz Examination (UNIT-III, IV & V) M2=15 Orgunalative Internal Examination (CIE); 80 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. PO 2 Problem sachify, formulate, review research literature and analyze complex engineering problems. Problem sreaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering activities with an understanding of the limitations.	Assignment-I (Units-I, II)								
I-Quiz Examination (Units-I, II) Q1=10 Assignment-II (Unit-III, IV & V) M2=15 II-Descriptive Examination (UNIT-III, IV & V) M2=15 II-Quiz Examination (UNIT-III, IV & V) M2=15 Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Comulative Internal Examination (CIE): 30 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 Polem analysis: Identify, formulate, review research literature and analyze complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems. Problem analysis: Identify, formulate, review research-based knowledge and research mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and TI tools including prediction and modeling to complex engineering solutions for complex engineering solutions in societal and environmental considerations. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions	I-Descriptive Examination (Units-I, II)								
Assignment-II (Unit-III, IV & V) A2=5 II- Descriptive Examination (UNIT-III, IV & V) Q2=10 Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Cumulative Internal Examination (CIE): 30 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems and design or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental consideration for the public health and safety and the cultural, societal and environmental consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. PO 6 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities with an understanding of the limitations. PO 7 Environment and sustainability: Understand the impact of the professiona	I-Quiz Examination (Units-I, II)								
II- Descriptive Examination (UNIT-III, IV & V) M2=15 II-Quiz Examination (UNIT-III, IV & V) Q2=10 Mid Marks = S0% of Max (M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Cumulative Internal Examination (CIE): 30 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 1000 PO1 and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 1 and engineering of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 5 Societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering protice. PO 7 Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. PO 1 Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidiscipl	Assignment-II (Unit-III, IV & V)								
II-Quiz Examination (UNIT-III, IV & V) Q2=10 Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Comulative Internal Examination (CIE): 30 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 PART-D PROGRAMME OUTCOMES (POs): PART-D PROGRAMME OUTCOMES (POs): Polem analysis: Identify, formulate, review research literature and analyze complex engineering problems. Problem seaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 5 Gaineering and IT tools including prediction and modeling to complex engineering solutions PO 6 Engineering and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. PO 6 Environment and sustainability: Understand the impact of the professional engineering solutions in societal, heal	II- Descriptive Examination (UNIT-III, IV & V)								
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=30 Cumulative Internal Examination (CIE): 30 Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 PART-D PROCRAMME OUTCOMES (POS): PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO 3 system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 4 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions in societal and engineering practice PO 7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional engineering solutions in soci	II-Quiz Examination (UNIT-III, IV & V)								
Cumulative Internal Examination (CIE): 30 Semester End Examination (SEB) 70 Total Marks = CIE + SEE 100 PART-D PROGRAMME OUTCOMES (POs): PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 Conduct investigations of complex problems: Use research-hased knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 4 medern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. PO 5 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.	Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) M=								
Semester End Examination (SEE) 70 Total Marks = CIE + SEE 100 PART-D PROGRAMME OUTCOMES (POs): PART-D PROGRAMME OUTCOMES (POs): PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering problems: Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO 3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 6 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions in societal and environmental contexts and demostrate the knowledge of and need for sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demostrate the knowledge of and need for sustainable development. PO 7 Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidiscip	Cumulative Internal Examination (CIE): 30								
Total Marks = CIE + SEE 100 PART-D PROGRAMME OUTCOMES (POs): PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 4 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions in societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice PO 7 Environment and sustainability: Understand the impact of the professional engineering practice. PO 8 Ethics: Apply ethical principles and commit to professional ethics and need for sustainable development. PO 8 Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary	Semester End Examination (SEE)								
PART-D PROGRAMME OUTCOMES (POs): PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. PO 4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations PO 6 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 10 Individual and team work: Function effectively as an individual and as a member or leader in	Total M	arks = CIE + SEE	100						
PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate considerations. PO 4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions is societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice PO 6 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional engineering activities with the engineering or munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear in structions. PO 10		PART-D PROGRAMME OUTCOMES (POs):							
 Pro1 and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering solutions for in societal, haafty, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional engineering practice. PO 9 Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. PO 10 Communication: Communicate effectively on complex engineering activities with the engineering and design documentation; the resonstrate knowledge and uncetstanding of the engineering and management and finance: Demonstrate knowledge and uncetstanding of the engineering and management principles and apply these to one's own work, as a member on leader in diverse team and in multidisciplinary environments. PO 12 Life-long		Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundam	nentals						
Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.PO 3Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.PO 4Conduct investigations of complex problems: Use research-based knowledge and research information to provide valid conclusions.PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6Environment and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions of the engineering practice.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 10Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 12Life-long learning: Recognize the need for submit apply engineering and management and finance: Demonstrate knowledge and understanding of the engineering and management and finance: Demonstrate knowledge and understanding of the engineering and mana	PUI	and an engineering specialization to the solution of complex engineering problems.							
PO 2 and engineering substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.PO 4Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 5Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 8Ethics: Apply ethical principles and commit to professional engineering solutions of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Project management and finance: Demonstrate knowledge and understanding of the engineering and engineering and thrance: Demonstrate knowledge and understanding of the engineering and management and finance: Demonstrate knowledge and understanding of the engineering and design documentation, make effective presentations and give and receive clear instructions.PO 112Infe-long learning: Recognize the need for and have th		Problem analysis: Identify, formulate, review research literature and analyze complex engin	eering						
and engineering sciences.PO 3Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.PO 4Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.PO 4Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 5Societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communitation: Communicate effectively pon complex engineering activities with the engineering and management and finance: Demonstrate knowledge and understanding of the engineering and management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation	PO 2	problems reaching substantiated conclusions using first principles of mathematics, natural sci	ences,						
PO 3Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.PO 4Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.PO 4Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 5The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 11Communication: Communicate effective presentations and give and receive clear instructions.PO 12Individual planting: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. <td></td> <td>and engineering sciences.</td> <td></td>		and engineering sciences.							
PO 3system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.PO 4methods including design of complex problems: Use research-based knowledge and research information to provide valid conclusions.PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give		Design/development of solutions : Design solutions for complex engineering problems and	design						
the public health and safety and the cultural, societal and environmental considerations.PO 4Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and any event provide and need for a summary on the society engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and apply these to one's own work, as a member and	PO 3	O 3 system components or processes that meet the specified needs with appropriate consideration :							
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.PO 4Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 5Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 6Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		the public health and safety and the cultural, societal and environmental considerations.							
PO 4methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Conduct investigations of complex problems: Use research-based knowledge and re	research						
Information to provide valid conclusions.PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 6Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effective presentations and give and receive clear instructions.Project management and finance: Demonstrate knowledge and understanding of the engineering and design documentation, make effective presentations and give and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 4	methods including design of experiments, analysis and interpretation of data and synthesis	of the						
PO 5Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 6Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		information to provide valid conclusions.							
PO 5engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Modern tool usage: Create, select, and apply appropriate techniques, resources, and m	nodern						
an understanding of the limitationsPO 6The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 5	engineering and IT tools including prediction and modeling to complex engineering activitie	s with						
PO 6Ine engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		an understanding of the limitations							
PO 6Societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practicePO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		The engineer and society : Apply reasoning informed by the contextual knowledge to	assess						
Project management and finance: Demonstrate knowledge and understanding of the engineeringPO 11PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PUG	societal, health, salety, legal and cultural issues and the consequent responsibilities relevant	to the						
PO 7Environment and sustainability. Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Environment and sustainability: Understand the impact of the professional angineering sel	utions						
PO 1In societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 7	in societal and environmental contexts and demonstrate the knowledge of and need for susta	inable						
PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	107	development	linable						
PO 8Diffest http:// current principles and connect to processional currents and responsionales and norms of the engineering practice.PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 10Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Ethics: Apply ethical principles and commit to professional ethics and responsibilities and	norms						
PO 9Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 8	of the envineering practice	norms						
PO 9Individual and team worth random entering of the entering diverse teams and in multidisciplinary settings.PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 10Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Individual and team work : Function effectively as an individual and as a member or lea	der in						
PO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 9	diverse teams and in multidisciplinary settings.							
PO 10community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Communication : Communicate effectively on complex engineering activities with the engin	eering						
and design documentation, make effective presentations and give and receive clear instructions.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 1) community and with society at large, such as being able to comprehend and write effective r	reports						
PO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	_	and design documentation, make effective presentations and give and receive clear instruction	ns.						
PO 11and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		Project management and finance: Demonstrate knowledge and understanding of the engin	eering						
to manage projects and in multidisciplinary environments. PO 12 Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO 1	and management principles and apply these to one's own work, as a member and leader in a	team,						
PO 12Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		to manage projects and in multidisciplinary environments.							
independent and life-long learning in the broadest context of technological change.		Life-long learning: Recognize the need for and have the preparation and ability to enga	age in						
	PU I	independent and life-long learning in the broadest context of technological change.	-						

G.VIJAYA LAKSHMI	Dr.K.R.Kavitha	Dr. A. RAMI REDDY	Dr. A. RAMI REDDY
Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALIREDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA(UnderTier-I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, NewDelhi and Affiliated to JNTUK, Kakinada L.B.REDDY NAGAR, MYLAVARAM, NTR DIST.,A.P.-521230. Phone:08659-222933,Fax:08659-222931

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSEHANDOUT

PART-A

Name of Course Instructor	: G.V.Rajya Lakshmi	
Course Name & Code	: Computer Programming Lab (23CS51)	
L-T-P Structure	: 0-0-3	Credits:1.5
Program/Sem/Sec	:B.Tech.–ECE /II-Sem/B	A.Y. :2023-24

PRE-REQUISITE: Fundamentals of Mathematics.

COURSE EDUCATIONAL OBJECTIVE (CEO): The course aims to give students hands - on

experience and train them on the concepts of the C- programming language.

COURSE OUTCOMES (**COs**): At the end of the course, the student will be able to:

CO1 :	Read, understand, and trace the execution of programs written in C language.(Understand)	Apply-Level2
CO2 :	Select the right control structure for solving the problem. (Apply)	Apply-Level3
CO3 :	Develop C programs which utilize memory efficiently using programming constructs like pointers. (Apply)	Apply-Level3
CO4 :	Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C.(Apply).	Apply-Level3
CO5:	Improve individual / teamwork skills, communication and report writingskills with ethical values.	

COURSEARTICULATIONMATRIX(CorrelationbetweenCOs,POs&PSOs):

COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2	-	-	3	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
CO3	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
CO4	3	2	2	-	3	-	-	-	-	-	-	-	3	-	-
C05	-	-	-	-	-	-	-	2	2	2	2	2	-	-	-
1 -Low					2 –Medium			3– High							

PART-B

COURSE DELIVERY PLAN -LESSONPLAN:

		No.of C	lasses		
S. No.	Programs to be covered	Required as per the Schedule	Taken	Date of Completion	Delivery Method
1.	Week1: Familiarization with programming environment	03		13-02-24	DM5
2.	Week2: Problem-solving using Algorithms and Flow charts.	03		20-02-24	DM5
3.	Week3: Exercise Programs on Variable types and type conversions	03		27-02-24	DM5
4.	Week4: Exercise Programs on Operators and the precedence and as associativity.	03		05-03-24	DM5
5.	Week5:Exercise Programs on Branching and logical expressions	03		12-03-24	DM5
6.	Week6:Exercise Programs on Loops, while and for loops	03		19-03-24	DM5
7.	Week7: Exercise Programs on 1 D Arrays & searching.	03		26-03-24	DM5
8.	Week8:Exercise Programs on 2 D arrays, sorting and Strings.	03		16-04-24	DM5
9.	Week9: Exercise Programs on Pointers, structures and dynamic memory	03		23-04-24	DM5
10.	Week10: Exercise Programs on Bit fields, Self-Referential Structures, Linked lists	03		30-04-24	DM5
11.	Week 11: Exercise Programs on Functions, call by value, scope and extent.	03		07-05-24	DM5
12.	Week 12: Exercise Programs on Recursion, the structure of recursive calls	03		14-05-24	DM5
13.	Week 13: Exercise Programs on Call by reference, danglingpointers	03		21-05-24	DM5
14.	Week 14: Exercise Programs on File handling.	03		28-05-24	DM5
15.	Problem Solving ability Test	03		04-06-24	DM5
16.	Lab Internal	03		13-02-24	DM5

		Delivery Methods	
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz
DM2	ICT Tools	DM5	Laboratory/Field Visit
DM3	Tutorial	DM6	Web-based Learning

PART-C PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
105	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
FUO	and norms of the engineering practice.
	Individual and team work: Function effectively as an individual, and as a member or
109	leader in diverse teams, and in multidisciplinary settings.
DO 10	Communication: Communicate effectively on complex engineering activities with the
FO 10	engineering community and with society at large, such as, being able to
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
1011	member and leader in a team, to manage projects and in multidisciplinary environments.
DO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage
r012	in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	G.V.Rajya Lakshmi	Dr.Y.Vijay Bhaskar Reddy	Dr.Y.Vijay Bhaskar Reddy	Dr. D. Veeraiah
Signature				

LAKIREDDY BALIREDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA(UnderTier-I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, NewDelhi and Affiliated to JNTUK, Kakinada L.B.REDDY NAGAR, MYLAVARAM, NTR DIST.,A.P.-521230. Phone:08659-222933,Fax:08659-222931

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HAND OUT

<u>PART-A</u>

Name of Course Instructor
Course Name & Code
L-T-P Structure
Program/Sem/Sec

:Mrs.G.V.Rajya Lakshmi :Introduction to Programming(23CS01) :3-0-0 :B.Tech-ECE/II/B

Credits:3 A.Y.:2023-24

PRE-REQUISITE:NIL

COURSE EDUCATIONAL OBJECTIVE(CEO):

- To introduce students to the fundamentals of computer programming.
- To provide hands-on experience with coding and debugging.
- To foster logical thinking and problem-solving skills using programming.
- To familiarize students with programming concepts such as datatypes, control structures, functions and arrays.
- To encourage collaborative learning and team work in coding projects

COURSE OUTCOMES(COs): At the end of the course, the student will be able to:

-			
	CO1.	Understand basics of computers, the concept of algorithm and	Understand-
CO1 .		algorithmic thinking.	Level 2
	CO2:	Analyze a problem and develop an algorithm to solve it.	Analyze – Level4
	CO3:	Implement various algorithms using the C programming language.	Apply-Level3
	CO4:	Understand more advanced features of C language.	Understand– Level 2
	CO5:	Develop problem-solving skills and the ability to debug and optimize the code.	Apply-Level3

COURSE ARTICULATION MATRIX (CorrelationbetweenCOs,POs&PSOs):

										/					
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	I	-	-	I	2	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO5	3	-	-	-	-	-	-	-	•	-	-	•	2	-	-
1-Low				2–Medium			3– High								

TEXTBOOKS:

- **T1:** The C Programming Language", Brian W.Kernighan and Dennis M.Ritchie, Prentice Hall,1988 edition, 2015
- **T2:** Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-HillEducation, 1996

REFERENCEBOOKS:

- **R1:** Computing fundamentals and C Programming, Balagurusamy, E., McGraw-HillEducation, 2008.
- **R2:** Programming in C,Reema Thareja, Oxford,2016, 2nd edition
- **R3:** C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Programming and Problem Solving

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H O D Sign Wee kly
1.	Discussion of CEO's and CO's	1	12-02-24		TLM2	9
2.	History of Computers	1	13-02-24		TLM2	
3	Basic organization of a computer: ALU,	2	14-02-24		TLM2	
5.	input-output units.	2	15-02-24			
4.	Memory, program counter	1	17-02-24		TLM1, TLM2	
5.	Introduction to Programming Languages,	1	19-02-24		TLM1, TLM2	
6.	Basics of a Computer Program- Algorithms	1	20-02-24		TLM1	
7.	Flowcharts (Using Dia Tool), pseudo code.	1	21-02-24		TLM1	
8.	Introduction to Compilation and Execution	1	22-02-24		TLM1	
0	Primitivo Data Tunos	2	24-02-24		TLM1	
9.	Filmuve Data Types	2	26-02-24			
10.	Variables, and Constants, Basic Input and Output operations	1	27-02-24		TLM1	
11.	Type Conversion, and Casting	1	28-02-24		TLM1	
12.	Problem solving techniques: Algorithmic approach, characteristics of algorithm	1	29-02-24		TLM1	
13.	Problem solving strategies: Top-down approach, Bottom-up approach	1	02-03-24		TLM1	
14	Time and space complexities of algorithms.	1	04-03-24		TLM1	
No.	of classes required to complete	UNIT-I:1	5	No.of clas	ses taken:	

UNIT-II:ControlStructures

S. No.	Topics to be covered	No. of Classe sRequi red	Tentative Date of Completion	Actu al Date of Completio n	Teaching Learning Methods	H O D Sign Wee kly
15.	Simple sequential programs Conditional Statements	1	05-03-24		TLM1	
16.	if, if-else	1	06-03-24		TLM1, TLM2	
17.	Else-if ladder, nested if	1	07-03-24		TLM1, TLM2	
18.	Switch, sample programs	1	09-03-24		TLM1, TLM2	
19.	Example programs on DecisionMaking	2	11-03-24	-	TLM1, TLM2	
	and Branching		12-03-24			
20.	Loops: while , Example programs	1	13-03-24		TLM1, TLM2	
21.	Loops: do-while, Example programs	1	14-03-24		TLM1	
22.	Loops: for, Example programs	1	16-03-24		TLM1	
23.	Nested Loops with examples	1	18-03-24		TLM1	
24.	Break , Example programs	1	19-03-24		TLM1	

25.	Continue, Example programs	1	20-03-24	TLM1
26.	Example programs on loops	1	21-03-24	TLM1
27.	Example programs on loops	1	23-03-24	TLM1
28.	Revision	1	26-03-24	TLM1
No.	of classes required to complete	No.of classes taken:		

UNIT-III:Arrays and Strings

S. No.	Topics to be covered	No. of ClassesR equired	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H O D Sign Wee kly
29.	Arrays Introduction, Declaration	1	27-03-24		TLM1, TLM2	
30.	Array indexing, Accessing elements	1	28-03-24		TLM1, TLM2	
31.	memory model	1	30-03-24		TLM1, TLM2	
32.	programs with array of integers	1	08-04-24		TLM1, TLM2	
33.	Introduction to two dimensional arrays	1	10-04-24		TLM1, TLM2	
34.	2D Array indexing, Accessing elements	1	13-04-24		TLM1, TLM2	
35.	programs with 2D arrays	1	15-04-26		TLM1, TLM2	
36.	Introduction to Strings	1	16-04-24		TLM1, TLM2	
37.	Reading and Writing Operations on Strings	1	18-04-24		TLM1, TLM2	
38.	String Handling Functions	1	20-04-24		TLM1, TLM2	
No.	of classes required to complete	UNIT-II	I:10	No.of clas	ses taken:	

UNIT-IV:Pointers & User Defined Datatypes

S. No.	Topics to be covered	No. of ClassesRe quired	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H O D Sign Wee kly
39	Introduction to Pointers	1	22-04-24		TLM1, TLM2	
40.	dereferencing and address operators	1	23-04-24		TLM1, TLM2	
41.	pointer and address arithmetic	1	24-04-24		TLM1, TLM2	
42.	array manipulation using pointers	1	25-04-24		TLM1, TLM2	
43	Introduction to User-defined data types	1	27-04-24		TLM1, TLM2	
44.	Structures , Definition and Initialization	1	29-04-24		TLM1, TLM2	
45.	Example programs	1	30-04-24		TLM1, TLM2	
46.	Unions, examples	1	01-05-24		TLM1, TLM2	
47.	Difference between structures&unions	1	02-05-24		TLM1, TLM2	
48.	Structures and pointers	1	04-05-24		TLM1, TLM2	
49.	Revision	1	06-05-24		TLM1, TLM2	
No.	of classes required to complete	UNIT-IV:	11	No.of clas	sses taken:	

UNIT-V: Functions and FileHandling

S. No.	Topics to be covered	No. of ClassesR equired	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H O D Sig n We
-----------	----------------------	-------------------------------	------------------------------------	------------------------------------	---------------------------------	-------------------------------

					ekl y
50.	Introduction to Functions	1	07-05-24	TLM1	
51.	Function Declaration and Definition	1	08-05-24	TLM1, TLM2	
52.	Function call Return Types	1	09-05-24	TLM1, TLM2	
53.	Function Arguments, types	1	13-05-24	TLM1, TLM2	
54.	modifying parameters inside functions using pointers	1	14-05-24	TLM1, TLM2	
55.	Examples on function with pointers	1	15-05-24	TLM1, TLM2	
56.	arrays as parameters	1	16-05-24	TLM1, TLM2	
57.	Scope and Lifetime of Variables	1	18-05-24	TLM1, TLM2	
58.	Introduction to Files	1	20-05-24	TLM1, TLM2	
59.	Basics of File Handling	1	21-05-24	TLM1, TLM2	
60.	Operations on Files	1	22-05-24	TLM1, TLM2	
No.o	f classes required to complete	No.of classes taken:			

Content Beyond the Syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentativ e Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
61.	Application Development usingC	1	27-05-24			
62.	Introduction to Data Structures	1	28-05-24			
63.	Introduction to Data Structures	1	29-05-24			

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration(Lab/FieldVisit)					
TLM2	РРТ	TLM5	ICT(NPTEL/Swayam Prabha/MOOCS)					
TLM3 Tutorial		TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R23 Regulation):

EvaluationTask	Marks
Assignment–I (Units-I,II)	A1 =5
I-Descriptive Examination(Units-I,II)	M1=15
I–Quiz Examination(Units-I,II)	Q1= 10
Assignment–II(Unit-III,IV &V)	A2 =5
II–Descriptive Examination(UNIT-III,IV&V)	M2=15
II–Quiz Examination(UNIT-III,IV&V)	Q2= 10
MidMarks =80%ofMax((M1+Q1+A1),(M2+Q2+A2))+20%ofMin ((M1+Q1+A1),(M2+Q2+A2))	<mark>M=30</mark>

Cumulative Internal Examination(CIE):M	<mark>30</mark>
Semester End Examination(SEE)	<mark>70</mark>
TotalMarks =CIE +SEE	<mark>100</mark>

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
DU 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
100	and norms of the engineering practice.
DU 0	Individual and team work: Function effectively as an individual, and as a member or
107	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage
1012	in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and loT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the
11110	Course mistractor	course coor uniator		Department
Nameof the Faculty	G.V.Rajya Lakshmi	Dr.Y.Vijay Bhaskar Reddy	Dr.Y.Vijay Bhaskar Reddy	Dr.D.Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: EESHWAR RAM.J

Course Name & Code: Basic Civil and Mechanical Engineering &23CM01L-T-P Structure: 3-0-0Credits: 3Program/Sem/Sec: B.Tech, I SEM ECE-BA.Y.: 2023-24

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.
- Introduction to basic civil engineering materials and construction techniques.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1:	Describe various sub-divisions of Civil Engineering and to appreciate their role in societal development. (Understand)
CO2:	Outline the concepts of surveying and obtain the theoretical measurement of distances, angles and levels through surveying. (Understand)
CO3:	Classify the various materials used in construction and highway engineering and identify their appropriate usage as per the needs. (Understand)
CO4:	Illustrate the fundamental principles involved in transportation network system, their individual components and their engineering importance. (Understand)
CO5:	Explain the quality parameters of various water sources and functions of selected water storage and conveyance structures. (Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	1	-	-	-	2	-	2	-	-	-	-	-	2	-	2
CO2	-	-	-	-	2	-	2	-	-	-	-	-	-	-	-
CO3	1	-	-	-	2	-	2	-	-	-	-	-	-	-	2
CO4	1	-	-	-	1	-	-	-	-	-	•	3	-	-	-
CO5	-	-	-	-	1	-	-	-	-	1	•	-	-	-	-
1 - Low					2	-Medi	ium			3	- High				

Textbooks:

1. Basic Civil Engineering, M.S.Palanisamy, , Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.

- 2. Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition.
- 3. Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

Reference Books:

- 1. Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
- 2. Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
- 3. Irrigation Engineering and Hydraulic Structures Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
- 4. Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
- 5. Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basics of Civil Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction CO's & PO's, Subject	1	12-02-2024		TLM2	
2.	Basics of Civil Engineering: Role of Civil Engineers in Society	1	14-02-2024		TLM2	
3.	Various Disciplines of Civil Engineering- Structural Engineering-	1	15-02-2024		TLM2	
4.	Geo-technical Engineering- Transportation Engineering	1	16-02-2024		TLM2	
5.	Hydraulics and Water Resources Engineering	1	17-02-2024		TLM2	
6.	Environmental Engineering-Scope of each discipline - Building Construction and Planning-	1	19-02-2024		TLM1	
7.	Construction Materials-Cement -types	1	21-02-2024		TLM4	
8.	Aggregate types- Bricks- classifications- Steel-properties - types Cement concrete- Applications	1	22-02-2024		TLM4	
9.	Introduction to Prefabricated construction Techniques	1	23-02-2024		TLM4	
10.	Over view- Prefabricated construction		24-02-2024		TLM4	
No.	of classes required to complete UN	IT-I: 10		No. of class	ses taken:	

UNIT-II: Surveying

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Objectives of Surveying	1	26-02-2024		TLM2	
12.	Horizontal Measurements	1	28-02-2024		TLM2	
13.	Angular Measurements	1	29-02-2024		TLM2	
14.	Compass Surveying overview-	1	01-03-2024		TLM2	
15.	Introduction to Bearings	1	02-03-2024		TLM2	
16.	Levelling introduction-	1	04-03-2024		TLM2	

17.	Levelling instruments used for levelling	1	06-03-2024	TLM3
18.	Simple problems on levelling and bearings- problems on levelling	1	07-03-2024	TLM2
19.	Simple problems on and bearings	1	09-03-2024	TLM3
20.	Simple problems on and bearings	1	11-03-2024	TLM3
21.	Simple problems on Levelling	1	13-03-2024	TLM2
22.	Rise and fall/ HI method	1	14-03-2024	TLM3
23.	Problems -practice	1	15-03-2024	TLM2
24.	Contour mapping	1	16-03-2024	TLM3
No.	of classes required to complete UM	No. of classes taken:		

UNIT-III: Transportation Engineering & Water Resources and Environmental Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
25.	TransportationEngineeringImportanceofTransportationinNation's economic development	1	18-03-2024		TLM2	
26.	Types of Highway Pavements	1	20-03-2024		TLM2	
27.	Flexible Pavements - Basics of Harbour, Tunnel,- Rigid Pavements Simple Differences	1	21-03-2024		TLM2	
28.	Basics of Airport, and Railway Engineering	1	22-03-2024		TLM2	
29.	Water Resources and Environmental Engineering Introduction, Sources of water-	1	23-03-2024		TLM2	
30.	Quality of water- Specifications Introduction to Hydrology	1	27-03-2024		TLM2	
31.	Rainwater Harvesting-Water Storage and Conveyance Structures	1	28-03-2024		TLM2	
32.	(Simple introduction to Dams and Reservoirs).	1	30-03-2024		TLM2	
33.						
No. of classes required to complete UNIT-III:09 No. of classes taken:						

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task		
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))		
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))		
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))		
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)		
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)		
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)		
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))		
Cumulative Internal Examination (CIE): M		
Semester End Examination (SEE)		
Total Marks = CIE + SEE	100	

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.					
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Project management and finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a					
-------	--	--	--	--	--	--
	member and leader in a team, to manage projects and in multidisciplinary environments.					
DO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage					
1012	in independent and life-long learning in the broadest context of technological change					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyse and design various systems using analytical and
	software tools related to civil engineering
	Possesses ability to plan, examine and analyse the various laboratory tests required for
P50 2	the professional demands
	Possesses basic technical skills to pursue higher studies and professional practice in civil
PSO 3	engineering domain

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Eeshwar Ram J	Eeshwar Ram J	B.Ramkrishna	Dr.J.V.Rao
Signature				

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

PROGRAM	: B.Tech.II-Sem, ECE(B/S)
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE	: Engineering Workshop, 23ME51
L-T-P STRUCTURE	:0-0-3
COURSE CREDITS	: 1.5
COURSE INSTRUCTOR	: A. Dhanunjay Kumar, Sr.Asst. Professor
	K. Lakshmi Prasad, Sr.Asst. Professor

COURSE COORDINATOR : Seelam Srinivasa Reddy, Assoc. Professor

PRE REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability

COURSE OBJECTIVE:

The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools.

COURSE OUTCOMES (CO)

CO1	Identify workshop tools and their operational capabilities.(Remember)
CO2	Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry, and welding. (Understand)
CO3	Modal various basic prototypes in fitting trade.(Apply)
CO4	Apply basic electrical engineering knowledge for Housing Wiring Practice.(Apply)

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

COs	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2	3	З	З			З			2		3	2
CO2	3		2	3	3	3			3			2		3	2
CO3	3		2	3	3	3			3			2		3	2
CO4	3		2	3	3	3			3			2		3	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, **put**"1 Slight (Low), 2-Moderate (Medium), 3-Substantial (High).

REFERENCE:

R1	LabManual

COURSE DELIVERY PLAN (LESSON PLAN): Section-A (BATCH-A1)

S. No.	Experiment to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Reference	HOD Sign Weekly
1.	Demonstration	3	17-02-2024		TLM8	R1	
2.	Experiment-1	3	24-02-2024		TLM8	R1	
3.	Experiment-2	periment-2 3 02-03-2024		TLM8	R1		
4.	Experiment-3	3	09-03-2024		TLM8	R1	
5.	Experiment-4	3	16-03-2024		TLM8	R1	
6.	Experiment-5	3	23-03-2024		TLM8	R1	
7.	Experiment-6	3	30-03-2024		TLM8	R1	
	I-N	/lid Examina	ations (01.04.202	24 to 06.04.20	24)		
8.	Experiment-7	3	13-04-2024		TLM8	R1	
9.	Experiment-8	3	20-04-2024		TLM8	R1	
10.	Experiment-9	Experiment-9 3 27-04-2024			TLM8	R1	
11.	Repetition lab	3	04-05-2024		TLM8	-	
12	Repetition lab	3	11-05-2024		TLM8	-	
12.	Lab Internal	3	18-05-2024		TLM6	-	

COURSE DELIVERY PLAN (LESSON PLAN): Section-A (BATCH-A2)

S. No.	Experiment to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Reference	HOD Sign Weekly
1.	Demonstration	3	17-02-2024		TLM8	R1	
2.	Experiment-1	3	24-02-2024		TLM8	R1	

3.	Experiment-2	3	02-03-2024	TLM8	R1	
4.	Experiment-3	3	09-03-2024	TLM8	R1	
5.	Experiment-4	3	16-03-2024	TLM8	R1	
6.	Experiment-5	3	23-03-2024	TLM8	R1	
7.	Experiment-6	3	30-03-2024	TLM8	R1	
I-Mid Examinations (01.04.2024 to 06.04.2024)						
8.	Experiment-7	3	13-04-2024	TLM8	R1	
9.	Experiment-8	3	20-04-2024	TLM8	R1	
10.	Experiment-9	3	27-04-2024	TLM8	R1	
11.	Repetition lab	3	04-05-2024	TLM8	-	
12	Repetition lab	3	11-05-2024	TLM8	-	
12.	Lab Internal	3	18-05-2024	TLM6	-	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD	
TLM2	РРТ	TLM5	Programming	TLM8	Lab Demo	
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study	

ACADEMIC CALENDAR

Description	From	То	Weeks
I Phase of Instructions-1	12-02-2024	06-04-2024	8W
I Mid Examinations	01-04-2024	06-04-2024	1W
II Phase of Instructions	08-04-2024	01-06-2024	8W
II Mid Examinations	03-06-2024	08-06-2024	1W
Preparation and Practical's	10-06-2024	15-06-2024	1W
Semester End Examinations	17-06-2024	29-06-2024	2W

Part-C

EVALUATION PROCESS:

Parameter	Marks
Day-to-Day Work	A1=10 Marks
Record And Observation	B1= 05 Marks
Internal Test	C1 = 15 Marks
Cumulative Internal Examination	
(CIE = A1 + B1 + C1)	A1+B1+C1=30Marks
Semester End Examinations (SEE)	D1 = 70 Marks
Total Marks : A1+B1+C1+D1	100 Marks

Details of Batches: A-SEC

Batch No.	Reg.No.of Students	Number of Students	Batch No.	Reg.No.of Students	Number of Students
A11	23761A0467-474	08	A21	23761A04A0-4A7	08
A12	23761A0475-482	08	A22	23761A04A8-4B5	09
A13	23761A0483-490	08	A23	23761A04B6-4C3	08
A14	23761A0491-499	09	A24	23761A04C4-4D2	09

Batch No:	Exp. 01	Exp. 02	Exp. 03	Exp. 04	Exp. 05	Exp. 06	Exp. 07	Exp. 08	Exp. 09
A11	C1	C2	F1	F2	P1	P2	E1	E2	T1
A12	C2	C1	F2	F1	P2	P1	E2	E1	T1
A13	F1	F2	C1	C2	E1	E2	P1	P2	T1
A14	F2	F1	C2	C1	E2	E1	P2	P1	T1
A21	C1	C2	F1	F2	P1	P2	E1	E2	T1
A22	C2	C1	F2	F1	P2	P1	E2	E1	T1
A23	F1	F2	C1	C2	E1	E2	P1	P2	T1
A24	F2	F1	C2	C1	E2	E1	P2	P1	T1

LIST OF EXPERIMENTS:

Exp. No.	Name of the Experiment	Related CO
1.	Carpentry-1(C1)-Corner Bridle Joint	C01
2.	Carpentry-2(C2)-Dove Tail Joint	C01
3.	Fitting-1(F1)-L-Joint	CO2
4.	Fitting-2(F2)-V-Joint	CO2
5.	Plumbing-1(P1)-Pipe Threading practice	CO3
6.	Plumbing-2(P2)-Pipe Layout	CO3
7.	House Wiring-1(E1)–Series and Parallel connection	CO4
8.	HouseWiring-2(E2)–Fluorescent Lamp and Calling Bell Circuit	CO4
9.	Tinsmity-1(T1)- Rectangular Tray	C02
10.	Demonstration- Welding and Foundry	CO2

NOTIFICATION OF CYCLE:

cycle	Exp. No.	Name of the Experiment	Related CO
	1.	Carpentry-1(C1)-Corner Bridle Joint	C01
0 T	2.	Carpentry-2(C2)-Dove tail Joint	C01
ycle	3.	Fitting-1(F1)-T-Joint	CO2
Ľ,	4.	Fitting-2(F2)-V-Joint	CO2
	5.	Plumbing-1(P1)-Pipe Threading practice	CO3
	6.	Plumbing-2(P2)-PipeLayout	CO3
	7.	House Wiring-1(E1)–Series and Parallel Connection	CO4
	8. House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit		CO4
cle	9.	Tinsmity-1(T1)- Rectangular Tray	CO2
Cy 2	$\dot{\mathcal{O}}_{N}$ 10. Demonstration- Welding and Foundry		CO2

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multi disciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAM OUT COMES (POs)

Engineering Graduates will be able to :

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi disciplinary settings.
- **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction
- **11.Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.

12.Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructors	Course Coordinator	Module Coordinator	HOD
A.Dhanunjay Kumar, K.Lakshmi Prasad	S.Srinivasa Reddy	Mr. J.Subba Reddy	Dr. M. B. S Sreekara Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT, MECH, CE & ASE) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

Department of Electronics & Communication Engineering

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr. K.V.Ashok	
Course Name & Code	: Network Analysis - 23EC01	
L-T-P-Cr Structure	: 3-0-0-3	
Program/Sem/Sec	: B.Tech., ECE., II-Sem., Section- B A.Y	: 2023-24

Course Objectives:

- To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits.
- To impart knowledge on applying appropriate theorem for electrical circuit analysis.
- To explain transient behavior of circuits in time and frequency domains.
- To teach concepts of resonance.
- To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

Course Outcomes (COs): At the end of the course, students are able to

CO1	Apply fundamental laws and theorems to compute electrical variables of DC circuits (Apply)
CO2	Analyze electrical networks during transients in the Laplace domain (Apply)
CO3	Apply fundamental laws and theorems to compute electrical variables of AC electrical circuits (Apply)
CO4	Analyse resonance circuits (Analyse)
CO5	Evaluate variables associated with magnetic circuits (Apply)
CO6	Compute the parameters of a two-port network (Apply)

Course Articulation Matrix (Correlation between COs&POs.PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	-	-	-	-	-	-	-	-	-	2	2	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	2	1	2	-
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	2	-
CO5	2	2	-	-	-	-	-	-	I	-	I	2	1	2	I
CO6	2	2	2	-	-	-	-	-	-	-	-	1	1	2	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium),

3-Substantial (High).

TEXT BOOK(S):

T1	Network Analysis – ME Van Valkenburg, Prentice Hall of India, revised 3 rd Edition,
	2019.
T2	Engineering Circuit Analysis by William H. Hayt, Jack Kemmerly, Jamie Phillips,
	Steven M. Durbin, 9 Edition 2020.
T3	Network lines and Fields by John. D. Ryder 2 nd Edition, PHI

REFERENCE BOOK(S):

- **R1** D. Roy Choudhury, Networks and Systems, New Age International Publications, 2013.
- R2 Joseph Edminister and Mahmood Nahvi, Electric Circuits, Schaum's Outline Series, 7th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2017
- **R3** Fundamentals of Electric Circuits by Charles K. Alexander and Matthew N. O. Sadiku, McGraw-Hill Education.

<u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN) - Section-B

UNIT-I:

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	12-02-24			
2.	Introduction to Unit-I	1	15-02-24			
3.	Types of circuit components	1	15-02-24			
4.	Types of Sources and Source Transformations	1	16-02-24			
5.	Mesh analysis and Nodal analysis	1	17-02-24			
6.	Problem Solving with resistances including dependent sources also	1	19-02-24			
7.	Principal of Duality with examples	1	22-02-24			
8.	Thevenin's Theorem	1	22-02-24			
9.	Norton's Theorem	1	23-02-24			
10.	Milliman's Theorem	1	24-02-24			
11.	Reciprocity Theorem	1	26-02-24			
12.	Compensation, Substitution Theorems	1	29-02-24			
13.	Superposition Theorem	1	29-02-24			
14.	Max Power Transfer Theorem	1	01-03-24			
15.	Tellegens Theorem	1	02-03-24			
16.	Problem solving using Dependent sources also	1	04-03-24			
No. of	classes required to complete UNIT-I	14	No.	of classes tak	en	

UNIT-II: Transients & Laplace transform

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
17.	First order differential equations	1	07-03-24			
18.	Definition of time constants	1	07-03-24			
19.	R-L circuit	1	09-03-24			
20.	RC circuit with DC excitation	1	09-03-24			
21.	evaluating initial conditions procedure	1	11-03-24			
22.	Second order differential equations	1	14-03-24			
23.	homogeneous, non-homogenous DEs	1	14-03-24			
24.	Problem-solving using R-L-C elements with DC excitation and AC excitation	1	15-03-24			
25.	Response as related to s-plane rotation of roots	1	16-03-24			
26.	Laplace transform: introduction	1	18-03-24			

27.	Laplace transformation, basic theorems		21-03-24			
28.	Problem solving using Laplace transform		21-03-24			
29.	Partial fraction expansion		22-03-24			
30.	Heaviside's expansions		23-03-24			
31.	Problem solving using Laplace transform		28-03-24			
No. of	f classes required to complete UNIT-II	10	No.	of classes tak	ken	

UNIT-III : Steady State Analysis of A.C Circuits

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
32.	Impedance concept, phase angle	1	28-03-24			
33.	series R-L, R-C, R-LC circuits problem solving	1	30-03-24			
34.	Complex impedance and phasor notation for R-L, R-C, R-L-C	1	08-04-24			
35.	problem solving using mesh and nodal analysis	1	12-04-24			
36.	Star-Delta conversion	1	13-04-24			
37.	Problem solving using Laplace transforms	1	15-04-24			
38.	Problem solving	1	18-04-24			
39.	Problem solving	1	18-04-24			
40.	Problem solving	1	19-04-24			
41.	Problem solving	1	20-04-24			
No. of a	classes required to complete UNIT-III.	10	No. c	of classes take	en	

UNIT-IV: Resonance & Coupled Circuits

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
42.	Introduction, Definition of Q	1	22-04-24			
43.	Series resonance, Bandwidth of series resonance	1	25-04-24			
44.	Parallel resonance	1	25-04-24			
45.	General case-resistance present in both branches	1	26-04-24			
46.	Anti-resonance at all frequencies	1	27-04-24			
47.	Coupled Circuits: Self-inductance	1	29-04-24			
48.	Mutual inductance, Coefficient of coupling	1	02-05-24			
49.	Analysis of coupled circuits	1	02-05-24			
50.	Natural current, Dot rule of coupled circuits	1	03-05-24			
51.	conductively coupled equivalent circuits- problem solving	1	04-05-24			
52.	Problem Solving	1	06-05-24			
53.	Problem Solving	1	09-05-24			
54.	Problem Solving	1	09-05-24			
55.	Problem Solving	1	10-05-24			
No. of	classes required to complete UNIT-IV	10	No. c	of classes take	en	

UNIT-V: Two-port Network

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
56.	Relationship of two port networks	1	11-05-24			
57.	Z-parameters, Y-parameters	1	13-05-24			
58.	Transmission line parameters, h- parameters	1	16-05-24			
59.	Relationships Between parameter Sets	1	16-05-24			
60.	Parallel & series connection of two port networks	1	17-05-24			
61.	Cascading of two port networks	1	18-05-24			
62.	problem solving using dependent sources also	1	20-05-24			
63.	Image and iterative impedances	1	23-05-24			
64.	Image and iterative transfer constants	1	23-05-24			
65.	Insertion loss, Attenuators and pads.	1	24-05-24			
66.	Lattice network and its parameters	1	25-05-24			
67.	Impedance matching networks	1	27-05-24			
68.	Problem Solving	1	30-05-24			
69.	Problem Solving	1	30-05-24			
70.	Problem Solving	1	31-05-24			
No. of	classes required to complete UNIT-V	9	No.	of classes tak	en	

Contents beyond the Syllabus

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
71.	Filters,	1						
72.	Attenuators	1						
Teachi	Feaching Learning Methods							

i cucining i	I cuching Ecuring freehous						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				
PART-C							

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) = 80% of Max($(M1+Q1+A1)$, $(M2+Q2+A2)$) + 20% of Min($(M1+Q1+A1)$, $(M2+Q2+A2)$)	30
Semester End Examination (SEE)(Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PSO 1:** Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- **PSO 2:** VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and implement real time applications in the field of VLSI and Embedded Systems using relevant tools.
- **PSO 3:** Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

Date:

Course Instructor Mr. K.V.Ashok Course Coordinator Mr.G.Venkata Rao Module Coordinator Dr.G.Srinivasulu **HOD** Dr.Y.Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr. K.V.Ashok		
Course Name & Code	: Network Analysis and Simulation Laboratory-23	EC51	
L-T-P Structure	: 0-0-3	Credits	: 1.5
Program/Sem/Sec	: B.Tech., ECE., II-Sem., Section- B	A.Y	: 2023-24

PRE-REQUISITE: Basic Electrical Engineering Concepts

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To gain hands on experience in verifying Kirchoff's laws and network theorems
- To analyze transient behavior of circuits
- To study resonance characteristics
- To determine 2-port network parameters

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Demonstrate fundamental circuit laws, network theorems, node and mesh analysis of electrical circuits (Apply)
CO2	Design resonance circuit for given specifications (Analyze)
CO3	Measure time constants of RL & RC circuits (Apply)
CO4	Analyze the 1 st and 2 nd order circuits with respect to parameter variation (Analyze)
CO5	Characterize and model the network in terms of all network parameters (Apply)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	2	-	-	-	-	2	1	2	2	1	-
CO2	2	2	-	1	2	-	-	-	-	2	2	2	3	1	-
CO3	2	2	-	1	1	-	-	-	-	2	1	2	1	2	-
CO4	2	3	-	1	2	-	-	-	-	2	1	2	2	2	-
CO5	2	2	-	1	2	-	-	-	-	2	2	2	1	2	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section – C

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to NA Lab experiments, COs, POs and PSOs		3	15-02-24		TLM1	
		Cycle –	- I				
1	Experiment – 1	CO1,CO4	3	22-02-24		TLM4	
2	Experiment – 2	CO1,CO4	3	29-02-24		TLM4	
3	Experiment – 3	CO1,CO4	3	07-03-24		TLM4	
4	Experiment – 4	CO1,CO4	3	14-03-24		TLM4	
5	Experiment – 5	CO1,CO4	3	21-03-24		TLM4	
6	Experiment – 6	CO2,CO4	3	28-03-24		TLM4	
		Cycle –	П			l	
7	Experiment – 7	CO1,CO4	3	18-04-24		TLM4	
8	Experiment – 8	CO1,CO4	3	25-04-24		TLM4	
9	Experiment – 9	CO2,CO4	3	02-05-24		TLM4	
10	Experiment – 10	CO3,CO4	3	09-05-24		TLM4	
11	Experiment – 11	CO3,CO4	3	16-05-24		TLM4	
12	Experiment – 12	CO3,CO4	3	23-05-24		TLM4	
13	Experiment beyond the syllabus		3	30-05-24		TLM4	
	Internal Examination		3	30-05-24			

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Study of components of a circuit and Verification of KCL and KVL	7	To study the transient and steady state response of a
	vermeation of Kell and Kvll		and studying their effects on responses
2	Verification of mesh and nodal analysis for AC circuits	8	Find the Q Factor and Bandwidth of a Series and Parallel Resonance circuit
3	Verification of Superposition, Thevenin's & Norton theorems for AC circuits	9	Determination of open circuit (Z) and short circuit (Y) parameters
4	Verification of maximum power transfer theorem for AC circuits	10	Determination of hybrid (H) and transmission (ABCD) parameters
5	Study of DC transients in RL, RC and RLC circuits	11	Determination of hybrid (H) and transmission (ABCD) parameters
6	To study frequency response of various 1st order RL & RC networks	12	To measure two port parameters of a twin-T network and study its frequency response.

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Part - C

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work $= \mathbf{A}$	1,2,3,4,5,6,7,8	A = 10
Record = B	1,2,3,4,5,6,7,8	B = 05
Internal Test $= \mathbf{C}$	1,2,3,4,5,6,7,8	C = 15
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	30
Semester End Examinations = D	1,2,3,4,5,6,7,8	70
Total Marks: A + B + C + D = CIE+SEE		100

PART-D

PROGRAMME OUT	COMES	(POs):
---------------	-------	-----------------

PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Mr. K.V.Ashok Course Coordinator Mr.K.V.Ashok Module CoordinatorHODDr. G.SrinivasuluDr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC and NBA Accredited, Certified by ISO) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

Date:15/02/2024

Association hour Schedule (A.Y. 2023-24)

(II Sem., ECE, Section-B)

All the **II Sem. ECE Section-B** students are informed to organize the association hour as per the following schedule.

S. No	Roll No	Tentative Date	Name of the Activity	Tentative Date	Name of the Activity	
1	23761A0467					
2	23761A0468					
3	23761A0469	10.02.2024	Story Tolling	08 04 2024	Debate on Global Warming	
4	23761A0470	19.02.2024	Story rennig	06.04.2024	– its impact	
5	23761A0471				_	
6	23761A0472					
7	23761A0473					
8	23761A0474		Debate on social media –			
9	23761A0475	19.02.2024	A boom or bong	15.04.2024	Story Talling	
10	23761A0476		A boolin of ballg	13.04.2024	Story rennig	
11	23761A0477					
12	23761A0478					
13	23761A0479					
14	23761A0480					
15	23761A0481	26.02.2024	Story Telling	15.04.2024	Debate on Space	
16	23761A0482			13.04.2024	Technology	
17	23761A0483					
18	23761A0484					
19	23761A0485					
20	23761A0486					
21	23761A0487	26.02.2024	Debate on National Quantum	22.04.2024	Story Telling	
23	23761A0488		Mission		Story rennig	
23	23761A0489					
24	23761A0490					
25	23761A0491					
26	23761A0492					
27	23761A0493	04.03.2024	Story Telling	22.04.2024	Debate on 6G	
28	23761A0494		Story rennig		communication	
29	23761A0495					
30	23761A0496					

31	23761A0497					
32	23761A0498					
33	23761A0499	04.03.2024	Debate on AI and Its impact	29.04.2024	Story Telling	
34	23761A04A0			29.04.2024	Story rennig	
35	23761A04A1					
36	23761A04A2					
37	23761A04A3					
38	23761A04A4					
39	23761A04A5	11.03.2024	Story talling	20.04.2024	Debate on Adverse effects	
40	23761A04A6		Story tennig	29.04.2024	of Online Gaming	
41	23761A04A7					
42	23761A04A8					
43	23761A04A9					
44	23761A04B0					
45	23761A04B1	11.03.2024	Debate on Smart Farming	06.05.2024	Story Telling	
46	23761A04B2			00.03.2024	Story rennig	
47	23761A04B3					
48	23761A04B4					
49	23761A04B5					
50	23761A04B6					
51	23761A04B7	18 03 2024	Story Telling	06 05 2024	Debate on Augmented and Virtual reality	
52	23761A04B8	10.03.2024	Story Tennig	00.03.2024		
53	23761A04B9					
54	23761A04C0					
55	23761A04C1					
56	23761A04C2					
57	23761A04C3	18 03 2024	Debate on Bio Sensors	13.06.2024	Story Telling	
58	23761A04C4	10.03.2024	Debute on Dio Sensors	15.00.2024	Story rennig	
59	23761A04C5					
60	23761A04C6					
61	23761A04C7					
62	23761A04C8					
63	23761A04C9	08 04 2024	Story Telling	13.06.2024	Debate on Visible light	
64	23761A04D0	00.04.2024	Story rennig	13.00.2027	Communication	
65	23761A04D1					
66	23761A04D2					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Mr.S.VijayaDasaradhaCourse Name & Code: Chemistry&23FE02L-T-P Structure:3-0-0Program/Sem/Sec: B.Tech/I-Sem/ECE-C

Credits:03 A.Y.:2023-24

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enable the students to understand the fundamental concepts of chemistry and to provide them with the knowledge of industrial problems and finding the solutions.
- To strengthen the basic concepts of bonding models, advanced engineering materials, electrochemistry, batteries and polymers.
- To introduce instrumental methods and their applications.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the fundamentals of quantum mechanics and molecular orbital energy
	diagrams for molecules (Understand)
CO2	Summarize the suitability of advanced materials like semiconductors, superconductors,
	super capacitors and nano materials, in advanced fields (Understand)
CO3	Apply Nernst equation in calculating cell potentials and understand conductometric,
	potentiometric titrations, electrochemical sensors and compare batteries for different
	applications (Understand)
CO4	Outline the importance of polymers and conducting polymers in advanced technologies
	(Understand)
C05	Understand the fundamentals of UV-Visible, IR spectroscopic techniques and basic
	principles of chromatographic techniques (Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

POs COs	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	2	2	2	-	2	2	-	-	-	-	2
CO3	3	3	2	2	-	2	2	-	-	-	-	2
CO4	3	2	2	2	-	2	2	-	-	-	-	2
CO5	3	2	1	1	-	-	-	-	-	-	-	1
1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High)												

Textbooks:

1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.

2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference: Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: STRUCTURE AND BONDING

MODELS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fundamentals Of Quantum Mechanics	1	13-02-2024		TLM1	
2.	Fundamentals Of Quantum Mechanics	1	14-02-2024		TLM1	
3.	Schrodinger Wave Equation	1	16-02-2024		TLM1	
4.	Significance of Ψ and Ψ^2	1	17-02-2024		TLM2	
5.	Particle In one dimensional box	1	20-02-2024		TLM1	
6.	Molecular Orbital Theory – Bonding in Homo and Hetero nuclear Diatomic Molecules	1	21-02-2024		TLM1	
7.	Energy level diagrams of O_2 and N_2	1	23-02-2024		TLM2	
8.	Energy level diagrams of CO and NO	1	24-02-2024		TLM1	
9.	π -molecular orbitals of butadiene	1	27-02-2024		TLM1	
10.	π -molecular orbitals of benzene	1	28-02-2024		TLM1	
11.	Calculation of Bond order	1	01-03-2024		TLM2	
12.	Practice of Molecular orbital diagrams	1	02-03-2024		TLM1	
13.	Revision	1	05-03-2024		TLM1	
14.	Revision	1	06-03-2024		TLM1	
No. of	classes required to complete UN	No. of classes	taken:			

UNIT-II: MODERN ENGINEERING MATERIALS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Semiconductors - Introduction	1	09-03-2024		TLM1	
2.	Semiconductors - Basic concept&applications	1	12-03-2024		TLM1	
3.	Super conductors - Introduction	1	13-03-2024		TLM2	
4.	Super conductors - Basic concept&applications	1	15-03-2024		TLM1	
5.	Supercapacitors - Introduction	1	16-03-2024		TLM1	
6.	Supercapacitors - Basic concept- classification&applicatio ns	1	19-03-2024		TLM1	
7.	Nano materials - Introduction	1	20-03-2024		TLM2	
8.	Nano materials - classification	1	22-03-2024		TLM2	
9.	Nano materials - properties and applications of fullerenes	1	23-03- 2024&26- 03-24		TLM2	
10.	Nano materials - carbon nano tubes and graphine nanoparticles	1	27-03- 2024&30- 03-24		TLM2	
No. of	classes required to complete	UNIT-II: 12		No. of classes	taken:	

UNIT-III: ELECTROCHEMISTRY AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction Electrochemical cell	1	10-04-2024		TLM1	
2.	Nernst equation derivation	1	12-04-2024		TLM1	
3.	Applications of Nernst equation.	1	13-04-2024		TLM1	
4.	Cell potential calculations and numerical problems	1	16-04-2024		TLM1	
5.	Potentiometry- potentiometric titrations (redox titrations)	1	19-04-2024		TLM1	
6.	Concept of conductivity, conductivitycell, conductometric titrations (acid-base titrations)	1	20-04-2024		TLM2	
7.	Electrochemical sensors – potentiometric sensors with examples,	1	23-04-2024		TLM1	

	amperometric sensors with examples					
8.	Primary cells – Zinc-air battery, Secondary cells – lithium-ion batteries- working of the batteries including cell reactions	1	24-04-2024		TLM1	
9.	Fuel cells, hydrogen- oxygenfuel cell– working of the cells	1	26-04-2024		TLM2	
10.	PolymerElectrolyte Membrane Fuel cells (PEMFC)	1	27-04-2024		TLM1	
No. of	classes required to complete	UNIT-III: 10		No. of classes	taken:	

UNIT-IV: POLYMER CHEMISTRY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to polymers, functionality of monomers	1	30-04-2024		TLM1	
2.	Chain growth and step growth polymerization, coordination polymerization, with specific examples	1	01-05-2024		TLM1	
3.	Mechanisms of polymer formation	1	03-05-2024		TLM2	
4.	Plastics –Thermo and Thermosetting plastics	1	04-05-2024		TLM1	
5.	Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon- 6,6, carbon fibres	1	07-05-2024& 08-05-2024		TLM1	
6.	Elastomers–Buna-S, Buna- N–preparation, properties and applications	1	10-05-2024& 11-05-2024		TLM2	
7.	Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications	1	14-05-2024		TLM1	
8.	Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA)	1	15-05-2024& 17-05-24		TLM1	
No. of	classes required to complete	UNIT-IV: 11		No. of classes	taken:	

UNIT-V: INSTRUMENTAL METHODS AND APPLICATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Electromagnetic spectrum	1	18-05-2024		TLM1	

2.	Absorption of radiation: Beer-Lambert's law	1	21-05-2024		TLM1	
3.	UV-Visible Spectroscopy	1	22-05-2024		TLM1	
4.	electronic transition, Instrumentation	1	24-05-2024		TLM1	
5.	IR spectroscopies, fundamental modes	1	25-05-2024		TLM2	
6.	selection rules, Instrumentation	1	28-05-2024		TLM1	
7.	Chromatography-Basic Principle	1	29-05-2024		TLM2	
8.	Classification-HPLC: Principle, Instrumentation and Applications	1	31-05-2024		TLM1	
	No. of closes we arrived to see	No. of	classes take	en:		

No. of classes required to complete UNIT-V: 08

No. of classes taken:

TOPICS BEYOND THE SYLLABUS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Applications of semiconductors, superconductors and nanomaterials in advanced technologies.	1	01-06-2024		TLM1	

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks				
Assignment-I (Units-I, II)	A1=5				
I-Descriptive Examination (Units-I, II)					
I-Quiz Examination (Units-I, II)	Q1=10				
Assignment-II (Unit-III, IV & V)	A2=5				
II- Descriptive Examination (UNIT-III, IV & V)	M2=15				
II-Quiz Examination (UNIT-III, IV & V)	Q2=10				
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30				
Cumulative Internal Examination (CIE): M	30				
Semester End Examination (SEE)	70				
Total Marks = CIE + SEE	100				

PART-D

PROGRAMME OUTCOMES (POs):

P0 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex
	engineeringproblems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics and the substantiated conclusions are substantiated for the substantiated conclusions are substantiated conclusions are substantiated for the substantiated conclusions are substantiated conclu
DO 0	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and environ
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
104	research methods including design of experiments analysis and interpretation of data
	and synthesis of the information to provide valid conclusions
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
100	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need forsustainable development.
PU 8	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
DO 10	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, beingable to comprehend
	andwriteeffectivereportsanddesigndocumentation,makeeffectivepresentations,andgivean
	instructions
PO 11	Project management and finance : Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work, as a member and le
	aderinateam,
DO 12	to manage projects and in multidisciplinary environments.
PU 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	change
	chunge.

Title	Course Instructor	Course InstructorCourse Coordinator		Head of the Department
Name of the Faculty	Mr.S.VijayaDasaradha	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I),

ISO 21001 : 2018, 50001 : 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

FRESHMAN ENGINEERING DEPARTMENT

COURSE HANDOUT

Part-A

PROGRAM	: I B. Tech., I-Sem., ECE - C
ACADEMIC YEAR	: 2023-24
COURSE NAME & CODE	: Differential Equations & Vector Calculus
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Dr. Y.P.C.S. Anil Kumar
COURSE COORDINATOR	: Dr. K. R. Kavitha
PRE-REOUISITES	: Basics of Vectors, Differentiation, Integration

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To enlighten the learners in the concept of differential equations and multivariable calculus
- To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

- CO1: Solve the differential equations related to various engineering fields -L3
- CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations L3
- CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence L3
- CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus L3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	3	1	-	-	-	-	-	-	-	-	-	1
CO3	3	2	-	-	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017.
- **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018.

BOS APPROVED REFERENCE BOOKS:

- **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018.
- R2 Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018.
- **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018.
- **R4** R.K. Jain and S.R.K. Iyengar, "*Advanced Engineering Mathematics*", 5th Edition (9th reprint), Alpha Science International Ltd., 2021.
- **R5** B. V. Ramana, *"Higher Engineering Mathematics"*, 3rd Edition McGraw Hill Education, 2017.

Part-B

	COURSE DELIVERY PLAN (LESSON PLAN):												
S. No	Topics to be covered	No. of Classes Bogwingd	Tentative Date of	Actual Date of	Teaching Learning Mothods	Learning Outcome	Text Book followed	HOD Sign Wookly					
		Kequirea	Completion	Completion	Methous	COS	lonowed	vveekiy					
1.	Introduction to the course	1	12-02-2024		TLM2								
2.	Course Outcomes, Program Outcomes	1	13-02-2024		TLM2								

UNIT-I: Differential Equations of first order and first degree

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
3.	Introduction to UNIT I	1	14-02-2024		TLM1	CO1	T1,T2	
4.	Linear Differential equation	1	14-02-2024		TLM1	CO1	T1,T2	
5.	Bernoulli's DE	1	16-02-2024		TLM1	CO1	T1,T2	
6.	Exact DE	1	19-02-2024		TLM1	CO1	T1,T2	
7.	Exact DE	1	20-02-2024		TLM1	CO1	T1,T2	
8.	Non-exact DE Type I	1	21-02-2024		TLM1	CO1	T1,T2	
9.	Non-exact DE Type II	1	21-02-2024		TLM1	CO1	T1,T2	
10.	Non-exact DE Type III	1	23-02-2024		TLM1	CO1	T1,T2	
11.	Non-exact DE Type IV	1	26-02-2024		TLM1	CO1	T1,T2	
12.	Newton's Law of cooling	g 1	27-02-2024		TLM1	CO1	T1,T2	
13.	Newton's Law of cooling	g 1	28-02-2024		TLM1	CO1	T1,T2	
14.	Law of natural growth an decay	nd 1	28-02-2024		TLM1	CO1	T1,T2	
15.	Law of natural growth an decay	nd 1	01-03-2024		TLM1	CO1	T1,T2	
16.	Electrical circuits	1	04-03-2024		TLM1	CO1	T1,T2	
17.	TUTORIAL - I	1	05-03-2024		TLM3	CO1	T1,T2	
No. or comp	f classes required to lete UNIT-I	15				No. of class	ses taken:	

UNIT-II: Linear Differential equations of higher order (Constant Coefficients)

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
18.	Introduction to UNIT II	1	06-03-2024		TLM1	CO1	T1,T2	
19.	Solving a homogeneous DE	1	06-03-2024		TLM1	CO1	T1,T2	
20.	Solving a homogeneous DE	1	11-03-2024		TLM1	CO1	T1,T2	
21.	Finding Particular Integral, P.I for e^{ax+b}	1	12-03-2024		TLM1	CO1	T1,T2	
22.	P.I for Cos bx, or sin bx	1	13-03-2024		TLM1	CO1	T1,T2	
23.	P.I for polynomial function	1	13-03-2024		TLM1	CO1	T1,T2	

24.	P.I for $e^{ax+b}v(x)$	1	15-03-2024	TLM1	CO1	T1,T2	
25.	P.I for $x^k v(x)$	1	18-03-2024	TLM1	CO1	T1,T2	
26.	Method of Variation of parameters	1	19-03-2024	TLM1	CO1	T1,T2	
27.	Method of Variation of parameters	1	20-03-2024	TLM1	CO1	T1,T2	
28.	Simultaneous linear equations	1	20-03-2024	TLM1	CO1	T1,T2	
29.	Simultaneous linear equations	1	22-03-2024	TLM1	CO1	T1,T2	
30.	L-C-R circuits	1	26-03-2024	TLM1	CO1	T1,T2	
31.	TUTORIAL - II	1	27-03-2024	TLM3	CO1	T1,T2	
32.	Simple Harmonic motion	1	27-03-2024	TLM1	CO1	T1,T2	
N	lo. of classes required to complete UNIT-II	13			No. of class	es taken:	

I MID EXAMINATIONS (01-04-2024 TO 06-04-2024)

UNIT-III: Partial Differential Equations

S.		No. of	Tentative	Actual	Teaching	Learning	Text	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Outcome	Book	Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
33.	Introduction to Unit III	1	08-04-2024		TLM1	CO2	T1,T2	
34.	Formation of PDE by elimination of arbitrary constants	1	10-04-2024		TLM1	CO2	T1,T2	
35.	Formation of PDE by elimination of arbitrary functions	1	10-04-2024		TLM1	CO2	T1,T2	
36.	Formation of PDE by elimination of arbitrary functions	1	12-04-2024		TLM1	CO2	T1,T2	
37.	Solving of PDE	1	15-04-2024		TLM1	CO2	T1,T2	
38.	Lagrange's Method	1	16-04-2024		TLM1	CO2	T1,T2	
39.	Lagrange's Method	1	19-04-2024		TLM1	CO2	T1,T2	
40.	Homogeneous Linear PDE with constant coefficients	1	22-04-2024		TLM1	CO2	T1,T2	
41.	TUTORIAL - III	1	23-04-2024		TLM3	CO2	T1,T2	
No	of classes required to complete UNIT-III	09			No. of class	es taken:		

UNIT-IV: Vector Differentia

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
42.	Introduction to UNIT IV	1	24-04-2024		TLM1	CO3	T1,T2	
43.	Vector Differentiation	1	24-04-2024		TLM1	CO3	T1,T2	
44.	Gradient	1	26-04-2024		TLM1	CO3	T1,T2	
45.	Directional Derivative	1	29-04-2024		TLM1	CO3	T1,T2	

46.	Directional Derivative	1	30-04-2024	TLM1	CO3	T1,T2	
47.	Divergence	1	01-05-2024	TLM1	CO3	T1,T2	
48.	Curl	1	01-05-2024	TLM1	CO3	T1,T2	
49.	Problems	1	03-05-2024	TLM1	CO3	T1,T2	
50.	Solenoidal fields, Irrotational fields, potential surfaces	1	06-05-2024	TLM1	CO3	T1,T2	
51.	Solenoidal fields, Irrotational fields, potential surfaces	1	07-05-2024	TLM1	CO3	T1,T2	
52.	Laplacian, second order operators	1	08-05-2024	TLM1	CO3	T1,T2	
53.	Vector Identities	1	08-05-2024	TLM1	CO3	T1,T2	
54.	TUTORIAL IV	1	10-05-2024	TLM3	CO3	T1,T2	
No.	of classes required to omplete UNIT-IV	13			No. of clas	ses taken:	

UNIT-V: Vector Integration

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
57.	Introduction to Unit-V	1	13-05-2024		TLM1	CO4	T1,T2	
58.	Line Integral	1	14-05-2024		TLM1	CO4	T1,T2	
59.	Circulation	1	15-05-2024		TLM1	CO4	T1,T2	
60.	Work done	1	15-05-2024		TLM1	CO4	T1,T2	
61.	Surface Integral	1	17-05-2024		TLM1	CO4	T1,T2	
62.	Surface Integral	1	20-05-2024		TLM1	CO4	T1,T2	
63.	Flux	1	21-05-2024		TLM1	CO4	T1,T2	
64.	Green's Theorem	1	22-05-2024		TLM1	CO4	T1,T2	
65.	Green's Theorem	1	22-05-2024		TLM1	CO4	T1,T2	
66.	Stoke's Thoerem	2	24-05-2024 27-05-2024		TLM1	CO4	T1,T2	
67.	Divergence Theorem	2	28-05-2024 29-05-2024		TLM1	CO4	T1,T2	
68.	TUTORIAL - V	1	29-05-2024		TLM3	CO4	T1,T2	
No	o. of classes required to complete UNIT-V	14			No. of class	ses taken:		
	Content beyond the S	yllabus						
S. No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
	Non-homogeneous Linear PDE with		30-05-2024			~~~		

Teaching Learning Methods									
II MID EXAMINATIONS (03-06-2024 TO 08-06-2024)									
	No. of classes	1			No. of class	ses taken:			
69.	Linear PDE with constant coefficients	1	30-05-2024		TLM2	CO2	T1,T2		

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)

TLM3 Tutorial

TLM6 Group Discussion/Project

PART-CEVALUATION PROCESS (R23 Regulation):

Evaluation Task	Marks			
Assignment-I (Units-I, II)	A1=5			
I-Descriptive Examination (Units-I, II)				
I-Quiz Examination (Units-I, II)	Q1=10			
Assignment-II (Unit-III, IV & V)	A2=5			
II- Descriptive Examination (UNIT-III, IV & V)				
II-Quiz Examination (UNIT-III, IV & V)				
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>			
Cumulative Internal Examination (CIE):	<mark>30</mark>			
Semester End Examination (SEE)	<mark>70</mark>			
Total Marks = $CIE + SEE$	100			

PART-D PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals
	and an engineering specialization to the solution of complex engineering problems.
	Problem analysis : Identify, formulate, review research literature and analyze complex engineering
PO 2	problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
	and engineering sciences.
D O 0	Design/development of solutions: Design solutions for complex engineering problems and design
PO 3	system components or processes that meet the specified needs with appropriate consideration for
	the public health and safety and the cultural, societal and environmental considerations.
D O 4	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data and synthesis of the
	information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities with
	an understanding of the limitations
DO (The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
	professional engineering practice
DO 7	Environment and sustainability: Understand the impact of the professional engineering solutions
PO 7	in societal and environmental contexts and demonstrate the knowledge of and need for sustainable
	development.
PO 8	Etnics: Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual and as a member or leader in
	diverse teams and in multidisciplinary settings.
DO 10	Communication : Communicate effectively on complex engineering activities with the engineering
PO 10	community and with society at large, such as being able to comprehend and write effective reports
	and design documentation, make effective presentations and give and receive clear instructions.
DO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering
POII	and management principles and apply these to one's own work, as a member and leader in a team,
	to manage projects and in multidisciplinary environments.
PO 12	Life-iong learning: Recognize the need for and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

Dr.Y.P.C.S. Anil Kumar	Dr. K. R. Kavitha	Dr. A. RAMI REDDY	Dr. A. RAMI REDDY
Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDYBALIREDDYCOLLEGEOFENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier-I), ISO9001:2015 Certified Institution Approved by AICTE, New Delhi. And Affiliated to JNTUK, Kakinada L.B.REDDY NAGAR, MYLAVARAM, KRISHNADIST, A.P.-521230. Phone:08659-222933,Fax:08659-222931

DEPARTMENTOFCIVILENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. K.V. Ramana		
Course Name & Code	: 23CM01: Basic Civil & Mechanical Engineering		
L-T-P Structure	: 3-0-0	Credits	: 3
Program/Sem/Sec	: B.Tech., ECE, II-Sem., Section- C	A.Y	: 2023-24

PRE-REQUISITE: Nil.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.
- Introduction to basic civil engineering materials and construction techniques.

COURSE OUTCOMES (COs): On completion of the course, the student should be able to:

CO1	Describe various sub-divisions of Civil Engineering and to appreciate their role in societal
	development. (Understand)
CO2	Outline the concepts of surveying and obtain the theoretical measurement of distances, angles and
	levels through surveying. (Understand)
CO3	Classify the various materials used in construction and highway engineering and identify their
	appropriate usage as per the needs. (Understand)
CO4	Illustrate the fundamental principles involved in transportation network system, their individual
	components and their engineering importance. (Understand)
CO5	Explain the quality parameters of various water sources and functions of selected water storage
	and conveyance structures. (Understand)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	1	-	-	-	2	-	2	-	-	-	-	-	2	-	2
CO2	-	-	-	-	2	-	2	-	-	-	-	-	-	-	-
CO3	1	-	-	-	2	-	2	-	-	-	-	-	-	-	2
CO4	1	-	-	-	1	-	-	-	-	-	-	3	-	-	•
CO5	-	-	-	-	1	-	-	-	-	1	-	-	-	-	•
1-Low 2 –Medium				ium			3	- High							

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Basic Civil Engineering, M.S. Palanisamy, Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.
- T2 Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition
- T3 Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

REFERENCE BOOKS:

- R1 Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
- **R2** Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
- **R3** Irrigation Engineering and Hydraulic Structures Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
- **R4** Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
- **R5** Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basics of Civil Engineering

S		No. of	Tentative	Actual	Teaching	HOD
D. No	Topics to be covered	Classes	Date of	Date of	Learning	Sign
140.		Required	Completion	Completion	Methods	Weekly
1.	Introduction	1	12-02-24		TLM2	
2.	Role of Civil Engineers in Society	1	13-02-24		TLM2	
3.	Various Disciplines of Civil Engineering	1	15-02-24		TLM2	
4.	Scope of each discipline	2	16-02-24 17-02-24		TLM2	
5.	Building construction and Planning	1	19-02-24		TLM2	
6.	Construction Materials- Cement-types-properties	1	20-02-24		TLM2	
7.	Aggregates-types-properties	1	22-02-24		TLM2	
8.	Bricks-types-properties	1	23-02-24		TLM2	
9.	Cement concrete	1	24-02-24		TLM2	
10.	Steel-types	1	26-02-24		TLM2	
11.	Prefabricated construction techniques-Introduction	1	27-02-24		TLM2	
No. of	f classes required to complete UN	NIT-I: 12		No. of classes	s taken:	

UNIT-II: Surveying

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Objectives of Surveying	1	29-02-24		TLM2	
2.	Horizontal Measurements	1	01-03-24		TLM2	
3.	Angular Measurements	1	02-03-24		TLM2	
4.	Problems	1	04-03-24		TLM1	
5.	Introduction to Bearings	1	05-03-24		TLM2	
6.	Problems	1	07-03-24		TLM1	
7.	Levelling-Instruments used	1	09-03-24		TLM2	
8.	Problems	1	11-03-24		TLM1	
9.	Contour Mapping	1	12-03-24		TLM2	
No. of classes required to complete UNIT-I				No. of classes	taken:	

S No	Tonics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
5.110.	Topics to be covered	Required	Completion	Completion	Methods	Weekly
1.	Importance of Transportation in Nations economic development	1	14-03-24		TLM2	
2.	Types of Highway pavements	1	15-03-24		TLM2	
3.	Difference between Flexible & Rigid pavements	1	16-03-24		TLM2	
4.	Basics of Harbour, Tunnels	1	18-03-24		TLM2	
5.	Basics of Airport, Railways	1	19-03-24		TLM2	
6.	Sources of water-Quality of water-Specifications	1	21-03-24		TLM2	
7.	Introduction to Hydrology- Hydrologic cycle	2	22-03-24 23-03-24		TLM2	
8.	Rainwater harvesting	1	26-03-24		TLM2	
9.	Water storage & conveyance structures	1	28-03-24		TLM2	
10.	Dams & Reservoirs- Introduction	1	30-03-24		TLM2	
11.	Mid-1exams		01-04-24 to 06-04-24			
No. of	classes required to complete UN		No. of classes	s taken:		

UNIT-III: Transportation, Water Resources & Environmental Engineering

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I, II & III)	M1=15
I-Quiz Examination (Units-I, II & III)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=15
II-Quiz Examination (Units-III, IV & V)	Q2=10
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=15
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE) : A+M+Q	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

EVALUATION PROCESS (R23 Regulations):
PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.							
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations							
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice							
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development							
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.							
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.							
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and
	software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyze the various laboratory test required for the
	professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil
	engineering domain

Course Instructor	Course Coordinator	Module Coordinator	HOD
(Dr. K. V. Ramana)	(B. Ramakrishna)		(Dr. Y. Amar Babu)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(An Autonomous Institution since 2010) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodece@Lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

<u>COURSE HANDOUT</u> <u>PART-A</u>

Name of Course Instructor	: Mr. Shaik Johny Basha	
Course Name & Code	: Introduction to Programming (23CS01)	
L-T-P Structure	: 3-0-0	Credits: 3
Program/Sem/Sec	: B.Tech. – ECE / II Sem. / C	A.Y. : 2023 – 24

PRE-REQUISITE: NIL

COURSE EDUCATIONAL OBJECTIVE (CEO):

- To introduce students to the fundamentals of computer programming.
- To provide hands-on experience with coding and debugging.
- To foster logical thinking and problem-solving skills using programming.
- To familiarize students with programming concepts such as data types, control structures, functions, and arrays.
- To encourage collaborative learning and teamwork in coding projects.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to:

CO1:	Understand basics of computers, the concept of algorithm and algorithmic thinking.	Understand – Level 2
CO2:	Analyze a problem and develop an algorithm to solve it.	Analyze – Level 4
CO3:	Implement various algorithms using the C programming language.	Apply – Level 3
CO4:	Understand more advanced features of C language.	Understand – Level 2
CO5:	Develop problem-solving skills and the ability to debug and optimize the code.	Apply – Level 3

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	n											
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-
1 – Low				2 – Medium			3 – High					

TEXTBOOKS:

- **T1:** "The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, 1988
- **T2:** Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-Hill Education, 1996

REFERENCE BOOKS:

- **R1:** Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008.
- **R2:** Programming in C, Rema Theraja, Oxford, 2016, 2nd edition
- **R3:** C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd Edition

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT - I: Introduction to Programming and Problem Solving

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Discussion of COs and CEOs, History of Computers	1	13-02-24					
2.	Basic organization of a Computer: ALU, Input - Output Units	1	14-02-24					
3.	Memory, Program Counter	1	15-02-24					
4.	Introduction to Programming Languages	1	16-02-24					
5.	Basics of a Computer Program – Algorithms	1	17-02-24					
6.	Flowcharts (Using Dia Tool), Pseudo Code	1	20-02-24					
7.	Introduction to Compilation and Execution	1	21-02-24					
8.	Primitive Data Types	1	22-02-24					
9.	Variables and Constants	1	23-02-24					
10.	Basic Input and Output Operations	2	24-02-24 27-02-24					
11.	Type Conversion and Casting	1	28-02-24					
12.	Problem Solving Techniques: Algorithmic Approach, Characteristics of Algorithm	1	29-02-24					
13.	ProblemSolvingStrategies:Top-DownApproach,Bottom-UpApproach	1	01-03-24					
14.	Time and space complexities of Algorithms	1	02-03-24					
No.	No. of classes required to complete UNIT – I: 15 No. of classes taken:							

UNIT – II: Control Structures

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
15.	SimpleSequentialPrograms:Conditional Statements	1	05-03-24			
16.	if, if-else	1	06-03-24			
17.	switch	1	07-03-24			
18.	Example programs on Decision Making and Branching	1	12-03-24			

22.	Break Statement	1	21-03-24		
21.	for Loop with Examples	2	19-03-24 20-03-24		
20.	do-while Loop with Examples	2	15-03-24 16-03-24		
19.	Loops: while Loop with Examples	2	13-03-24 14-03-24		

UNIT – III: Arrays and Strings

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
24.	Arrays: Introduction to 1D-Arrays, Declaration, and Initialization	1	23-03-24			
25.	1D-Array Indexing, Accessing Elements of 1D-Array	1	26-03-24			
26.	Memory Model, Programs on 1D- Arrays	2	27-03-24 28-03-24			
27.	Introduction to 2D-Arrays, Declaration, and Initialization	1	30-03-24			
28.	2D-Array Indexing, Accessing Elements of 2D-Array	1	10-04-24			
29.	Programs on 2D-Arrays	2	12-04-24 16-04-24			
30.	Introduction to Strings	1	18-04-24			
31.	Reading and Writing Operations on Strings	1	19-04-24			
32.	String Handling Functions	1	20-04-24			
33.	Programs on Strings	2	23-04-24 24-04-24			
No.	of classes required to complete	UNIT – III	: 13	No. of clas	sses take	n:

UNIT - IV: Pointers & User-Defined Data Types

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34.	Pointers: Introduction to Pointers	1	25-04-24			
35.	Dereferencing and Address Operators	1	26-04-24			
36.	Pointer and Address Arithmetic	1	27-04-24			
37.	Array Manipulation using Pointers	2	30-04-24 01-05-24			
38.	User-defined Data Types: Structure, Declaration, and Initialization	1	02-05-24			
39.	Concepts of Structures	2	03-05-24 04-05-24			
40.	Programs on Structures	1	07-05-24			
41.	Union, Declaration, and Initialization	1	08-05-24			
42.	Concepts of Union	2	09-05-24 10-05-24			
43.	Programs on Union	1	14-05-24			
No.	of classes required to complete	No. of clas	ses takei	1:		

UNIT - V: Functions & File Handling

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
44.	Functions: Introduction, Function Declaration and Definition	1	15-05-24			

45.	Function Call – Return Types and Arguments	1	16-05-24			
46.	Modifying parameters inside functions using pointers	1	17-05-24			
47.	Arrays as parameters	1	18-05-24			
48.	Recursion and Example	1	21-05-24			
49.	Scope and Lifetime of Variables	1	22-05-24			
50.	File Handling: Introduction to Files, Basics of File Handling	1	23-05-24			
51.	File Operations	2	24-05-24 25-05-24			
52.	Example Programs on File Handling	2	28-05-24 29-05-24			
No.	of classes required to complete	e UNIT – V	: 11	No. of clas	sses take	n:

Content Beyond the Syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
53.	Introduction to Linked Lists	1	30-05-24			
54.	Types of Linked Lists	1	31-05-24			
55.	Array vs Linked List	1	01-06-24			

Teaching Learning Methods								
TLM1Chalk and TalkTLM4Demonstration (Lab/Field Visit)								
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3TutorialTLM6		TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R23 Regulation):

Evaluation Task	Marks
Assignment on Cycle – I (Units-I, II)	A1 = 5
MID – I Descriptive Examination (Units-I, II)	M1 = 15
MID – I Objective / Quiz Examination (Units-I, II)	Q1 = 10
<mark>Mid – I Total Marks: A1 + M1 + Q1</mark>	<mark>MT1 = 30</mark>
Assignment on Cycle – II (Unit-III, IV & V)	A2 = 5
MID – II Descriptive Examination (UNIT-III, IV & V)	M2 = 15
MID – II Objective / Quiz Examination (UNIT-III, IV & V)	Q2 = 10
<mark>Mid – II Total Marks: A2 + M2 + Q2</mark>	<mark>MT2 = 30</mark>
Continuous Internal Evaluation (CIE): 80% of Max (MT1, MT2) + 20% of Min (MT1, MT2)	<mark>C = 30</mark>
Semester End Examination (SEE): S	<mark>S = 70</mark>
Total Marks (T) = C + S	<mark>T = 100</mark>

PART-D

PROGRAMME OUTCOMES (POs):

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
РО3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
P04	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
P06	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
P08	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
P09	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
P010	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course	Course	Module	Head of the
	Instructor	Coordinator	Coordinator	Department
Name of the	Mr. Shaik Johny	Dr. Y.V. Bhaskar	Dr. Y.V. Bhaskar	Dr. Y. Amar Babu
Faculty	Basha	Reddy	Reddy	
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT, MECH, CE & ASE) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

Department of Electronics & Communication Engineering

COURSE HANDOUT

Name of Course Instructor : M.Sambasiva Reddy

- Course Name & Code : Network Analysis 23EC01
- L-T-P-Cr Structure : 3-0-0-3

Program/Sem/Sec : B.Tech., ECE., II-Sem., Section- C A.Y : 2023-24

Course Objectives:

- To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits.
- To impart knowledge on applying appropriate theorem for electrical circuit analysis.
- To explain transient behavior of circuits in time and frequency domains.
- To teach concepts of resonance.
- To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

Course Outcomes (COs): At the end of the course, students are able to

CO1	Apply fundamental laws and theorems to compute electrical variables of DC circuits (Apply)
CO2	Analyze electrical networks during transients in the Laplace domain (Apply)
CO3	Apply fundamental laws and theorems to compute electrical variables of AC electrical circuits (Apply)
CO4	Analyse resonance circuits (Analyse)
CO5	Evaluate variables associated with magnetic circuits (Apply)
CO6	Compute the parameters of a two-port network (Apply)

Course Articulation Matrix (Correlation between COs&POs,PSOs):

							••••	0.000	0.0,-	200)	•				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	-	-	-	-	-	-	-	-	-	2	2	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	2	1	2	-
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	2	1	2	-
CO6	2	2	2	-	-	-	-	-	-	-	-	1	1	2	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-Moderate**(Medium),

3-Substantial (High).

TEXT BOOK(S):

T1	Network Analysis – ME Van Valkenburg, Prentice Hall of India, revised 3 rd Edition, 2019
	2017.
T2	Engineering Circuit Analysis by William H. Hayt, Jack Kemmerly, Jamie Phillips,
	Steven M. Durbin, 9 Edition 2020.
T 3	Network lines and Fields by John. D. Ryder 2 nd Edition, PHI

REFERENCE BOOK(S):

- **R1** D. Roy Choudhury, Networks and Systems, New Age International Publications, 2013.
- R2 Joseph Edminister and Mahmood Nahvi, Electric Circuits, Schaum's Outline Series, 7th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2017
- **R3** Fundamentals of Electric Circuits by Charles K. Alexander and Matthew N. O. Sadiku, McGraw-Hill Education.

<u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN) - Section-C

UNIT-I:

S.No.	Topic/s	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Course and COs	1	12-02-24			
2.	Introduction to Unit-I	1	13-02-24			
3.	Types of circuit components	1	14-02-24			
4.	Types of Sources and Source Transformations	1	15-02-24			
5.	Mesh analysis and Nodal analysis	1	17-02-24			
6.	Problem Solving with resistances including dependent sources also	1	19-02-24			
7.	Principal of Duality with examples	1	20-02-24			
8.	Thevenin's Theorem	1	21-02-24			
9.	Norton's Theorem	1	22-02-24			
10.	Milliman's Theorem	1	24-02-24			
11.	Reciprocity Theorem	1	26-02-24			
12.	Compensation, Substitution Theorems	1	27-02-24			
13.	Superposition Theorem	1	28-02-24			
14.	Max Power Transfer Theorem	1	29-02-24			
15.	Tellegens Theorem	1	02-03-24			
16.	Problem solving using Dependent sources also	1	04-03-24			
No. of	classes required to complete UNIT-I	14	No.	of classes tak	en	

UNIT-II: Transients & Laplace transform

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
17.	First order differential equations	1	05-03-24			
18.	Definition of time constants	1	06-03-24			
19.	R-L circuit	1	07-03-24			
20.	RC circuit with DC excitation	1	09-03-24			
21.	evaluating initial conditions procedure	1	11-03-24			
22.	Second order differential equations	1	12-03-24			
23.	homogeneous, non-homogenous DEs	1	13-03-24			
24.	Problem-solving using R-L-C elements with DC excitation and AC excitation	1	14-03-24			
25.	Response as related to s-plane rotation of roots	1	16-03-24			
26.	Laplace transform: introduction	1	18-03-24			

27.	Laplace transformation, basic theorems		19-03-24			
28.	Problem solving using Laplace transform		20-03-24			
29.	Partial fraction expansion		21-03-24			
30.	Heaviside's expansions		23-03-24			
31.	Problem solving using Laplace transform		26-03-24			
No. of	f classes required to complete UNIT-II	10	No.	of classes tak	ken	

UNIT-III : Steady State Analysis of A.C Circuits

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
32.	Impedance concept, phase angle	1	27-03-24			
33.	3. series R-L, R-C, R-LC circuits problem		28-03-24			
34.	Complex impedance and phasor notation for R-L, R-C, R-L-C	1	30-03-24			
35.	problem solving using mesh and nodal analysis	1	08-04-24			
36.	Star-Delta conversion	1	10-04-24			
37.	Problem solving using Laplace transforms	1	13-04-24			
38.	Problem solving	1	15-04-24			
39.	Problem solving	1	16-04-24			
40.	Problem solving	1	18-04-24			
41.	Problem solving	1	20-04-24			
No. of classes required to completeUNIT-III.		10	No. c	of classes take	en	

UNIT-IV: Resonance & Coupled Circuits

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
42.	Introduction, Definition of Q	1	22-04-24	I		
43.	Series resonance, Bandwidth of series resonance	1	23-04-24			
44.	Parallel resonance	1	24-04-24			
45.	General case-resistance present in both branches	1	25-04-24			
46.	Anti-resonance at all frequencies	1	27-04-24			
47.	Coupled Circuits: Self-inductance	1	29-04-24			
48.	Mutual inductance, Coefficient of coupling	1	30-04-24			
49.	Analysis of coupled circuits	1	01-05-24			
50.	Natural current, Dot rule of coupled circuits	1	02-05-24			
51.	conductively coupled equivalent circuits- problem solving	1	04-05-24			
52.	Problem Solving	1	06-05-24			
53.	Problem Solving	1	07-05-24			
54.	Problem Solving	1	08-05-24			
55.	Problem Solving	1	09-05-24			
No. of	classes required to complete UNIT-IV	10	No. c	of classes take	en	

UNIT-V: Two-port Network

S.No.	Topic/s	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
56.	Relationship of two port networks	1	11-05-24			
57.	Z-parameters, Y-parameters	1	13-05-24			
58.	Transmission line parameters, h- parameters	1	14-05-24			
59.	Relationships Between parameter Sets	1	15-05-24			
60.	0. Parallel & series connection of two port networks		16-05-24			
61.	Cascading of two port networks	1	18-05-24			
62.	2. problem solving using dependent sources also		20-05-24			
63.	Image and iterative impedances	1	21-05-24			
64.	Image and iterative transfer constants	1	22-05-24			
65.	Insertion loss, Attenuators and pads.	1	23-05-24			
66.	Lattice network and its parameters	1	25-05-24			
67.	Impedance matching networks	1	27-05-24			
68.	Problem Solving	1	28-05-24			
69.	Problem Solving	1	29-05-24			
70.	Problem Solving	1	30-05-24			
No. of	classes required to complete UNIT-V	9	No. e	of classes take	en	

Contents beyond the Syllabus

	S.No.	Tonic/s	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign		
	0.1100		Required	Completion	Completion	Methods	Weekly		
ſ	71.	Filters	1						
Ī	72.	Attenuators	1						
-	Teaching Learning Methods								

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project
		PART-C	

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Cumulative Internal Examination (CIE) = 80% of Max((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1), (M2+Q2+A2))	30
Semester End Examination (SEE)(Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PSO 1:** Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- **PSO 2:** VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and implement real time applications in the field of VLSI and Embedded Systems using relevant tools.
- **PSO 3:** Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

Date:

Course Instructor M.Sambasiva Reddy Course Coordinator Mr.G.Venkata Rao Module Coordinator Dr.G.Srinivasulu

HOD Dr.Y.Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF FRESHMANENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:Mr.S.VijayaDasaradhaCourse Name & Code: Chemistry Lab&23FE52L-T-P Structure:0-0-3Program/Sem/Sec: B.Tech/I-sem/ECE-C

Credits:1.5 A.Y. :2023-24

Pre requisites: Nil

Course Educational Objective:

- To enable the students to perform different types of volumetric titrations.
- It provides an overview of preparation of polymers, nanomaterials and analytical techniques.

Course Outcomes: After completion of the course, the students will be able to,

- **CO1:** Distinguish different types of titrations in volumetric analysis after performing the experiments listed in the syllabus. (Analyze)
- **CO2:** Acquire practical knowledge related to preparation of Bakelite and nanomaterials. (Apply)
- **CO3:** Measure the strength of acid present in Pb-Acid battery. (Apply)
- **CO4:** Determine the cell constant and conductance of solutions. (Apply)

C05: Analyze organic compounds by using UV-Visible and IR spectroscopy. (Apply)

POs COs	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	2	-	-	-	1	2	-	-	-	-	-
CO2	3	-	1	-	-	2	1	-	-	-	-	-
CO3	3	2	1	-	-	-	2	-	-	-	-	-
CO4	3	1	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	2	-	-	-	-	-	-	-
1	1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High))		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial(High).

Bos Approved Lab Manual

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-C

S.No.	Experiment	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	HOD Sign Weekly
1.	Introduction to Engineeringchemistry lab	3	12-02-2024		TLM1		
2.	Preparation of a Bakelite	3	19-02-2024		TLM4	C01	
3.	Determination of amount of HCl using standard Na ₂ CO ₃ solution	3	26-02-2024		TLM4	C01	
4.	Determination of Strength of an acid in Pb-Acid battery	3	04-03-2024		TLM4	C01	
5.	Estimation of Ferrous Iron by Dichrometry	3	11-03-2024		TLM4	C01	
6.	Conductometric titration of strong acid vs. strong base	3	18-03-2024		TLM4	C01	
7.	Conductometric titration of weak acid vs. strong base	3	08-04-2024		TLM4	C01	
8.	Potentiometry - determination of redox potentials and emfs	3	15-04-2024		TLM4	C01	
9.	Preparation of nanomaterials by precipitation method	3	22-04-2024		TLM4	CO2	
10.	Verify Lambert-Beer's law	3	29-04-2024		TLM4	CO4	
11.	Wavelength measurement of sample through UV-Visible Spectroscopy	3	06-05-2024		TLM4	CO4	
12.	Identification of simple organic compounds by IR	3	13-05-2024		TLM4	CO4	
13.	Revision	3	20-05-2024		TLM4	CO4	
14	Internal Exam	3	27-05-2024		TLM4	CO4	
	Total						

Teach	ing Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

Part - C

EVALUATION PROCESS:

According to Academic Regulations of R20 Distribution and Weightage of Marks for Laboratory Courses is as follows.

(a) Continuous Internal Evaluation(CIE):

✓ The continuous internal evaluation for laboratory course is based on the following parameters:

Evaluation Task	Marks
Day-to-Day Work	A1 = 10
Record & Observation	B1 = 5
Internal Exam	C1 = 15
Cumulative Internal Examination (CIE): (A1+B1+C1)	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and researchmethodsincludingdesignofexperiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course Instructor	Course Coordina tor	Module Coordinator	Head of the Department
Name of the Faculty	Mr.S.VijayaDasaradha	Dr.V.Parvathi	Dr.V.Parvathi	Dr.A.Rami Reddy
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(An Autonomous Institution Since 2010) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodece@Lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

<u>COURSE HANDOUT</u> <u>PART-A</u>

Name of Course Instructor	: Mr. Sk. Johny Basha / Mrs. P.M.K. Kumari / Mr. P. Nagababu						
Course Name & Code	Computer Programming Lab (23CS51)						
L-T-P Structure	: 0-0-3	Credits: 1.5					
Program/Sem/Sec	: B.Tech. – ECE / II Sem. / C	A.Y. : 2023 – 24					

PRE-REQUISITE: Fundamentals of Mathematics

COURSE EDUCATIONAL OBJECTIVE (CEO): The course aims to give students hands – on experience and train them on the concepts of the C- programming language.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to:

CO1:	Read, understand, and trace the execution of programs written in C language. (Understand)	Apply – Level 3
CO2:	Select the right control structure for solving the problem. (Apply)	Apply – Level 3
CO3:	Develop C programs which utilize memory efficiently using programming constructs like pointers. (Apply)	Apply – Level 3
CO4:	Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C. (Apply).	Apply – Level 3
CO5:	Improve individual / teamwork skills, communication and report writing skills with ethical values.	

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	2	-	-	3	-	-	-	-	-	-	-
CO2	3	2	2	-	3	-	-	-	-	-	-	-
CO3	3	2	2	-	3	-	-	-	-	-	-	-
CO4	3	2	2	-	3	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	2	2	2	2	2
1 – Low						2 – Medium			3 – High			

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

c		No. of C	lasses	Data of	Delivery Method	
5. No.	Programs to be covered	Required as per the Schedule	Taken	Completion		
1.	Week – 1 and Week – 2	03			DM5	
2.	Week – 3	03			DM5	
3.	Week – 4 and Week – 5	03			DM5	
4.	Week – 6	03			DM5	
5.	Week – 7	03			DM5	
6.	Week – 8	03			DM5	
7.	Week – 9	03			DM5	
8.	Week – 10	03			DM5	
9.	Week – 11	03			DM5	
10.	Week – 12	03			DM5	
11.	Week – 13	03			DM5	
12.	Week – 14	03			DM5	
13.	Internal Lab Exam	03			DM4	

Delivery Methods							
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz				
DM2	ICT Tools	DM5	Laboratory/Field Visit				
DM3 Tutorial		DM6	Web-based Learning				

Title	Course	Course	Module	Head of the
	Instructor	Coordinator	Coordinator	Department
Name of the	Mr. Shaik Johny	Dr. Y.V. Bhaskar	Dr. Y.V. Bhaskar	Dr. Y. Amar Babu
Faculty	Basha	Reddy	Reddy	
Signature				

PROGRAMME OUTCOMES (POs):

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
P03	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
P08	Ethic s: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
P09	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
P010	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Title	Course	Course	Module	Head of the
	Instructor	Coordinator	Coordinator	Department
Name of the Mr. Shaik Johny		Dr. Y.V. Bhaskar	Dr. Y.V. Bhaskar	Dr. Y. Amar Babu
Faculty Basha		Reddy	Reddy	
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. EESHWAR RAM J & Mr. P MOHANA G RAJU

Course Name & L-T-P Structure Program/Sem/Sec

: Engineering Workshop & 23ME51	Regulation	: R23
: 0-0-3	Credits	: 1.5
: B. Tech/II/ECE	A.Y.	: 2023-24

PREREQUISITE: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): To familiarize students with wood working, sheet metal operations, fitting, electrical house wiring skills, and basic repairs of two-wheeler vehicles.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Identify workshop tools and their operational capabilities. (Remember)
CO2	Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and welding. (Understand)
CO3	Apply fitting operations in various applications. (Apply)
CO4	Apply basic electrical engineering knowledge for House Wiring Practice. (Apply)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	1	-	-	-	-	-	-	-	2	3	2
CO2	3	2	1	1	-	-	-	-	-	-	-	2	3	2
CO3	3	2	1	1	-	-	-	-	-	-	-	2	3	2
CO4	3	2	1	1	-	-	-	-	-	-	-	2	3	2
	1 - Low					2 –Medium				3 - High				

Textbooks:

- T1. Basic Workshop Technology: Manufacturing Process, Felix W.; Independently Published,2019. Workshop Processes, Practices and Materials; Bruce J. Black, Routledge publishers, 5th Edn. 2015.
- T2. A Course in Workshop Technology Vol I. & II, B.S. Raghuwanshi, Dhanpath Rai & Co., 2015 & 2017.

Reference Books:

- R1. LBRCE Workshop Lab Manual.
- R2. Elements of Workshop Technology, Vol. I by S. K. Hajra Choudhury & Others, Media Promoters and Publishers, Mumbai. 2007, 14th edition.
- R3.Workshop Practice by H. S. Bawa, Tata-McGraw Hill, 2004.
- R4. Wiring Estimating, Costing and Contracting; Soni P.M. & Upadhyay P.A.; Atul Prakash an, 2021-22.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

Si.No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly				
		СУ	CLE-I							
1.	Introduction to Lab	3	15-02-2024		TLM4					
2.	Dove Tail Joint	3	22-02-2024		TLM4					
3.	Corner Lap Joint	3	29-02-2024		TLM4					
4.	T-Fitting	3	07-03-2024		TLM4					
5.	V-Fitting	3	14-03-2024		TLM4					
6.	Two Laps in Series and Parallel Connection with One Way Switch	3	21-03-2024		TLM4					
7.	Florescent Lamp and Calling Bell Circuit	3	28-03-2024		TLM4					
		CY	CLE-II							
8.	Preparation of Pipe Layout	3	04-04-2024		TLM4					
9.	Pipe Threading	3	18-04-2024		TLM4					
10.	Preparation of Rectangular Tray	3	25-04-2024		TLM4					
11.	Preparation of Open Scoop	3	02-05-2024		TLM4					
12.	Preparation Of S-Hook	3	09-05-2024		TLM4					
13.	Preparation of chisel,	3	16-05-2024		TLM4					
14.	Repetition	3	23-05-2024		TLM4					
15.	Internal Lab Exam	3	30-05-2024							
	No. of classes required to complete 13 No. of classes taken:									

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R23 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = A	1,2,3,4,5,6,7,8	A=10
Record/ Viva = B	1,2,3,4,5,6,7,8	B=05
Internal Test = C	1,2,3,4,5,6,7,8	C = 15
Cumulative Internal Examination: A+B+C = 30	1,2,3,4,5,6,7,8	30
Semester End Examinations = D	1,2,3,4,5,6,7,8	70
Total Marks: A+ B + C + D = 100	1,2,3,4,5,6,7,8	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To provide students with sound mathematical, engineering, and multidisciplinary knowledge to solve Aerospace and Allied Engineering
PEO 2	To prepare students to excel in higher education programs and to succeed in industry/academia profession.
PEO 3	To inculcate ethical attitude, leadership qualities, problem solving abilities and life-long learning for a successful professional career.

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences
	Design/development of solutions: Design solutions for complex engineering
PO 3	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based
	knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
PO 5	Modern tool usage: Create, select, and apply appropriate techniques,
	resources, and modern engineering and IT tools including prediction and
	modelling to complex engineering activities with an understanding of the
PO 6	The engineer and society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal and cultural issues
	and the consequent responsibilities relevant to the professional engineering

PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and
	demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO 9	Individual and teamwork: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities
	with the engineering community and with society at large, such as, being able
	to comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and
	ability to engage in independent and life-long learning in the broadest context
	of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures, and Flight Dynamics in Aerospace vehicle design.
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

	Course Instructor	Head of the Department
Signature		
Name of the Faculty	Mr. EESHWAR RAM	Dr. J V RAO

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr. M.Sambasiva Reddy		
Course Name & Code	: Network Analysis and Simulation Laboratory-23	EC51	
L-T-P Structure	: 0-0-3	Credits	: 1.5
Program/Sem/Sec	: B.Tech., ECE., II-Sem., Section- C	A.Y	: 2023-24

PRE-REQUISITE: Basic Electrical Engineering Concepts

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- To gain hands on experience in verifying Kirchoff's laws and network theorems
- To analyze transient behavior of circuits
- To study resonance characteristics
- To determine 2-port network parameters

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Demonstrate fundamental circuit laws, network theorems, node and mesh analysis of
	electrical circuits (Apply)
CO2	Design resonance circuit for given specifications (Analyze)
CO3	Measure time constants of RL & RC circuits (Apply)
CO4	Analyze the 1 st and 2 nd order circuits with respect to parameter variation (Analyze)
CO5	Characterize and model the network in terms of all network parameters (Apply)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	2	-	-	-	-	2	1	2	2	1	-
CO2	2	2	-	1	2	-	-	-	-	2	2	2	3	1	-
CO3	2	2	-	1	1	-	-	-	-	2	1	2	1	2	-
CO4	2	3	-	1	2	-	-	-	-	2	1	2	2	2	-
CO5	2	2	-	1	2	-	-	-	-	2	2	2	1	2	-

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section – C

Expt. No	Experiment/s	COs	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Introduction to NA Lab experiments, COs, POs and PSOs		3	14-02-24		TLM1	
		Cycle –	- I				
1	Experiment – 1	C01,C04	3	21-02-24		TLM4	
2	Experiment – 2	CO1,CO4	3	28-02-24		TLM4	
3	Experiment – 3	CO1,CO4	3	06-03-24		TLM4	
4	Experiment – 4	CO1,CO4	3	13-03-24		TLM4	
5	Experiment – 5	CO1,CO4	3	20-03-24		TLM4	-
6	Experiment – 6	CO2,CO4	3	27-03-24		TLM4	
		Cycle –	П			1	
7	Experiment – 7	CO1,CO4	3	10-04-24		TLM4	
8	Experiment – 8	CO1,CO4	3	24-04-24		TLM4	
9	Experiment – 9	CO2,CO4	3	01-05-24		TLM4	
10	Experiment – 10	CO3,CO4	3	08-05-24		TLM4	
11	Experiment – 11	CO3,CO4	3	15-05-24		TLM4	
12	Experiment – 12	CO3,CO4	3	22-05-24		TLM4	
13	Experiment beyond the syllabus		3	22-05-24		TLM4	
	Internal Examination		3	29-05-24			

Experiments to be conducted:

Exp. No	CYCLE-1	Exp. No	CYCLE-2
1	Study of components of a circuit and	7	To study the transient and steady state response of a
	Verification of KCL and KVL		2nd order circuit by varying its various parameters
			and studying their effects on responses
2	Verification of mesh and nodal analysis for	8	Find the Q Factor and Bandwidth of a Series and
	AC circuits		Parallel Resonance circuit
3	Verification of Superposition, Thevenin's &	9	Determination of open circuit (Z) and short circuit
	Norton theorems for AC circuits		(Y) parameters
4	Verification of maximum power transfer	10	Determination of hybrid (H) and transmission
	theorem for AC circuits		(ABCD) parameters
5	Study of DC transients in RL, RC and RLC	11	Determination of hybrid (H) and transmission
	circuits		(ABCD) parameters
6	To study frequency response of various 1st	12	To measure two port parameters of a twin-T network
	order RL & RC networks		and study its frequency response.

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

Part - C

EVALUATION PROCESS:

Evaluation Task	Expt. no's	Marks
Day to Day work $= \mathbf{A}$	1,2,3,4,5,6,7,8	A = 10
Record = B	1,2,3,4,5,6,7,8	B = 05
Internal Test = \mathbf{C}	1,2,3,4,5,6,7,8	C = 15
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	30
Semester End Examinations = D	1,2,3,4,5,6,7,8	70
Total Marks: $A + B + C + D = CIE + SEE$		100

PART-D

)GRAM	ME OUTCOMES (POs):
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1:	Communication: Design and develop modern communication technologies for building the			
	inter disciplinary skills to meet current and future needs of industry.			
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or			
	systems and Implement real time applications in the field of VLSI and Embedded Systems using			
	relevant tools			
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues			
	related to real time applications			

Module CoordinatorHODDr. G.SrinivasuluDr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC and NBA Accredited, Certified by ISO) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

Date:15/02/2024

Association hour Schedule (A.Y. 2023-24)

(II Sem., ECE, Section-C)

All the **II Sem. ECE Section-C** students are informed to organize the association hour as per the following schedule.

S. No	Roll No	Tentative Date	Name of the Activity	Tentative Date	Name of the Activity
1	23761A04D3	17.02.2024	Story Talling	20.04.2024	Debate onGlobal Warming
2	23761A04D4				
3	23761A04D5				
4	23761A04D6	17.02.2024	Story rennig	20.04.2024	– its impact
5	23761A04D7				
6	23761A04D8				
7	23761A04D9			27.04.2024	Story Talling
8	23761A04E0		Debate on social media –		
9	23761A04E1	17.02.2024			
10	23761A04E2	17.02.2024	A boolin of ballg	27.04.2024	Story rennig
11	23761A04E3				
12	23761A04E4				
13	23761A04E5				
14	23761A04E6				
15	23761A04E7	02 02 2024	Story Talling	27.04.2024	Debate on Space Technology
16	23761A04E8	02.03.2024	Story rennig	27.04.2024	Debate onspace rechnology
17	23761A04E9				
18	23761A04F0				
19	23761A04F1				
20	23761A04F2				
21	23761A04F3	02 02 2024	Debate on National Quantum	04.05.2024	Story Tolling
23	23761A04F4	02.05.2024	Mission	04.05.2024	Story rennig
23	23761A04F5				
24	23761A04F6				
25	23761A04F7	16.03.2024			
26	23761A04F8				
27	23761A04F9		Story Talling	04.05.2024	Debate on 6G
28	23761A04G0		Story rennig	04.03.2024	communication
29	23761A04G1				
30	23761A04G2				

31	23761A04G3				
32	23761A04G4	16.03.2024	Debate on AI and Its impact	18.05.2024	Story Telling
33	23761A04G5				
34	23761A04G6				
35	23761A04G7				
36	23761A04G8				
37	23761A04G9				
38	23761A04H0				
39	23761A04H1		Story telling	18.05.2024	Debate on Adverse effects of Online Gaming
40	23761A04H2	23.03.2024			
41	23761A04H3				
42	23761A04H4				
43	23761A04H5				
44	23761A04H6				
45	23761A04H7	22.02.2024		25.05.2024	
46	23761A04H8	23.03.2024	Debate on Smart Farming	25.05.2024	Story Telling
47	23761A04H9				
48	23761A04I0				
49	23761A04I1				
50	23761A04I2	20.02.2024			
51	23761A04I3		Story Talling	25.05.2024	Debate onAugmented and
52	23761A04I4	50.05.2024	Story Tennig	23.03.2024	Virtual reality
53	23761A04I5				
54	23761A04I6				
55	23761A04I7		Debate or Die Samoore	01.06.2024	Story Talling
56	23761A04I8	30.03.2024			
57	23761A04I9				
58	23761A04J0		Debate off BIO Sensors	01.00.2024	Story rennig
59	23761A04J1				
60	23761A04J2				
61	23761A04J3	20.04.2024			
62	23761A04J4				
63	23761A04J5		Story Talling	01.06.2024	Debate on Visible light
64	23761A04J6		Story rennig	01.00.2024	Communication
65	23761A04J7				
66	23761A04J8				