LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

## **DEPARTMENT OF ECE**

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor:Mr.G.Venkata Rao, Assoc. ProfessorCourse Name & Code: ACD-20EC03L-T-P Structure: 3-0-0Program/Sem/Sec: B. Tech. III-Sem., ECE-A Sec

**Regulation**: R20 **Credits:** 03 **A.Y.:** 2023-24

**PRE REQUISITE:** Fundamentals of Electronics.

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides focus on h-parameter models, analysis, selection and proper biasing of transistors like BJT and FET, emphasis on working principles of BJT / FET amplifiers using appropriate equivalent models, gives importance to feedback in amplifiers to improve the amplifier characteristics, design of Oscillators, linear wave shaping Circuits and Multivibrators.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Understand the concept of amplifier, Oscillator and linear wave shaping circuits.             |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | (Understand – L2)                                                                             |  |  |  |  |  |
| CO2        | Apply the suitable models of the transistor for estimating gain, input resistance, and output |  |  |  |  |  |
|            | resistance and feedback concepts at amplifier and oscillator circuits. (Apply – L3)           |  |  |  |  |  |
| CO3        | Analyze feedback concepts in amplifier, oscillator circuits, and Multivibrators.              |  |  |  |  |  |
|            | (Analyze – L4)                                                                                |  |  |  |  |  |
| <b>CO4</b> | Apply knowledge of transistor for the design of amplifiers, oscillator circuits, linear wave  |  |  |  |  |  |
|            | shaping Circuits and Multivibrators. (Apply – L3)                                             |  |  |  |  |  |

### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03 | P04 | P05 | P06 | P07  | P08   | P09 | P010 | P011 | P012           | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------|-------|-----|------|------|----------------|------|------|------|
| C01 | 2   | 3   | 1   | -   | -   | 3   | 1    | -     | -   | -    | 1    | 2              | -    | 2    | -    |
| CO2 | 3   | 1   | -   | -   | -   | -   | -    | -     | -   | -    | -    | 1              | -    | 2    | -    |
| CO3 | 3   | 1   | 1   | -   | -   | -   | -    | -     | -   | -    | -    | 2              | -    | 3    | -    |
| C04 | 3   | -   | -   | -   | -   | -   | -    | -     | -   | -    | 1    | 1              | -    | 3    | -    |
|     |     |     | 1-1 | Low |     |     | 2 -1 | Mediu | m   |      |      | <b>3 -</b> Hig | gh   |      |      |

### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

## PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN)**

# UNIT-I: Small Signal Amplifiers, FET AMPLIFIERS

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to course, Course<br>Outcomes, Introduction to<br>UNIT-I | 1                             | 07/08/23                           |                                 |                                 |                       |
| 2.        | Small signal modeling of transistor                                   | 1                             | 08/08/23                           |                                 |                                 |                       |
| 3.        | h- parameter model of a<br>Transistor                                 | 1                             | 09/08/23                           |                                 |                                 |                       |
| 4.        | h- parameter model of a<br>Transistor in CE,CB,CC<br>Configuration    | 1                             | 10/08/23                           |                                 |                                 |                       |
| 5.        | Exact analysis of CE,CB,CC amplifiers                                 | 1                             | 14/08/23                           |                                 |                                 |                       |
| 6.        | Approximate analysis of CE<br>amplifier without Emitter<br>resistance | 1                             | 16/08/23                           |                                 |                                 |                       |
| 7.        | Approximate analysis of CB,CC amplifier                               | 1                             | 17/08/23                           |                                 |                                 |                       |
| 8.        | Approximate analysis of CE<br>amplifier with Emitter<br>resistance    | 1                             | 21/08/23                           |                                 |                                 |                       |
| 9.        | Analysis of CS FET amplifier                                          | 1                             | 22/08/23                           |                                 |                                 |                       |
| 10        | Analysis of CD FET amplifier                                          | 2                             | 23/08/23                           |                                 |                                 |                       |
| 10.       |                                                                       |                               | 24/08/23                           |                                 |                                 |                       |
| No.       | of classes required to comple                                         | ete UNIT-I                    | : 11                               | No. of class                    | es taken:                       |                       |

# UNIT-II: Multistage Amplifiers, Frequency Response of Amplifiers

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 11.       | Analysis and Design of Cascade<br>Amplifier                           | 1                             | 28/08/23                           |                                 |                                 |                       |  |  |
| 12.       | Analysis and Design of<br>Cascode Amplifier                           | 1                             | 29/08/23                           |                                 |                                 |                       |  |  |
| 13.       | Analysis and Design of<br>Darlington pair                             | 1                             | 30/08/23                           |                                 |                                 |                       |  |  |
| 14.       | Frequency response of Single stage amplifier                          | 1                             | 31/08/23                           |                                 |                                 |                       |  |  |
| 15.       | Frequency response of multi stage amplifier                           | 1                             | 04/09/23                           |                                 |                                 |                       |  |  |
| 16.       | Effect of coupling and bypass<br>capacitor on frequency<br>response   | 1                             | 05/09/23                           |                                 |                                 |                       |  |  |
| 17.       | The hybrid- π Common<br>Emitter Transistor model                      | 1                             | 07/09/23                           |                                 |                                 |                       |  |  |
| 18.       | Hybrid- π Conductance in<br>terms of low frequency<br>h- parameters   | 2                             | 11/09/23<br>12/09/23               |                                 |                                 |                       |  |  |
| 19.       | Millers Theorem                                                       | 1                             | 13/09/23                           |                                 |                                 |                       |  |  |
| 20.       | The CE model - $f_\beta$ , $f_T$ and $f\alpha$                        | 1                             | 14/09/23                           |                                 |                                 |                       |  |  |
| 21.       | Gain with resistive load                                              | 1                             | 19/09/23                           |                                 |                                 |                       |  |  |
| No.       | No. of classes required to complete UNIT-II: 12 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |  |

# UNIT-III: Feedback amplifiers, Oscillators, Introduction to power amplifiers

| S.<br>No. | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 22.       | Classification of Amplifiers,<br>Feedback block Diagram             | 1                             | 20/09/23                           |                                 |                                 |                       |
| 23.       | General characteristics of<br>Negative feedback Amplifiers          | 1                             | 21/09/23                           |                                 |                                 |                       |
| 24.       | Qualitative analysis of Voltage series feedback amplifier           | 1                             | 25/09/23                           |                                 |                                 |                       |
| 25.       | Qualitative analysis of current series feedback amplifier           | 1                             | 26/09/23                           |                                 |                                 |                       |
| 26.       | Qualitative analysis of Voltage shunt feedback amplifier            | 1                             | 27/09/23                           |                                 |                                 |                       |
| 27.       | Qualitative analysis of current shunt feedback amplifier            | 1                             | 20/09/23                           |                                 |                                 |                       |
| 28.       | Effect of feedback on<br>frequency response of<br>amplifier         | 1                             | 09/10/23                           |                                 |                                 |                       |
| 29.       | Qualitative analysis of RC oscillators                              | 1                             | 10/10/23                           |                                 |                                 |                       |
| 30.       | Qualitative analysis of LC oscillators                              | 1                             | 11/10/23                           |                                 |                                 |                       |
| 31.       | Qualitative analysis of Crystal oscillator                          | 1                             | 12/10/23                           |                                 |                                 |                       |
| 32.       | Introduction to Power<br>amplifiers, Class A, Class B<br>amplifiers | 1                             | 16/10/23                           |                                 |                                 |                       |
| 33.       | Class C, Class S amplifiers                                         |                               | 17/10/23                           |                                 |                                 |                       |
| NO.       | of classes required to comple                                       | NO. Of C                      | asses take                         | n:                              |                                 |                       |

# UNIT-IV: Linear wave shaping Circuits

| S.<br>No.                                                          | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34.                                                                | Low pass RC circuit and their response for sinusoidal input           | 1                             | 18/10/23                           |                                 |                                 |                       |
| 35.                                                                | Response of LPF for step, pulse inputs                                | 1                             | 19/10/23                           |                                 |                                 |                       |
| 36.                                                                | Response of LPF for square and ramp inputs                            | 1                             | 26/10/23                           |                                 |                                 |                       |
| 37.                                                                | High pass RC circuit and their response for sinusoidal, step input    | 1                             | 30/10/23                           |                                 |                                 |                       |
| 38.                                                                | Response of HPF for step, pulse inputs                                | 2                             | 31/10/23<br>01/11/23               |                                 |                                 |                       |
| 39.                                                                | Response of HPF for square and ramp inputs                            | 1                             | 02/11/23                           |                                 |                                 |                       |
| 40.                                                                | RC circuit as differentiator,<br>integrator, Double<br>differentiator | 1                             | 06/11/23                           |                                 |                                 |                       |
| 41.                                                                | Problems on LPF                                                       | 1                             | 07/11/23                           |                                 |                                 |                       |
| 42.                                                                | Problems on HPF                                                       | 1                             | 08/11/23                           |                                 |                                 |                       |
| No. of classes required to complete UNIT-IV: 10 No. of classes tak |                                                                       |                               |                                    |                                 |                                 |                       |

### **UNIT-V: Multivibrators**

| S.<br>No. | Topics to be covered                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 43.       | Bistable Multivibrator- self-biased<br>transistor binary, Principle of<br>operation | 1                             | 09/11/23                           |                                 |                                 |                       |
| 44.       | Analysis and Design of Bistable<br>Multivibrators                                   | 2                             | 13/11/23<br>14/11/23               |                                 |                                 |                       |
| 45.       | Triggering types                                                                    | 1                             | 15/11/23                           |                                 |                                 |                       |
| 46.       | Schmitt trigger circuit-Principle of operation                                      | 1                             | 16/11/23                           |                                 |                                 |                       |
| 47.       | calculation of UTP, LTP and applications                                            | 1                             | 20/11/23                           |                                 |                                 |                       |
| 48.       | Collector-coupled Monostable -<br>Principle of operation                            | 1                             | 21/11/23                           |                                 |                                 |                       |
| 49.       | Astable Multivibrators Principle of operation                                       | 1                             | 22/11/23                           |                                 |                                 |                       |
| 50.       | Analysis and design of Astable<br>Multivibrators                                    | 1                             | 23/11/23                           |                                 |                                 |                       |
| 51.       | Problems on Astable Multivibrators                                                  | 1                             | 27/11/23                           |                                 |                                 |                       |
| 52.       | Problems on Mono stable<br>Multivibrators                                           | 1                             | 28/11/23                           |                                 |                                 |                       |
| No.       | No. of classes required to complete UNIT-V: 11 No. of classes taken:                |                               |                                    |                                 |                                 |                       |

# **Contents beyond the Syllabus**

| S.No. | Topics to be<br>covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 53.   | Abot ICs                | 2                             | 29/11/23<br>30/11/23               |                                 | TLM1                            |                       |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                    |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|      | engineering fundamentals, and an engineering specialization to the solution of         |  |  |  |  |  |
|      | complex engineering problems                                                           |  |  |  |  |  |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze |  |  |  |  |  |
|      | complex engineering problems reaching substantiated conclusions using first            |  |  |  |  |  |
|      | principles of mathematics, natural sciences, and engineering sciences                  |  |  |  |  |  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering      |  |  |  |  |  |
|      | problems and design system components or processes that meet the specified             |  |  |  |  |  |
|      | needs with appropriate consideration for the public health and safety, and the         |  |  |  |  |  |
|      | cultural, societal, and environmental considerations                                   |  |  |  |  |  |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge       |  |  |  |  |  |
|      | and research methods including design of experiments, analysis and                     |  |  |  |  |  |
|      | interpretation of data, and synthesis of the information to provide valid              |  |  |  |  |  |
|      | conclusions                                                                            |  |  |  |  |  |
| PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources,        |  |  |  |  |  |
|      | and modern engineering and IT tools including prediction and modelling to              |  |  |  |  |  |
|      | complex engineering activities with an understanding of the limitations                |  |  |  |  |  |

| PO 6  | The engineer and society: Apply reasoning informed by the contextual             |
|-------|----------------------------------------------------------------------------------|
|       | knowledge to assess societal, health, safety, legal and cultural issues and the  |
|       | consequent responsibilities relevant to the professional engineering practice    |
| PO 7  | Environment and sustainability: Understand the impact of the professional        |
|       | engineering solutions in societal and environmental contexts, and demonstrate    |
|       | the knowledge of, and need for sustainable development                           |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and           |
|       | responsibilities and norms of the engineering practice                           |
| PO 9  | Individual and team work: Function effectively as an individual, and as a        |
|       | member or leader in diverse teams, and in multidisciplinary settings             |
| PO 10 | Communication: Communicate effectively on complex engineering activities         |
|       | with the engineering community and with society at large, such as, being able to |
|       | comprehend and write effective reports and design documentation, make            |
|       | effective presentations, and give and receive clear instructions                 |
| PO 11 | Project management and finance: Demonstrate knowledge and understanding          |
|       | of the engineering and management principles and apply these to one's own        |
|       | work, as a member and leader in a team, to manage projects and in                |
|       | multidisciplinary environments                                                   |
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability |
|       | to engage in independent and life-long learning in the broadest context of       |
|       | technological change                                                             |
|       |                                                                                  |

**PROGRAMME SPECIFIC OUTCOMES (PSOs):** 

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |  |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |

### Date: 04-08-2023

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|--------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Mr.G.Venkata Rao  | Dr.B V Siva Kumar  | Dr. G. Srinivasulu    | Dr. Y. Amar Babu          |
| Signature              |                   |                    |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

## **DEPARTMENT OF ECE**

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor:Mr.G.Venkata RaoCourse Name & Code: ACD Lab-20EC53L-T-P Structure: 0-0-2Program/Sem/Sec: B. Tech. III-Sem., ECE A Sec

**Regulation**: R20 **Credits:** 1 **A.Y.:** 2023-24

**PREREQUISITE:** Fundamentals of Electronic Devices

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides the practical exposure on designing of different single stage and multistage stage amplifiers, effect of capacitances on frequency response, analysis of power and feedback amplifiers.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1        | <b>Demonstrate</b> the characteristics of Amplifiers, Oscillators, feedback amplifiers, and Multivibrators. |
|------------|-------------------------------------------------------------------------------------------------------------|
| CO2        | Apply the knowledge of capacitances on frequency response, Timer circuits and its applications              |
| CO3        | Design of feedback amplifiers, Power amplifiers and waveform generators using Electronic                    |
|            | devices and components.                                                                                     |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing skills                                       |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01 | 2   | 1   | -     | -   | -   | -   | -     | -   | -   | -    | -    | -      | -    | 1    | -    |
| CO2 | 3   | 1   | 1     | -   | -   | -   | -     | -   | -   | -    | -    | -      | -    | 1    | -    |
| CO3 | 1   | 1   | 1     | 2   | -   | -   | -     | -   | -   | -    | -    | 1      | -    | 2    | -    |
| CO4 | -   | -   | -     | -   | -   | -   | -     | -   | 3   | 2    | -    | -      | -    | 3    | -    |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

#### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I

| S.<br>No. | Topics to be covered<br>(Experiment Name) | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Demo on Lab Experiments                   | 3                             | 07/08/23                           |                                 |                                 |                       |
| 2.        | Determination of Gain and                 |                               | 14/08/23                           |                                 |                                 |                       |
|           | Bandwidth of CE amplifier from            | 3                             |                                    |                                 |                                 |                       |
|           | frequency response.                       |                               |                                    |                                 |                                 | _                     |
| 3.        | Determination of Gain and                 |                               | 21/08/23                           |                                 |                                 |                       |
|           | Bandwidth of CS FET amplifier from        | 3                             |                                    |                                 |                                 |                       |
|           | frequency response.                       |                               |                                    |                                 |                                 | _                     |
| 4.        | Design of two stage RC Coupled amplifier. | 3                             | 28/08/23                           |                                 |                                 |                       |
| 5.        | Design of Transistorized Current          |                               | 04/09/23                           |                                 |                                 | -                     |
|           | series Feedback amplifier for             | 3                             | , ,                                |                                 |                                 |                       |
|           | Bandwidth improvement                     |                               |                                    |                                 |                                 |                       |
| 6.        | Analysis of Stabilization of Gain of      |                               | 11/09/23                           |                                 |                                 |                       |
|           | Transistorized Voltage series             | 3                             |                                    |                                 |                                 |                       |
|           | Feedback amplifier.                       |                               |                                    |                                 |                                 |                       |
| 7.        | Analysis of Stabilization of Gain of      |                               | 25/09/23                           |                                 |                                 |                       |
|           | Transistorized Current shunt              | 3                             |                                    |                                 |                                 |                       |
|           | Feedback amplifier                        |                               |                                    |                                 |                                 | _                     |
| 8.        | Design and Realization of                 |                               | 09/10/23                           |                                 |                                 |                       |
|           | Transistorized RC Phase shift             | 3                             |                                    |                                 |                                 |                       |
|           | Oscillator to generate a sinusoidal       | U U                           |                                    |                                 |                                 |                       |
|           | signal                                    |                               | 4 6 /4 0 /00                       |                                 |                                 | _                     |
| 9.        | Design and Realization of                 | 2                             | 16/10/23                           |                                 |                                 |                       |
|           | Transistorized Colpitts Oscillator to     | 3                             |                                    |                                 |                                 |                       |
| 10        | generate a sinusoidal signal              |                               | 20/10/22                           |                                 |                                 |                       |
| 10.       | filter using PC networks                  | 3                             | 30/10/23                           |                                 |                                 |                       |
| 11        | Design and Poplization of High Page       |                               | 06/11/22                           |                                 |                                 |                       |
| 11.       | filter using RC networks                  | 3                             | 00/11/25                           |                                 |                                 |                       |
| 12        | Verification of conduction                |                               | 13/11/23                           |                                 |                                 |                       |
| 12.       | angles of nower amplifiers                |                               | 10/11/20                           |                                 |                                 |                       |
|           | (Experiment beyond                        | 3                             |                                    |                                 |                                 |                       |
|           | svllabus)                                 |                               |                                    |                                 |                                 |                       |
| 13.       | Revision                                  |                               | 20/11/23                           |                                 |                                 |                       |
| 14.       | Internal Lab Examination                  | 3                             | 27/11/22                           |                                 |                                 | -                     |
| No        | of classes required to complete . 20      | 5                             | 27/11/23                           | No of class                     | os takon:                       |                       |
| 110.1     | or classes required to complete . 37      |                               |                                    | 110. 01 (1855)                  | co tanelli                      |                       |

# COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 1.        | Demo on Lab Experiments                                                                                     | 3                             | 10/08/23                           |                                 |                                 |                       |  |  |
| 2.        | Determination of Gain and<br>Bandwidth of CE amplifier from<br>frequency response                           | 3                             | 17/08/23                           |                                 |                                 |                       |  |  |
| 3.        | Determination of Gain and<br>Bandwidth of CS FET amplifier<br>from frequency response                       | 3                             | 24/08/23                           |                                 |                                 |                       |  |  |
| 4.        | Design of two stage RC Coupled<br>amplifier                                                                 | 3                             | 31/08/23                           |                                 |                                 |                       |  |  |
| 5.        | Design of Transistorized<br>Current series Feedback<br>amplifier for Bandwidth<br>improvement               | 3                             | 07/09/23                           |                                 |                                 |                       |  |  |
| 6.        | Analysis of Stabilization of Gain<br>of Transistorized Voltage series<br>Feedback amplifier.                | 3                             | 14/09/23                           |                                 |                                 |                       |  |  |
| 7.        | Analysis of Stabilization of Gain<br>of Transistorized Current shunt<br>Feedback amplifier                  | 3                             | 21/09/23                           |                                 |                                 |                       |  |  |
| 8.        | Design and Realization of<br>Transistorized RC Phase shift<br>Oscillator to generate a<br>sinusoidal signal | 3                             | 12/10/23                           |                                 |                                 |                       |  |  |
| 9.        | Design and Realization of<br>Transistorized Colpitts<br>Oscillator to generate a<br>sinusoidal signal       | 3                             | 19/10/23                           |                                 |                                 |                       |  |  |
| 10.       | Design and Realization of Low pass filter using RC networks.                                                | 3                             | 26/10/23                           |                                 |                                 |                       |  |  |
| 11.       | Design and Realization of High<br>Pass filter using RC networks.                                            | 3                             | 02/11/23                           |                                 |                                 |                       |  |  |
| 12.       | Revision of Experiments                                                                                     | 3                             | 09/11/23                           |                                 |                                 |                       |  |  |
| 13.       | Verification of conduction<br>angles of power<br>amplifiers <b>(Experiment beyond</b><br>syllabus)          | 3                             | 16/11/23                           |                                 |                                 |                       |  |  |
| 14.       | Revision                                                                                                    |                               | 23/11/23                           |                                 |                                 |                       |  |  |
| 15.       | Internal Lab Examination                                                                                    | 3                             | 30/11/23                           |                                 |                                 |                       |  |  |
| No. o     | No. of classes required to complete : 42 No. of classes taken:                                              |                               |                                    |                                 |                                 |                       |  |  |

| Teaching Learning Methods |                |      |                                    |  |
|---------------------------|----------------|------|------------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |
|                           |                |      |                                    |  |

### PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = A                              | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                                | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = <b>C</b>                         | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                  | 1,2,3,4,5,6,7,8 | 50     |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,              |
|------|----------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of   |
|      | complex engineering problems                                                     |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze   |
|      | complex engineering problems reaching substantiated conclusions using first      |
|      | principles of mathematics, natural sciences, and engineering sciences            |
| PO 3 | Design/development of solutions: Design solutions for complex engineering        |
|      | problems and design system components or processes that meet the specified       |
|      | needs with appropriate consideration for the public health and safety, and the   |
|      | cultural, societal, and environmental considerations                             |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge |
|      | and research methods including design of experiments, analysis and               |
|      | interpretation of data, and synthesis of the information to provide valid        |
|      | conclusions                                                                      |
| PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources,  |
|      | and modern engineering and IT tools including prediction and modelling to        |
|      | complex engineering activities with an understanding of the limitations          |
| PO 6 | The engineer and society: Apply reasoning informed by the contextual             |
|      | knowledge to assess societal, health, safety, legal and cultural issues and the  |

|       | consequent responsibilities relevant to the professional engineering practice            |
|-------|------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional        |
|       | engineering solutions in societal and environmental contexts, and demonstrate            |
|       | the knowledge of, and need for sustainable development                                   |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and                   |
|       | responsibilities and norms of the engineering practice                                   |
| PO 9  | Individual and team work: Function effectively as an individual, and as a                |
|       | member or leader in diverse teams, and in multidisciplinary settings                     |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities         |
|       | with the engineering community and with society at large, such as, being able to         |
|       | comprehend and write effective reports and design documentation, make                    |
|       | effective presentations, and give and receive clear instructions                         |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding          |
|       | of the engineering and management principles and apply these to one's own                |
|       | work, as a member and leader in a team, to manage projects and in                        |
|       | multidisciplinary environments                                                           |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability |
|       | to engage in independent and life-long learning in the broadest context of               |
|       | technological change                                                                     |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter                                                                                                    |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|              | disciplinary skills to meet current and future needs of industry                                                                                                               |  |  |  |  |  |  |  |
| PSO 2        | Design and Analyze Analog and Digital Electronic Circuits or systems and<br>Implement real time applications in the field of VLSI and Embedded Systems using<br>relevant tools |  |  |  |  |  |  |  |
| PSO 3        | Apply the Signal processing techniques to synthesize and realize the issues related to real time applications                                                                  |  |  |  |  |  |  |  |

Date: 12-09-2022

| Title                  | Course Instructor | Course Coordinator | Module Coordinator | HOD              |
|------------------------|-------------------|--------------------|--------------------|------------------|
| Name of<br>the Faculty | Mr.G,Venkata Rao  | Mr.G,Venkata Rao   | Dr. G. Srinivasulu | Dr. Y. Amar Babu |
| Signature              |                   |                    |                    |                  |



### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT, MECH, CE & ASE) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

\_\_\_\_\_

# <u>COURSE HANDOUT</u> <u>PART-A</u>

| Name of Course Instructor | : Dr B Rambabu                        |               |
|---------------------------|---------------------------------------|---------------|
| Course Name & Code        | : Signals and Systems – 20EC04        |               |
| L-T-P Structure           | : 3-0-0                               | Credits: 3    |
| Program/Sem/Sec           | : B.Tech., ECE., III-Sem., Section- B | A.Y : 2023-24 |

**PRE-REQUISITE:** Vectors, Scalars, Approximation of a vector by another vector, Differentiation and Integration of signals.

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

This course introduces signals and the way to perform mathematical operations on them. Further, it also introduces representation of signals in both time and frequency domains using orthogonal functions and describes Fourier series, the Fourier Transform and Laplace Transforms along with their properties. The course characterizes system behavior by estimating system response. It also introduces the concepts of sampling.

#### **COURSE OUTCOMES (COs):** At the end of the course, students are able to

| CO 1        | Summarize the basic concepts of signals, systems and their properties (Understand – L2)           |
|-------------|---------------------------------------------------------------------------------------------------|
| CO 2        | <b>Examine</b> the operations on signals and approximate using orthogonal functions. (Apply – L3) |
| <b>CO 3</b> | Apply the concept of impulse response to analyze the linear time invariant systems                |
|             | (Apply - L3)                                                                                      |
| <b>CO 4</b> | Analyze continuous time periodic and aperiodic signals using Fourier series, Fourier transform    |
|             | and Laplace transforms (Analyze – L4)                                                             |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

|            |     |     |     |            |     |     |            |     |     |      | ,    |      |      |      |      |
|------------|-----|-----|-----|------------|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| COs        | PO1 | PO2 | PO3 | <b>PO4</b> | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1        | 2   | 1   | 1   | -          | -   | -   | -          | -   | -   | -    | -    | -    | -    | -    | 1    |
| CO2        | 2   | 1   | 1   | -          | -   | -   | -          | -   | -   | -    | -    | -    | 1    | -    | 2    |
| <b>CO3</b> | 3   | 1   | 1   | 1          | -   | -   | -          | -   | -   | -    | -    | 1    | -    | -    | 2    |
| CO4        | 3   | 2   | 1   | 1          | -   | -   | -          | -   | -   | -    | -    | 2    | 2    | -    | 3    |

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

#### **TEXT BOOKS:**

**T1:** AV Oppenheim, AS Wilsky and IT Young, Signals and Systems, PHI/Pearson publishers,2<sup>nd</sup> Edition. **T2:** B P Lathi, Signals, Systems and Communications, BSP, 2003, 3<sup>rd</sup> Edition.

#### **REFERENCE BOOKS:**

R1: Simon Haykin, Signals and Systems, John Wiley, 2004

R2: P. Ramesh Babu, R.Ananda Natarajan "Signals and Systems", Scitech Publications , 2nd edition, 2006.

# PART-B

### COURSE DELIVERY PLAN (LESSON PLAN): Section - B UNIT-I: Signal Analysis

| S.No.  | Topic/s                                                                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to the course                                                                                           | 1                             | 08.08.2023                         |                                 |                                 |                       |
| 2.     | Course Objective and Outcomes, POs,<br>PSOs and Mapping with COs                                                     | 1                             | 10.08.2023                         |                                 |                                 |                       |
| 3.     | Concept of signal and Classification of<br>Signals-Continuous Time and Analog,<br>Discrete Time and Digital Signals. | 1                             | 11.08.2023                         |                                 |                                 |                       |
| 4.     | Representation of Signals- Impulse, Unit Step, Unit Ramp, Signum.                                                    | 1                             | 17.08.2023                         |                                 |                                 |                       |
| 5.     | Decaying, Raising and Double<br>Exponential, Gate and Rectangular, Sinc<br>and Sampling Signals                      | 1                             | 18.08.2023                         |                                 |                                 |                       |
| 6.     | Operations on Signals– Time Shifting,<br>Time Scaling and Time Reversal<br>(Folding), Amplitude Scaling              | 1                             | 19.08.2023                         |                                 |                                 |                       |
| 7.     | Convolution; Graphical Method of<br>Convolution                                                                      | 1                             | 22.08.2023                         |                                 |                                 |                       |
| 8.     | Properties of Signals- Even and Odd,<br>Causal and Non Causal, Bounded and<br>Unbounded                              | 1                             | 24.08.2023                         |                                 |                                 |                       |
| 9.     | Properties of Signals -Periodic and<br>Aperiodic, Energy and Power,<br>Deterministic and Random Signals              | 1                             | 25.08.2023                         |                                 |                                 |                       |
| 10.    | Problems on Time shifting, Time scaling,<br>Time Reversal, Amplitude Scaling.                                        | 1                             | 26.08.2023                         |                                 |                                 |                       |
| 11.    | Problems on Convolution                                                                                              | 1                             | 29.08.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                                                                  | 11                            | No. e                              | of classes tak                  | en                              |                       |

# **UNIT-II: Signal Approximation and Fourier Series**

| S.No.  | Topic/s                                                                                                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Approximation of a Signal by another signal-Mean square error                                                                                          | 1                             | 31.08.2023                         |                                 |                                 |                       |
| 2.     | Condition for orthogonal signals,<br>Approximation of a Signal by a set of<br>mutually orthogonal signals                                              | 1                             | 01.09.2023                         |                                 |                                 |                       |
| 3.     | Evaluation of Mean square error, Gibbs Phenomena                                                                                                       | 1                             | 02.09.2023                         |                                 |                                 |                       |
| 4.     | Orthogonality in complex signals-<br>Approximation of a complex signal by<br>another complex signal & a set of mutually<br>orthogonal complex signals. | 1                             | 05.09.2023                         |                                 |                                 |                       |
| 5.     | Fourier Series- Dirichlet Conditions and<br>Trigonometric Fourier Series (TFS)                                                                         | 1                             | 07.09.2023                         |                                 |                                 |                       |
| 6.     | Exponential Fourier Series (EFS)                                                                                                                       | 1                             | 08.09.2023                         |                                 |                                 |                       |
| 7.     | Relations among coefficients of TFS<br>and EFS                                                                                                         | 1                             | 12.09.2023                         |                                 |                                 |                       |
| 8.     | Representation of Periodic signal by<br>Fourier series over the entire interval                                                                        | 1                             | 14.09.2023                         |                                 |                                 |                       |
| 9.     | Symmetry conditions of Fourier Series                                                                                                                  | 1                             | 15.09.2023                         |                                 |                                 |                       |
| 10.    | Parseval's Theorem                                                                                                                                     | 1                             | 16.09.2023                         |                                 |                                 |                       |
| 11.    | Problems on Fourier Series                                                                                                                             | 1                             | 19.09.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-II                                                                                                                   | 11                            | No.                                | of classes tak                  | ken                             |                       |

|        |                                                                                                                          | No of    | Tontotivo  | Actual         | Taaahing | HOD    |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------|----------|--------|
| S.No.  | Topic/s                                                                                                                  | Classes  | Date of    | Date of        | Learning | Sign   |
|        | _                                                                                                                        | Required | Completion | Completion     | Methods  | Weekly |
| 1.     | Representation of aperiodic signal by<br>Fourier Transform and it's need                                                 | 1        | 21.09.2023 |                |          |        |
| 2.     | Deriving Fourier Transform from Fourier<br>Series, Convergence of Fourier Transform-<br>Dirichlet Conditions             | 1        | 22.09.2023 |                |          |        |
| 3.     | Properties of Fourier Transform                                                                                          | 1        | 23.09.2023 |                |          |        |
| 4.     | Properties of Fourier Transform                                                                                          | 1        | 26.09.2023 |                |          |        |
| 5.     | Fourier Transform of Various Classes of<br>Signals - Problems                                                            | 1        | 29.09.2023 |                |          |        |
| 6.     | Fourier Transform of Various Classes of Signals - Problems                                                               | 1        | 30.09.2023 |                |          |        |
| 7.     | Fourier Transform of Periodic Signal                                                                                     | 1        | 10.10.2023 |                |          |        |
| 8.     | Sampling Theorem                                                                                                         | 1        | 12.10.2023 |                |          |        |
| 9.     | Types of sampling-Ideal sampling, flat<br>top sampling, natural sampling<br>Reconstruction of signal from its<br>samples | 1        | 13.10.2023 |                |          |        |
| 10.    | Effect of under sampling- Aliasing,<br>Difference between low pass sampling<br>and band pass sampling                    | 1        | 17.10.2023 |                |          |        |
| 11.    | Problem on Fourier Transform of periodic Signals                                                                         | 1        | 19.10.2023 |                |          |        |
| No. of | classes required to complete UNIT-III                                                                                    | 11       | No. c      | of classes tak | ken      |        |

### **UNIT-III: Fourier Transform and Sampling Theorem**

#### **UNIT-IV: Signal Transmission Through Linear Systems**

| S.No.  | Topic/s                                                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | System Definition and Classification                                                                  | 1                             | 20.10.2023                         |                                 |                                 |                       |
| 2.     | Properties of Systems: Linear and Non<br>Linear, Time Invariant and Variant, Causal<br>and Non Causal | 1                             | 21.10.2023                         |                                 |                                 |                       |
| 3.     | Properties of Systems : Stable and<br>Unstable, Static and Dynamic, Invertible<br>and Non-invertible  | 1                             | 24.10.2023                         |                                 |                                 |                       |
| 4.     | Time and Frequency Analysis of LTI<br>System                                                          | 1                             | 26.10.2023                         |                                 |                                 |                       |
| 5.     | Problems                                                                                              | 1                             | 27.10.2023                         |                                 |                                 |                       |
| 6.     | System Bandwidth and Rise Time                                                                        | 1                             | 28.10.2023                         |                                 |                                 |                       |
| 7.     | Distortion less Transmission through a System                                                         | 1                             | 31.10.2023                         |                                 |                                 |                       |
| 8.     | Problems on Properties of systems                                                                     | 1                             | 02.11.2023                         |                                 |                                 |                       |
| 9.     | Ideal and Practical Characteristics of LPF,<br>HPF, BPF & BSF                                         | 1                             | 03.11.2023                         |                                 |                                 |                       |
| 10.    | Physically Realizable Systems and Poly-<br>Wiener Criterion                                           | 1                             | 04.11.2023                         |                                 |                                 |                       |
| 11.    | Problems                                                                                              | 1                             | 07.11.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-IV                                                                  | 11                            | No. o                              | of classes tak                  | ken                             |                       |

#### **UNIT-V: Laplace Transforms**

| S.No.  | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Concept of Laplace Transform                                                                     | 1                             | 09.11.2023                         |                                 |                                 |                       |
| 2.     | Relation between Laplace and Fourier<br>Transforms, Existence of Laplace<br>Transform            | 1                             | 10.11.2023                         |                                 |                                 |                       |
| 3.     | Laplace Transform of Various Classes of Signals                                                  | 1                             | 14.11.2023                         |                                 |                                 |                       |
| 4.     | Region of Convergence (ROC) and its Properties                                                   | 1                             | 16.11.2023                         |                                 |                                 |                       |
| 5.     | Problems on Laplace Transform and ROC                                                            | 1                             | 17.11.2023                         |                                 |                                 |                       |
| 6.     | Properties of Laplace Transform                                                                  | 1                             | 18.11.2023                         |                                 |                                 |                       |
| 7.     | Properties of Laplace Transform                                                                  | 1                             | 21.11.2023                         |                                 |                                 |                       |
| 8.     | Inverse Laplace Transform using Partial<br>Fractions Method                                      | 1                             | 23.11.2023                         |                                 |                                 |                       |
| 9.     | Applications of Laplace Transform:<br>Causality of a System, Stability of a<br>System & Problems | 1                             | 24.11.2023                         |                                 |                                 |                       |
| 10.    | Solving of Differential Equations and<br>Analysis of RLC Circuits & Problems                     | 1                             | 25.11.2023                         |                                 |                                 |                       |
| 11.    | Problems                                                                                         | 1                             | 28.11.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-V                                                              | 11                            | No. o                              | of classes tak                  | en                              |                       |

### **Contents beyond the Syllabus**

| S.No. | Topic/s                             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to 2D & 3D Signals     | 1                             | 30.11.2023                         |                                 |                                 |                       |
| 2.    | Convolution operation on 2D Signals | 1                             | 01.12.2023                         |                                 |                                 |                       |

## **Teaching Learning Methods**

| TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |
|------|----------------|------|---------------------------------|
| TLM2 | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |
| TLM3 | Tutorial       | TLM6 | Group Discussion/Project        |

# PART-C

#### **EVALUATION PROCESS:**

| Evaluation Task                                                                 | Marks |  |  |  |  |
|---------------------------------------------------------------------------------|-------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                    |       |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))       | M1=15 |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))              | Q1=10 |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)               | A2=5  |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) |       |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)         |       |  |  |  |  |
| Cumulative Internal Examination (CIE) =                                         |       |  |  |  |  |
| 80% of Max((M1+Q1+A1), (M2+Q2+A2)) +                                            |       |  |  |  |  |
| 20% of Min((M1+Q1+A1), (M2+Q2+A2))                                              |       |  |  |  |  |
| Semester End Examination (SEE)                                                  |       |  |  |  |  |
| (Unit-I, Unit – II, Unit – III, Unit-IV and Unit-V)                             | 70    |  |  |  |  |
| Total Marks = $CIE + SEE$                                                       | 100   |  |  |  |  |

### PART-D

| PROGR        | AMME OUTCOMES (POs):                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1:        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                 |
|              | fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                |
| <b>PO 2:</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering                                                                              |
|              | problems reaching substantiated conclusions using first principles of mathematics, natural sciences,                                                                            |
| -            | and engineering sciences.                                                                                                                                                       |
| PO 3:        | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design                                                                           |
|              | system components or processes that meet the specified needs with appropriate consideration for                                                                                 |
|              | the public health and safety, and the cultural, societal, and environmental considerations.                                                                                     |
| PO 4:        | Conduct investigations of complex problems: Use research-based knowledge and research                                                                                           |
|              | methods including design of experiments, analysis and interpretation of data, and synthesis of the                                                                              |
| DO 5         | Information to provide valid conclusions.                                                                                                                                       |
| PO 5:        | <b>Nidern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern and including production and modelling to complex engineering activities with |
|              | an understanding of the limitations                                                                                                                                             |
| PO 6:        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                                                                        |
| 100.         | societal health safety legal and cultural issues and the consequent responsibilities relevant to the                                                                            |
|              | professional engineering practice                                                                                                                                               |
| PO 7:        | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions                                                                         |
|              | in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable                                                                              |
|              | development.                                                                                                                                                                    |
| <b>PO 8:</b> | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms                                                                               |
|              | of the engineering practice.                                                                                                                                                    |
| PO 9:        | Individual and team work: Function effectively as an individual, and as a member or leader in                                                                                   |
|              | diverse teams, and in multidisciplinary settings.                                                                                                                               |
| PO 10:       | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering                                                                           |
|              | community and with society at large, such as, being able to comprehend and write effective                                                                                      |
|              | reports and design documentation, make effective presentations, and give and receive clear                                                                                      |
| DO 11        |                                                                                                                                                                                 |
| PO 11:       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering                                                                              |
|              | and management principles and apply these to one's own work, as a member and leader in a team,                                                                                  |
| PO 12.       | <b>U</b> interlange projects and in mutual scipilinary crivitolinents.                                                                                                          |
| 1012;        | independent and life-long learning in the broadest context of technological change                                                                                              |
|              | more periodent and me-tong rearning in the oroadest context of teenhological change.                                                                                            |

#### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1:</b> | <b>Communication:</b> Design and develop modern communication technologies for building the inter |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
|               | disciplinary skills to meet current and future needs of industry.                                 |  |  |  |  |  |
| <b>PSO 2:</b> | VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or           |  |  |  |  |  |
|               | systems and Implement real time applications in the field of VLSI and Embedded Systems using      |  |  |  |  |  |
|               | relevant tools                                                                                    |  |  |  |  |  |
| <b>PSO 3:</b> | Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues    |  |  |  |  |  |
|               | related to real time applications                                                                 |  |  |  |  |  |

#### Date: 04.08.2023

| Course Instructor | Course Coordinator | Module Coordinator | HOD              |
|-------------------|--------------------|--------------------|------------------|
| Dr B Rambabu      | Mr. T Anil Raju    | Dr. G L N Murthy   | Dr. Y. Amar Babu |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF ECE**

# COURSE HANDOUT

# PART-A

| Name of Course Instructo | <b>r:</b> Dr. K. Ravi Kumar/Dr.Y.Amar Babu/ |
|--------------------------|---------------------------------------------|
|                          | Mr.K.V.Ashok/Mrs. M. Ramya Harika           |
| Course Name & Code       | : DSD Lab-20EC54                            |
| L-T-P Structure          | :1-0-2                                      |
| Program/Sem/Sec          | : B. Tech. III-Sem., ECE A Sec              |

**Regulation**: R20 **Credits:** 2 **A.Y.:** 2023-24

### **PREREQUISITE: Digital Electronics**

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides practical exposure in Xilinx compiler and in-built simulator to describe the simulation of digital circuits using Verilog HDL and explain Verilog HDL programs to generate test bench simulations.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1        | Demonstrate the functionality of logic gates using Verilog HDL simulator. (Understand-L2)                       |
|------------|-----------------------------------------------------------------------------------------------------------------|
| CO2        | <b>Analyze</b> the behaviour of combinational and sequential circuits using Verilog HDL simulator. (Analyze-L4) |
| CO3        | <b>Understand</b> the functionality of memories using Verilog HDL simulator. (Understand-L2)                    |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing. (Apply-L3)                                      |

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | P01                              | P02 | P03 | P04 | P05 | P06 | P07    | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|-----|----------------------------------|-----|-----|-----|-----|-----|--------|-----|-----|------|------|------|------|------|------|
| CO1 | 1                                | 1   | 2   | 1   | 2   | -   | -      | -   | -   | -    | -    | 1    | -    | 2    | -    |
| CO2 | 3                                | 2   | 3   | 2   | 3   | -   | -      | -   | -   | -    | -    | 2    | -    | 3    | -    |
| CO3 | 3                                | 2   | 3   | 2   | 3   | -   | -      | -   | -   | -    | -    | 2    | -    | 3    | -    |
| CO4 | 3                                | 2   | 2   | 1   | -   | -   | -      | -   | -   | -    | -    | 2    | -    | 2    | -    |
|     | <b>1</b> - Low <b>2</b> - Medium |     |     |     |     | 3   | - High |     |     |      |      |      |      |      |      |

#### **TEXTBOOKS:**

T1 John F. Wakerly, "Digital Design", Principles and Practices, Pearson education, 4th edition

**T2** T.R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", Wiley IEEE Press.

### **REFERENCE BOOKS:**

**R1** Charles H. Roth Jr., "Digital System Design Using VHDL", PWS Publications, USA, Reprint 2002.

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 07-08-2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 14-08-2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders and subtractor.                      | 3                             | 21-08-2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 28-08-2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 04-09-2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 11-09-2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and<br>1X4 Demultiplexer – 74155.                | 1                             | 25-09-2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and<br>4X16 Demultiplexer –74154.               | 2                             | 25-10-2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 16-10-2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 30-10-2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip Flops             | 3                             | 06-11-2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 13-11-2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –<br>74194/195.                                  | 3                             | 20-11-2023                         |                                 | TLM4                            |                       |
| 14.       | Internal Examination                                                       | 3                             | 27-11-2023                         |                                 |                                 |                       |
| No. o     | of classes required to complete :                                          |                               | No. of classes                     | s taken:                        |                                 |                       |

# COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 03-08-2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 10-08-2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders and subtractor.                      | 3                             | 17-08-2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 24-08-2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 31-08-2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 07-09-2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and<br>1X4 Demultiplexer – 74155.                | 3                             | 14-09-2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and<br>4X16 Demultiplexer –74154.               | 3                             | 21-09-2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 19-10-2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 26-10-2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip<br>Flops          | 3                             | 02-11-2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 09-11-2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –<br>74194/195.                                  | 3                             | 16-11-2023                         |                                 | TLM4                            |                       |

| 14.                                      | Practice Labs        | 3 | 23-11-2023 |                |          |  |
|------------------------------------------|----------------------|---|------------|----------------|----------|--|
| 15.                                      | Internal Examination | 3 | 30-11-2023 |                |          |  |
| No. of classes required to complete : 39 |                      |   |            | No. of classes | s taken: |  |

### **Content beyond Syllabus**

| S.<br>No. | Topics to be covered<br>(Experiment Name) | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Design of 4-bit ALU                       | 3                             | 09-10-2023/<br>12-10-2023          |                                 | TLM4                            |                       |

| Teaching Learning Methods |                |      |                                    |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |

# PART-C

### **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = A                              | 1,2,3,4,5,6,7,8 | A=05   |
| Record = $\mathbf{B}$                            | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                                | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: $A + B + C + D = 50$                | 1,2,3,4,5,6,7,8 | 50     |

# PART-D

### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| <b>PEO 3</b> | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

#### **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,            |
|------|--------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of |
|      | complex engineering problems                                                   |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze |
|      | complex engineering problems reaching substantiated conclusions using first    |

|       | principles of mathematics, natural sciences, and engineering sciences                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 3  | Design/development of solutions: Design solutions for complex engineering                                                                            |
|       | problems and design system components or processes that meet the specified                                                                           |
|       | needs with appropriate consideration for the public health and safety, and the                                                                       |
|       | cultural, societal, and environmental considerations                                                                                                 |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge                                                                     |
|       | and research methods including design of experiments, analysis and                                                                                   |
|       | interpretation of data, and synthesis of the information to provide valid                                                                            |
|       | conclusions                                                                                                                                          |
| PU 5  | modern tool usage: Create, select, and apply appropriate techniques, resources,                                                                      |
|       | and modelin engineering and 11 tools including prediction and modeling to<br>complex angineering activities with an understanding of the limitations |
| PO 6  | <b>The angineer and society</b> : Apply reasoning informed by the contextual                                                                         |
| 100   | knowledge to assess societal health safety legal and cultural issues and the                                                                         |
|       | consequent responsibilities relevant to the professional engineering practice                                                                        |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional                                                                    |
|       | engineering solutions in societal and environmental contexts, and demonstrate                                                                        |
|       | the knowledge of, and need for sustainable development                                                                                               |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and                                                                               |
|       | responsibilities and norms of the engineering practice                                                                                               |
| PO 9  | Individual and team work: Function effectively as an individual, and as a                                                                            |
|       | member or leader in diverse teams, and in multidisciplinary settings                                                                                 |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities                                                                     |
|       | with the engineering community and with society at large, such as, being able to                                                                     |
|       | comprehend and write effective reports and design documentation, make                                                                                |
| DO 11 | effective presentations, and give and receive clear instructions                                                                                     |
| PU 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding                                                                      |
|       | of the engineering and management principles and apply these to one's own<br>work as a member and leader in a team to manage projects and in         |
|       | multidisciplinary environments                                                                                                                       |
| PO 12 | Life-long learning: Recognize the need for and have the preparation and ability                                                                      |
|       | to engage in independent and life-long learning in the broadest context of                                                                           |
|       | technological change                                                                                                                                 |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |  |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |  |  |  |  |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |  |  |  |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |  |  |  |

| Title                  | Course Instructor | Course Coordinator | Module Coordinator | HOD              |
|------------------------|-------------------|--------------------|--------------------|------------------|
| Name of<br>the Faculty | Dr.K. Ravi Kumar  | Dr. K. Ravi Kumar  | Dr. P. Lachi Reddy | Dr. Y. Amar Babu |
| Signature              |                   |                    |                    |                  |



# **COURSE HANDOUT**

# PART-A:

| : Dr. G. L. N. Murthy, Professor of ECE              |
|------------------------------------------------------|
| : Random Variables and Stochastic Processes – 20EC05 |
| : 3-0-0-3                                            |
| : B.Tech., ECE., III-Sem., Section - A               |
|                                                      |

Pre-Requisites: Probability Theory, Basics of Differentiation and Integration.

**Course Objective:** This course provides the knowledge on random variables and their statistical behavior. It also provides the complete information about temporal and spectral characteristics of random processes. The course also provides the information about evaluation of system response to random inputs and Noise characteristics.

#### Course Outcomes (COs): At the end of the course, students are able to

| COI | Summarize the concepts of random variables, random processes and noise.                |
|-----|----------------------------------------------------------------------------------------|
| COI | (Understand-L2)                                                                        |
| CO2 | Use the mathematical concepts of random variables and random processes for determining |
| 02  | statistical parameters and spectral characteristics (Apply-L3)                         |
| CON | Analyze the behavior of random variables and random processes using distribution and   |
| COS | density functions (Analyze-L4)                                                         |
| COA | Apply the knowledge of random variables and stochastic processes for analyzing the     |
| 004 | system behavior (Apply-L3)                                                             |

| COs        | PO | РО | PO | PSO | PSO | PSO |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COS        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO1        | 3  | 2  | 1  | -  | -  | -  | -  | -  | •  | -  | •  | 1  | 1   | •   | -   |
| CO2        | 3  | 2  | 1  | 1  | -  | -  | -  | -  | •  | -  | •  | 2  | 2   | •   | -   |
| CO3        | 3  | 2  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | 1   | -   | -   |
| <b>CO4</b> | 3  | 3  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | -   | -   | 3   |

#### Course Articulation Matrix (Correlation between COs & POs, PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1-Slight(Low),2-Moderate(Medium),3-Substantial (High).

### **TEXT BOOK(S):**

- **T1 Peyton Z. Peebles, Jr**, "Probability, Random Variables and Random Signal Principles", Tata Mc Graw-Hill, 4<sup>th</sup> edition, New Delhi.
- **T2 Y.Mallikarjuna Reddy,** "Probability Theory and Stochastic Processes", Universities Press(India) Pvt. Ltd., 2010.

| S.No.  | Topic/s                                                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to RVSP Course                                                   | 1                             | 08-08-23                           |                                 |                                 |                       |
| 2.     | Introduction to UNIT-I                                                        | 1                             | 09-08-23                           |                                 |                                 |                       |
| 3.     | Concept of Probability                                                        | 1                             | 10-08-23                           |                                 |                                 |                       |
| 4.     | Concept of Random Variable, Conditions for a function to be a Random Variable | 1                             | 16-08-23                           |                                 |                                 |                       |
| 5.     | Classification of Random Variable                                             | 1                             | 17-08-23                           |                                 |                                 |                       |
| 6.     | Cumulative Distribution Function (CDF) and Properties                         | 1                             | 19-08-23                           |                                 |                                 |                       |
| 7.     | Probability Density Function (PDF) and Properties                             | 1                             | 22-08-23                           |                                 |                                 |                       |
| 8.     | Pre-Defined Distributions                                                     | 1                             | 23-08-23                           |                                 |                                 |                       |
| 9.     | Pre-Defined Distributions                                                     | 1                             | 24-08-23                           |                                 |                                 |                       |
| 10.    | Expectation, Moments and Central<br>Moments                                   | 1                             | 26-08-23                           |                                 |                                 |                       |
| 11.    | Characteristic Function with Properties                                       | 1                             | 29-08-23                           |                                 |                                 |                       |
| 12.    | Moment Generating Function with<br>Properties                                 | 1                             | 30-08-23                           |                                 |                                 |                       |
| 13.    | Problem Solving Session                                                       | 1                             | 31-08-23                           |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                           | 13                            | No.                                | of classes tak                  | en                              |                       |

### **UNIT-I: Random Variables, Operations on One Random Variable**

### **UNIT-II: Multiple Random Variables, Operations on Multiple Random Variables**

| S.No.  | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 14.    | Introduction to UNIT-II                                                                          | 1                             | 02-09-23                           |                                 |                                 |                       |
| 15.    | Joint Distribution Function and<br>Properties, Marginal Distribution<br>Function                 | 1                             | 05-09-23                           |                                 |                                 |                       |
| 16.    | Joint Density Function and Properties,<br>Marginal Density Function                              | 1                             | 07-09-23                           |                                 |                                 |                       |
| 17.    | Statistical Independence                                                                         | 1                             | 12-09-23                           |                                 |                                 |                       |
| 18.    | Distribution and Density of Sum of Random Variables                                              | 1                             | 13-09-23                           |                                 |                                 |                       |
| 19.    | Central Limit Theorem                                                                            | 1                             | 14-09-23                           |                                 |                                 |                       |
| 20.    | Expected Value of Function of Random<br>Variables, Joint Moment about the Origin,<br>Correlation | 1                             | 16-09-23                           |                                 |                                 |                       |
| 21.    | Joint Central Moment, Covariance and Correlation Coefficient                                     | 1                             | 19-09-23                           |                                 |                                 |                       |
| 22.    | Problem Solving Session                                                                          | 1                             | 20-09-23                           |                                 |                                 |                       |
| 23.    | Problem Solving Session                                                                          | 1                             | 21-09-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-II                                                           | 10                            | No.                                | of classes tak                  | ten                             |                       |

| S.No. | Topic/s                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 24.   | Introduction to UNIT-III                                                   | 1                             | 23-09-23                           |                                 |                                 |                       |
| 25.   | Concept of Stochastic Processes,<br>Classification of Stochastic Processes | 1                             | 26-09-23                           |                                 |                                 |                       |
| 26.   | Distribution and Density of Stochastic<br>Processes                        | 1                             | 27-09-23                           |                                 |                                 |                       |
| 27.   | Stationary Stochastic Processes                                            | 1                             | 28-09-23                           |                                 |                                 |                       |
| 28.   | Problem Solving Session                                                    | 1                             | 30-09-23                           |                                 |                                 |                       |
| 29.   | Time Averages and Ergodicity                                               | 1                             | 10-10-23                           |                                 |                                 |                       |
| 30.   | Correlation Functions- ACF & Properties                                    | 1                             | 11-10-23                           |                                 |                                 |                       |
| 31.   | Correlation Functions- CCF & Properties                                    | 1                             | 12-10-23                           |                                 |                                 |                       |
| 32.   | Covariance Functions-Autocovariance<br>and Cross-covariance Functions      | 1                             | 17-10-23                           |                                 |                                 |                       |
| 33.   | Problem Solving Session                                                    | 1                             | 18-10-23                           |                                 |                                 |                       |
| 34.   | Problem Solving Session                                                    | 1                             | 19-10-23                           |                                 |                                 |                       |
| 35.   | Problem Solving Session                                                    | 1                             | 21-10-23                           |                                 |                                 |                       |
| ]     | No. of classes required to complete UNIT                                   | Γ-III                         | 12                                 | No. of clas                     | ses taken                       |                       |

#### **UNIT-III: Stochastic Processes-Temporal Characteristics**

# **UNIT-IV: Stochastic Processes-Spectral Characteristics**

| S.No.  | Topic/s                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 36.    | Introduction to UNIT-IV                                     | 1                             | 24-10-23                           |                                 |                                 |                       |
| 37.    | Power Spectral Density and Properties                       | 1                             | 25-10-23                           |                                 |                                 |                       |
| 38.    | Relation between CCF & CPSD -<br>Wiener-Khintchine Relation | 1                             | 26-10-23                           |                                 |                                 |                       |
| 39.    | Cross Power Spectral Density and Properties                 | 1                             | 28-10-23                           |                                 |                                 |                       |
| 40.    | Relation between CCF & CPSD                                 | 1                             | 31-10-23                           |                                 |                                 |                       |
| 41.    | Relation between CCF and CPSD                               | 1                             | 01-11-23                           |                                 |                                 |                       |
| 42.    | Problem Solving Session                                     | 1                             | 02-11-23                           |                                 |                                 |                       |
| 43.    | Problem Solving Session                                     | 1                             | 04-11-23                           |                                 |                                 |                       |
| 44.    | Problem Solving Session                                     | 1                             | 07-11-23                           |                                 |                                 |                       |
| 45.    | Problem Solving Session                                     | 1                             | 08-11-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-IV                      |                               | 10                                 | No. of class                    | es taken                        |                       |

| S.No. | Topic/s                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 46.   | Introduction to UNIT-V                                                 | 1                             | 09-11-23                           |                                 |                                 |                       |
| 47.   | Response of a Linear System                                            | 1                             | 14-11-23                           |                                 |                                 |                       |
| 48.   | Mean value of System Response, Mean<br>Square value of System Response | 1                             | 15-11-23                           |                                 |                                 |                       |
| 49.   | ACF of Response, CCF of input and output                               | 1                             | 16-11-23                           |                                 |                                 |                       |
| 50.   | Relation b/n ACF of Response, and CCF of input and output              | 1                             | 18-11-23                           |                                 |                                 |                       |
| 51.   | PSD of Response, CPSD of input and output                              | 1                             | 21-11-23                           |                                 |                                 |                       |
| 52.   | Problem Solving Session                                                | 1                             | 22-11-23                           |                                 |                                 |                       |
| 53.   | Definition of Noise, and Classification                                | 1                             | 23-11-23                           |                                 |                                 |                       |
| 54.   | Modeling of Noise Sources                                              | 1                             | 25-11-23                           |                                 |                                 |                       |
| 55.   | Available Power Gain and Noise Figure                                  | 1                             | 28-11-23                           |                                 |                                 |                       |
| 56.   | Problem Solving Session                                                | 1                             | 29-11-23                           |                                 |                                 |                       |
| No. o | f classes required to complete UNIT-V                                  | 11                            | No.                                | of classes take                 | en                              |                       |

### **UNIT-V: Linear Systems with Random Inputs, Noise**

### **Contents beyond the Syllabus**

| S.No. | Topic/s                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 57.   | Stochastic Signal Processing (SSP) | 1                             | 30-11-23                           |                                 |                                 |                       |
| 58.   | Applications of SSP                | 1                             | 02-12-23                           |                                 |                                 |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |  |  |

# **PART-C: EVALUATION PROCESS:**

| Evaluation Task                                                                                                       | Marks |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                                                          | A1=5  |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                             | M1=15 |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                                    | Q1=10 |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                                                     |       |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                       | M2=15 |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                               | Q2=10 |  |  |  |  |
| Cumulative Internal Examination (CIE) =<br>80% of Max((M1+Q1+A1), (M2+Q2+A2)) +<br>20% of Min((M1+Q1+A1), (M2+Q2+A2)) |       |  |  |  |  |
| Semester End Examination (SEE) (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)                                     | 70    |  |  |  |  |
| Total Marks = CIE + SEE                                                                                               | 100   |  |  |  |  |

#### PART-D: ROGRAMME OUTCOMES (POs) & PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PSO 1:** Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- **PSO 2:** VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and implement real time applications in the field of VLSI and Embedded Systems using relevant tools
- **PSO 3:** Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

| Date       | Dr. B. Ramesh Reddy       | Dr. G L N Murthy                          | Dr. Y. Amar Babu |
|------------|---------------------------|-------------------------------------------|------------------|
| 07.08.2023 | <b>Course Coordinator</b> | Course Instructor &<br>Module Coordinator | HOD              |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

# **COURSE HANDOUT**

# PART-A

| Name of Course Instructor: | M.Kiran Kumar                |                      |
|----------------------------|------------------------------|----------------------|
| Course Name & Code         | : DATA STRUCTURES & 20CS03   |                      |
| L-T-P Structure            | : 3-0-0                      | Credits: 3           |
| Program/Sem/Sec            | : B.Tech. /III sem-ECE/A-sec | <b>A.Y.:</b> 2023-24 |

#### **PREREQUISITE:** Programming Language

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Write the algorithms for various operations on list using arrays and linked list and analyze the time complexity of its operations. (Understand - L2) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Apply linear data structures like stack and queue in problem solving. (Apply - L3)                                                                    |
| CO3 | Demonstrate various sorting techniques and compare their computational complexities in terms of space and time. (Understand - L2)                     |
| CO4 | Write the algorithms for various operations on binary trees, binary search trees and AVL trees. ( <b>Understand - L2</b> )                            |
| CO5 | Demonstrate graph traversal techniques and hashing techniques. (Understand - L2)                                                                      |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | PO1 | PO2 | PO3 | PO4 | PO5   | PO6 | <b>PO7</b> | PO8 | PO9 | PO10   | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-------|-----|------------|-----|-----|--------|------|------|------|------|------|
| CO1            | 3   | 2   |     |     |       |     |            |     |     |        |      |      | 3    |      |      |
| CO2            | 3   | 1   |     |     |       |     |            |     |     |        |      |      | 3    |      |      |
| CO3            | 3   | 2   |     |     |       |     |            |     |     |        |      |      | 2    |      |      |
| CO4            | 3   | 1   |     |     |       |     |            |     |     |        |      |      | 3    |      |      |
| CO5            | 3   | 1   |     |     |       |     |            |     |     |        |      |      | 1    |      |      |
| <b>1</b> - Low |     |     |     | 2   | -Medi | um  |            |     | 3   | - High |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson Education, 2nd edition [1,2,3 units].
- T2 ReemaThareja, Data Structures using c, Oxford Publications [3,4,5].

#### **REFERENCE BOOKS:**

- R1 Langson, Augenstein & Tenenbaum, 'Data Structures using C and C++', 2nd Ed, PHI.
- **R2** RobertL.Kruse, Leung and Tando, 'Data Structures and Program Design in C', 2ndedition, PHI.

# PART-B

### COURSE DELIVERY PLAN (LESSON PLAN):

### UNIT-I:

| S. No. | Topics to be covered              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion     | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------|-------------------------------|----------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to Data Structures   | 1                             | 07-08-2023                             |                                 | TLM1                            |                       |
| 2.     | Classification of Data Structures | 1                             | 08-08-2023                             |                                 | TLM1                            |                       |
| 3.     | Introduction to Algorithm         | 1                             | 11-08-2023                             |                                 | TLM1                            |                       |
| 4.     | Algorithm Analysis                | 1                             | 12-08-2023                             |                                 | TLM1                            |                       |
| 5.     | Asymptotic Notations              | 1                             | 14-08-2023                             |                                 | TLM1                            |                       |
| 6.     | List using Arrays                 | 1                             | 15-08-2023                             |                                 | TLM1                            |                       |
| 7.     | Single Linked List                | 3                             | 18-08-2023<br>19-08-2023<br>21-08-2023 |                                 | TLM1                            |                       |
| 8.     | Double Linked List                | 3                             | 22-08-2023<br>25-08-2023<br>26-08-2023 |                                 | TLM1                            |                       |
| 9.     | Circular Linked List              | 2                             | 28-08-2023<br>01-09-2023               |                                 | TLM1                            |                       |
| No. of | classes required to complete UNIT | '-I: 14                       |                                        | No. of class                    | es taken:                       |                       |

### UNIT-II:

| S. No. | Topics to be covered                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 10.    | STACKS ADT                              | 1                             | 02-09-2023                         |                                 | TLM2                            |                       |
| 11.    | STACKS USING ARRAYS                     | 1                             | 04-09-2023<br>05-09-2023           |                                 | TLM1                            |                       |
| 12.    | STACKS USING LINKED LIST                | 1                             | 08-09-2023                         |                                 | TLM1                            |                       |
| 13.    | INFIX TO POSTFIX CONVERSION             | 2                             | 09-09-2023<br>11-09-2023           |                                 | TLM1                            |                       |
| 14.    | POSTFIX EVALUTION                       | 1                             | 12-09-2023                         |                                 | TLM1                            |                       |
| 15.    | CHECKING BALANCED<br>PARANTHESIS, QUEUE | 1                             | 15-09-2023                         |                                 | TLM1                            |                       |
| 16.    | QUEUE USING ARRAY & LINKED<br>LIST      | 1                             | 16-09-2023                         |                                 | TLM1                            |                       |
| 17.    | CIRCULAR QUEUE,                         | 1                             | 18-09-2023                         |                                 | TLM1                            |                       |
| 18.    | DEQUE                                   | 1                             | 22-09-2023                         |                                 | TLM1                            |                       |
| No. of | classes required to complete UNIT       | -II: 11                       |                                    | No. of clas                     | ses taken:                      |                       |

# **UNIT-III: SORTING TECHNIQUES**

| S.  | Topics to be covered | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
|-----|----------------------|-------------------|----------------------|-------------------|----------------------|-------------|
| No. | <b>F</b>             | Required          | Completion           | Completion        | Methods              | Weekly      |

| 19. | Bubble sort                       | 1           | 23-09-2023               |  | TLM2 |  |
|-----|-----------------------------------|-------------|--------------------------|--|------|--|
| 20. | Insertion Sort                    | 1           | 25-09-2023               |  | TLM1 |  |
| 21. | Selection Sort                    | 1           | 26-09-2023               |  | TLM1 |  |
| 22. | Merge Sort                        | 2           | 29-09-2023<br>30-09-2023 |  | TLM1 |  |
| 23. | Quick Sort                        | 2           | 09-10-2023<br>10-10-2023 |  | TLM1 |  |
| 24. | Heap Sort                         | 2           | 13-10-2023<br>14-10-2023 |  | TLM1 |  |
|     | No. of classes required to comple | No. of clas | ses taken:               |  |      |  |

### **UNIT-IV: TREES**

| S.<br>No. | Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Introduction to Trees               | 1                             | 16-10-2023                         |                                 | TLM1                            |                       |
| 26.       | Binary Trees, Tree Traversals       | 2                             | 17-10-2023<br>20-10-2023           |                                 | TLM1                            |                       |
| 27.       | Binary Trees Implementation         | 1                             | 21-10-2023                         |                                 | TLM2                            |                       |
| 28.       | Binary Search Trees                 | 2                             | 27-10-2023                         |                                 | TLM1                            |                       |
| 29.       | AVL Trees                           | 1                             | 28-10-2023                         |                                 | TLM1                            |                       |
| 30.       | Operations & Examples               | 2                             | 30-10-2023<br>31-11-2023           |                                 | TLM1                            |                       |
| No.       | of classes required to complete UNI | No. of class                  | ses taken:                         |                                 |                                 |                       |

### **UNIT-V: GRAPHS & HASHING TECHNQIUES**

| S. No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|--------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 31.    | GRAPHS, FUNDAMENTALS                                                 | 1                             | 03-11-2023                         |                                 | TLM1                            |                       |  |  |
| 32.    | REPRESENTATION OF GRAPHS                                             | 1                             | 04-11-2023                         |                                 | TLM1                            |                       |  |  |
| 33.    | BFS                                                                  | 2                             | 06-11-2023<br>07-11-2023           |                                 | TLM1                            |                       |  |  |
| 34.    | DFS                                                                  | 2                             | 10-11-2023<br>11-11-2023           |                                 | TLM1                            |                       |  |  |
| 35.    | Hashing Introduction,                                                | 1                             | 13-11-2023                         |                                 | TLM1                            |                       |  |  |
| 36.    | Hash function, separate Chaining                                     | 2                             | 14-11-2023<br>17-11-2023           |                                 | TLM1                            |                       |  |  |
| 37.    | Linear & Quadratic Probing                                           | 2                             | 18-11-2023<br>20-11-2023           |                                 | TLM1                            |                       |  |  |
| 38.    | Double & Rehasing                                                    | 1                             | 21-11-2023                         |                                 | TLM2                            |                       |  |  |
| 39.    | Revision                                                             | 1                             | 24-11-2023<br>25-11-2023           |                                 | TLM1                            |                       |  |  |
| 40.    | Revision                                                             | 1                             | 27-11-2023<br>28-11-2023           |                                 | TLM1                            |                       |  |  |
| 41.    | Revision                                                             | 1                             | 01-12-2023<br>02-12-2023           |                                 | TLM1                            |                       |  |  |
| No. o  | No. of classes required to complete UNIT-V: 12 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |  |

| Teaching Learning Methods |                |      |                                    |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks           |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                 |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   |                 |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                 |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              |                 |  |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) |                 |  |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |  |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |  |  |  |  |
| Total Marks = $CIE + SEE$                                                            | 100             |  |  |  |  |

# **PROGRAMME OUTCOMES (POs):**

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and teamwork</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                    |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

### PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society peeds                                                          |
|       | as per the society needs.                                                                                                                                                     |
| PSO 3 | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                     | Course Instructor | Course Coordinator | Module<br>Coordinator   | Head of the<br>Department |
|---------------------------|-------------------|--------------------|-------------------------|---------------------------|
| Name of<br>the<br>Faculty | Mr.M.Kiran Kumar  | Mr. D. Anil kumar  | Dr. K Naga<br>Prasanthi | Dr. D. Veeraiah           |
| Signature                 |                   |                    |                         |                           |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

# **COURSE HANDOUT**

### PART-A

Name of Course Instructor:M.Kiran KumarCourse Name & Code: DATA STRUCTURES LAB & 20CS53L-T-P Structure: 0-0-3Program/Sem/Sec: B.Tech/III sem-ECE /A-Sec.

**Credits:** 1.5 **A.Y.:** 2022-23

PREREQUISITE: C Programming Language

#### **COURSE OBJECTIVE:**

The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques **COURSE OUTCOMES (CO)**:

CO1: Implement Linear Data Structures using array and Linked list. (Apply - L3)

CO2: Implement Various Sorting Techniques. (Apply - L3)

CO3: : Implement Non-Linear Data Structure such as Trees & Graphs. (Apply - L3)

**CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

#### COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):

| Cos | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| CO1 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO2 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO3 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO4 |         |         |         |         |         |         |         | 2       | 2       | 2        |          |          |          |          |          |

Note: 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High)

### PART-B:

### COURSE DELIVERY PLAN (LESSON PLAN):

| S.<br>No. | Topics to be<br>covered                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | HOD<br>Sign |
|-----------|----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|-------------|
| 1.        | Introduction<br>&<br>List using Arrays                   | 3                             | 08-08-2023                         |                                 |             |
| 2.        | Linked List<br>Programs                                  | 6                             | 22-08-2023<br>05-09-2023           |                                 |             |
| 3.        | Stack, Queue Using<br>Arrays, Linked List                | 3                             | 12-09-2023                         |                                 |             |
| 4.        | Infix to Postfix,<br>Evaluation of Postfix<br>Expression | 3                             | 26-09-2023                         |                                 |             |
| 5.        | Circular Queue<br>Double Ended<br>Queue                  | 3                             | 10-10-2023                         |                                 |             |
| 6.        | Bubble sort<br>Selection sort<br>Insertion sort          | 3                             | 17-10-2023                         |                                 |             |
| 7.        | Merge sort<br>Quick sort                                 | 3                             | 31-10-2023                         |                                 |             |
| 8.        | Heap sort<br>Binary Tree                                 | 3                             | 07-11-2023                         |                                 |             |
| 9.        | Binary Search Tree                                       | 3                             | 14-11-2023                         |                                 |             |
| 10.       | BFS,DFS                                                  | 3                             | 25-11-2023                         |                                 |             |
| 11.       | Lab Internal Exam                                        | 3                             | 28-11-2023                         |                                 |             |

# PART-C

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         |

| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |
| PSO 3 | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator   | Head of the Department |
|------------------------|-------------------|--------------------|-------------------------|------------------------|
| Name of the<br>Faculty | Mr.M.Kiran Kumar  | Mr. D. Anil kumar  | Dr. K Naga<br>Prasanthi | Dr. D. Veeraiah        |
| Signature              |                   |                    |                         |                        |



## <u>COURSE HANDOUT</u>

# PART-A

| Name of Course Instructors: Dr.B.Rambau/Dr.M.V.Sudhakar/Mr.T.Anil Raju/Mr.M.K.Linga Murthy |                                        |                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--|--|--|--|--|
| Course Name & Code                                                                         | : Signal Modeling and Analysis- 20ECS1 | Regulation: R20      |  |  |  |  |  |
| L-T-P Structure                                                                            | : 1-0-2                                | Credits: 2           |  |  |  |  |  |
| Program/Sem/Sec                                                                            | : B.Tech., ECE., III-Sem., Section-A   | <b>A.Y.:</b> 2023-24 |  |  |  |  |  |

#### **PREREQUISITE:**

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

In this course, student will learn about basic signal modeling and analysis concepts like generations of signals using trigonometric function, solving linear equations and analyzing time function in frequency using MATLAB software.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Understand the programming concept of plotting trigonometric function, linear equations solutions in MATLAB |
|-----|-------------------------------------------------------------------------------------------------------------|
| CO2 | Analyze the time frequency relations of signals in MATLAB.                                                  |
| CO3 | Adapt effective communication, presentation and report writing.                                             |

| COs            | P01 | P02 | P03 | P04 | P05 | P06 | P07  | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----|-----|------|-----|-----|------|------|--------|------|------|------|
| C01            | 1   | 1   | -   | 1   | 2   | -   | -    | -   | -   | -    | -    | 2      | -    | -    | -    |
| CO2            | 2   | 2   | 1   | -   | -   | -   | -    | -   | -   | -    | -    | 2      | -    | -    | 2    |
| CO3            | -   | -   | -   | 2   | -   | -   | -    | 1   | 2   | 3    |      | 1      | -    | -    | -    |
| <b>1</b> - Low |     |     |     |     |     | 2   | -Med | ium |     |      | 3    | - High |      |      |      |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

#### **TEXTBOOKS:**

T1 Rudra Pratap., Getting started with MATLAB: A Quick Introduction for Scientists and Engineers

**T2** B.P. Lathi., Principles of LINEAR SYSTEMS and SIGNALS, second edition, OXFORD University PRESS.

#### **REFERENCE BOOKS:**

**R1** Larry E. Knop., Linear Algebra: A First Course with Applications.

# PART-A

#### **UNIT-1: MATLAB Basics**

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 1.        | Introduction to MATLAB                                               | 1                             | 09-08-23                           |                                 | TLM4                            |                       |  |  |
| 2.        | MATLAB windows                                                       | 1                             | 09-08-23                           |                                 | TLM4                            |                       |  |  |
| 3.        | On-line help, File types,                                            | 1                             | 09-08-23                           |                                 | TLM4                            |                       |  |  |
| 4         | Input-output, Platform                                               | 1                             | 09-08-23                           |                                 | TLM4                            |                       |  |  |
| 4.        | dependence, General command                                          | 1                             |                                    |                                 |                                 |                       |  |  |
| 5.        | Programming in MATLAB                                                | 1                             | 16-08-23                           |                                 | TLM4                            |                       |  |  |
| 6.        | Script Files and Function Files                                      | 1                             | 16-08-23                           |                                 | TLM4                            |                       |  |  |
| 7.        | Executing a function                                                 | 1                             | 16-08-23                           |                                 | TLM4                            |                       |  |  |
| 8.        | Plotting Graphs.                                                     | 1                             | 16-08-23                           |                                 | TLM4                            |                       |  |  |
| No.       | No. of classes required to complete UNIT-I: 08 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |  |

### UNIT – II: Linear Algebra and Signal Operations

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.        | Solving a linear system                                              | 1                             | 23-08-23                           |                                 | TLM1                            |                       |  |
| 2.        | Gaussian elimination,<br>Cramer's Rule                               | 1                             | 23-08-23                           |                                 | TLM1                            |                       |  |
| 3.        | Finding eigen values and eigenvectors,                               | 1                             | 23-08-23                           |                                 | TLM1                            |                       |  |
| 4.        | Vector operations, Element-by-<br>element operations                 | 1                             | 23-08-23                           |                                 | TLM1                            |                       |  |
| 5.        | Continuous time signals,<br>operations on signals                    | 1                             | 30-08-23                           |                                 | TLM1                            |                       |  |
| 6.        | Convolution                                                          | 1                             | 30-08-23                           |                                 | TLM1                            |                       |  |
| 7.        | Frequency analysis                                                   | 1                             | 30-08-23                           |                                 | TLM1                            |                       |  |
| No.       | No. of classes required to complete UNIT-I: 07 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

| S.<br>No. | Topics to be covered<br>(Experiment Name)                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1         | Introduction to MATLAB                                     | 1                             | 13-09-23                           |                                 | TLM4                            |                       |
| 2         | Generation of continuous time signals .                    | 1                             | 13-09-23                           |                                 | TLM4                            |                       |
| 3         | Product of signals                                         | 1                             | 13-09-23                           |                                 | TLM4                            |                       |
|           | Plot the family of curves of a function over a time over.  | 1                             | 13-09-23                           |                                 | TLM4                            |                       |
| 4         | Solving linear equations using matrix inverse methods      | 1                             | 20-09-23                           |                                 | TLM4                            |                       |
| 5         | Solving linear equations using Cramer's methods            | 1                             | 20-09-23                           |                                 | TLM4                            |                       |
| 6         | Compute Eigen values and<br>Eigen vectors of given matrix. | 2                             | 20-09-23                           |                                 | TLM4                            |                       |
| 7   | Basic operations on the signals.                                                                                           | 2                     | 27-09-23 | TLM4 |
|-----|----------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------|
| 8   | Convolution of signals.                                                                                                    | 2                     | 27-09-23 | TLM4 |
| 9   | Transformation of signals into time and frequency domains.                                                                 | 4                     | 04-10-23 | TLM4 |
| 10  | Compute and plot the Fourier coefficients for the periodic signal given signal.                                            | 4                     | 11-10-23 | TLM4 |
| 11  | Demonstrate the synthesis of<br>the square wave by<br>successively adding of the<br>Fourier components of given<br>signal. | 4                     | 18-10-23 | TLM4 |
| 12  | Mini Project /Review                                                                                                       | 4                     | 25-10-23 | TLM6 |
| 13  | Mini Project /Review                                                                                                       | 4                     | 01-11-23 | TLM6 |
| 14  | Mini Project /Review                                                                                                       | 4                     | 08-11-23 | TLM6 |
| 15  | Mini Project /Review                                                                                                       | 4                     | 15-11-23 | TLM6 |
| 16  | Review/ Internal Evaluation                                                                                                | 4                     | 22-11-23 | TLM6 |
| 17  | Internal Evaluation                                                                                                        | 4                     | 29-11-23 | TLM6 |
| No. | of classes required to complet                                                                                             | No. of classes taken: |          |      |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task       | Expt. no's   | Marks       |
|-----------------------|--------------|-------------|
| Report=A              | Mini Project | A=10        |
| Quality of work=B     | Mini Project | B=10        |
| Presentation=C        | Mini Project | C=20        |
| Interaction/Queries=D | Mini Project | <b>D=10</b> |
| Total=A+B+C+D         | Mini Project | 50          |

# PART-D

# PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

## **PROGRAMME OUTCOMES (POs):**

| PO 1         | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | complex engineering problems                                                                                                                               |
| PO 2         | Problem analysis: Identify, formulate, review research literature, and analyze                                                                             |
|              | complex engineering problems reaching substantiated conclusions using first                                                                                |
|              | principles of mathematics, natural sciences, and engineering sciences                                                                                      |
| PO 3         | <b>Design/development of solutions</b> : Design solutions for complex engineering                                                                          |
|              | problems and design system components or processes that meet the specified                                                                                 |
|              | needs with appropriate consideration for the public health and safety, and the                                                                             |
|              | cultural, societal, and environmental considerations                                                                                                       |
| PO 4         | <b>Conduct investigations of complex problems</b> : Use research-based knowledge                                                                           |
|              | and research methods including design of experiments, analysis and interpretation                                                                          |
|              | of data, and synthesis of the information to provide valid conclusions                                                                                     |
| PO 5         | Modern tool usage: Create, select, and apply appropriate techniques, resources,                                                                            |
|              | and modern engineering and IT tools including prediction and modelling to                                                                                  |
|              | complex engineering activities with an understanding of the limitations                                                                                    |
| PO 6         | The engineer and society: Apply reasoning informed by the contextual                                                                                       |
|              | knowledge to assess societal, health, safety, legal and cultural issues and the                                                                            |
|              | consequent responsibilities relevant to the professional engineering practice                                                                              |
| PO 7         | <b>Environment and sustainability</b> : Understand the impact of the professional                                                                          |
|              | engineering solutions in societal and environmental contexts, and demonstrate the                                                                          |
|              | knowledge of, and need for sustainable development                                                                                                         |
| PO 8         | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and                                                                             |
|              | responsibilities and norms of the engineering practice                                                                                                     |
| PO 9         | Individual and team work: Function effectively as an individual, and as a member                                                                           |
|              | or leader in diverse teams, and in multidisciplinary settings                                                                                              |
| PO 10        | <b>Communication</b> : Communicate effectively on complex engineering activities with                                                                      |
|              | the engineering community and with society at large, such as, being able to                                                                                |
|              | comprehend and write effective reports and design documentation, make effective                                                                            |
|              | presentations, and give and receive clear instructions                                                                                                     |
| PO 11        | <b>Project management and finance</b> : Demonstrate knowledge and understanding                                                                            |
|              | of the engineering and management principles and apply these to one's own work,                                                                            |
|              | as a member and leader in a team, to manage projects and in multidisciplinary                                                                              |
| DO 40        | environments                                                                                                                                               |
| PO 12        | Life-long learning: Recognize the need for, and have the preparation and ability                                                                           |
|              | to engage in independent and life-long learning in the broadest context of                                                                                 |
|              | technological change                                                                                                                                       |
| PRUGRA       | IMME SPECIFIC OUTCOMES (PSUS):                                                                                                                             |
| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter                                                                                |
|              | disciplinary skills to meet current and future needs of industry                                                                                           |
| PSO 2        | Design and Analyze Analog and Digital Electronic Circuits or systems and implement                                                                         |

| 100 -        | Design and finally ze finalog and Digital Electronic circuits of Systems and implement |
|--------------|----------------------------------------------------------------------------------------|
|              | real time applications in the field of VLSI and Embedded Systems using relevant        |
|              | tools                                                                                  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related    |
|              | to real time applications                                                              |
| \            |                                                                                        |

| Title                  | <b>Course Instructor</b> | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |  |
|------------------------|--------------------------|-----------------------|-----------------------|---------------------------|--|
| Name of the<br>Faculty | Dr. B.Rambabu            | Dr. B.Rambabu         | Dr. G. L.N.Murthy     | Dr. Y. Amar Babu          |  |

Signature



LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (ASE, CE, CSE, ECE, EEE, IT, ME) (Under Tier - I), ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

FRESHMAN ENGINEERING DEPARTMENT

#### **COURSE HANDOUT**

#### PART-A

| Name of Course Instructor | : Dr. A. Rami Reddy                           |                        |
|---------------------------|-----------------------------------------------|------------------------|
| Course Name & Code        | : Numerical Methods & Integral Calculus & 20F | ŦE10                   |
| L-T-P Structure           | : 2-1 -0                                      | Credits:3              |
| Program/Sem/Sec           | : II B.Tech/III sem/ECE A                     | <b>A.Y.:</b> 2023 - 24 |

#### PREREQUISITE: Nil

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Estimate the best fit polynomial for the given tabulated data using Interpolation.(Understand – L2)                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Apply numerical techniques in solving of equations and evaluation of integrals. (Apply – L3)                                                               |
| CO3 | Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their respective applications to areas and volumes. (Apply $-L3$ ) |
| CO4 | Generate the single valued functions in the form of Fourier series and obtain Fourier series representation of periodic function. (Apply $-L3$ )           |
| CO5 | Evaluate the directional derivative, divergence and angular velocity of a vector function. (Apply $-L3$ )                                                  |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5        | PO6 | <b>PO7</b> | PO8             | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|------------|-----|-----|-----|------------|-----|------------|-----------------|-----|------|------|------|------|------|------|
| CO1            | 3          | 2   | -   | 2   | -          | -   | -          | -               | -   | -    | -    | 1    |      |      |      |
| CO2            | 3          | 2   | -   | 2   | -          | -   | -          | -               | -   | -    | -    | 1    |      |      |      |
| CO3            | 3          | 2   | -   | 1   | -          | -   | -          | -               | -   | -    | -    | 1    |      |      |      |
| <b>CO4</b>     | 3          | 1   | -   | -   | -          | -   | -          | -               | -   | -    | -    | 1    |      |      |      |
| <b>CO5</b>     | 3          | 1   | -   | 1   | -          | -   | -          | -               | -   | -    | -    | 1    |      |      |      |
| <b>1</b> - Low |            |     |     |     | 2 – Medium |     |            | <b>3</b> - High |     |      |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42<sup>nd</sup>Edition, Khanna Publishers, New Delhi, 2012.
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1<sup>st</sup>Edition, TMH, New Delhi, 2010.
- **T3** S. S. Sastry, "Introductory Methods of Numerical Analysis" 5<sup>th</sup> Edition, PHI Learning Private Limited, New Delhi, 2012.

#### **REFERENCE BOOKS:**

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

#### COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: Interpolation and Finite Differences

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to the course, Course<br>Outcomes | 1                             | 07/08/23                           |                                 | TLM1                            |                       |
| 2.        | Introduction to UNIT I                         | 1                             | 09/08/23                           |                                 | TLM2                            |                       |
| 3.        | Forward Differences                            | 1                             | 11/08/23                           |                                 | TLM1                            |                       |
| 4.        | Backward differences                           | 1                             | 14/08/23                           |                                 | TLM1                            |                       |
| 5.        | Central Differences                            | 1                             | 16/08/23                           |                                 | TLM1                            |                       |
| 6.        | Symbolic relations and separation of symbols   | 1                             | 18/08/23                           |                                 | TLM1                            |                       |
| 7.        | Symbolic relations and separation of symbols   | 1                             | 19/08/23                           |                                 | TLM1                            |                       |
| 8.        | Newton's forward formulae for interpolation    | 1                             | 21/08/23                           |                                 | TLM1                            |                       |
| 9.        | Newton's backward formulae for interpolation   | 1                             | 23/08/23                           |                                 | TLM1                            |                       |
| 10.       | Lagrange's Interpolation                       | 1                             | 25/08/23                           |                                 | TLM1                            |                       |
| 11.       | Lagrange's Interpolation                       | 1                             | 26/08/23                           |                                 | TLM1                            |                       |
| 12.       | Tutorial I                                     | 1                             | 28/08/23                           |                                 | TLM3                            |                       |
| No.       | of classes required to complete UN             | IT-I: 12                      |                                    | No. of classes                  | s taken:                        |                       |

#### **UNIT-II:** Numerical solutions of Equations and Numerical Integration

| S.<br>No. | Topics to be covered                   | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
|-----------|----------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|
|           |                                        | Required          | Completion           | Completion        | Methods              | Weekly      |
| 13.       | Introduction to UNIT II                | 1                 | 30/08/23             |                   | TLM2                 |             |
| 14.       | Algebraic and Transcendental Equations | 1                 | 01/09/23             |                   | TLM1                 |             |
| 15.       | False Position method                  | 1                 | 02/09/23             |                   | TLM1                 |             |
| 16.       | False Position method                  | 1                 | 04/09/23             |                   | TLM1                 |             |
| 17.       | Newton- Raphson Method in one variable | 1                 | 08/09/23             |                   | TLM1                 |             |
| 18.       | Newton- Raphson Method applications    | 1                 | 09/09/23             |                   | TLM1                 |             |
| 19.       | Trapezoidal rule                       | 1                 | 11/09/23             |                   | TLM1                 |             |
| 20.       | Simpson's 1/3 Rule                     | 1                 | 13/09/23             |                   | TLM1                 |             |
| 21.       | Simpson's 3/8 Rule                     | 1                 | 15/09/23             |                   | TLM1                 |             |
| 22.       | Tutorial II                            | 1                 | 16/09/23             |                   | TLM3                 |             |
| No. o     | of classes required to complete U      | NIT-II: 10        |                      | No. of classes    | s taken:             |             |

**UNIT-III: Multiple Integrals** 

| S.<br>N<br>0.                                 | Topics to be covered                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|-----------------------------------------------|-------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 23.                                           | Introduction to Unit-III                                          | 1                             | 20/09/23                           |                                 | TLM1                            |                       |  |  |
| 24.                                           | Double Integrals -Cartesian coordinates                           | 1                             | 22/09/23                           |                                 | TLM1                            |                       |  |  |
| 25.                                           | Double Integrals- Polar co<br>ordinates                           | 1                             | 23/09/23                           |                                 | TLM1                            |                       |  |  |
| 26.                                           | Problems                                                          | 1                             | 25/09/23                           |                                 | TLM1                            |                       |  |  |
| 27.                                           | Applications to Double integrals<br>(Content Beyond the syllabus) | 1                             | 27/09/23                           |                                 | TLM2                            |                       |  |  |
| 28.                                           | Revision for mid exam                                             | 1                             | 29/09/23                           |                                 |                                 |                       |  |  |
| I MID EXAMINATIONS (02-10-2023 TO 07-10-2023) |                                                                   |                               |                                    |                                 |                                 |                       |  |  |
| 29.                                           | Triple Integrals - Cartesian<br>coordinates                       | 1                             | 30/09/23                           |                                 | TLM1                            |                       |  |  |

| 30. | Triple Integrals - Spherical coordinates | 1          | 09/10/23    |  | TLM1 |  |
|-----|------------------------------------------|------------|-------------|--|------|--|
| 31. | Change of order of Integration           | 1          | 11/10/23    |  | TLM1 |  |
| 32. | Tutorial III                             | 1          | 13/10/23    |  | TLM3 |  |
| 33. | Change of order of Integration           | 1          | 14/10/23    |  | TLM1 |  |
|     | No. of classes required to con           | No. of cla | sses taken: |  |      |  |

UNIT-IV: Fourier Series

| S        |                                                                     | No. of         | Tentative  | Actual     | Teaching | HOD    |
|----------|---------------------------------------------------------------------|----------------|------------|------------|----------|--------|
| D.<br>No | Topics to be covered                                                | Classes        | Date of    | Date of    | Learning | Sign   |
| 140.     |                                                                     | Required       | Completion | Completion | Methods  | Weekly |
| 34.      | Introduction to UNIT IV                                             | 1              | 16/10/23   |            | TLM1     |        |
| 35.      | Determination of Fourier<br>coefficients, Even and Odd<br>Functions | 1              | 18/10/23   |            | TLM1     |        |
| 36.      | Fourier Series expansion in the interval $[0,2\pi]$                 | 1              | 25/10/23   |            | TLM1     |        |
| 37.      | Fourier Series expansion in the interval $[-\pi,\pi]$               | 1              | 27/10/23   |            | TLM1     |        |
| 38.      | Fourier Series in an arbitrary interval [0, 21]                     | 1              | 28/10/23   |            | TLM1     |        |
| 39.      | Fourier Series in an arbitrary interval [-1, 1]                     | 1              | 30/10/23   |            | TLM1     |        |
| 40.      | Fourier series in an arbitrary interval odd and even functions      | 1              | 01/11/23   |            | TLM1     |        |
| 41.      | Half-range Sine and Cosine series                                   | 1              | 03/11/23   |            | TLM1     |        |
| 42.      | Half-range Sine and Cosine series                                   | 1              | 04/11/23   |            | TLM1     |        |
| 43.      | Tutorial IV                                                         | 1              | 06/11/23   |            | TLM3     |        |
| 44.      | Introduction to Fourier transforms<br>(Content Beyond the Syllabus) | 1              | 08/11/23   |            | TLM2     |        |
| No. o    | of classes required to complete UN                                  | No. of classes | s taken:   |            |          |        |

UNIT-V: Vector Differentiation

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 45.       | Introduction to UNIT V                                               | 1                             | 10/11/23                           |                                 | TLM1                            |                       |
| 46.       | Vector Differentiation                                               | 1                             | 11/11/23                           |                                 | TLM1                            |                       |
| 47.       | Gradient                                                             | 1                             | 13/11/23                           |                                 | TLM1                            |                       |
| 48.       | Directional Derivative                                               | 1                             | 15/11/23                           |                                 | TLM1                            |                       |
| 49.       | Divergence                                                           | 1                             | 17/11/23                           |                                 | TLM1                            |                       |
| 50.       | Curl                                                                 | 1                             | 18/11/23                           |                                 | TLM1                            |                       |
| 51.       | Solenoidal and Irrotational functions, potential surfaces            | 1                             | 20/11/23                           |                                 | TLM1                            |                       |
| 52.       | Laplacian and second order operators                                 | 1                             | 22/11/23                           |                                 | TLM1                            |                       |
| 53.       | TUTORIAL - V                                                         | 1                             | 24/11/23                           |                                 | TLM3                            |                       |
| 54.       | Properties                                                           | 1                             | 25/11/23                           |                                 | TLM1                            |                       |
| 55.       | Introduction to Vector<br>Integrals (Content Beyond the<br>Syllabus) | 1                             | 27/11/23                           |                                 | TLM1                            |                       |
| 56.       | Revision                                                             | 1                             | 29/11/23                           |                                 |                                 |                       |
| 57.       | Revision                                                             | 1                             | 1/12/23                            |                                 |                                 |                       |
| 58.       | Revision                                                             | 1                             | 2/12/23                            |                                 |                                 |                       |
| No. of    | f classes required to complete U                                     | No. of classes                | s taken:                           |                                 |                                 |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |  |

#### EVALUATION PROCESS (R20 Regulation):

| Evaluation Task                                                                      | Marks             |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              |                   |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |  |  |  |
| Total Marks = $CIE + SEE$                                                            | 100               |  |  |  |

## PART-D

## PROGRAMME OUTCOMES (POs):

| PO 1        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and          |
|-------------|------------------------------------------------------------------------------------------------------------|
| 101         | an engineering specialization to the solution of complex engineering problems.                             |
|             | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering         |
| <b>PO 2</b> | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and   |
|             | engineering sciences.                                                                                      |
|             | Design/development of solutions: Design solutions for complex engineering problems and design              |
| <b>PO 3</b> | system components or processes that meet the specified needs with appropriate consideration for the        |
|             | public health and safety, and the cultural, societal and environmental considerations.                     |
|             | Conduct investigations of complex problems: Use research-based knowledge and research methods              |
| <b>PO 4</b> | including design of experiments, analysis and interpretation of data and synthesis of the information to   |
|             | provide valid conclusions.                                                                                 |
|             | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                 |
| <b>PO 5</b> | engineering and IT tools including prediction and modeling to complex engineering activities with an       |
|             | understanding of the limitations.                                                                          |
|             | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,         |
| <b>PO 6</b> | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional |
|             | engineering practice.                                                                                      |
|             | Environment and sustainability: Understand the impact of the professional engineering solutions in         |
| <b>PO 7</b> | societal and environmental contexts, and demonstrate the knowledge of and need for sustainable             |
|             | development.                                                                                               |
| DO 8        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the   |
| 100         | engineering practice.                                                                                      |
|             | Individual and team work: Function effectively as an individual, and as a member or leader in diverse      |
| 109         | teams, and in multidisciplinary settings.                                                                  |
|             | Communication: Communicate effectively on complex engineering activities with the engineering              |
| PO 10       | community and with society at large, such as, being able to comprehend and write effective reports and     |
|             | design documentation, make effective presentations and give and receive clear instructions.                |
|             | Project management and finance: Demonstrate knowledge and understanding of the engineering and             |
| PO 11       | management principles and apply these to one's own work, as a member and leader in a team, to              |
|             | manage projects and in multidisciplinary environments.                                                     |
| DO 12       | Life-long learning: Recognize the need for, and have the preparation and ability to engage in              |
| PO 12       | independent and life-long learning in the broadest context of technological change.                        |

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|--------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr. A. Rami Reddy | Dr. K. R. Kavitha  | Dr. A. Rami Reddy     | Dr. A. Rami Reddy         |
| Signature              |                   |                    |                       |                           |



LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (ASE, CE, CSE, ECE, EEE, IT, ME) (Under Tier - I), ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 FRESHMAN ENGINEERING DEPARTMENT

#### **COURSE HANDOUT**

#### PART-A

| Name of Course Instructor | : Dr. K. Jhansi Rani                         |                        |
|---------------------------|----------------------------------------------|------------------------|
| Course Name & Code        | : Numerical Methods & Integral Calculus & 20 | FE10                   |
| L-T-P Structure           | : 2-1 -0                                     | Credits:3              |
| Program/Sem/Sec           | : II B.Tech/III sem/ECE B                    | <b>A.Y.:</b> 2023 - 24 |

#### **PREREQUISITE: Nil**

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Estimate the best fit polynomial for the given tabulated data using Interpolation.(Understand -   |
|-----|---------------------------------------------------------------------------------------------------|
| 001 | L2)                                                                                               |
| CO2 | Apply numerical techniques in solving of equations and evaluation of integrals. (Apply – L3)      |
| CO2 | Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their     |
| 003 | respective applications to areas and volumes. (Apply – L3)                                        |
| COA | Generate the single valued functions in the form of Fourier series and obtain Fourier series      |
| 004 | representation of periodic function. (Apply – L3)                                                 |
| COS | Evaluate the directional derivative, divergence and angular velocity of a vector function. (Apply |
| 05  | – L3)                                                                                             |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6       | PO7 | PO8 | PO9             | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----|-----------|-----|-----|-----------------|------|------|------|------|------|------|
| CO1            | 3   | 2   | -   | 2   | -   | -         | -   | -   | -               | -    | -    | 1    |      |      |      |
| CO2            | 3   | 2   | -   | 2   | -   | -         | -   | -   | -               | -    | -    | 1    |      |      |      |
| <b>CO3</b>     | 3   | 2   | -   | 1   | -   | -         | -   | -   | -               | -    | -    | 1    |      |      |      |
| CO4            | 3   | 1   | -   | -   | -   | -         | -   | -   | -               | -    | -    | 1    |      |      |      |
| CO5            | 3   | 1   | -   | 1   | -   | -         | -   | -   | -               | -    | -    | 1    |      |      |      |
| <b>1</b> - Low |     |     |     |     |     | 2 –Medium |     |     | <b>3</b> - High |      |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42<sup>nd</sup>Edition, Khanna Publishers, New Delhi, 2012.
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1<sup>st</sup>Edition, TMH, New Delhi, 2010.
- **T3** S. S. Sastry, "Introductory Methods of Numerical Analysis" 5<sup>th</sup> Edition, PHI Learning Private Limited, New Delhi, 2012.

#### **REFERENCE BOOKS:**

- **R1** M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

#### PART-B

| COURSE DELIVERY PLAN (LESSON PLAN):                 |  |
|-----------------------------------------------------|--|
| <b>UNIT-I: Interpolation and Finite Differences</b> |  |

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to the course, Course<br>Outcomes                       | 1                             | 07/08/23                           |                                 | TLM1                            |                       |
| 2.        | Introduction to UNIT I                                               | 1                             | 09/08/23                           |                                 | TLM2                            |                       |
| 3.        | Forward Differences                                                  | 1                             | 11/08/23                           |                                 | TLM1                            |                       |
| 4.        | Backward differences                                                 | 1                             | 14/08/23                           |                                 | TLM1                            |                       |
| 5.        | Central Differences                                                  | 1                             | 16/08/23                           |                                 | TLM1                            |                       |
| 6.        | Symbolic relations and separation of symbols                         | 1                             | 18/08/23                           |                                 | TLM1                            |                       |
| 7.        | Symbolic relations and separation of symbols                         | 1                             | 19/08/23                           |                                 | TLM1                            |                       |
| 8.        | Newton's forward formulae for interpolation                          | 1                             | 21/08/23                           |                                 | TLM1                            |                       |
| 9.        | Newton's backward formulae for interpolation                         | 1                             | 23/08/23                           |                                 | TLM1                            |                       |
| 10.       | Lagrange's Interpolation                                             | 1                             | 25/08/23                           |                                 | TLM1                            |                       |
| 11.       | Lagrange's Interpolation                                             | 1                             | 28/08/23                           |                                 | TLM1                            |                       |
| 12.       | Tutorial I                                                           | 1                             | 26/08/23                           |                                 | TLM3                            |                       |
| No. o     | No. of classes required to complete UNIT-I: 12 No. of classes taken: |                               |                                    |                                 |                                 |                       |

## UNIT-II: Numerical solutions of Equations and Numerical Integration

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 13.       | Introduction to UNIT II                                               | 1                             | 30/08/23                           | -                               | TLM2                            |                       |
| 14.       | Algebraic and Transcendental Equations                                | 1                             | 01/09/23                           |                                 | TLM1                            |                       |
| 15.       | False Position method                                                 | 1                             | 02/09/23                           |                                 | TLM1                            |                       |
| 16.       | False Position method                                                 | 1                             | 04/09/23                           |                                 | TLM1                            |                       |
| 17.       | Newton- Raphson Method in one variable                                | 1                             | 08/09/23                           |                                 | TLM1                            |                       |
| 18.       | Newton- Raphson Method applications                                   | 1                             | 11/09/23                           |                                 | TLM1                            |                       |
| 19.       | Trapezoidal rule                                                      | 1                             | 13/09/23                           |                                 | TLM1                            |                       |
| 20.       | Simpson's 1/3 Rule                                                    | 1                             | 15/09/23                           |                                 | TLM1                            |                       |
| 21.       | Simpson's 3/8 Rule                                                    | 1                             | 20/09/23                           |                                 | TLM1                            |                       |
| 22.       | Tutorial II                                                           | 1                             | 16/09/23                           |                                 | TLM3                            |                       |
| No. o     | No. of classes required to complete UNIT-II: 10 No. of classes taken: |                               |                                    |                                 |                                 |                       |

## UNIT-III: Multiple Integrals

| S.<br>N                                       | Topics to be covered             | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
|-----------------------------------------------|----------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|
| 0.                                            |                                  | Required          | Completion           | Completion        | Methods              | Weekly      |
| 23.                                           | Introduction to Unit-III         | 1                 | 22/09/23             |                   | TLM1                 |             |
| 24                                            | Double Integrals -Cartesian      | 1                 | 23/00/23             |                   | TI M1                |             |
| 24.                                           | coordinates                      | 1                 | 25/09/25             |                   | I LIVI I             |             |
| 25                                            | Double Integrals- Polar co       | 1                 | 25/09/23             |                   | TI M1                |             |
| 25.                                           | ordinates                        | 1                 | 25/07/25             |                   | 1 12/1/11            |             |
| 26.                                           | Problems                         | 1                 | 27/09/23             |                   | TLM1                 |             |
| 27                                            | Applications to Double integrals | 1                 | 20/00/22             |                   | ті мэ                |             |
| 27.                                           | (Content Beyond the syllabus)    | 1                 | 29/09/25             |                   | I LIVIZ              |             |
| 28.                                           | Revision for mid exam            | 1                 | 30/09/23             |                   |                      |             |
| I MID EXAMINATIONS (02-10-2023 TO 07-10-2023) |                                  |                   |                      |                   |                      |             |

| 29. | Triple Integrals - Cartesian coordinates                               | 1 | 09/10/23 |  | TLM1 |  |
|-----|------------------------------------------------------------------------|---|----------|--|------|--|
| 30. | Triple Integrals - Spherical coordinates                               | 1 | 11/10/23 |  | TLM1 |  |
| 31. | Change of order of Integration                                         | 1 | 13/10/23 |  | TLM1 |  |
| 32. | Tutorial III                                                           | 1 | 16/10/23 |  | TLM3 |  |
| 33. | Change of order of Integration                                         | 1 | 18/10/23 |  | TLM1 |  |
|     | No. of classes required to complete UNIT-III: 10 No. of classes taken: |   |          |  |      |  |

UNIT-IV: Fourier Series

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 34.       | Introduction to UNIT IV                                               | 1                             | 25/10/23                           |                                 | TLM1                            |                       |
| 35.       | Determination of Fourier<br>coefficients, Even and Odd<br>Functions   | 1                             | 27/10/23                           |                                 | TLM1                            |                       |
| 36.       | Fourier Series expansion in the interval $[0,2\pi]$                   | 1                             | 28/10/23                           |                                 | TLM1                            |                       |
| 37.       | Fourier Series expansion in the interval $[-\pi,\pi]$                 | 1                             | 30/10/23                           |                                 | TLM1                            |                       |
| 38.       | Fourier Series in an arbitrary interval [0, 21]                       | 1                             | 01/11/23                           |                                 | TLM1                            |                       |
| 39.       | Fourier Series in an arbitrary interval [-1, 1]                       | 1                             | 03/11/23                           |                                 | TLM1                            |                       |
| 40.       | Fourier series in an arbitrary interval odd and even functions        | 1                             | 04/11/23                           |                                 | TLM1                            |                       |
| 41.       | Half-range Sine and Cosine series                                     | 1                             | 06/11/23                           |                                 | TLM1                            |                       |
| 42.       | Half-range Sine and Cosine series                                     |                               | 08/11/23                           |                                 | TLM1                            |                       |
| 43.       | Tutorial IV                                                           | 1                             | 10/11/23                           |                                 | TLM3                            |                       |
| 44.       | Introduction to Fourier transforms<br>(Content Beyond the Syllabus)   | 1                             | 13/11/23                           |                                 | TLM2                            |                       |
| No.       | No. of classes required to complete UNIT-IV: 11 No. of classes taken: |                               |                                    |                                 |                                 |                       |

**UNIT-V: Vector Differentiation** 

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 45.       | Introduction to UNIT V                                               | 1                             | 15/11/23                           | -                               | TLM1                            |                       |
| 46.       | Vector Differentiation                                               | 1                             | 17/11/23                           |                                 | TLM1                            |                       |
| 47.       | Gradient                                                             | 1                             | 18/11/23                           |                                 | TLM1                            |                       |
| 48.       | Directional Derivative                                               | 1                             | 20/11/23                           |                                 | TLM1                            |                       |
| 49.       | Divergence                                                           | 1                             | 22/11/23                           |                                 | TLM1                            |                       |
| 50.       | Curl                                                                 | 1                             | 24/11/23                           |                                 | TLM1                            |                       |
| 51.       | Solenoidal and Irrotational functions, potential surfaces            | 1                             | 25/11/23                           |                                 | TLM1                            |                       |
| 52.       | Laplacian and second order operators                                 | 1                             | 27/11/23                           |                                 | TLM1                            |                       |
| 53.       | TUTORIAL - V                                                         | 1                             | 29/11/23                           |                                 | TLM3                            |                       |
| 54.       | Properties                                                           | 1                             | 01/12/23                           |                                 | TLM1                            |                       |
| 55.       | Introduction to Vector<br>Integrals (Content Beyond the<br>Syllabus) | 1                             | 02/12/23                           |                                 | TLM1                            |                       |
| No. of    | f classes required to complete U                                     | NIT-V: 11                     |                                    | No. of classes                  | s taken:                        |                       |

| Teaching Learning Methods |                |      |                                 |  |
|---------------------------|----------------|------|---------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |

## **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15           |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15           |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = $CIE + SEE$                                                            | 100             |

## PART-D

## **PROGRAMME OUTCOMES (POs):**

| PO 1        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and          |
|-------------|------------------------------------------------------------------------------------------------------------|
| 101         | an engineering specialization to the solution of complex engineering problems.                             |
|             | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering         |
| PO 2        | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and   |
|             | engineering sciences.                                                                                      |
|             | Design/development of solutions: Design solutions for complex engineering problems and design              |
| PO 3        | system components or processes that meet the specified needs with appropriate consideration for the        |
|             | public health and safety, and the cultural, societal and environmental considerations.                     |
|             | Conduct investigations of complex problems: Use research-based knowledge and research methods              |
| PO 4        | including design of experiments, analysis and interpretation of data and synthesis of the information to   |
|             | provide valid conclusions.                                                                                 |
|             | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                 |
| PO 5        | engineering and IT tools including prediction and modeling to complex engineering activities with an       |
|             | understanding of the limitations.                                                                          |
|             | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,         |
| PO 6        | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional |
|             | engineering practice.                                                                                      |
|             | Environment and sustainability: Understand the impact of the professional engineering solutions in         |
| <b>PO 7</b> | societal and environmental contexts, and demonstrate the knowledge of and need for sustainable             |
|             | development.                                                                                               |
| PO 8        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the   |
|             | engineering practice.                                                                                      |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or leader in diverse      |
| 10,         | teams, and in multidisciplinary settings.                                                                  |
|             | Communication: Communicate effectively on complex engineering activities with the engineering              |
| PO 10       | community and with society at large, such as, being able to comprehend and write effective reports and     |
|             | design documentation, make effective presentations and give and receive clear instructions.                |
|             | Project management and finance: Demonstrate knowledge and understanding of the engineering and             |
| PO 11       | management principles and apply these to one's own work, as a member and leader in a team, to              |
|             | manage projects and in multidisciplinary environments.                                                     |
| PO 12       | Life-long learning: Recognize the need for, and have the preparation and ability to engage in              |
|             | independent and life-long learning in the broadest context of technological change.                        |

| Title                  | Course Instructor  | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|--------------------|--------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr. K. Jhansi Rani | Dr. K. R. Kavitha  | Dr. A. Rami Reddy     | Dr. A. Rami Reddy         |
| Signature              |                    |                    |                       |                           |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

## **COURSE HANDOUT**

## PART-A

| Name of Course Instructor: | D Anil kumar                 |                      |
|----------------------------|------------------------------|----------------------|
| Course Name & Code         | : DATA STRUCTURES & 20CS03   |                      |
| L-T-P Structure            | : 3-0-0                      | Credits: 3           |
| Program/Sem/Sec            | : B.Tech. /III sem-ECE/B-sec | <b>A.Y.:</b> 2023-24 |

#### PREREQUISITE: Programming Language

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| 000101 |                                                                                                                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1    | Write the algorithms for various operations on list using arrays and linked list and analyze the time complexity of its operations. (Understand - L2) |
| CO2    | Apply linear data structures like stack and queue in problem solving. (Apply - L3)                                                                    |
| CO3    | Demonstrate various sorting techniques and compare their computational complexities in terms of space and time. (Understand - L2)                     |
| CO4    | Write the algorithms for various operations on binary trees, binary search trees and AVL trees. (Understand - L2)                                     |
| CO5    | Demonstrate graph traversal techniques and hashing techniques. (Understand - L2)                                                                      |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | PO1 | PO2 | PO3   | PO4 | PO5 | PO6 | PO7   | PO8 | PO9 | PO10 | PO11 | PO12   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 | 3   | 2   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO2 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO3 | 3   | 2   |       |     |     |     |       |     |     |      |      |        | 2    |      |      |
| CO4 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO5 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 1    |      |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | um  |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

- T1 Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson Education, 2nd edition [1,2,3 units].
- T2 ReemaThareja, Data Structures using c, Oxford Publications [3,4,5].

#### **REFERENCE BOOKS:**

- R1 Langson, Augenstein & Tenenbaum, 'Data Structures using C and C++', 2nd Ed, PHI.
- **R2** RobertL.Kruse, Leung and Tando, 'Data Structures and Program Design in C', 2ndedition, PHI.

# PART-B

## **COURSE DELIVERY PLAN (LESSON PLAN):**

## UNIT-I:

| S. No. | Topics to be covered              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion     | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------|-------------------------------|----------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to Data Structures   | 1                             | 07-08-2023                             |                                 | TLM1                            |                       |
| 2.     | Classification of Data Structures | 1                             | 09-08-2023                             |                                 | TLM1                            |                       |
| 3.     | Introduction to Algorithm         | 1                             | 11-08-2023                             |                                 | TLM1                            |                       |
| 4.     | Algorithm Analysis                | 1                             | 12-08-2023                             |                                 | TLM1                            |                       |
| 5.     | Asymptotic Notations              | 1                             | 14-08-2023                             |                                 | TLM1                            |                       |
| 6.     | List using Arrays                 | 1                             | 16-08-2023                             |                                 | TLM1                            |                       |
| 7.     | Single Linked List                | 3                             | 18-08-2023<br>19-08-2023<br>21-08-2023 |                                 | TLM1                            |                       |
| 8.     | Double Linked List                | 3                             | 23-08-2023<br>25-08-2023<br>26-08-2023 |                                 | TLM1                            |                       |
| 9.     | Circular Linked List              | 2                             | 28-08-2023<br>01-09-2023               |                                 | TLM1                            |                       |
| No. of | classes required to complete UNIT |                               | No. of class                           | ses taken:                      |                                 |                       |

## UNIT-II:

| S. No.                                          | Topics to be covered                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------------------------------------------------|-----------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 10.                                             | STACKS ADT                              | 1                             | 02-09-2023                         | -                               | TLM2                            |                       |
| 11.                                             | STACKS USING ARRAYS                     | 1                             | 04-09-2023                         |                                 | TLM1                            |                       |
| 12.                                             | STACKS USING LINKED LIST                | 1                             | 08-09-2023                         |                                 | TLM1                            |                       |
| 13.                                             | INFIX TO POSTFIX CONVERSION             | 2                             | 09-09-2023<br>11-09-2023           |                                 | TLM1                            |                       |
| 14.                                             | POSTFIX EVALUTION                       | 1                             | 13-09-2023                         |                                 | TLM1                            |                       |
| 15.                                             | CHECKING BALANCED<br>PARANTHESIS, QUEUE | 1                             | 15-09-2023                         |                                 | TLM1                            |                       |
| 16.                                             | QUEUE USING ARRAY & LINKED<br>LIST      | 1                             | 16-09-2023                         |                                 | TLM1                            |                       |
| 17.                                             | CIRCULAR QUEUE,                         | 1                             | 20-09-2023                         |                                 | TLM1                            |                       |
| 18.                                             | DEQUE                                   | 1                             | 22-09-2023                         |                                 | TLM1                            |                       |
| No. of classes required to complete UNIT-II: 10 |                                         |                               |                                    | No. of clas                     | ses taken:                      |                       |

## **UNIT-III: SORTING TECHNIQUES**

| S        |                      | No. of   | Tentative  | Actual     | Teaching | HOD    |
|----------|----------------------|----------|------------|------------|----------|--------|
| ð.<br>No | Topics to be covered | Classes  | Date of    | Date of    | Learning | Sign   |
| 190.     | -                    | Required | Completion | Completion | Methods  | Weekly |

| 19. | Bubble sort                       | 1           | 23-09-2023               |  | TLM2 |  |
|-----|-----------------------------------|-------------|--------------------------|--|------|--|
| 20. | Insertion Sort                    | 1           | 25-09-2023               |  | TLM1 |  |
| 21. | Selection Sort                    | 1           | 27-09-2023               |  | TLM1 |  |
| 22. | Merge Sort                        | 2           | 29-09-2023<br>30-09-2023 |  | TLM1 |  |
| 23. | Quick Sort                        | 2           | 09-10-2023<br>11-10-2023 |  | TLM1 |  |
| 24. | Heap Sort                         | 2           | 13-10-2023<br>14-10-2023 |  | TLM1 |  |
|     | No. of classes required to comple | No. of clas | sses taken:              |  |      |  |

## **UNIT-IV: TREES**

| S.<br>No. | Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Introduction to Trees               | 1                             | 16-10-2023                         |                                 | TLM1                            |                       |
| 26.       | Binary Trees, Tree Traversals       | 2                             | 18-10-2023<br>20-10-2023           |                                 | TLM1                            |                       |
| 27.       | Binary Trees Implementation         | 1                             | 21-10-2023                         |                                 | TLM2                            |                       |
| 28.       | Binary Search Trees                 | 2                             | 25-10-2023<br>27-10-2023           |                                 | TLM1                            |                       |
| 29.       | AVL Trees                           | 1                             | 28-10-2023                         |                                 | TLM1                            |                       |
| 30.       | Operations & Examples               | 2                             | 30-10-2023<br>01-11-2023           |                                 | TLM1                            |                       |
| No.       | of classes required to complete UNI | No. of class                  | ses taken:                         |                                 |                                 |                       |

## **UNIT-V: GRAPHS & HASHING TECHNQIUES**

| S. No. | Topics to be covered                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 31.    | GRAPHS, FUNDAMENTALS                           | 1                             | 03-11-2023                         |                                 | TLM1                            | ×                     |
| 32.    | REPRESENTATION OF GRAPHS                       | 1                             | 04-11-2023                         |                                 | TLM1                            |                       |
| 33.    | BFS                                            | 2                             | 06-11-2023<br>08-11-2023           |                                 | TLM1                            |                       |
| 34.    | DFS                                            | 2                             | 10-11-2023<br>11-11-2023           |                                 | TLM1                            |                       |
| 35.    | Hashing Introduction,                          | 1                             | 13-11-2023                         |                                 | TLM1                            |                       |
| 36.    | Hash function, separate Chaining               | 2                             | 15-11-2023<br>17-11-2023           |                                 | TLM1                            |                       |
| 37.    | Linear & Quadratic Probing                     | 2                             | 18-11-2023<br>20-11-2023           |                                 | TLM1                            |                       |
| 38.    | Double & Rehasing                              | 1                             | 22-11-2023                         |                                 | TLM2                            |                       |
| 39.    | Revision                                       | 1                             | 24-11-2023<br>25-11-2023           |                                 | TLM1                            |                       |
| 40.    | Revision                                       | 1                             | 27-11-2023<br>29-11-2023           |                                 | TLM1                            |                       |
| 41.    | Revision                                       | 1                             | 01-12-2023<br>02-12-2023           |                                 | TLM1                            |                       |
| No. o  | No. of classes required to complete UNIT-V: 12 |                               |                                    |                                 | ses taken:                      |                       |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                   |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |  |  |  |
| Total Marks = CIE + SEE                                                              | 100               |  |  |  |

# PROGRAMME OUTCOMES (POs):

| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                       |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and teamwork</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                    |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                          |

## PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |
| PSO 3 | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                     | Course Instructor | Course Coordinator | Module<br>Coordinator   | Head of the<br>Department |
|---------------------------|-------------------|--------------------|-------------------------|---------------------------|
| Name of<br>the<br>Faculty | Mr. D Anil kumar  | Mr. D. Anil kumar  | Dr. K Naga<br>Prasanthi | Dr. D. Veeriah            |
| Signature                 |                   |                    |                         |                           |



# **COURSE HANDOUT**

## PART-A

Name of Course Instructor:Dr B V N R Siva Kumar, Assoc. ProfessorCourse Name & Code: ACD-20EC03Regulation: R20L-T-P Structure: 3-0-0Credits: 03Program/Sem/Sec: B. Tech. III-Sem., ECE-B SecA.Y.: 2023-24

**PRE REQUISITE:** Fundamentals of Electronics.

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides focus on h-parameter models, analysis, selection and proper biasing of transistors like BJT and FET, emphasis on working principles of BJT / FET amplifiers using appropriate equivalent models, gives importance to feedback in amplifiers to improve the amplifier characteristics, design of Oscillators, linear wave shaping Circuits and Multivibrators.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Understand the concept of amplifier, Oscillator and linear wave shaping circuits.                    |
|------------|------------------------------------------------------------------------------------------------------|
|            | (Understand – L2)                                                                                    |
| CO2        | Apply the suitable models of the transistor for estimating gain, input resistance, and output        |
|            | resistance and feedback concepts at amplifier and oscillator circuits. (Apply – L3)                  |
| CO3        | Analyze feedback concepts in amplifier, oscillator circuits, and Multivibrators.                     |
|            | (Analyze – L4)                                                                                       |
| <b>CO4</b> | Apply knowledge of transistor for the design of amplifiers, oscillator circuits, linear wave shaping |
|            | Circuits and Multivibrators. (Apply – L3)                                                            |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03          | P04 | P05 | P06 | P07          | P08    | P09 | P010 | P011 | P012           | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|--------------|-----|-----|-----|--------------|--------|-----|------|------|----------------|------|------|------|
| C01 | 2   | 3   | 1            | -   | -   | 3   | 1            | -      | -   | -    | 1    | 2              | -    | 2    | -    |
| CO2 | 3   | 1   | -            | -   | -   | -   | -            | -      | -   | -    | -    | 1              | -    | 2    | -    |
| CO3 | 3   | 1   | 1            | -   | -   | -   | -            | -      | -   | -    | -    | 2              | -    | 3    | -    |
| C04 | 3   | -   | -            | -   | -   | -   | -            | -      | -   | -    | 1    | 1              | -    | 3    | -    |
|     |     |     | <b>1 -</b> I | JOW | •   |     | <b>2</b> – N | /lediu | m   |      |      | <b>3 –</b> Hig | gh   |      |      |

#### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

#### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

## PART-B

## COURSE DELIVERY PLAN (LESSON PLAN)

## **UNIT-I: Small Signal Amplifiers, FET AMPLIFIERS**

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.        | Introduction to course, Course<br>Outcomes                            | 1                             | 08-08-23                           |                                 |                                 |                       |  |
| 2.        | Introduction to UNIT-I                                                | 1                             | 09-08-23                           |                                 |                                 |                       |  |
| 3.        | Small signal modeling of transistor                                   | 1                             | 11-08-23                           |                                 |                                 |                       |  |
| 4.        | h- parameter model of a<br>Transistor                                 | 1                             | 16-08-23                           |                                 |                                 |                       |  |
| 5.        | h- parameter model of a<br>Transistor in CE,CB,CC<br>Configuration    | 1                             | 18-08-23                           |                                 |                                 |                       |  |
| 6.        | Exact analysis of CE,CB,CC amplifiers                                 | 1                             | 19-08-23                           |                                 |                                 |                       |  |
| 7.        | Approximate analysis of CE<br>amplifier without Emitter<br>resistance | 1                             | 22-08-23                           |                                 |                                 |                       |  |
| 8.        | Approximate analysis of CB amplifier                                  | 1                             | 23-08-23                           |                                 |                                 |                       |  |
| 9.        | Approximate analysis of CC amplifier                                  | 1                             | 26-08-23                           |                                 |                                 |                       |  |
| 10.       | Approximate analysis of CE<br>amplifier with Emitter<br>resistance    | 1                             | 29-08-23                           |                                 |                                 |                       |  |
| 11.       | Analysis of CS FET amplifier                                          | 1                             | 30-08-23                           |                                 |                                 |                       |  |
| 12.       | Analysis of CD FET amplifier                                          | 1                             | 01-09-23                           |                                 |                                 |                       |  |
| No.       | No. of classes required to complete UNIT-I: 12 No. of classes taken:  |                               |                                    |                                 |                                 |                       |  |

## UNIT-II: Multistage Amplifiers, Frequency Response of Amplifiers

| S.<br>No. | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 13.       | Analysis and Design of Cascade<br>Amplifier                         | 1                             | 02-09-23                           |                                 |                                 |                       |
| 14.       | Analysis and Design of<br>Cascode Amplifier                         | 1                             | 05-09-23                           |                                 |                                 |                       |
| 15.       | Analysis and Design of<br>Darlington pair                           | 1                             | 06-09-23                           |                                 |                                 |                       |
| 16.       | Frequency response of Single stage amplifier                        | 1                             | 08-09-23                           |                                 |                                 |                       |
| 17.       | Frequency response of multi stage amplifier                         | 1                             | 12-09-23                           |                                 |                                 |                       |
| 18.       | Effect of coupling and bypass<br>capacitor on frequency<br>response | 1                             | 13-09-23                           |                                 |                                 |                       |
| 19.       | The hybrid- π Common<br>Emitter Transistor model                    | 1                             | 15-09-23                           |                                 |                                 |                       |
| 20.       | Hybrid- π Conductance in<br>terms of low frequency<br>h- parameters | 1                             | 16-09-23                           |                                 |                                 |                       |

| 21.                                                                   | Hybrid- π Conductance in<br>terms of low frequency<br>h- parameters | 1 | 19-09-23 |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------|---|----------|--|--|--|
| 22.                                                                   | Millers Theorem                                                     | 1 | 20-09-23 |  |  |  |
| 23.                                                                   | The CE model - $f_\beta$ , $f_T$ and $f\alpha$                      | 1 | 22-09-23 |  |  |  |
| 24.                                                                   | Gain with resistive load                                            | 1 | 23-09-23 |  |  |  |
| No. of classes required to complete UNIT-II: 12 No. of classes taken: |                                                                     |   |          |  |  |  |

# UNIT-III: Feedback amplifiers, Oscillators, Introduction to power amplifiers

| S.<br>No. | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Classification of Amplifiers,<br>Feedback block Diagram             | 1                             | 26-09-23                           |                                 |                                 |                       |
| 26.       | General characteristics of<br>Negative feedback Amplifiers          | 1                             | 27-09-23                           |                                 |                                 |                       |
| 27.       | Qualitative analysis of Voltage series feedback amplifier           | 1                             | 29-09-23                           |                                 |                                 |                       |
| 28.       | Qualitative analysis of current series feedback amplifier           | 1                             | 30-09-23                           |                                 |                                 |                       |
| 29.       | Qualitative analysis of Voltage shunt feedback amplifier            | 1                             | 10-10-23                           |                                 |                                 |                       |
| 30.       | Qualitative analysis of current shunt feedback amplifier            | 1                             | 11-10-23                           |                                 |                                 |                       |
| 31.       | Effect of feedback on<br>frequency response of<br>amplifier         | 1                             | 13-10-23                           |                                 |                                 |                       |
| 32.       | Qualitative analysis of RC oscillators                              | 1                             | 17-10-23                           |                                 |                                 |                       |
| 33.       | Qualitative analysis of LC oscillators                              | 1                             | 18-10-23                           |                                 |                                 |                       |
| 34.       | Qualitative analysis of Crystal oscillator                          | 1                             | 20-10-23                           |                                 |                                 |                       |
| 35.       | Introduction to Power<br>amplifiers, Class A, Class B<br>amplifiers | 1                             | 21-10-23                           |                                 |                                 |                       |
| 36.       | Class C, Class S amplifiers                                         | 1                             | 24-10-23                           |                                 |                                 |                       |
| No.       | of classes required to compl                                        | ete UNIT-l                    | II: 12                             | No. of cl                       | asses take                      | n:                    |

## UNIT-IV: Linear wave shaping Circuits

| S.<br>No. | Topics to be covered                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|--------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 37.       | Low pass RC circuit and their response for sinusoidal input        | 1                             | 25-10-23                           |                                 |                                 |                       |
| 38.       | Response of LPF for step, pulse inputs                             | 1                             | 27-10-23                           |                                 |                                 |                       |
| 39.       | Response of LPF for square and ramp inputs                         | 1                             | 28-10-23                           |                                 |                                 |                       |
| 40.       | High pass RC circuit and their response for sinusoidal, step input | 1                             | 31-10-23                           |                                 |                                 |                       |
| 41.       | Response of HPF for step, pulse inputs                             | 1                             | 03-11-23                           |                                 |                                 |                       |
| 42.       | Response of HPF for square and ramp inputs                         | 1                             | 04-11-23                           |                                 |                                 |                       |
| 43.       | RC circuit as differentiator and integrator                        | 1                             | 07-11-23                           |                                 |                                 |                       |
| 44.       | Double differentiator                                              | 1                             | 08-11-23                           |                                 |                                 |                       |

# No. of classes required to complete UNIT-IV: 08

No. of classes taken:

## **UNIT-V: Multivibrators**

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 45.       | Introduction to UNIT-V                                               | 1                             | 10-11-23                           |                                 |                                 |                       |
| 46.       | Bistable Multivibrator- self-<br>biased transistor binary            | 1                             | 14-11-23                           |                                 |                                 |                       |
| 47.       | Principle of operation                                               | 1                             | 15-11-23                           |                                 |                                 |                       |
| 48.       | Analysis and Design of Bistable<br>Multivibrators                    | 1                             | 17-11-23                           |                                 |                                 |                       |
| 49.       | Triggering types                                                     | 1                             | 18-11-23                           |                                 |                                 |                       |
| 50.       | Schmitt trigger circuit-Principle of operation                       | 1                             | 21-11-23                           |                                 |                                 |                       |
| 51.       | Schmitt trigger circuit-Principle of operation                       | 1                             | 22-11-23                           |                                 |                                 |                       |
| 52.       | calculation of UTP, LTP and applications                             | 1                             | 24-11-23                           |                                 |                                 |                       |
| 53.       | Collector-coupled Monostable -<br>Principle of operation             | 1                             | 25-11-23                           |                                 |                                 |                       |
| 54.       | Astable Multivibrators<br>Principle of operation                     | 1                             | 28-11-23                           |                                 |                                 |                       |
| 55.       | Analysis and design of Astable<br>Multivibrators                     | 1                             | 29-11-23                           |                                 |                                 |                       |
| 56.       | Problems on Astable,<br>Monostable Multivibrators                    | 1                             | 01-12-23                           |                                 |                                 |                       |
| No.       | No. of classes required to complete UNIT-V: 12 No. of classes taken: |                               |                                    |                                 |                                 |                       |

# Contents beyond the Syllabus

| S.No. | Topics to be covered             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 57.   | Applications of power amplifiers | 1                             | 02-12-23                           |                                 |                                 |                       |

| Teaching Learning Methods |                |      |                                    |  |
|---------------------------|----------------|------|------------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |

## PART-C

## **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks |
|--------------------------------------------------------------------------------------|-------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15 |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10 |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15 |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10 |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30  |
| Cumulative Internal Examination (CIE): M                                             | 30    |
| Semester End Examination (SEE)                                                       | 70    |
| Total Marks = CIE + SEE                                                              | 100   |

## PART-D PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| PEO 2        | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

## **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                    |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | engineering fundamentals, and an engineering specialization to the solution of         |  |  |  |  |  |  |  |  |
|      | complex engineering problems                                                           |  |  |  |  |  |  |  |  |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze |  |  |  |  |  |  |  |  |
|      | complex engineering problems reaching substantiated conclusions using first            |  |  |  |  |  |  |  |  |
|      | principles of mathematics, natural sciences, and engineering sciences                  |  |  |  |  |  |  |  |  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering      |  |  |  |  |  |  |  |  |
|      | problems and design system components or processes that meet the specified             |  |  |  |  |  |  |  |  |
|      | needs with appropriate consideration for the public health and safety, and the         |  |  |  |  |  |  |  |  |
|      | cultural, societal, and environmental considerations                                   |  |  |  |  |  |  |  |  |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge       |  |  |  |  |  |  |  |  |
|      | and research methods including design of experiments, analysis and                     |  |  |  |  |  |  |  |  |
|      | interpretation of data, and synthesis of the information to provide valid              |  |  |  |  |  |  |  |  |
|      | conclusions                                                                            |  |  |  |  |  |  |  |  |

| PO 5  | Modern tool usage: Create, select, and apply appropriate techniques, resources,          |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|       | and modern engineering and IT tools including prediction and modelling to                |  |  |  |  |  |  |
|       | complex engineering activities with an understanding of the limitations                  |  |  |  |  |  |  |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                     |  |  |  |  |  |  |
|       | knowledge to assess societal, health, safety, legal and cultural issues and the          |  |  |  |  |  |  |
|       | consequent responsibilities relevant to the professional engineering practice            |  |  |  |  |  |  |
| PO 7  | Environment and sustainability: Understand the impact of the professional                |  |  |  |  |  |  |
|       | engineering solutions in societal and environmental contexts, and demonstrate            |  |  |  |  |  |  |
|       | the knowledge of, and need for sustainable development                                   |  |  |  |  |  |  |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and                   |  |  |  |  |  |  |
|       | responsibilities and norms of the engineering practice                                   |  |  |  |  |  |  |
| PO 9  | Individual and team work: Function effectively as an individual, and as a                |  |  |  |  |  |  |
|       | member or leader in diverse teams, and in multidisciplinary settings                     |  |  |  |  |  |  |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities         |  |  |  |  |  |  |
|       | with the engineering community and with society at large, such as, being able to         |  |  |  |  |  |  |
|       | comprehend and write effective reports and design documentation, make                    |  |  |  |  |  |  |
|       | effective presentations, and give and receive clear instructions                         |  |  |  |  |  |  |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding          |  |  |  |  |  |  |
|       | of the engineering and management principles and apply these to one's own                |  |  |  |  |  |  |
|       | work, as a member and leader in a team, to manage projects and in                        |  |  |  |  |  |  |
|       | multidisciplinary environments                                                           |  |  |  |  |  |  |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability |  |  |  |  |  |  |
|       | to engage in independent and life-long learning in the broadest context of               |  |  |  |  |  |  |
|       | technological change                                                                     |  |  |  |  |  |  |

## **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |  |  |  |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |  |  |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |  |  |

## Date: 05-08-2023

| Title                  | TitleCourse InstructorCourse Coordinator |                          | Module<br>Coordinator | Head of the<br>Department |  |
|------------------------|------------------------------------------|--------------------------|-----------------------|---------------------------|--|
| Name of the<br>Faculty | Dr B V N R Siva<br>Kumar                 | Dr B V N R Siva<br>Kumar | Dr. G. Srinivasulu    | Dr. Y. Amar Babu          |  |
| Signature              |                                          |                          |                       |                           |  |



## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT, MECH, CE & ASE) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **COURSE HANDOUT PART-A**

| Name of Course Instructor | : Mr. M K Linga Murthy                |               |
|---------------------------|---------------------------------------|---------------|
| Course Name & Code        | : Signals and Systems – 20EC04        |               |
| L-T-P Structure           | : 3-0-0                               | Credits: 3    |
| Program/Sem/Sec           | : B.Tech., ECE., III-Sem., Section- B | A.Y : 2023-24 |

PRE-REQUISITE: Vectors, Scalars, Approximation of a vector by another vector, Differentiation and Integration of signals.

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

This course introduces signals and the way to perform mathematical operations on them. Further, it also introduces representation of signals in both time and frequency domains using orthogonal functions and describes Fourier series, the Fourier Transform and Laplace Transforms along with their properties. The course characterizes system behavior by estimating system response. It also introduces the concepts of sampling.

#### **COURSE OUTCOMES (COs):** At the end of the course, students are able to

| CO 1 | Summarize the basic concepts of signals, systems and their properties (Understand - L2)        |
|------|------------------------------------------------------------------------------------------------|
| CO 2 | Examine the operations on signals and approximate using orthogonal functions.(Apply – L3)      |
| CO 3 | Apply the concept of impulse response to analyze the linear timeinvariant systems              |
|      | (Apply – L3)                                                                                   |
| CO 4 | Analyze continuous time periodic and aperiodic signals using Fourier series, Fourier transform |
|      | and Laplace transforms (Analyze – L4)                                                          |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs)

| -   | 1   | 1   | r   | 1   |     | · · · · · · · · · · · · · · · · · · · |     | r   | r   | 1    | r Ó  |      | ·    | 1    |      |
|-----|-----|-----|-----|-----|-----|---------------------------------------|-----|-----|-----|------|------|------|------|------|------|
| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6                                   | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1 | 2   | 1   | 1   | -   | -   | -                                     | -   | -   | -   | -    | -    | -    | -    | -    | 1    |
| CO2 | 2   | 1   | 1   | -   | -   | -                                     | -   | -   | -   | -    | -    | -    | 1    | -    | 2    |
| CO3 | 3   | 1   | 1   | 1   | -   | -                                     | -   | -   | -   | -    | -    | 1    | -    | -    | 2    |
| CO4 | 3   | 2   | 1   | 1   | -   | -                                     | -   | -   | -   | -    | -    | 2    | 2    | -    | 3    |

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-' **TEXT BOOKS:** 

T1: AV Oppenheim, AS Wilsky and IT Young, Signals and Systems, PHI/Pearson publishers, 2<sup>nd</sup> Edition. **T2:** B P Lathi, Signals, Systems and Communications, BSP, 2003, 3<sup>rd</sup> Edition.

#### **REFERENCE BOOKS:**

R1: Simon Haykin, Signals and Systems, John Wiley, 2004

R2: P. Ramesh Babu, R.Ananda Natarajan "Signals and Systems", Scitech Publications, 2nd edition, 2006.

# <u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN): Section - B <u>UNIT-I: Signal Analysis</u>

| S.No.  | Topic/s                                                                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to the course                                                                                           | 1                             | 08.08.2023                         |                                 |                                 |                       |
| 2.     | Course Objective and Outcomes, POs,<br>PSOs and Mapping with COs                                                     | 1                             | 09.08.2023                         |                                 |                                 |                       |
| 3.     | Concept of signal and Classification of<br>Signals-Continuous Time and Analog,<br>Discrete Time and Digital Signals. | 1                             | 10.08.2023                         |                                 |                                 |                       |
| 4.     | Representation of Signals- Impulse, Unit Step, Unit Ramp, Signum.                                                    | 1                             | 16.08.2023                         |                                 |                                 |                       |
| 5.     | Decaying, Raising and Double<br>Exponential, Gate and Rectangular, Sinc<br>and Sampling Signals                      | 1                             | 17.08.2023                         |                                 |                                 |                       |
| 6.     | Operations on Signals– Time Shifting,<br>Time Scaling and Time Reversal<br>(Folding),Amplitude Scaling               | 1                             | 19.08.2023                         |                                 |                                 |                       |
| 7.     | Convolution; Graphical Method of Convolution                                                                         | 1                             | 22.08.2023                         |                                 |                                 |                       |
| 8.     | Properties of Signals- Even and Odd,<br>Causal and Non Causal, Bounded and<br>Unbounded                              | 1                             | 23.08.2023                         |                                 |                                 |                       |
| 9.     | Properties of Signals -Periodic and<br>Aperiodic, Energy and Power,<br>Deterministic and Random Signals              | 1                             | 24.08.2023                         |                                 |                                 |                       |
| 10.    | Problems on Time shifting, Time scaling,<br>Time Reversal, Amplitude Scaling.                                        | 1                             | 26.08.2023                         |                                 |                                 |                       |
| 11.    | Problems on Convolution                                                                                              | 1                             | 29.08.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                                                                  | 11                            | No. e                              | of classes tak                  | en                              |                       |

## **UNIT-II: Signal Approximation and Fourier Series**

| S.No.  | Topic/s                                                                                                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Approximation of a Signal by another signal-Mean square error                                                                                          | 1                             | 30.08.2023                         |                                 |                                 |                       |
| 2.     | Condition for orthogonal signals,<br>Approximation of a Signal by a set of<br>mutually orthogonal signals                                              | 1                             | 31.08.2023                         |                                 |                                 |                       |
| 3.     | Evaluation of Mean square error, Gibbs<br>Phenomena                                                                                                    | 1                             | 02.09.2023                         |                                 |                                 |                       |
| 4.     | Orthogonality in complex signals-<br>Approximation of a complex signal by<br>another complex signal & a set of mutually<br>orthogonal complex signals. | 1                             | 05.09.2023                         |                                 |                                 |                       |
| 5.     | Fourier Series- Dirichlet Conditions and<br>Trigonometric Fourier Series (TFS)                                                                         | 1                             | 07.09.2023                         |                                 |                                 |                       |
| 6.     | Exponential Fourier Series (EFS)                                                                                                                       | 1                             | 12.09.2023                         |                                 |                                 |                       |
| 7.     | Relations among coefficients of TFS and EFS                                                                                                            | 1                             | 13.09.2023                         |                                 |                                 |                       |
| 8.     | Representation of Periodic signal by<br>Fourier series over the entire interval                                                                        | 1                             | 14.09.2023                         |                                 |                                 |                       |
| 9.     | Symmetry conditions of Fourier Series                                                                                                                  | 1                             | 16.09.2023                         |                                 |                                 |                       |
| 10.    | Parseval's Theorem                                                                                                                                     | 1                             | 19.09.2023                         |                                 |                                 |                       |
| 11.    | Problems on Fourier Series                                                                                                                             | 1                             | 20.09.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-II                                                                                                                   | 11                            | No.                                | of classes tak                  | ken                             |                       |

| S.No.  | Topic/s                                                                                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Representation of aperiodic signal by<br>Fourier Transform and it's need                                                 | 1                             | 21.09.2023                         | -                               |                                 |                       |
| 2.     | Deriving Fourier Transform from Fourier<br>Series, Convergence of Fourier Transform-<br>Dirichlet Conditions             | 1                             | 23.09.2023                         |                                 |                                 |                       |
| 3.     | Properties of Fourier Transform                                                                                          | 1                             | 26.09.2023                         |                                 |                                 |                       |
| 4.     | Properties of Fourier Transform                                                                                          | 1                             | 27.09.2023                         |                                 |                                 |                       |
| 5.     | Fourier Transform of Various Classes of<br>Signals - Problems                                                            | 1                             | 30.09.2023                         |                                 |                                 |                       |
| 6.     | Fourier Transform of Various Classes of<br>Signals - Problems                                                            | 1                             | 10.10.2023                         |                                 |                                 |                       |
| 7.     | Fourier Transform of Periodic Signal                                                                                     | 1                             | 11.10.2023                         |                                 |                                 |                       |
| 8.     | Sampling Theorem                                                                                                         | 1                             | 12.10.2023                         |                                 |                                 |                       |
| 9.     | Types of sampling-Ideal sampling, flat<br>top sampling, natural sampling<br>Reconstruction of signal from its<br>samples | 1                             | 17.10.2023                         |                                 |                                 |                       |
| 10.    | Effect of under sampling- Aliasing,<br>Difference between low pass sampling<br>and band pass sampling                    | 1                             | 18.10.2023                         |                                 |                                 |                       |
| 11.    | Problem on Fourier Transform of periodic<br>Signals                                                                      | 1                             | 19.10.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-III                                                                                    | 11                            | No. (                              | of classes tak                  | ken                             |                       |

## **UNIT-III: Fourier Transform and Sampling Theorem**

#### UNIT-IV: Signal Transmission Through Linear Systems

| S.No.                                       | Topic/s                                                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.                                          | System Definition and Classification                                                                  | 1                             | 21.10.2023                         |                                 |                                 |                       |
| 2.                                          | Properties of Systems: Linear and Non<br>Linear, Time Invariant and Variant, Causal<br>and Non Causal | 1                             | 24.10.2023                         |                                 |                                 |                       |
| 3.                                          | Properties of Systems : Stable and<br>Unstable, Static and Dynamic, Invertible<br>and Non-invertible  | 1                             | 25.10.2023                         |                                 |                                 |                       |
| 4.                                          | Time and Frequency Analysis of LTI<br>System                                                          | 1                             | 26.10.2023                         |                                 |                                 |                       |
| 5.                                          | Problems                                                                                              | 1                             | 28.10.2023                         |                                 |                                 |                       |
| 6.                                          | System Bandwidth and Rise Time                                                                        | 1                             | 31.10.2023                         |                                 |                                 |                       |
| 7.                                          | Distortion less Transmission through a System                                                         | 1                             | 01.11.2023                         |                                 |                                 |                       |
| 8.                                          | Problems on Properties of systems                                                                     | 1                             | 02.11.2023                         |                                 |                                 |                       |
| 9.                                          | Ideal and Practical Characteristics of LPF,<br>HPF, BPF & BSF                                         | 1                             | 04.11.2023                         |                                 |                                 |                       |
| 10.                                         | Physically Realizable Systems and Poly-<br>Wiener Criterion                                           | 1                             | 07.11.2023                         |                                 |                                 |                       |
| 11.                                         | Problems                                                                                              | 1                             | 08.11.2023                         |                                 |                                 |                       |
| No. of classes required to complete UNIT-IV |                                                                                                       | 11                            | No. (                              | of classes tak                  | ken                             |                       |

## **UNIT-V: Laplace Transforms**

| S.No.  | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Concept of Laplace Transform                                                                     | 1                             | 09.11.2023                         |                                 |                                 |                       |
| 2.     | Relation between Laplace and Fourier<br>Transforms, Existence of Laplace<br>Transform            | 1                             | 14.11.2023                         |                                 |                                 |                       |
| 3.     | Laplace Transform of Various Classes of Signals                                                  | 1                             | 15.11.2023                         |                                 |                                 |                       |
| 4.     | Region of Convergence (ROC) and its Properties                                                   | 1                             | 16.11.2023                         |                                 |                                 |                       |
| 5.     | Problems on Laplace Transform and ROC                                                            | 1                             | 18.11.2023                         |                                 |                                 |                       |
| 6.     | Properties of Laplace Transform                                                                  | 1                             | 21.11.2023                         |                                 |                                 |                       |
| 7.     | Properties of Laplace Transform                                                                  | 1                             | 22.11.2023                         |                                 |                                 |                       |
| 8.     | Inverse Laplace Transform using Partial<br>Fractions Method                                      | 1                             | 23.11.2023                         |                                 |                                 |                       |
| 9.     | Applications of Laplace Transform:<br>Causality of a System, Stability of a<br>System & Problems | 1                             | 25.11.2023                         |                                 |                                 |                       |
| 10.    | Solving of Differential Equations and<br>Analysis of RLC Circuits & Problems                     | 1                             | 28.11.2023                         |                                 |                                 |                       |
| 11.    | Problems                                                                                         | 1                             | 29.11.2023                         |                                 |                                 |                       |
| No. of | No. of classes required to complete UNIT-V                                                       |                               | No. (                              | of classes tak                  | ken                             |                       |

## **Contents beyond the Syllabus**

| S.No. | Topic/s                             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to 2D & 3D Signals     | 1                             | 30.11.2023                         |                                 |                                 |                       |
| 2.    | Convolution operation on 2D Signals | 1                             | 02.12.2023                         |                                 |                                 |                       |

## **Teaching Learning Methods**

| TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |
|------|----------------|------|---------------------------------|
| TLM2 | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |
| TLM3 | Tutorial       | TLM6 | Group Discussion/Project        |

# PART-C

## **EVALUATION PROCESS:**

| Evaluation Task                                                                 | Marks |  |  |  |  |  |
|---------------------------------------------------------------------------------|-------|--|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                    |       |  |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))       |       |  |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))              | Q1=10 |  |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)               | A2=5  |  |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | M2=15 |  |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)         |       |  |  |  |  |  |
| Cumulative Internal Examination (CIE) =                                         |       |  |  |  |  |  |
| 80% of Max((M1+Q1+A1), (M2+Q2+A2))+                                             | 30    |  |  |  |  |  |
| 20% of Min((M1+Q1+A1), (M2+Q2+A2))                                              |       |  |  |  |  |  |
| Semester End Examination (SEE)                                                  |       |  |  |  |  |  |
| (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)                              | /0    |  |  |  |  |  |
| Total Marks = $CIE + SEE$                                                       | 100   |  |  |  |  |  |

## PART-D

| <b>PROGR</b> | AMME OUTCOMES (POs):                                                                                                                                                                           |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1:        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                                |
|              | fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                               |
| PO 2:        | Problem analysis: Identify, formulate, review research literature, and analyze complex                                                                                                         |
|              | engineering problems reaching substantiated conclusions using first principles of mathematics,                                                                                                 |
|              | natural sciences, and engineering sciences.                                                                                                                                                    |
| PO 3:        | Design/development of solutions: Design solutions for complex engineering problems and                                                                                                         |
|              | design system components or processes that meet the specified needs with appropriate                                                                                                           |
|              | consideration for the public health and safety, and the cultural, societal, and environmental                                                                                                  |
|              | considerations.                                                                                                                                                                                |
| PO 4:        | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and intermetation of data, and surthasis of the |
|              | information to provide valid conclusions                                                                                                                                                       |
| PO 5.        | Modern tool usage: Create select and apply appropriate techniques resources and modern                                                                                                         |
| 105.         | engineering and IT tools including prediction and modelling to complex engineering activities                                                                                                  |
|              | with an understanding of the limitations                                                                                                                                                       |
| PO 6:        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                                                                                       |
|              | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the                                                                                        |
|              | professional engineering practice                                                                                                                                                              |
| PO 7:        | Environment and sustainability: Understand the impact of the professional engineering                                                                                                          |
|              | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for                                                                                               |
|              | sustainable development.                                                                                                                                                                       |
| PO 8:        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms                                                                                              |
|              | of the engineering practice.                                                                                                                                                                   |
| PO 9:        | Individual and team work: Function effectively as an individual, and as a member or leader in                                                                                                  |
| <b>DO 10</b> | diverse teams, and in multidisciplinary settings.                                                                                                                                              |
| PO 10:       | <b>Communication</b> : Communicate effectively on complex engineering activities with the                                                                                                      |
|              | engineering community and with society at large, such as, being able to comprehend and write                                                                                                   |
|              | clear instructions                                                                                                                                                                             |
| PO 11.       | Project management and finance: Demonstrate knowledge and understanding of the                                                                                                                 |
|              | engineering and management principles and apply these to one's own work as a member and                                                                                                        |
|              | leader in a team, to manage projects and in multidisciplinary environments                                                                                                                     |
| PO 12:       | <b>Life-long learning</b> : Recognize the need for and have the preparation and ability to engage in                                                                                           |
|              | independent and life-long learning in the broadest context of technological change.                                                                                                            |

#### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1:</b> | Communication: Design and develop modern communication technologies for building the           |
|---------------|------------------------------------------------------------------------------------------------|
|               | inter disciplinary skills to meet current and future needs of industry.                        |
| <b>PSO 2:</b> | VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or        |
|               | systems and Implement real time applications in the field of VLSI and Embedded Systems using   |
|               | relevant tools                                                                                 |
| <b>PSO 3:</b> | Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues |
|               | related to real time applications                                                              |

#### Date: 04.08.2023

| Course Instructor    | Course Coordinator | Module Coordinator | HOD              |
|----------------------|--------------------|--------------------|------------------|
| Mr. M K Linga Murthy | Mr. T Anil Raju    | Dr. G L N Murthy   | Dr. Y. Amar Babu |



## **COURSE HANDOUT**

# PART-A:

| Name of Course Instructor | : Dr. B. Ramesh Reddy                                |
|---------------------------|------------------------------------------------------|
| Course Name & Code        | : Random Variables and Stochastic Processes - 20EC05 |
| L-T-P-Cr Structure        | : 3-0-0-3                                            |
| Program/Sem/Sec           | : B.Tech., ECE., III-Sem., Section - B               |

Pre-Requisites: Probability Theory, Basics of Differentiation and Integration.

**Course Objective:** This course provides the knowledge on random variables and their statistical behavior. It also provides the complete information about temporal and spectral characteristics of random processes. The course also provides the information about evaluation of system response to random inputs and Noise characteristics.

#### Course Outcomes (COs): At the end of the course, students are able to

| COL | Summarize the concepts of random variables, random processes and noise.                |
|-----|----------------------------------------------------------------------------------------|
| COI | (Understand-L2)                                                                        |
| CO2 | Use the mathematical concepts of random variables and random processes for determining |
| 02  | statistical parameters and spectral characteristics (Apply-L3)                         |
| CO3 | Analyze the behavior of random variables and random processes using distribution and   |
|     | density functions (Analyze-L4)                                                         |
| COA | Apply the knowledge of random variables and stochastic processes for analyzing the     |
| CO4 | system behavior (Apply-L3)                                                             |

| COa | PO | PSO | PSO | PSO |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COS | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO1 | 3  | 2  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1   | -   | -   |
| CO2 | 3  | 2  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | 2   | -   | -   |
| CO3 | 3  | 2  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | 1   | -   | -   |
| CO4 | 3  | 3  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | -   | -   | 3   |

#### **Course Articulation Matrix (Correlation between COs & POs, PSOs):**

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1-Slight(Low),2-Moderate(Medium),3-Substantial (High).

#### **TEXT BOOK(S):**

- **T1 Peyton Z. Peebles, Jr**, "Probability, Random Variables and Random Signal Principles", Tata Mc Graw-Hill, 4<sup>th</sup> edition, New Delhi.
- **T2 Y.Mallikarjuna Reddy,** "Probability Theory and Stochastic Processes", Universities Press(India) Pvt. Ltd., 2010.

| S.No.  | Topic/s                                                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to RVSP Course                                                   | 1                             | 07-08-23                           |                                 |                                 |                       |
| 2.     | Introduction to UNIT-I                                                        | 1                             | 09-08-23                           |                                 |                                 |                       |
| 3.     | Concept of Probability                                                        | 1                             | 10-08-23                           |                                 |                                 |                       |
| 4.     | Concept of Random Variable, Conditions for a function to be a Random Variable | 1                             | 11-08-23                           |                                 |                                 |                       |
| 5.     | Classification of Random Variable                                             | 1                             | 14-08-23                           |                                 |                                 |                       |
| 6.     | Cumulative Distribution Function (CDF) and Properties                         | 1                             | 16-08-23                           |                                 |                                 |                       |
| 7.     | Probability Density Function (PDF) and Properties                             | 1                             | 17-08-23                           |                                 |                                 |                       |
| 8.     | Pre-Defined Distributions                                                     | 1                             | 18-08-23                           |                                 |                                 |                       |
| 9.     | Pre-Defined Distributions                                                     | 1                             | 21-08-23                           |                                 |                                 |                       |
| 10.    | Expectation, Moments and Central Moments                                      | 1                             | 23-08-23                           |                                 |                                 |                       |
| 11.    | Characteristic Function with Properties                                       | 1                             | 24-08-23                           |                                 |                                 |                       |
| 12.    | Moment Generating Function with<br>Properties                                 | 1                             | 25-08-23                           |                                 |                                 |                       |
| 13.    | Problem Solving Session                                                       | 1                             | 28-08-23                           |                                 |                                 |                       |
| 14.    | Problem Solving Session                                                       | 1                             | 30-08-23                           |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                           | 14                            | No.                                | of classes tak                  | en                              |                       |

## **UNIT-I: Random Variables, Operations on One Random Variable**

## **UNIT-II: Multiple Random Variables, Operations on Multiple Random Variables**

| S.No.  | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 15.    | Introduction to UNIT-II                                                                          | 1                             | 31-08-23                           |                                 |                                 |                       |
| 16.    | Joint Distribution Function and<br>Properties, Marginal Distribution<br>Function                 | 1                             | 01-09-23                           |                                 |                                 |                       |
| 17.    | Joint Density Function and Properties,<br>Marginal Density Function                              | 1                             | 04-09-23                           |                                 |                                 |                       |
| 18.    | Statistical Independence                                                                         | 1                             | 07-09-23                           |                                 |                                 |                       |
| 19.    | Distribution and Density of Sum of Random Variables                                              | 1                             | 08-09-23                           |                                 |                                 |                       |
| 20.    | Central Limit Theorem                                                                            | 1                             | 11-09-23                           |                                 |                                 |                       |
| 21.    | Expected Value of Function of Random<br>Variables, Joint Moment about the Origin,<br>Correlation | 1                             | 13-09-23                           |                                 |                                 |                       |
| 22.    | Joint Central Moment, Covariance and<br>Correlation Coefficient                                  | 1                             | 14-09-23                           |                                 |                                 |                       |
| 23.    | Problem Solving Session                                                                          | 1                             | 15-09-23                           |                                 |                                 |                       |
| 24.    | Problem Solving Session                                                                          | 1                             | 20-09-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-II                                                           | 10                            | No.                                | of classes tak                  | en                              |                       |

| S.No. | Topic/s                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.   | Introduction to UNIT-III                                                   | 1                             | 21-09-23                           |                                 |                                 |                       |
| 26.   | Concept of Stochastic Processes,<br>Classification of Stochastic Processes | 1                             | 22-09-23                           |                                 |                                 |                       |
| 27.   | Distribution and Density of Stochastic<br>Processes                        | 1                             | 25-09-23                           |                                 |                                 |                       |
| 28.   | Stationary Stochastic Processes                                            | 1                             | 27-09-23                           |                                 |                                 |                       |
| 29.   | Problem Solving Session                                                    | 1                             | 29-09-23                           |                                 |                                 |                       |
| 30.   | Time Averages and Ergodicity                                               | 1                             | 09-10-23                           |                                 |                                 |                       |
| 31.   | Correlation Functions- ACF & Properties                                    | 1                             | 11-10-23                           |                                 |                                 |                       |
| 32.   | Correlation Functions- CCF & Properties                                    | 1                             | 12-10-23                           |                                 |                                 |                       |
| 33.   | Covariance Functions-Autocovariance<br>and Cross-covariance Functions      | 1                             | 13-10-23                           |                                 |                                 |                       |
| 34.   | Problem Solving Session                                                    | 1                             | 16-10-23                           |                                 |                                 |                       |
| 35.   | Problem Solving Session                                                    | 1                             | 18-10-23                           |                                 |                                 |                       |
| 36.   | Problem Solving Session                                                    | 1                             | 19-10-23                           |                                 |                                 |                       |
| ]     | No. of classes required to complete UNIT                                   | Γ-III                         | 12                                 | No. of clas                     | ses taken                       |                       |

#### **UNIT-III: Stochastic Processes-Temporal Characteristics**

## **UNIT-IV: Stochastic Processes-Spectral Characteristics**

| S.No.  | Topic/s                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 37.    | Introduction to UNIT-IV                                     | 1                             | 20-10-23                           |                                 |                                 |                       |
| 38.    | Power Spectral Density and Properties                       | 1                             | 25-10-23                           |                                 |                                 |                       |
| 39.    | Relation between CCF & CPSD -<br>Wiener-Khintchine Relation | 1                             | 26-10-23                           |                                 |                                 |                       |
| 40.    | Cross Power Spectral Density and Properties                 | 1                             | 27-10-23                           |                                 |                                 |                       |
| 41.    | Relation between CCF & CPSD                                 | 1                             | 30-10-23                           |                                 |                                 |                       |
| 42.    | Relation between CCF and CPSD                               | 1                             | 01-11-23                           |                                 |                                 |                       |
| 43.    | Problem Solving Session                                     | 1                             | 02-11-23                           |                                 |                                 |                       |
| 44.    | Problem Solving Session                                     | 1                             | 03-11-23                           |                                 |                                 |                       |
| 45.    | Problem Solving Session                                     | 1                             | 06-11-23                           |                                 |                                 |                       |
| 46.    | Problem Solving Session                                     | 1                             | 08-11-23                           |                                 |                                 |                       |
| 47.    | Problem Solving Session                                     | 1                             | 09-11-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-IV                      |                               | 11                                 | No. of class                    | es taken                        |                       |

| S.No. | Topic/s                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 48.   | Introduction to UNIT-V                                                 | 1                             | 10-11-23                           |                                 |                                 |                       |
| 49.   | Response of a Linear System                                            | 1                             | 13-11-23                           |                                 |                                 |                       |
| 50.   | Mean value of System Response, Mean<br>Square value of System Response | 1                             | 15-11-23                           |                                 |                                 |                       |
| 51.   | ACF of Response, CCF of input and output                               | 1                             | 16-11-23                           |                                 |                                 |                       |
| 52.   | Relation b/n ACF of Response, and CCF of input and output              | 1                             | 17-11-23                           |                                 |                                 |                       |
| 53.   | PSD of Response, CPSD of input and output                              | 1                             | 20-11-23                           |                                 |                                 |                       |
| 54.   | Problem Solving Session                                                | 1                             | 22-11-23                           |                                 |                                 |                       |
| 55.   | Definition of Noise, and Classification                                | 1                             | 23-11-23                           |                                 |                                 |                       |
| 56.   | Modeling of Noise Sources                                              | 1                             | 24-11-23                           |                                 |                                 |                       |
| 57.   | Available Power Gain and Noise Figure                                  | 1                             | 27-11-23                           |                                 |                                 |                       |
| 58.   | Problem Solving Session                                                | 1                             | 29-11-23                           |                                 |                                 |                       |
| No. o | f classes required to complete UNIT-V                                  | 11                            | No.                                | of classes take                 | en                              |                       |

## **UNIT-V: Linear Systems with Random Inputs, Noise**

## **Contents beyond the Syllabus**

| S.No. | Topic/s                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 59.   | Stochastic Signal Processing (SSP) | 1                             | 30-11-23                           |                                 |                                 |                       |
| 60.   | Applications of SSP                | 1                             | 01-12-23                           |                                 |                                 |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |

# **PART-C: EVALUATION PROCESS:**

| Evaluation Task                                                                                                       | Marks |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                                                          | A1=5  |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                             |       |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                                    |       |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                                                     | A2=5  |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                       |       |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                               | Q2=10 |  |  |  |  |
| Cumulative Internal Examination (CIE) = $80\%$ of Max((M1+Q1+A1), (M2+Q2+A2)) + $20\%$ of Min((M1+Q1+A1), (M2+Q2+A2)) | 30    |  |  |  |  |
| Semester End Examination (SEE) (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)                                     |       |  |  |  |  |
| Total Marks = CIE + SEE                                                                                               | 100   |  |  |  |  |

#### PART-D: ROGRAMME OUTCOMES (POs) & PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PSO 1:** Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- **PSO 2:** VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and implement real time applications in the field of VLSI and Embedded Systems using relevant tools
- **PSO 3:** Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

| Date       | Dr. B. Ramesh Reddy                       | Dr. G L N Murthy   | Dr. Y. Amar Babu |
|------------|-------------------------------------------|--------------------|------------------|
| 07.08.2023 | Course Instructor &<br>Course Coordinator | Module Coordinator | HOD              |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

# **COURSE HANDOUT**

## PART-A

Name of Course Instructor: D. Anil Kumar

Course Name & Code L-T-P Structure Program/Sem/Sec : DATA STRUCTURES LAB & 20CS53 : 0-0-3 : B.Tech/III sem-ECE /B-Sec.

**Credits:** 1.5 **A.Y.:** 2022-23

PREREQUISITE: C Programming Language

#### **COURSE OBJECTIVE:**

The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques **COURSE OUTCOMES (CO)**:

CO1: Implement Linear Data Structures using array and Linked list. (Apply - L3)

CO2: Implement Various Sorting Techniques. (Apply - L3)

CO3: : Implement Non-Linear Data Structure such as Trees & Graphs. (Apply - L3)

**CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

#### COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):

| Cos | PO<br>1 | PO<br>2 | PO<br>3 | РО<br>4 | РО<br>5 | PO<br>6 | РО<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| CO1 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO2 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO3 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO4 |         |         |         |         |         |         |         | 2       | 2       | 2        |          |          |          |          |          |

Note: 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High)

## PART-B:

## **COURSE DELIVERY PLAN (LESSON PLAN):**

| S.<br>No. | Topics to be<br>covered                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion                   | Actual<br>Date of<br>Completion | HOD<br>Sign |
|-----------|----------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------|-------------|
|           | Introduction                                             |                               |                                                      |                                 |             |
| 1.        | &                                                        | 3                             | 12-08-2023                                           |                                 |             |
| 2.        | List using Arrays<br>Linked List<br>Programs             | 12                            | 12-08-2023<br>19-08-2023<br>26-08-2023<br>02-09-2023 |                                 |             |
| 3.        | Stack, Queue Using<br>Arrays, Linked List                | 6                             | 09-09-2023<br>16-09-2023                             |                                 |             |
| 4.        | Infix to Postfix,<br>Evaluation of Postfix<br>Expression | 3                             | 23-09-2023                                           |                                 |             |
| 5.        | Circular Queue<br>Double Ended<br>Queue                  | 3                             | 30-09-2023                                           |                                 |             |
| 6.        | Bubble sort<br>Selection sort<br>Insertion sort          | 3                             | 14-10-2023                                           |                                 |             |
| 7.        | Merge sort<br>Quick sort                                 | 3                             | 28-10-2023                                           |                                 |             |
| 8.        | Heap sort<br>Binary Tree                                 | 3                             | 04-11-2023                                           |                                 |             |
| 9.        | Binary Search Tree                                       | 3                             | 11-11-2023                                           |                                 |             |
| 10.       | BFS,DFS                                                  | 3                             | 18-11-2023                                           |                                 |             |
| 11.       | Lab Internal Exam                                        | 3                             | 25-11-2023                                           |                                 |             |

# PART-C

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         |

| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

## **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |
| PSO 3 | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator   | Head of the Department |
|------------------------|-------------------|--------------------|-------------------------|------------------------|
| Name of the<br>Faculty | Mr. D Anil kumar  | Mr. D. Anil kumar  | Dr. K Naga<br>Prasanthi | Dr. D. Veeriah         |
| Signature              |                   |                    |                         |                        |


## **COURSE HANDOUT**

### PART-A

Name of Course Instructor:Dr B V N R Siva KumarCourse Name & Code: ACD Lab-20EC53L-T-P Structure: 0-0-2Program/Sem/Sec: B. Tech. III-Sem., ECE B Sec

**Regulation**: R20 **Credits:** 1 **A.Y.:** 2023-24

**PREREQUISITE:** Fundamentals of Electronic Devices

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides the practical exposure on designing of different single stage and multistage stage amplifiers, effect of capacitances on frequency response, analysis of power and feedback amplifiers.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| C01        | Demonstrate the characteristics of Amplifiers, Oscillators, feedback amplifiers, and            |
|------------|-------------------------------------------------------------------------------------------------|
|            | Multivibrators.                                                                                 |
| CO2        | Apply the knowledge of capacitances on frequency response, Timer circuits and its applications  |
| CO3        | <b>Design</b> of feedback amplifiers, Power amplifiers and waveform generators using Electronic |
|            | devices and components.                                                                         |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing skills                           |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01 | 2   | 1   | -     | -   | -   | -   | -     | -   | -   | -    | -    | -      | -    | 1    | -    |
| CO2 | 3   | 1   | 1     | -   | -   | -   | -     | -   | -   | -    | -    | -      | -    | 1    | -    |
| CO3 | 1   | 1   | 1     | 2   | -   | -   | -     | -   | -   | -    | -    | 1      | -    | 2    | -    |
| CO4 | -   | -   | -     | -   | -   | -   | -     | -   | 3   | 2    | -    | -      | -    | 3    | -    |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

#### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

## PART-B

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I – TUES DAY

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|-------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.        | Demo on Lab Experiments                                                                                     | 3                             | 08-08-2023                         |                                 |                                 |                       |  |
| 2.        | Determination of Gain and<br>Bandwidth of CE amplifier from<br>frequency response.                          | 3                             | 22-08-2023                         |                                 |                                 |                       |  |
| 3.        | Determination of Gain and<br>Bandwidth of CS FET amplifier from<br>frequency response.                      | 3                             | 29-08-2023                         |                                 |                                 |                       |  |
| 4.        | Design of two stage RC Coupled amplifier.                                                                   | 3                             | 12-09-2023                         |                                 |                                 |                       |  |
| 5.        | Design of Transistorized Current<br>series Feedback amplifier for<br>Bandwidth improvement                  | 3                             | 19-09-2023                         |                                 |                                 |                       |  |
| 6.        | Analysis of Stabilization of Gain of<br>Transistorized Voltage series<br>Feedback amplifier.                | 3                             | 26-09-2023                         |                                 |                                 |                       |  |
| 7.        | Analysis of Stabilization of Gain of<br>Transistorized Current shunt<br>Feedback amplifier                  | 3                             | 10-10-2023                         |                                 |                                 |                       |  |
| 8.        | Design and Realization of<br>Transistorized RC Phase shift<br>Oscillator to generate a sinusoidal<br>signal | 3                             | 17-10-2023                         |                                 |                                 |                       |  |
| 9.        | Design and Realization of<br>Transistorized Colpitts Oscillator to<br>generate a sinusoidal signal          | 3                             | 24-10-2023                         |                                 |                                 |                       |  |
| 10.       | Design and Realization of Low pass filter using RC networks.                                                | 3                             | 31-10-2023                         |                                 |                                 |                       |  |
| 11.       | Design and Realization of High Pass filter using RC networks.                                               | 3                             | 07-11-2023                         |                                 |                                 |                       |  |
| 12.       | Verification of conduction                                                                                  |                               |                                    |                                 |                                 |                       |  |
|           | angles of power<br>amplifiers <b>(Experiment</b>                                                            | 3                             | 14-11-2023                         |                                 |                                 |                       |  |
|           | beyond syllabus)                                                                                            |                               |                                    |                                 |                                 |                       |  |
| 13.       | Revision Lab                                                                                                | 3                             | 21-11-2023                         |                                 |                                 | ]                     |  |
| 14.       | Internal Lab Examination                                                                                    | 3                             | 28-11-2023                         |                                 |                                 |                       |  |
| No.       | No. of classes required to complete : 42 No. of classes taken:                                              |                               |                                    |                                 |                                 |                       |  |

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II- FRI DAY

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Demo on Lab Experiments                                                                                     | 3                             | 11-08-2023                         |                                 |                                 |                       |
| 2.        | Determination of Gain and<br>Bandwidth of CE amplifier from<br>frequency response                           | 3                             | 18-08-2023                         |                                 |                                 |                       |
| 3.        | Determination of Gain and<br>Bandwidth of CS FET amplifier<br>from frequency response                       | 3                             | 01-09-2023                         |                                 |                                 |                       |
| 4.        | Design of two stage RC Coupled amplifier                                                                    | 3                             | 08-09-2023                         |                                 |                                 |                       |
| 5.        | Design of Transistorized<br>Current series Feedback<br>amplifier for Bandwidth<br>improvement               | 3                             | 15-09-2023                         |                                 |                                 |                       |
| 6.        | Analysis of Stabilization of Gain<br>of Transistorized Voltage series<br>Feedback amplifier.                | 3                             | 22-09-2023                         |                                 |                                 |                       |
| 7.        | Analysis of Stabilization of Gain<br>of Transistorized Current shunt<br>Feedback amplifier                  | 3                             | 29-09-2023                         |                                 |                                 |                       |
| 8.        | Design and Realization of<br>Transistorized RC Phase shift<br>Oscillator to generate a<br>sinusoidal signal | 3                             | 13-10-2023                         |                                 |                                 |                       |
| 9.        | Design and Realization of<br>Transistorized Colpitts<br>Oscillator to generate a<br>sinusoidal signal       | 3                             | 20-10-2023                         |                                 |                                 |                       |
| 10.       | Design and Realization of Low pass filter using RC networks.                                                | 3                             | 27-10-2023                         |                                 |                                 |                       |
| 11.       | Design and Realization of High<br>Pass filter using RC networks.                                            | 3                             | 03-11-2023                         |                                 |                                 |                       |
| 12.       | Revision of Experiments                                                                                     | 3                             | 10-11-2023                         |                                 |                                 |                       |
| 13.       | Verification of conduction<br>angles of power<br>amplifiers <b>(Experiment beyond</b><br>syllabus)          | 3                             | 17-11-2023                         |                                 |                                 |                       |
| 14.       | Revision Lab                                                                                                | 3                             | 24-11-2023                         |                                 |                                 |                       |
| 15.       | Internal Lab Examination                                                                                    | 3                             | 02-12-2023                         |                                 |                                 |                       |
| No. o     | of classes required to complete :                                                                           | 45                            |                                    | No. of classes                  | taken:                          |                       |

| Teaching | Teaching Learning Methods |      |                                    |  |  |
|----------|---------------------------|------|------------------------------------|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |
| TLM2     | РРТ                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |
|          |                           |      |                                    |  |  |

### PART-C

### **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = $\mathbf{A}$                   | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                                | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                                | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                  | 1,2,3,4,5,6,7,8 | 50     |

### PART-D

### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| PEO 1        | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| PEO 2        | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

### **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                     |
|------|-----------------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of          |
|      | complex engineering problems                                                            |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze  |
|      | complex engineering problems reaching substantiated conclusions using first             |
|      | principles of mathematics, natural sciences, and engineering sciences                   |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering       |
|      | problems and design system components or processes that meet the specified              |
|      | needs with appropriate consideration for the public health and safety, and the          |
|      | cultural, societal, and environmental considerations                                    |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge        |
|      | and research methods including design of experiments, analysis and                      |
|      | interpretation of data, and synthesis of the information to provide valid               |
|      | conclusions                                                                             |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, |
|      | and modern engineering and IT tools including prediction and modelling to               |
|      | complex engineering activities with an understanding of the limitations                 |
| P0 6 | <b>The engineer and society</b> : Apply reasoning informed by the contextual            |
|      | knowledge to assess societal, health, safety, legal and cultural issues and the         |
|      | consequent responsibilities relevant to the professional engineering practice           |
| PO 7 | <b>Environment and sustainability</b> : Understand the impact of the professional       |

|       | engineering solutions in societal and environmental contexts, and demonstrate    |
|-------|----------------------------------------------------------------------------------|
|       | the knowledge of, and need for sustainable development                           |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and           |
|       | responsibilities and norms of the engineering practice                           |
| PO 9  | Individual and team work: Function effectively as an individual, and as a        |
|       | member or leader in diverse teams, and in multidisciplinary settings             |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities |
|       | with the engineering community and with society at large, such as, being able to |
|       | comprehend and write effective reports and design documentation, make            |
|       | effective presentations, and give and receive clear instructions                 |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding  |
|       | of the engineering and management principles and apply these to one's own        |
|       | work, as a member and leader in a team, to manage projects and in                |
|       | multidisciplinary environments                                                   |
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability |
|       | to engage in independent and life-long learning in the broadest context of       |
|       | technological change                                                             |

## PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |
|--------------|-------------------------------------------------------------------------------------|
|              | disciplinary skills to meet current and future needs of industry                    |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |
|              | relevant tools                                                                      |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |
|              | to real time applications                                                           |

#### Date: 05-08-2023

| Title                  | Course Instructor         | Course Coordinator | Module Coordinator | HOD              |
|------------------------|---------------------------|--------------------|--------------------|------------------|
| Name of<br>the Faculty | Dr. B V N R Siva<br>Kumar | Mr. G Venkata Rao  | Dr. G. Srinivasulu | Dr. Y. Amar Babu |
| Signature              |                           |                    |                    |                  |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF ECE**

### **COURSE HANDOUT**

### PART-A

Name of Course Instructor:Mr. K.V. Ashok/Dr. K. Ravi Kumar/Mrs. M. Ramya HarikaCourse Name & Code: DSD Lab-20EC54Regulation: R20L-T-P Structure: 1-0-2Credits: 2Program/Sem/Sec: B. Tech. III-Sem., ECE B SecA.Y.: 2023-24

#### **PREREQUISITE: Digital Electronics**

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides practical exposure in Xilinx compiler and in-built simulator to describe the simulation of digital circuits using Verilog HDL and explain Verilog HDL programs to generate test bench simulations.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1        | <b>Demonstrate</b> the functionality of logic gates using Verilog HDL simulator. (Understand-L2)                |
|------------|-----------------------------------------------------------------------------------------------------------------|
| CO2        | <b>Analyze</b> the behaviour of combinational and sequential circuits using Verilog HDL simulator. (Analyze-L4) |
| CO3        | Understand the functionality of memories using Verilog HDL simulator. (Understand-L2)                           |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing. (Apply-L3)                                      |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01 | P02 | P03   | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01 | 1   | 1   | 2     | 1   | 2   | -   | -     | -   | -   | -    | -    | 1      | -    | 2    | -    |
| CO2 | 3   | 2   | 3     | 2   | 3   | -   | -     | -   | -   | -    | -    | 2      | -    | 3    | -    |
| CO3 | 3   | 2   | 3     | 2   | 3   | -   | -     | -   | -   | -    | -    | 2      | -    | 3    | -    |
| CO4 | 3   | 2   | 2     | 1   | -   | -   | -     | -   | -   | -    | -    | 2      | -    | 2    | -    |
|     |     | 1   | - Low |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

#### TEXTBOOKS:

T1 John F. Wakerly, "Digital Design", Principles and Practices, Pearson education, 4th edition

**T2** T.R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", Wiley IEEE Press.

#### **REFERENCE BOOKS:**

**R1** Charles H. Roth Jr., "Digital System Design Using VHDL", PWS Publications, USA, Reprint 2002.

### PART-B

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 11/08/2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 18/08/2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders and subtractor.                      | 3                             | 25/08/2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 01/09/2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 08/09/2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 15/09/2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and<br>1X4 Demultiplexer – 74155.                | 6                             | 29/09/2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and<br>4X16 Demultiplexer –74154.               | 3                             | 13/10/2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 20/10/2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 03/11/2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip Flops             | 3                             | 10/11/2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 17/11/2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –<br>74194/195.                                  | 3                             | 24/11/2023                         |                                 | TLM4                            |                       |
| 14.       | Internal Examination                                                       | 3                             | 01/12/2023                         |                                 |                                 |                       |
| No. o     | of classes required to complete :                                          |                               | No. of classes                     | s taken:                        |                                 |                       |

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 08/08/2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 22/08/2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders and subtractor.                      | 3                             | 29/08/2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 05/09/2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 12/09/2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 19/09/2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and<br>1X4 Demultiplexer – 74155.                | 6                             | 10/10/2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and<br>4X16 Demultiplexer –74154.               | 3                             | 17/10/2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 24/10/2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 31/10/2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip Flops             | 3                             | 07/11/2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 14/11/2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –<br>74194/195.                                  | 3                             | 21/10/2023                         |                                 | TLM4                            |                       |
| 14.       | Internal Examination                                                       | 3                             | 28/10/2023                         |                                 |                                 |                       |
| No. o     | of classes required to complete :                                          |                               | No. of classes                     | s taken:                        |                                 |                       |

| S.<br>No. | Topics to be covered<br>(Experiment Name) | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weeklv |
|-----------|-------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
|           |                                           | -                             |                                    |                                 |                                 | V                     |
| 1.        | Design of 4-bit ALU                       | 3                             | 28/10/2023                         |                                 | TLM4                            |                       |

| Teaching Learning Methods |                |      |                                    |  |
|---------------------------|----------------|------|------------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |

### PART-C

#### **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = A                              | 1,2,3,4,5,6,7,8 | A=05   |
| Record $= \mathbf{B}$                            | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                                | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                  | 1,2,3,4,5,6,7,8 | 50     |

### PART-D

#### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

#### **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,            |  |  |  |  |
|------|--------------------------------------------------------------------------------|--|--|--|--|
|      | engineering fundamentals, and an engineering specialization to the solution of |  |  |  |  |
|      | complex engineering problems                                                   |  |  |  |  |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze |  |  |  |  |
|      | complex engineering problems reaching substantiated conclusions using first    |  |  |  |  |
|      | principles of mathematics, natural sciences, and engineering sciences          |  |  |  |  |

| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering       |
|-------|-----------------------------------------------------------------------------------------|
|       | problems and design system components or processes that meet the specified              |
|       | needs with appropriate consideration for the public health and safety, and the          |
|       | cultural, societal, and environmental considerations                                    |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge        |
|       | and research methods including design of experiments, analysis and                      |
|       | interpretation of data, and synthesis of the information to provide valid               |
|       | conclusions                                                                             |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, |
|       | and modern engineering and IT tools including prediction and modelling to               |
|       | complex engineering activities with an understanding of the limitations                 |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                    |
|       | Knowledge to assess societal, health, safety, legal and cultural issues and the         |
| PO 7  | Environment and sustainability. Understand the impact of the professional               |
| FU /  | engineering solutions in societal and environmental contexts, and demonstrate           |
|       | the knowledge of and need for sustainable development                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and          |
|       | responsibilities and norms of the engineering practice                                  |
| PO 9  | Individual and team work: Function effectively as an individual, and as a               |
|       | member or leader in diverse teams, and in multidisciplinary settings                    |
| PO 10 | Communication: Communicate effectively on complex engineering activities                |
|       | with the engineering community and with society at large, such as, being able to        |
|       | comprehend and write effective reports and design documentation, make                   |
|       | effective presentations, and give and receive clear instructions                        |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding         |
|       | of the engineering and management principles and apply these to one's own               |
|       | work, as a member and leader in a team, to manage projects and in                       |
| DO 12 | multidisciplinary environments                                                          |
| PU 12 | Life-iong learning: Recognize the need for, and have the preparation and ability        |
|       | to engage in independent and me-iong learning in the broadest context of                |
|       |                                                                                         |

## PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | disciplinary skills to meet current and future needs of industry                                                                                             |
| PSO 2        | Design and Analyze Analog and Digital Electronic Circuits or systems and<br>Implement real time applications in the field of VLSI and Embedded Systems using |
|              |                                                                                                                                                              |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related                                                                          |
|              | to real time applications                                                                                                                                    |

| Title                  | Course Instructor | Course Coordinator | Module Coordinator | HOD              |
|------------------------|-------------------|--------------------|--------------------|------------------|
| Name of<br>the Faculty | Mr.K.V.Ashok      | Dr. K. Ravi Kumar  | Dr. P. Lachi Reddy | Dr. Y. Amar Babu |
| Signature              |                   |                    |                    |                  |



## **COURSE HANDOUT**

### PART-A

Name of Course Instructors:Dr.G.L.N.Murthy/Dr.B.Rambabu/ Mr.T. Anil Raju/Mr.M.K.Linga MurthyCourse Name & Code:Signal Modeling and Analysis- 20ECS1Regulation:R20L-T-P Structure:1-0-2Credits:2Program/Sem/Sec:B.Tech., ECE., III-Sem., Section-BA.Y.:2023-24

**PREREQUISITE:** 

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

In this course, student will learn about basic signal modeling and analysis concepts like generations of signals using trigonometric function, solving linear equations and analyzing time function in frequency using MATLAB software.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Understand the programming concept of plotting trigonometric function, linear equations solutions in MATLAB |
|-----|-------------------------------------------------------------------------------------------------------------|
| CO2 | Analyze the time frequency relations of signals in MATLAB.                                                  |
| CO3 | Adapt effective communication, presentation and report writing.                                             |

| COs            | P01 | P02 | P03 | P04 | P05   | P06 | P07 | P08 | P09 | P010   | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|
| C01            | 1   | 1   | -   | 1   | 2     | -   | -   | -   | -   | -      | -    | 2    | -    | -    | -    |
| CO2            | 2   | 2   | 1   | -   | -     | -   | -   | -   | -   | -      | -    | 2    | -    | -    | 2    |
| CO3            | -   | -   | -   | 2   | -     | -   | -   | 1   | 2   | 3      |      | 1    | -    | -    | -    |
| <b>1</b> - Low |     |     |     | 2   | -Medi | ium |     |     | 3   | - High |      |      |      |      |      |

**COURSE ARTICULATION MATRIX**(Correlation between COs, POs & PSOs):

#### **TEXTBOOKS:**

- T1 Rudra Pratap., Getting started with MATLAB: A Quick Introduction for Scientists and Engineers
- **T2** B.P. Lathi., Principles of LINEAR SYSTEMS and SIGNALS, second edition, OXFORD University PRESS.

#### **REFERENCE BOOKS:**

**R1** Larry E. Knop .,Linear Algebra: A First Course with Applications.

### PART-A

#### **UNIT-1:MATLAB Basics**

| S.<br>No.                                                            | Topics to be covered                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.                                                                   | Introduction to MATLAB                               | 1                             | 07-08-23                           |                                 | TLM4                            |                       |
| 2.                                                                   | MATLAB windows                                       | 1                             | 07-08-23                           |                                 | TLM4                            |                       |
| 3.                                                                   | On-line help, File types,                            | 1                             | 07-08-23                           |                                 | TLM4                            |                       |
| 4.                                                                   | Input-output,Platform<br>dependence, General command | 1                             | 14-08-23                           |                                 | TLM4                            |                       |
| 5.                                                                   | Programming in MATLAB                                | 1                             | 14-08-23                           |                                 | TLM4                            |                       |
| 6.                                                                   | Script Files and Function Files                      | 1                             | 14-08-23                           |                                 | TLM4                            |                       |
| 7.                                                                   | Executing a function                                 | 1                             | 21-08-23                           |                                 | TLM4                            |                       |
| 8.                                                                   | Plotting Graphs.                                     | 1                             | 21-08-23                           |                                 | TLM4                            |                       |
| No. of classes required to complete UNIT-I: 08 No. of classes taken: |                                                      |                               |                                    |                                 |                                 | n:                    |

#### UNIT - II: Linear Algebra and Signal Operations

| S.<br>No. | Topics to be covered                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Solving a linear system                              | 1                             | 04-09-23                           |                                 | TLM1                            |                       |
| 2.        | Gaussian elimination,<br>Cramer's Rule               | 1                             | 11-09-23                           |                                 | TLM1                            |                       |
| 3.        | Finding Eigen values and eigenvectors,               | 1                             | 11-09-23                           |                                 | TLM1                            |                       |
| 4.        | Vector operations, Element-by-<br>element operations | 1                             | 18-09-23                           |                                 | TLM1                            |                       |
| 5.        | Continuous time signals, operations on signals       | 1                             | 25-09-23                           |                                 | TLM1                            |                       |
| 6.        | Convolution                                          | 1                             | 25-09-23                           |                                 | TLM1                            |                       |
| 7.        | Frequency analysis                                   | 1                             | 09-10-23                           |                                 | TLM1                            |                       |
| No.       | of classes required to complete                      | UNIT-I:07                     | ,                                  | No. of clas                     | sses take                       | n:                    |

### PART-B

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

| S.No. | Topics to be covered<br>(Experiment Name)                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1     | Introduction to MATLAB                                     | 1                             | 07-08-23                           |                                 | TLM4                            |                       |
| 2     | Generation of continuous time signals.                     | 1                             | 14-08-23                           |                                 | TLM4                            |                       |
| 3     | Product of signals                                         | 2                             | 21-08-23                           |                                 | TLM4                            |                       |
| 4     | Plot the family of curves of a function over a time over   | 4                             | 28-08-23                           |                                 | TLM4                            |                       |
| 5     | Solving linear equations using matrix inverse methods      | 3                             | 04-09-23                           |                                 | TLM4                            |                       |
| 6     | Solving linear equations using<br>Cramer's methods         | 2                             | 11-09-23                           |                                 | TLM4                            |                       |
| 7     | Compute Eigen values and<br>Eigen vectors of given matrix. | 3                             | 18-09-23                           |                                 | TLM4                            |                       |
| 8     | Basic operations on the signals.                           | 1                             | 25-09-23                           |                                 | TLM4                            |                       |
| 9     | Convolution of signals.                                    | 1                             | 25-09-23                           |                                 | TLM4                            |                       |

| 10    | Transformation of signals into time and frequency domains.                                                                 | 3 | 09-10-23 | TLM4 |  |
|-------|----------------------------------------------------------------------------------------------------------------------------|---|----------|------|--|
| 11    | Compute and plot the Fourier coefficients for the periodic signal given signal.                                            | 2 | 16-10-23 | TLM4 |  |
| 12    | Demonstrate the synthesis of<br>the square wave by<br>successively adding of the<br>Fourier components of given<br>signal. | 2 | 16-10-23 | TLM4 |  |
| 13    | Mini Project /Review                                                                                                       | 4 | 23-10-23 | TLM6 |  |
| 14    | Mini Project /Review                                                                                                       | 4 | 30-10-23 | TLM6 |  |
| 15    | Mini Project /Review                                                                                                       | 4 | 06-11-23 | TLM6 |  |
| 16    | Mini Project /Review                                                                                                       | 4 | 13-11-23 | TLM6 |  |
| 17    | Internal Evaluation                                                                                                        | 4 | 20-11-23 | TLM6 |  |
| 18    | Internal Evaluation                                                                                                        | 4 | 27-11-23 | TLM6 |  |
| No. o | No. of weeks required to complete:16 No. of Weeks taken:                                                                   |   |          |      |  |

| Teaching Learning Methods |                |      |                                    |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |

## PART-C

## **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task       | Expt. no's   | Marks |
|-----------------------|--------------|-------|
| Report=A              | Mini Project | A=10  |
| Quality of work=B     | Mini Project | B=10  |
| Presentation=C        | Mini Project | C=20  |
| Interaction/Queries=D | Mini Project | D=10  |
| Total=A+B+C+D         | Mini Project | 50    |

## PART-D

#### **PROGRAMME OUTCOMES (POs):**

| PO 1         | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | fundamentals, and an engineering specialization to the solution of complex engineering                                                                                    |
|              | problems                                                                                                                                                                  |
| PO 2         | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex                                                                            |
|              | engineering problems reaching substantiated conclusions using first principles of                                                                                         |
|              | mathematics, natural sciences, and engineering sciences                                                                                                                   |
| PO 3         | <b>Design/development of solutions</b> : Design solutions for complex engineering problems                                                                                |
|              | and design system components or processes that meet the specified needs with                                                                                              |
|              | appropriate consideration for the public health and safety, and the cultural, societal, and                                                                               |
| <b>DO 4</b>  | environmental considerations                                                                                                                                              |
| PO 4         | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and                                                                                      |
|              | research methods including design of experiments, analysis and interpretation of data,                                                                                    |
|              | and synthesis of the information to provide valid conclusions                                                                                                             |
| P0 5         | <b>Modern tool usage</b> : create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex |
|              | angineering activities with an understanding of the limitations                                                                                                           |
| <b>D</b> O 6 | The orgineer and society: Apply reasoning informed by the contextual knowledge to                                                                                         |
| FUU          | assess societal health safety legal and cultural issues and the consequent                                                                                                |
|              | responsibilities relevant to the professional engineering practice                                                                                                        |
| PO 7         | <b>Fnvironment and sustainability</b> : Understand the impact of the professional                                                                                         |
| 107          | engineering solutions in societal and environmental contexts, and demonstrate the                                                                                         |
|              | knowledge of, and need for sustainable development                                                                                                                        |
| P0 8         | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities                                                                           |
|              | and norms of the engineering practice                                                                                                                                     |
| PO 9         | <b>Individual and team work</b> : Function effectively as an individual, and as a member or                                                                               |
|              | leader in diverse teams, and in multidisciplinary settings                                                                                                                |
| PO 10        | <b>Communication</b> : Communicate effectively on complex engineering activities with the                                                                                 |
|              | engineering community and with society at large, such as, being able to comprehend and                                                                                    |
|              | write effective reports and design documentation, make effective presentations, and give                                                                                  |
|              | and receive clear instructions                                                                                                                                            |
| PO 11        | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the                                                                                    |
|              | engineering and management principles and apply these to one's own work, as a                                                                                             |
|              | member and leader in a team, to manage projects and in multidisciplinary environments                                                                                     |
| PO 12        | Life-long learning: Recognize the need for, and have the preparation and ability to                                                                                       |
|              | engage in independent and life-long learning in the broadest context of technological                                                                                     |
|              | change                                                                                                                                                                    |
| PROGRA       | MME SPECIFIC OUTCOMES (PSOs):                                                                                                                                             |
| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter                                                                                               |
|              | disciplinary skills to meet current and future needs of industry                                                                                                          |

|              | alsolphilary skills to meet carrent and ratare needs of madstry                     |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |
|              | implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr. G.L.N.Murthy  | Dr. B.Rambabu         | Dr. G.L.N.Murthy      | Dr. Y. Amar Babu          |

Signature



### **DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING**

**COURSE HANDOUT** 

| Name of Course Instructor | : Mr. P Venkateswara Rao/Mr.P.James Vijay/Dr.A.Na | irendra F | Babu |
|---------------------------|---------------------------------------------------|-----------|------|
| Course Name               | : Association                                     |           |      |
| Program/Sem/Sec           | : B.Tech. ECE.III-Sem, B Sec                      | A.Y       | : 20 |

#### A.Y : 2023-24

#### **COURSE DELIVERY PLAN (LESSON PLAN):**

| S.No. | Topics to be covered                                                                  | Tentative<br>Date of<br>Completion | Actual Date<br>of<br>Completion | HOD<br>Sign<br>Weekly |
|-------|---------------------------------------------------------------------------------------|------------------------------------|---------------------------------|-----------------------|
| 1.    | Discussion about Association Activities by teacher                                    | 10-08-2023                         |                                 | · · ·                 |
| 2.    | Two-minute talk on Aditya L1 Mission                                                  | 17-08-2023                         |                                 |                       |
| 3.    | Group Discussion on National Education Policy                                         | 24-08-2023                         |                                 |                       |
| 4.    | Innovations in Technology with respect to ECE(PPT)                                    | 31-08-2023                         |                                 |                       |
| 5.    | Group Discussion on smart devices                                                     | 07-09-2023                         |                                 |                       |
| 6.    | Innovations in Technology with respect to ECE(PPT)                                    | 14-09-2023                         |                                 |                       |
| 7.    | Debate on social networks                                                             | 21-09-2023                         |                                 |                       |
| 8.    | Technical Quiz on competitive exam topics                                             | 12-10-2023                         |                                 |                       |
| 9.    | Current affairs on technological changes/Technical Talks (PPT/Video)                  | 19-10-2023                         |                                 |                       |
| 10.   | Debate-Role of AI on Man Kind.                                                        | 26-10-2023                         |                                 |                       |
| 11.   | Presentation on Role of Technology in economical growth of a country                  | 02-11-2023                         |                                 |                       |
| 12.   | Group Discussion on Drone Technology for real time applications                       | 09-11-2023                         |                                 |                       |
| 13.   | Presentation on 5G Technology                                                         | 16-11-2023                         |                                 |                       |
| 14.   | Testing knowledge on verbal/quantitative/reasoning/problem solving/logical/etc skills | 23-11-2023                         |                                 |                       |
| 15.   | Technical Quiz                                                                        | 30-11-2023                         |                                 |                       |

Course Instructors Mr.P.Venkateswara Rao Mr.P.James Vijay Dr.A.Narendra Babu



#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" Grade and NBA (ECE, EEE, CSE, IT, MECH, CE & ASE) Under Tier-I L B Reddy Nagar, Mylavaram-521 230, NTR District, Andhra Pradesh.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

.....

## <u>COURSE HANDOUT</u> <u>PART-A</u>

| Name of Course Instructor | : Mr.T.Anil Raju                      |               |
|---------------------------|---------------------------------------|---------------|
| Course Name & Code        | : Signals and Systems – 20EC04        |               |
| L-T-P Structure           | : 3-0-0                               | Credits: 3    |
| Program/Sem/Sec           | : B.Tech., ECE., III-Sem., Section- C | A.Y : 2023-24 |

**PRE-REQUISITE:** Vectors, Scalars, Approximation of a vector by another vector, Differentiation and Integration of signals.

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

This course introduces signals and the way to perform mathematical operations on them. Further, it also introduces representation of signals in both time and frequency domains using orthogonal functions and describes Fourier series, the Fourier Transform and Laplace Transforms along with their properties. The course characterizes system behavior by estimating system response. It also introduces the concepts of sampling.

#### COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO 1        | Summarize the basic concepts of signals, systems and their properties (Understand - L2)        |
|-------------|------------------------------------------------------------------------------------------------|
| CO 2        | Examine the operations on signals and approximate using orthogonal functions.(Apply – L3)      |
| CO 3        | Apply the concept of impulse response to analyze the linear timeinvariant systems              |
|             | (Apply - L3)                                                                                   |
| <b>CO 4</b> | Analyze continuous time periodic and aperiodic signals using Fourier series, Fourier transform |
|             | and Laplace transforms (Analyze – L4)                                                          |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs)

| COs        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1        | 2   | 1   | 1   | -   | -   | -   | -          | -   | -   | -    | -    | -    | -    | -    | 1    |
| CO2        | 2   | 1   | 1   | -   | -   | -   | -          | -   | -   | -    | -    | -    | 1    | -    | 2    |
| <b>CO3</b> | 3   | 1   | 1   | 1   | -   | -   | -          | -   | -   | -    | -    | 1    | -    | -    | 2    |
| <b>CO4</b> | 3   | 2   | 1   | 1   | -   | -   | -          | -   | -   | -    | -    | 2    | 2    | -    | 3    |

Correlation Levels: 1-Slight (Low), 2-Moderate (Medium), 3-Substantial (High) and No correlation: '-'

#### **TEXT BOOKS:**

**T1:** AV Oppenheim, AS Wilsky and IT Young, Signals and Systems, PHI/Pearson publishers,2<sup>nd</sup> Edition. **T2:** B P Lathi, Signals, Systems and Communications, BSP, 2003, 3<sup>rd</sup> Edition.

#### **REFERENCE BOOKS:**

R1: Simon Haykin, Signals and Systems, John Wiley, 2004

R2: P. Ramesh Babu, R.Ananda Natarajan "Signals and Systems", Scitech Publications , 2nd edition, 2006.

### PART-B

### COURSE DELIVERY PLAN (LESSON PLAN): Section - C UNIT-I: Signal Analysis

| S.No.  | Topic/s                                                                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to the course                                                                                           | 1                             | 07.08.2023                         |                                 |                                 |                       |
| 2.     | Course Objective and Outcomes, POs,<br>PSOs and Mapping with COs                                                     | 1                             | 08.08.2023                         |                                 |                                 |                       |
| 3.     | Concept of signal and Classification of<br>Signals-Continuous Time and Analog,<br>Discrete Time and Digital Signals. | 1                             | 09.08.2023                         |                                 |                                 |                       |
| 4.     | Representation of Signals- Impulse, Unit Step, Unit Ramp, Signum.                                                    | 1                             | 10.08.2023                         |                                 |                                 |                       |
| 5.     | Decaying, Raising and Double<br>Exponential, Gate and Rectangular, Sinc<br>and Sampling Signals                      | 1                             | 14.08.2023                         |                                 |                                 |                       |
| 6.     | Operations on Signals– Time Shifting,<br>Time Scaling and Time Reversal<br>(Folding), Amplitude Scaling              | 1                             | 16.08.2023                         |                                 |                                 |                       |
| 7.     | Convolution; Graphical Method of<br>Convolution                                                                      | 1                             | 17.08.2023                         |                                 |                                 |                       |
| 8.     | Properties of Signals- Even and Odd,<br>Causal and Non Causal, Bounded and<br>Unbounded                              | 1                             | 21.08.2023                         |                                 |                                 |                       |
| 9.     | Properties of Signals -Periodic and<br>Aperiodic, Energy and Power,<br>Deterministic and Random Signals              | 1                             | 22.08.2023                         |                                 |                                 |                       |
| 10.    | Problems on Time shifting, Time scaling,<br>Time Reversal, Amplitude Scaling.                                        | 1                             | 23.08.2023                         |                                 |                                 |                       |
| 11.    | Problems on Convolution                                                                                              | 1                             | 24.08.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                                                                  | 11                            | No. e                              | of classes tak                  | en                              |                       |

### **UNIT-II: Signal Approximation and Fourier Series**

| S.No.  | Topic/s                                                                                                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Approximation of a Signal by another signal-Mean square error                                                                                          | 1                             | 28.08.2023                         |                                 |                                 |                       |
| 2.     | Condition for orthogonal signals,<br>Approximation of a Signal by a set of<br>mutually orthogonal signals                                              | 1                             | 29.08.2023                         |                                 |                                 |                       |
| 3.     | Evaluation of Mean square error, Gibbs Phenomena                                                                                                       | 1                             | 30.08.2023                         |                                 |                                 |                       |
| 4.     | Orthogonality in complex signals-<br>Approximation of a complex signal by<br>another complex signal & a set of mutually<br>orthogonal complex signals. | 1                             | 31.08.2023                         |                                 |                                 |                       |
| 5.     | Fourier Series- Dirichlet Conditions and<br>Trigonometric Fourier Series (TFS)                                                                         | 1                             | 04.09.2023                         |                                 |                                 |                       |
| 6.     | Exponential Fourier Series (EFS)                                                                                                                       | 1                             | 05.09.2023                         |                                 |                                 |                       |
| 7.     | Relations among coefficients of TFS<br>and EFS                                                                                                         | 1                             | 07.09.2023                         |                                 |                                 |                       |
| 8.     | Representation of Periodic signal by<br>Fourier series over the entire interval                                                                        | 1                             | 11.09.2023                         |                                 |                                 |                       |
| 9.     | Symmetry conditions of Fourier Series                                                                                                                  | 1                             | 12.09.2023                         |                                 |                                 |                       |
| 10.    | Parseval's Theorem                                                                                                                                     | 1                             | 13.09.2023                         |                                 |                                 |                       |
| 11.    | Problems on Fourier Series                                                                                                                             | 1                             | 14.09.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-II                                                                                                                   | 11                            | No.                                | of classes tak                  | ken                             |                       |

| S.No.         | Topic/s                                                                                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.            | Representation of aperiodic signal by<br>Fourier Transform and it's need                                                 | 1                             | 19.09-2023                         |                                 |                                 |                       |
| 2.            | Deriving Fourier Transform from Fourier<br>Series                                                                        | 1                             | 20.09.2023                         |                                 |                                 |                       |
| 3.            | Convergence of Fourier Transform-<br>Dirichlet Conditions                                                                | 1                             | 21.09.2023                         |                                 |                                 |                       |
| 4.            | Properties of Fourier Transform                                                                                          | 1                             | 25.09.2023                         |                                 |                                 |                       |
| 5.            | Properties of Fourier Transform                                                                                          | 1                             | 26.09.2023                         |                                 |                                 |                       |
| 6.            | Fourier Transform of Various Classes<br>of Signals - Problems                                                            | 1                             | 27.09.2023                         |                                 |                                 |                       |
| 7.            | Fourier Transform of Various Classes of Signals - Problems                                                               | 1                             | 09.10.2023                         |                                 |                                 |                       |
| 8.            | Fourier Transform of Periodic Signal                                                                                     | 1                             | 10.10.2023                         |                                 |                                 |                       |
| 9.            | Sampling Theorem                                                                                                         | 1                             | 11.10.2023                         |                                 |                                 |                       |
| 10.           | Types of sampling-Ideal sampling, flat<br>top sampling, natural sampling<br>Reconstruction of signal from its<br>samples | 1                             | 12.10.2023                         |                                 |                                 |                       |
| 11.           | Effect of under sampling- Aliasing,<br>Difference between low pass sampling<br>and band pass sampling                    | 1                             | 16.10.2023                         |                                 |                                 |                       |
| 12.           | Problem on Fourier Transform of periodic<br>Signals                                                                      | 1                             | 17.10.2023                         |                                 |                                 |                       |
| No. of<br>III | classes required to complete UNIT-                                                                                       | 11                            | No. o                              | f classes take                  | en                              |                       |

#### **UNIT-III:** Fourier Transform and Sampling Theorem

#### **UNIT-IV: Signal Transmission Through Linear Systems**

| S.No.  | Topic/s                                                                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | System Definition and Classification                                                                  | 1                             | 18.10.2023                         |                                 |                                 |                       |
| 2.     | Properties of Systems: Linear and Non<br>Linear, Time Invariant and Variant, Causal<br>and Non Causal | 1                             | 19.10.2023                         |                                 |                                 |                       |
| 3.     | Properties of Systems : Stable and<br>Unstable, Static and Dynamic, Invertible<br>and Non-invertible  | 1                             | 25.10.2023                         |                                 |                                 |                       |
| 4.     | Time and Frequency Analysis of LTI<br>System                                                          | 1                             | 26.10.2023                         |                                 |                                 |                       |
| 5.     | Problems                                                                                              | 1                             | 30.10.2023                         |                                 |                                 |                       |
| 6.     | System Bandwidth and Rise Time                                                                        | 1                             | 31.10.2023                         |                                 |                                 |                       |
| 7.     | Distortion less Transmission through a System                                                         | 1                             | 01.11.2023                         |                                 |                                 |                       |
| 8.     | Problems on Properties of systems                                                                     | 1                             | 02.11.2023                         |                                 |                                 |                       |
| 9.     | Ideal and Practical Characteristics of LPF,<br>HPF, BPF & BSF                                         | 1                             | 06.11.2023                         |                                 |                                 |                       |
| 10.    | Physically Realizable Systems and Poly-<br>Wiener Criterion                                           | 1                             | 07.11.2023                         |                                 |                                 |                       |
| 11.    | Problems                                                                                              | 1                             | 08.11.2023                         |                                 |                                 |                       |
| No. of | classes required to complete UNIT-IV                                                                  | 11                            | No. o                              | of classes tak                  | ken                             |                       |

| UNIT-V: | Laplace | Transforms |
|---------|---------|------------|
|         |         |            |

| S.No.                                      | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.                                         | Concept of Laplace Transform                                                                     | 1                             | 09.11.2023                         |                                 |                                 |                       |
| 2.                                         | Relation between Laplace and Fourier<br>Transforms, Existence of Laplace<br>Transform            | 1                             | 13.11.2023                         |                                 |                                 |                       |
| 3.                                         | Laplace Transform of Various Classes of Signals                                                  | 1                             | 14.11.2023                         |                                 |                                 |                       |
| 4.                                         | Region of Convergence (ROC) and its<br>Properties                                                | 1                             | 15.11.2023                         |                                 |                                 |                       |
| 5.                                         | Problems on Laplace Transform and ROC                                                            | 1                             | 16.11.2023                         |                                 |                                 |                       |
| 6.                                         | Properties of Laplace Transform                                                                  | 1                             | 20.11.2023                         |                                 |                                 |                       |
| 7.                                         | Properties of Laplace Transform                                                                  | 1                             | 21.11.2023                         |                                 |                                 |                       |
| 8.                                         | Inverse Laplace Transform using Partial<br>Fractions Method                                      | 1                             | 22.11.2023                         |                                 |                                 |                       |
| 9.                                         | Applications of Laplace Transform:<br>Causality of a System, Stability of a<br>System & Problems | 1                             | 23.11.2023                         |                                 |                                 |                       |
| 10.                                        | Solving of Differential Equations and<br>Analysis of RLC Circuits & Problems                     | 1                             | 27.11.2023                         |                                 |                                 |                       |
| 11.                                        | Problems                                                                                         | 1                             | 28.11.2023                         |                                 |                                 |                       |
| No. of classes required to complete UNIT-V |                                                                                                  | 11                            | No. o                              | of classes tak                  | ken                             |                       |

### **Contents beyond the Syllabus**

| S.No. | Topic/s                             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to 2D & 3D Signals     | 1                             | 29.11.2023                         |                                 |                                 |                       |
| 2.    | Convolution operation on 2D Signals | 1                             | 30.11.2023                         |                                 |                                 |                       |

## **Teaching Learning Methods**

| TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |
|------|----------------|------|---------------------------------|
| TLM2 | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |
| TLM3 | Tutorial       | TLM6 | Group Discussion/Project        |

## PART-C

#### **EVALUATION PROCESS:**

| Evaluation Task                                                                 | Marks |  |  |
|---------------------------------------------------------------------------------|-------|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                    | A1=5  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))       | M1=15 |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))              | Q1=10 |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)               | A2=5  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | M2=15 |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)         | Q2=10 |  |  |
| Cumulative Internal Examination (CIE) =                                         |       |  |  |
| 80% of Max((M1+Q1+A1), (M2+Q2+A2)) +                                            | 30    |  |  |
| 20% of Min((M1+Q1+A1), (M2+Q2+A2))                                              |       |  |  |
| Semester End Examination (SEE)                                                  |       |  |  |
| (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)                              | 70    |  |  |
| Total Marks = $CIE + SEE$                                                       | 100   |  |  |

#### PART-D

| PROGRA      | AMME OUTCOMES (POs):                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
| PO 1:       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                            |
|             | fundamentals, and an engineering specialization to the solution of complex engineering problems.                           |
| PO 2:       | Problem analysis: Identify, formulate, review research literature, and analyze complex                                     |
|             | engineering problems reaching substantiated conclusions using first principles of mathematics,                             |
|             | natural sciences, and engineering sciences.                                                                                |
| PO 3:       | Design/development of solutions: Design solutions for complex engineering problems and                                     |
|             | design system components or processes that meet the specified needs with appropriate                                       |
|             | consideration for the public health and safety, and the cultural, societal, and environmental                              |
| <b>DO 4</b> | Conduct investigations of complex problems: Use research based knowledge and research                                      |
| PU 4:       | methods including design of experiments, analysis and interpretation of data, and synthesis of the                         |
|             | information to provide valid conclusions                                                                                   |
| PO 5:       | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                 |
|             | engineering and IT tools including prediction and modelling to complex engineering activities                              |
|             | with an understanding of the limitations                                                                                   |
| PO 6:       | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                   |
|             | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the                    |
|             | professional engineering practice                                                                                          |
| PO 7:       | Environment and sustainability: Understand the impact of the professional engineering                                      |
|             | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for                           |
| <b>DO 0</b> | sustainable development.                                                                                                   |
| PO 8:       | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the angine principles |
| <b>DO 0</b> | of the engineering practice.                                                                                               |
| PU 9:       | diverse teams, and in multidisciplinary settings                                                                           |
| PO 10.      | <b>Communication</b> : Communicate effectively on complex engineering activities with the                                  |
| 1010.       | engineering community and with society at large, such as being able to comprehend and write                                |
|             | effective reports and design documentation, make effective presentations, and give and receive                             |
|             | clear instructions.                                                                                                        |
| PO 11:      | Project management and finance: Demonstrate knowledge and understanding of the                                             |
|             | engineering and management principles and apply these to one's own work, as a member and                                   |
|             | leader in a team, to manage projects and in multidisciplinary environments.                                                |
| PO 12:      | Life-long learning: Recognize the need for and have the preparation and ability to engage in                               |
|             | independent and life-long learning in the broadest context of technological change.                                        |

#### PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1:</b> | Communication: Design and develop modern communication technologies for building the           |
|---------------|------------------------------------------------------------------------------------------------|
|               | inter disciplinary skills to meet current and future needs of industry.                        |
| <b>PSO 2:</b> | VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or        |
|               | systems and Implement real time applications in the field of VLSI and Embedded Systems using   |
|               | relevant tools                                                                                 |
| <b>PSO 3:</b> | Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues |
|               | related to real time applications                                                              |

#### Date: 04.08.2023

| Course Instructor    | Course Coordinator | Module Coordinator | HOD              |
|----------------------|--------------------|--------------------|------------------|
| Mr. M K Linga Murthy | Mr. T Anil Raju    | Dr. G L N Murthy   | Dr. Y. Amar Babu |



### **COURSE HANDOUT**

#### PART-A

Name of Course Instructor:Mrs.T.KalpanaCourse Name & Code: ACD Lab-20EC53L-T-P Structure: 0-0-2Program/Sem/Sec: B. Tech. III-Sem., ECE C Sec

**Regulation**: R20 **Credits:** 1 **A.Y.:** 2023-24

**PREREQUISITE:** Fundamentals of Electronic Devices

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides the practical exposure on designing of different single stage and multistage stage amplifiers, effect of capacitances on frequency response, analysis of power and feedback amplifiers.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

| C01        | <b>Demonstrate</b> the characteristics of Amplifiers, Oscillators, feedback amplifiers, and     |
|------------|-------------------------------------------------------------------------------------------------|
|            | Multivibrators.                                                                                 |
| CO2        | Apply the knowledge of capacitances on frequency response, Timer circuits and its applications  |
| CO3        | <b>Design</b> of feedback amplifiers, Power amplifiers and waveform generators using Electronic |
|            | devices and components.                                                                         |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing skills                           |

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04 | P05   | P06 | P07 | P08 | P09 | P010   | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|
| CO1            | 2   | 1   | -   | -   | -     | -   | -   | -   | -   | -      | -    | -    | -    | 1    | -    |
| CO2            | 3   | 1   | 1   | -   | -     | -   | -   | -   | -   | -      | -    | -    | -    | 1    | -    |
| CO3            | 1   | 1   | 1   | 2   | -     | -   | -   | -   | -   | -      | -    | 1    | -    | 2    | -    |
| CO4            | -   | -   | -   | -   | -     | -   | -   | -   | 3   | 2      | -    | -    | -    | 3    | -    |
| <b>1</b> - Low |     |     |     | 2   | -Medi | ium |     |     | 3   | - High |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

#### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

## PART-B

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion                             | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--|
| 1.        | Demo on Lab Experiments                                                                                     | 3                             | 09-08-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 2.        | Determination of Gain and<br>Bandwidth of CE amplifier from<br>frequency response.                          | 3                             | 16-08-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 3.        | Determination of Gain and<br>Bandwidth of CS FET amplifier from<br>frequency response.                      | 3                             | 23-08-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 4.        | Design of two stage RC Coupled amplifier.                                                                   | 3                             | 30-08-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 5.        | Design of Transistorized Current<br>series Feedback amplifier for<br>Bandwidth improvement                  | 3                             | 13-09-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 6.        | Analysis of Stabilization of Gain of<br>Transistorized Voltage series<br>Feedback amplifier.                | 3                             | 20-09-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 7.        | Analysis of Stabilization of Gain of<br>Transistorized Current shunt<br>Feedback amplifier                  | 3                             | 27-09-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 8.        | Design and Realization of<br>Transistorized RC Phase shift<br>Oscillator to generate a sinusoidal<br>signal | 3                             | 11-10-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 9.        | Design and Realization of<br>Transistorized Colpitts Oscillator to<br>generate a sinusoidal signal          | 3                             | 18-10-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 10.       | Design and Realization of Low pass filter using RC networks.                                                | 3                             | 25-10-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 11.       | Design and Realization of High Pass filter using RC networks.                                               | 3                             | 01-11-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 12.       | Verification of conduction                                                                                  |                               |                                                                |                                 |                                 |                       |  |  |  |  |
|           | angles of power                                                                                             |                               |                                                                |                                 |                                 |                       |  |  |  |  |
|           | amplifiers <b>(Experiment</b>                                                                               | 3                             | 08-11-2023                                                     |                                 |                                 |                       |  |  |  |  |
|           | beyond syllabus)                                                                                            |                               |                                                                |                                 |                                 |                       |  |  |  |  |
| 13.       | Revision Lab                                                                                                | 3                             | 15-11-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 14.       | Revision Lab                                                                                                | 3                             | 22-11-2023                                                     |                                 |                                 |                       |  |  |  |  |
| 15.       | Internal Lab Examination                                                                                    | 3                             | 29-11-2023                                                     |                                 |                                 |                       |  |  |  |  |
| No.       | of classes required to complete : 45                                                                        | L                             | No. of classes required to complete : 45 No. of classes taken: |                                 |                                 |                       |  |  |  |  |

## COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                                                   | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning<br>Mathada | HOD<br>Sign |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------|-------------------|----------------------|-------------------|---------------------------------|-------------|--|--|
| 1.        | Demo on Lab Experiments                                                                                     | Required 3        | 12-08-2023           | Completion        | Methods                         | weekiy      |  |  |
| 2.        | Determination of Gain and<br>Bandwidth of CE amplifier from<br>frequency response                           | 3                 | 19-08-2023           |                   |                                 |             |  |  |
| 3.        | Determination of Gain and<br>Bandwidth of CS FET amplifier<br>from frequency response                       | 3                 | 26-08-2023           |                   |                                 |             |  |  |
| 4.        | Design of two stage RC Coupled amplifier                                                                    | 3                 | 02-09-2023           |                   |                                 |             |  |  |
| 5.        | Design of Transistorized<br>Current series Feedback<br>amplifier for Bandwidth<br>improvement               | 3                 | 09-09-2023           |                   |                                 |             |  |  |
| 6.        | Analysis of Stabilization of Gain<br>of Transistorized Voltage series<br>Feedback amplifier.                | 3                 | 16-09-2023           |                   |                                 |             |  |  |
| 7.        | Analysis of Stabilization of Gain<br>of Transistorized Current shunt<br>Feedback amplifier                  | 3                 | 23-09-2023           |                   |                                 |             |  |  |
| 8.        | Design and Realization of<br>Transistorized RC Phase shift<br>Oscillator to generate a<br>sinusoidal signal | 3                 | 30-09-2023           |                   |                                 |             |  |  |
| 9.        | Design and Realization of<br>Transistorized Colpitts<br>Oscillator to generate a<br>sinusoidal signal       | 3                 | 14-10-2023           |                   |                                 |             |  |  |
| 10.       | Design and Realization of Low pass filter using RC networks.                                                | 3                 | 21-10-2023           |                   |                                 |             |  |  |
| 11.       | Design and Realization of High<br>Pass filter using RC networks.                                            | 3                 | 28-10-2023           |                   |                                 |             |  |  |
| 12.       | Revision of Experiments                                                                                     | 3                 | 04-11-2023           |                   |                                 |             |  |  |
| 13.       | Verification of conduction<br>angles of power<br>amplifiers <b>(Experiment beyond</b><br>syllabus)          | 3                 | 11-11-2023           |                   |                                 |             |  |  |
| 14.       | Revision Lab                                                                                                | 3                 | 18-11-2023           |                   |                                 |             |  |  |
| 15.       | Revision Lab                                                                                                | 3                 | 25-11-2023           |                   |                                 |             |  |  |
| 16.       | Internal Lab Examination                                                                                    | 3                 | 02-12-2023           |                   |                                 |             |  |  |
| No. o     | No. of classes required to complete : 48 No. of classes taken:                                              |                   |                      |                   |                                 |             |  |  |

| Teaching Learning Methods |                |      |                                    |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |
|                           |                |      |                                    |  |  |

#### PART-C

### **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = A                              | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                                | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                                | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                  | 1,2,3,4,5,6,7,8 | 50     |

### PART-D

## **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| <b>PEO 3</b> | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

## PROGRAMME OUTCOMES (POs):

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                    |
|------|----------------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of         |
|      | complex engineering problems                                                           |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze |
|      | complex engineering problems reaching substantiated conclusions using first            |
|      | principles of mathematics, natural sciences, and engineering sciences                  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering      |
|      | problems and design system components or processes that meet the specified             |
|      | needs with appropriate consideration for the public health and safety, and the         |

|       | cultural, societal, and environmental considerations                                    |
|-------|-----------------------------------------------------------------------------------------|
| PO 4  | Conduct investigations of complex problems: Use research-based knowledge                |
|       | and research methods including design of experiments, analysis and                      |
|       | interpretation of data, and synthesis of the information to provide valid               |
|       | conclusions                                                                             |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, |
|       | and modern engineering and IT tools including prediction and modelling to               |
|       | complex engineering activities with an understanding of the limitations                 |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                    |
|       | knowledge to assess societal, health, safety, legal and cultural issues and the         |
|       | consequent responsibilities relevant to the professional engineering practice           |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional       |
|       | engineering solutions in societal and environmental contexts, and demonstrate           |
|       | the knowledge of, and need for sustainable development                                  |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and          |
|       | responsibilities and norms of the engineering practice                                  |
| PO 9  | Individual and team work: Function effectively as an individual, and as a               |
| DO 10 | member or leader in diverse teams, and in multidisciplinary settings                    |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities        |
|       | with the engineering community and with society at large, such as, being able to        |
|       | comprehend and write effective reports and design documentation, make                   |
| DO 11 | Project management and finance. Demonstrate Instructions                                |
| PUII  | of the orginaering and management principles and apply these to one's own               |
|       | work as a member and leader in a team to manage projects and in                         |
|       | multidisciplinary environments                                                          |
| PO 12 | Life-long learning: Recognize the need for and have the preparation and ability         |
| 1012  | to engage in independent and life-long learning in the broadest context of              |
|       | technological change                                                                    |
|       | technological change                                                                    |

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |  |  |  |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |  |  |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |  |  |

#### Date: 07-08-2023

| Title                  | Course Instructor | Course Coordinator       | Module Coordinator | HOD              |
|------------------------|-------------------|--------------------------|--------------------|------------------|
| Name of<br>the Faculty | Mrs.T.Kalpana     | Mr.B.V.N.R.Siva<br>Kumar | Dr. G. Srinivasulu | Dr. Y. Amar Babu |
| Signature              |                   |                          |                    |                  |



## **COURSE HANDOUT**

### PART-A

Name of Course Instructor:Smt.T.Kalpana, Sr.Asst.ProfessorCourse Name & Code: ACD-20EC03L-T-P Structure: 3-0-0Program/Sem/Sec: B. Tech. III-Sem., ECE-C Sec

**Regulation**: R20 **Credits:** 03 **A.Y.:** 2023-24

**PRE REQUISITE:** Fundamentals of Electronics.

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides focus on h-parameter models, analysis, selection and proper biasing of transistors like BJT and FET, emphasis on working principles of BJT / FET amplifiers using appropriate equivalent models, gives importance to feedback in amplifiers to improve the amplifier characteristics, design of Oscillators, linear wave shaping Circuits and Multivibrators.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Understand the concept of amplifier, Oscillator and linear wave shaping circuits.                    |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | (Understand – L2)                                                                                    |  |  |  |  |  |  |
| CO2 | Apply the suitable models of the transistor for estimating gain, input resistance, and output        |  |  |  |  |  |  |
|     | resistance and feedback concepts at amplifier and oscillator circuits. (Apply – L3)                  |  |  |  |  |  |  |
| CO3 | Analyze feedback concepts in amplifier, oscillator circuits, and Multivibrators.                     |  |  |  |  |  |  |
|     | (Analyze – L4)                                                                                       |  |  |  |  |  |  |
| CO4 | Apply knowledge of transistor for the design of amplifiers, oscillator circuits, linear wave shaping |  |  |  |  |  |  |
|     | Circuits and Multivibrators. (Apply – L3)                                                            |  |  |  |  |  |  |

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs                              | P01 | P02 | P03 | P04 | P05 | P06 | P07            | P08 | P09 | P010 | P011 | P012 | PS01 | PSO2 | PSO3 |
|----------------------------------|-----|-----|-----|-----|-----|-----|----------------|-----|-----|------|------|------|------|------|------|
| C01                              | 2   | 3   | 1   | -   | -   | 3   | 1              | -   | -   | -    | 1    | 2    | -    | 2    | -    |
| CO2                              | 3   | 1   | -   | -   | -   | -   | -              | -   | -   | -    | -    | 1    | -    | 2    | -    |
| CO3                              | 3   | 1   | 1   | -   | -   | -   | -              | -   | -   | -    | -    | 2    | -    | 3    | -    |
| CO4                              | 3   | -   | -   | -   | -   | -   | -              | -   | -   | -    | 1    | 1    | -    | 3    | -    |
| <b>1</b> - Low <b>2</b> - Medium |     |     |     | m   |     |     | <b>3 -</b> Hig | gh  |     |      |      |      |      |      |      |

#### **TEXTBOOKS:**

- **T1** Jacob Millman, Christos C Halkias, Electronic Devices and Circuits, Fourth reprint, Tata McGraw Hill, Publishers, New Delhi, 2011.
- T2 Anand Kumar A., Pulse and Digital Circuits, Third edition, PHI Publishers, 2005

#### **REFERENCE BOOKS:**

**R1** Donald A. Neamen, Electronic Circuit Analysis and Design, Second Edition, Tata McGraw Hill Publishers, 2014.

### PART-B

### COURSE DELIVERY PLAN (LESSON PLAN)

## UNIT-I: Small Signal Amplifiers, FET AMPLIFIERS

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to course, Course<br>Outcomes                            | 1                             | 09-08-23                           |                                 |                                 |                       |
| 2.        | Introduction to UNIT-I                                                | 1                             | 10-08-23                           |                                 |                                 |                       |
| 3.        | Small signal modeling of transistor                                   | 1                             | 11-08-23                           |                                 |                                 |                       |
| 4.        | h- parameter model of a<br>Transistor                                 | 1                             | 12-08-23                           |                                 |                                 |                       |
| 5.        | h- parameter model of a<br>Transistor in CE,CB,CC<br>Configuration    | 1                             | 16-08-23                           |                                 |                                 |                       |
| 6.        | Exact analysis of CE,CB,CC amplifiers                                 | 1                             | 17-08-23                           |                                 |                                 |                       |
| 7.        | Approximate analysis of CE<br>amplifier without Emitter<br>resistance | 1                             | 18-08-23                           |                                 |                                 |                       |
| 8.        | Approximate analysis of CB amplifier                                  | 1                             | 19-08-23                           |                                 |                                 |                       |
| 9.        | Approximate analysis of CC amplifier                                  | 1                             | 23-08-23                           |                                 |                                 |                       |
| 10.       | Approximate analysis of CE<br>amplifier with Emitter<br>resistance    | 1                             | 24-08-23                           |                                 |                                 |                       |
| 11.       | Analysis of CS FET amplifier                                          | 1                             | 25-08-23                           |                                 |                                 |                       |
| 12.       | Analysis of CD FET amplifier                                          | 1                             | 26-08-23                           |                                 |                                 |                       |
| No.       | of classes required to comple                                         | ete UNIT-I                    | : 12                               | No. of class                    | es taken:                       |                       |

### UNIT-II: Multistage Amplifiers, Frequency Response of Amplifiers

| S.<br>No. | Topics to be covered                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 13.       | Analysis and Design of Cascade<br>Amplifier                   | 1                             | 30-08-23                           |                                 |                                 |                       |
| 14.       | Analysis and Design of<br>Cascode Amplifier                   | 1                             | 31-08-23                           |                                 |                                 |                       |
| 15.       | Analysis and Design of<br>Darlington pair                     | 1                             | 01-09-23                           |                                 |                                 |                       |
| 16.       | Frequency response of Single stage amplifier                  | 1                             | 02-09-23                           |                                 |                                 |                       |
| 17.       | Frequency response of multi stage amplifier                   | 1                             | 07-09-23                           |                                 |                                 |                       |
| 18.       | Effect of coupling and bypass capacitor on frequency response | 1                             | 08-09-23                           |                                 |                                 |                       |
| 19.       | The hybrid- π Common<br>Emitter Transistor model              | 1                             | 09-09-23                           |                                 |                                 |                       |
| 20.       | Hybrid- π Conductance in terms of low frequency               | 1                             | 13-09-23                           |                                 |                                 |                       |

|     | h- parameters                                       |   |              |            |  |  |
|-----|-----------------------------------------------------|---|--------------|------------|--|--|
| 21  | Hybrid- $\pi$ Conductance in terms of low frequency | 1 | 14-09-23     |            |  |  |
| 21. | h- parameters                                       | T | 14-09-23     |            |  |  |
| 22. | Millers Theorem                                     | 1 | 15-09-23     |            |  |  |
| 23. | The CE model - $f_\beta$ , $f_T$ and $f\alpha$      | 1 | 16-09-23     |            |  |  |
| 24. | Gain with resistive load                            | 1 | 20-09-23     |            |  |  |
| No. | of classes required to complete                     | 2 | No. of class | ses taken: |  |  |

### UNIT-III: Feedback amplifiers, Oscillators, Introduction to power amplifiers

| S.<br>No. | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Classification of Amplifiers,<br>Feedback block Diagram             | 1                             | 21-09-23                           |                                 |                                 |                       |
| 26.       | General characteristics of<br>Negative feedback Amplifiers          | 1                             | 22-09-23                           |                                 |                                 |                       |
| 27.       | Qualitative analysis of Voltage series feedback amplifier           | 1                             | 23-09-23                           |                                 |                                 |                       |
| 28.       | Qualitative analysis of current series feedback amplifier           | 1                             | 27-09-23                           |                                 |                                 |                       |
| 29.       | Qualitative analysis of Voltage shunt feedback amplifier            | 1                             | 29-09-23                           |                                 |                                 |                       |
| 30.       | Qualitative analysis of current shunt feedback amplifier            | 1                             | 30-09-23                           |                                 |                                 |                       |
| 31.       | Effect of feedback on<br>frequency response of<br>amplifier         | 1                             | 11-10-23                           |                                 |                                 |                       |
| 32.       | Qualitative analysis of RC oscillators                              | 1                             | 12-10-23                           |                                 |                                 |                       |
| 33.       | Qualitative analysis of LC oscillators                              | 1                             | 13-10-23                           |                                 |                                 |                       |
| 34.       | Qualitative analysis of Crystal oscillator                          | 1                             | 14-10-23                           |                                 |                                 |                       |
| 35.       | Introduction to Power<br>amplifiers, Class A, Class B<br>amplifiers | 1                             | 18-10-23                           |                                 |                                 |                       |
| 36.       | Class C, Class S amplifiers                                         | 1                             | 19-10-23                           |                                 |                                 |                       |
| No.       | of classes required to comple                                       | ete UNIT-l                    | II: 12                             | No. of cl                       | asses take                      | n:                    |

## UNIT-IV: Linear wave shaping Circuits

| S.<br>No. | Topics to be covered                                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|--------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 37.       | Low pass RC circuit and their response for sinusoidal input        | 1                             | 20-10-23                           |                                 |                                 |                       |
| 38.       | Response of LPF for step, pulse inputs                             | 1                             | 21-10-23                           |                                 |                                 |                       |
| 39.       | Response of LPF for square and ramp inputs                         | 1                             | 25-10-23                           |                                 |                                 |                       |
| 40.       | High pass RC circuit and their response for sinusoidal, step input | 1                             | 26-10-23                           |                                 |                                 |                       |
| 41.       | Response of HPF for step<br>inputs                                 | 1                             | 27-10-23                           |                                 |                                 |                       |
| 42.       | Response of HPF for pulse inputs                                   | 1                             | 28-10-23                           |                                 |                                 |                       |
| 43.       | Response of HPF for square and ramp inputs                         | 1                             | 01-11-23                           |                                 |                                 |                       |

| 40.<br>No. | of classes required to comple | No. of class | es taken: |  |  |  |
|------------|-------------------------------|--------------|-----------|--|--|--|
| 19         | Problems on HDF               | 1            | 00 11 22  |  |  |  |
| 47.        | Problems on LPF               | 1            | 08-11-23  |  |  |  |
| 46.        | Double differentiator         | 1            | 04-11-23  |  |  |  |
| 45.        | RC circuit as integrator      | 1            | 03-11-23  |  |  |  |
| 44.        | RC circuit as differentiator  | 1            | 02-11-23  |  |  |  |

### **UNIT-V: Multivibrators**

| S.<br>No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 49.       | Introduction to UNIT-V                                    | 1                             | 10-11-23                           |                                 |                                 |                       |
| 50.       | Bistable Multivibrator- self-<br>biased transistor binary | 1                             | 11-11-23                           |                                 |                                 |                       |
| 51.       | Principle of operation                                    | 1                             | 15-11-23                           |                                 |                                 |                       |
| 52.       | Analysis and Design of Bistable<br>Multivibrators         | 1                             | 16-11-23                           |                                 |                                 |                       |
| 53.       | Triggering types                                          | 1                             | 17-11-23                           |                                 |                                 |                       |
| 54.       | Schmitt trigger circuit-Principle of operation            | 1                             | 18-11-23                           |                                 |                                 |                       |
| 55.       | Schmitt trigger circuit-Principle of operation            | 1                             | 22-11-23                           |                                 |                                 |                       |
| 56.       | calculation of UTP, LTP and applications                  | 1                             | 23-11-23                           |                                 |                                 |                       |
| 57.       | Collector-coupled Monostable -<br>Principle of operation  | 1                             | 24-11-23                           |                                 |                                 |                       |
| 58.       | Astable Multivibrators<br>Principle of operation          | 1                             | 25-11-23                           |                                 |                                 |                       |
| 59.       | Analysis and design of Astable<br>Multivibrators          | 1                             | 29-11-23                           |                                 |                                 |                       |
| 60.       | Problems on Astable<br>Multivibrators                     | 1                             | 30-11-23                           |                                 |                                 |                       |
| 61.       | Problems on Mono stable<br>Multivibrators                 | 1                             | 01-12-23                           |                                 |                                 |                       |
| No.       | of classes required to comple                             | te UNIT-V:                    | 13                                 | No. of classe                   | es taken:                       |                       |

## Contents beyond the Syllabus

| S.No. | Topics to be<br>covered             | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 62.   | Applications of<br>power amplifiers | 1                             | 02-12-23                           |                                 | TLM1                            |                       |

| Teaching Learning Methods |                |                               |                                    |  |  |  |  |  |
|---------------------------|----------------|-------------------------------|------------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 Demonstration (Lab/Field |                                    |  |  |  |  |  |
| TLM2                      | TLM2 PPT       |                               | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3                      | Tutorial       | TLM6                          | Group Discussion/Project           |  |  |  |  |  |

### PART-C

## **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks           |  |  |  |
|--------------------------------------------------------------------------------------|-----------------|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5            |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                 |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10           |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5            |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                 |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              |                 |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) |                 |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark> |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |  |  |  |
| Total Marks = CIE + SEE                                                              | 100             |  |  |  |

# PART-D

## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| <b>PEO 3</b> | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

### **PROGRAMME OUTCOMES (POs):**

| PO 1   | Engineering knowledge: Apply the knowledge of mathematics, science,                      |
|--------|------------------------------------------------------------------------------------------|
|        | engineering fundamentals, and an engineering specialization to the solution of           |
|        | complex engineering problems                                                             |
| PO 2   | Problem analysis: Identify, formulate, review research literature, and analyze           |
|        | complex engineering problems reaching substantiated conclusions using first              |
|        | principles of mathematics, natural sciences, and engineering sciences                    |
| PO 3   | <b>Design/development of solutions</b> : Design solutions for complex engineering        |
|        | problems and design system components or processes that meet the specified               |
|        | needs with appropriate consideration for the public health and safety, and the           |
|        | cultural, societal, and environmental considerations                                     |
| PO 4   | Conduct investigations of complex problems: Use research-based knowledge                 |
|        | and research methods including design of experiments, analysis and                       |
|        | interpretation of data, and synthesis of the information to provide valid                |
|        | conclusions                                                                              |
| PO 5   | Modern tool usage: Create, select, and apply appropriate techniques, resources,          |
|        | and modern engineering and IT tools including prediction and modelling to                |
|        | complex engineering activities with an understanding of the limitations                  |
| PO 6   | The engineer and society: Apply reasoning informed by the contextual                     |
|        | knowledge to assess societal, health, safety, legal and cultural issues and the          |
|        | consequent responsibilities relevant to the professional engineering practice            |
| PO 7   | Environment and sustainability: Understand the impact of the professional                |
|        | engineering solutions in societal and environmental contexts, and demonstrate            |
|        | the knowledge of, and need for sustainable development                                   |
| PO 8   | Ethics: Apply ethical principles and commit to professional ethics and                   |
|        | responsibilities and norms of the engineering practice                                   |
| PO 9   | Individual and team work: Function effectively as an individual, and as a                |
|        | member or leader in diverse teams, and in multidisciplinary settings                     |
| PO 10  | <b>Communication</b> : Communicate effectively on complex engineering activities         |
|        | with the engineering community and with society at large, such as, being able to         |
|        | comprehend and write effective reports and design documentation, make                    |
|        | effective presentations, and give and receive clear instructions                         |
| PO 11  | <b>Project management and finance</b> : Demonstrate knowledge and understanding          |
|        | of the engineering and management principles and apply these to one's own                |
|        | work, as a member and leader in a team, to manage projects and in                        |
| DO 12  | multidisciplinary environments                                                           |
| PU 12  | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability |
|        | to engage in independent and life-long learning in the broadest context of               |
|        | technological change                                                                     |
| PRUGRA | IMME SPECIFIC OUTCOMES (PSOS):                                                           |
| PSO 1  | Design and develop modern communication technologies for building the inter              |
|        | disciplinary skills to meet current and future needs of industry                         |
| PSO 2  | Design and Analyze Analog and Digital Electronic Circuits or systems and                 |
|        | Implement real time applications in the field of VLSI and Embedded Systems using         |

|              | relevant tools                                                                      |
|--------------|-------------------------------------------------------------------------------------|
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |
|              | to real time applications                                                           |

#### Date: 07-08-2023

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |  |
|------------------------|-------------------|--------------------|-----------------------|---------------------------|--|
| Name of the<br>Faculty | Smt.T.Kalpana     | Mr.G.Venkata Rao   | Dr. G. Srinivasulu    | Dr. Y. Amar Babu          |  |

| Signature |  |
|-----------|--|
|-----------|--|

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 21001:2018,50001:2018,14001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

#### FRESHMAN ENGINEERING DEPARTMENT

### **COURSE HANDOUT**

### PART-A

Name of Course Instructor: Dr. M. Srinivasa Reddy

| <b>Course Name &amp; Code</b> |
|-------------------------------|
| L-T-P Structure               |
| Program/Sem/Sec               |

: Numerical Methods & Integral Calculus & 20FE10 : 3-1 -0 Credits:3 : II B.Tech/III sem/ECE-C A.Y.: 2023 – 24.

PREREOUISITE: Nil

**COURSE EDUCATIONAL OBJECTIVES (CEOs)**: The main objective of this course is to enable the students learn Numerical Techniques for solving the equations and apply interpolation techniques. They will also learn about the Fourier analysis of single valued functions, Multiple Integrals in different coordinate systems and Vector differentiation.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| C01         | Estimate the best fit polynomial for the given tabulated data using                        |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|             | Interpolation.(Understand – L2)                                                            |  |  |  |  |  |  |  |  |
| 600         | Apply numerical techniques in solving of equations and evaluation of integrals. (Apply     |  |  |  |  |  |  |  |  |
| C02         | -L3)                                                                                       |  |  |  |  |  |  |  |  |
| <b>CO</b> 2 | Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and    |  |  |  |  |  |  |  |  |
| 05          | their respective applications to areas and volumes. (Apply – L3)                           |  |  |  |  |  |  |  |  |
| CO4         | Generate the single valued functions in the form of Fourier series and obtain Fourier      |  |  |  |  |  |  |  |  |
| C04         | series representation of periodic function. (Apply – L3)                                   |  |  |  |  |  |  |  |  |
| COF         | Evaluate the directional derivative, divergence and angular velocity of a vector function. |  |  |  |  |  |  |  |  |
| 105         | (Apply - L3)                                                                               |  |  |  |  |  |  |  |  |

#### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04 | P05 | P06 | P07   | P08 | P09 | P010 | P011 | P012   | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| C01            | 3   | 2   | -   | 2   | -   | -   | -     | -   | -   | -    | -    | 1      |      |      |      |
| CO2            | 3   | 2   | -   | 2   | -   | -   | -     | -   | -   | -    | -    | 1      |      |      |      |
| CO3            | 3   | 2   | -   | 1   | -   | -   | -     | -   | -   | -    | -    | 1      |      |      |      |
| CO4            | 3   | 1   | -   | -   | -   | -   | -     | -   | -   | -    | -    | 1      |      |      |      |
| CO5            | 3   | 1   | -   | 1   | -   | -   | -     | -   | -   | -    | -    | 1      |      |      |      |
| <b>1 -</b> Low |     |     |     |     |     | 2   | -Medi | ium |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

| <b>T1</b> | Dr. B.S. Grewal, "Higher Engineering Mathematics", 42 <sup>nd</sup> Edition, Khanna Publishers, New |
|-----------|-----------------------------------------------------------------------------------------------------|
|           | Delhi, 2012.                                                                                        |
| T2        | Dr. B. V. Ramana, "Higher Engineering Mathematics", 1 <sup>st</sup> Edition, TMH, New Delhi, 2010.  |
| <b>T3</b> | S. S. Sastry, "Introductory Methods of Numerical Analysis" 5th Edition, PHI Learning                |
|           | Private Limited, New Delhi, 2012.                                                                   |
| REF       | ERENCE BOOKS:                                                                                       |
|           |                                                                                                     |

R1 M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, TMH Publications, New Delhi, 2011.
R2 Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & sons, New Delhi, 2011.

Delhi, 2011.**R3**W.E. Boyce and R. C. Diprima, " Elementary Differential Equations", 7th Edition, John Wiley

### PART-B

### COURSE DELIVERY PLAN (LESSON PLAN):

#### **UNIT-I: Interpolation and Finite Differences**

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |  |  |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--|
| 1.        | Introduction to the course, Course<br>Outcomes                       | 1                             | 7/08/23                            |                                 | TLM1                            |                       |  |  |  |  |
| 2.        | Introduction to UNIT I                                               | 1                             | 10/08/23                           |                                 | TLM2                            |                       |  |  |  |  |
| 3.        | Forward Differences                                                  | 1                             | 11/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 4.        | Backward differences                                                 | 1                             | 14/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 5.        | Central Differences                                                  | 1                             | 17/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 6.        | Symbolic relations and separation of symbols                         | 1                             | 18/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 7.        | Symbolic relations and separation of symbols                         | 1                             | 19/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 8.        | Newton's forward formulae for interpolation                          | 1                             | 21/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 9.        | Newton's backward formulae for interpolation                         | 1                             | 24/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 10.       | Lagrange's Interpolation                                             | 1                             | 25/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 11.       | Lagrange's Interpolation                                             | 1                             | 26/08/23                           |                                 | TLM1                            |                       |  |  |  |  |
| 12.       | Tutorial I                                                           | 1                             | 28/08/23                           |                                 | TLM3                            |                       |  |  |  |  |
| No.       | No. of classes required to complete UNIT-I: 12 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |  |  |  |

#### **UNIT-II: Numerical solutions of Equations and Numerical Integration**

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 13.       | Introduction to UNIT II                                               | 1                             | 30/08/23                           |                                 | TLM2                            |                       |
| 14.       | Algebraic and Transcendental<br>Equations                             | 1                             | 31/08/23                           |                                 | TLM1                            |                       |
| 15.       | False Position method                                                 | 1                             | 01/09/23                           |                                 | TLM1                            |                       |
| 16.       | False Position method                                                 | 1                             | 02/09/23                           |                                 | TLM1                            |                       |
| 17.       | Newton- Raphson Method in one variable                                | 1                             | 04/09/23                           |                                 | TLM1                            |                       |
| 18.       | Newton- Raphson Method applications                                   | 1                             | 07/09/23                           |                                 | TLM1                            |                       |
| 19.       | Trapezoidal rule                                                      | 1                             | 08/09/23                           |                                 | TLM1                            |                       |
| 20.       | Simpson's 1/3 Rule                                                    | 1                             | 09/09/23                           |                                 | TLM1                            |                       |
| 21.       | Simpson's 3/8 Rule                                                    | 1                             | 11/09/23                           |                                 | TLM1                            |                       |
| 22.       | Problems on Numerical Integration                                     | 1                             | 14/09/23                           |                                 | TLM3                            |                       |
| 23.       | Tutorial II                                                           | 1                             | 15/09/23                           |                                 | TLM3                            |                       |
| 24.       | Revision on Unit-II                                                   | 1                             | 16/09/23                           |                                 | TLM3                            |                       |
| No.       | No. of classes required to complete UNIT-II: 12 No. of classes taken: |                               |                                    |                                 | n:                              |                       |

#### **UNIT-III: Multiple Integrals**

| S.<br>No. | Topics to be covered                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.       | Introduction to Unit-III                | 1                             | 21/09/23                           |                                 | TLM1                            |                       |
| 26.       | Double Integrals -Cartesian coordinates | 1                             | 22/09/23                           |                                 | TLM1                            |                       |
| 27.       | Double Integrals- Polar co ordinates    | 1                             | 23/09/23                           |                                 | TLM1                            |                       |
| 28.       | Problems                                | 1                             | 25/09/23                           |                                 | TLM1                            |                       |

| 29.                                                                    | Applications to Double integrals<br>(Content Beyond the syllabus) | 1           | 29/09/23      | TLM2  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|---------------|-------|--|
| 30.                                                                    | Problems on double integrals                                      | 1           | 30/9/23       | TLM1  |  |
|                                                                        | I MID EXAMINATIONS                                                | S (02-10-20 | 23 TO 07-10-2 | 2023) |  |
| 31.                                                                    | Triple Integrals - Cartesian coordinates                          | 1           | 09/10/23      | TLM1  |  |
| 32.                                                                    | Triple Integrals - Spherical coordinates                          | 1           | 12/10/23      | TLM1  |  |
| 33.                                                                    | Change of order of Integration                                    | 1           | 13/10/23      | TLM 3 |  |
| 34.                                                                    | Change of order of Integration                                    | 1           | 14/10/23      | TLM1  |  |
| 35.                                                                    | Problems on change of order Integration.                          | 1           | 16/10/23      | TLM1  |  |
| 36.                                                                    | Tutorial III                                                      | 1           | 19/10/23      | TLM1  |  |
| No. of classes required to complete UNIT-III: 12 No. of classes taken: |                                                                   |             |               |       |  |

#### **UNIT-IV: Fourier Series**

| S.<br>No.                                           | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------------------------------------------------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 37.                                                 | Introduction to UNIT IV                                             | 1                             | 20/10/23                           |                                 | TLM1                            |                       |
| 38.                                                 | Determination of Fourier<br>coefficients, Even and Odd<br>Functions | 1                             | 21/10/23                           |                                 | TLM1                            |                       |
| 39.                                                 | Fourier Series expansion in the interval $[0,2\pi]$                 | 1                             | 26/10/23                           |                                 | TLM1                            |                       |
| 40.                                                 | Fourier Series expansion in the interval $[-\pi,\pi]$               | 1                             | 27/10/23                           |                                 | TLM1                            |                       |
| 41.                                                 | Fourier Series in an arbitrary interval                             | 1                             | 28/10/23                           |                                 | TLM1                            |                       |
| 42.                                                 | Fourier series in an arbitrary interval odd and even functions      | 1                             | 30/10/23                           |                                 | TLM1                            |                       |
| 43.                                                 | Half-range Sine and Cosine series                                   | 1                             | 02/11/23                           |                                 | TLM1                            |                       |
| 44.                                                 | Half-range Sine and Cosine series                                   | 1                             | 03/11/23                           |                                 | TLM1                            |                       |
| 45.                                                 | Introduction to Fourier transforms<br>(Content Beyond the Syllabus) | 1                             | 04/11/23                           |                                 | TLM3                            |                       |
| 46.                                                 | Miscellaneous Problems on Fourier series                            | 1                             | 06/11/23                           |                                 | TLM2                            |                       |
| 47.                                                 | Revision on Unit-IV                                                 | 1                             | 09/11/23                           |                                 | TLM1                            |                       |
| 48.                                                 | Tutorial IV                                                         | 1                             | 10/11/23                           |                                 | TLM1                            |                       |
| No. of classes required to complete UNIT-IV: 12 No. |                                                                     |                               |                                    | No. of clas                     | sses takei                      | n:                    |

#### **UNIT-V: Vector Differentiation**

| S. No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 49.    | Introduction to UNIT V                                    | 1                             | 11/11/23                           |                                 | TLM1                            |                       |
| 50.    | Vector Differentiation                                    | 1                             | 13/11/23                           |                                 | TLM1                            |                       |
| 51.    | Gradient                                                  | 1                             | 16/11/23                           |                                 | TLM1                            |                       |
| 52.    | Directional Derivative                                    | 1                             | 17/11/23                           |                                 | TLM1                            |                       |
| 53.    | Divergence                                                | 1                             | 18/11/23                           |                                 | TLM1                            |                       |
| 54.    | Curl                                                      | 1                             | 20/11/23                           |                                 | TLM1                            |                       |
| 55.    | Solenoidal and Irrotational functions, potential surfaces | 1                             | 23/11/23                           |                                 | TLM1                            |                       |
| 56.    | Laplacian and second order operators                      | 1                             | 24/11/23                           |                                 | TLM1                            |                       |
| 57.    | Properties                                                | 1                             | 25/11/23                           |                                 | TLM3                            |                       |
| 58.    | Problems on properties                                    | 1                             | 27/11/23                           |                                 | TLM1                            |                       |

| No. of alagaan required to complete UNIT V. 12 |                                 |   |          | No of dos | a a a talea. |  |
|------------------------------------------------|---------------------------------|---|----------|-----------|--------------|--|
| 61.                                            | TUTORIAL - V                    | 1 | 02/12/23 |           |              |  |
| 60.                                            | Revision on Unit -V             | 1 | 01/12/23 |           |              |  |
| 59.                                            | Problems on Irrotational vector | 1 | 30/11/23 |           | TLM1         |  |

No. of classes required to complete UNIT-V: 13 No. of classes taken:

| Teaching Learning Methods |                |      |                                    |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2                      | РРТ            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |

## PART-C

## **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

#### PART-D

## **PROGRAMME OUTCOMES (POs):**

|       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                     |
|-------|-----------------------------------------------------------------------------------------------------|
| PO 1  | fundamentals, and an engineering specialization to the solution of complex engineering              |
|       | problems.                                                                                           |
|       | Problem analysis: Identify, formulate, review research literature, and analyze complex              |
| PO 2  | engineering problems reaching substantiated conclusions using first principles of                   |
|       | mathematics, natural sciences, and engineering sciences.                                            |
|       | Design/development of solutions: Design solutions for complex engineering problems and              |
| DO 2  | design system components or processes that meet the specified needs with                            |
| FU 3  | appropriate consideration for the public health and safety, and the cultural, societal and          |
|       | environmental considerations.                                                                       |
|       | Conduct investigations of complex problems: Use research-based knowledge and research               |
| PO 4  | methods including design of experiments, analysis and interpretation of data and synthesis of       |
|       | the information to provide valid conclusions.                                                       |
|       | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern          |
| PO 5  | engineering and IT tools including prediction and modeling to complex engineering activities        |
|       | with an understanding of the limitations.                                                           |
|       | The engineer and society: Apply reasoning informed by the contextual knowledge to assess            |
| PO 6  | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to |
|       | the professional engineering practice.                                                              |
|       | Environment and sustainability: Understand the impact of the professional engineering               |
| PO 7  | solutions in societal and environmental contexts, and demonstrate the knowledge of and need         |
|       | for sustainable development.                                                                        |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and         |
| 100   | norms of the engineering practice.                                                                  |
| DU 0  | Individual and team work: Function effectively as an individual, and as a member or leader          |
| 109   | in diverse teams, and in multidisciplinary settings.                                                |
|       | Communication: Communicate effectively on complex engineering activities with the                   |
| PO 10 | engineering community and with society at large, such as, being able to comprehend and write        |
| 1010  | effective reports and design documentation, make effective presentations and give and receive       |
|       | clear instructions.                                                                                 |
|       | Project management and finance: Demonstrate knowledge and understanding of the                      |
| PO 11 | engineering and management principles and apply these to one's own work, as a member and            |
|       | leader in a team, to manage projects and in multidisciplinary environments.                         |
| PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in       |
| r012  | independent and life-long learning in the broadest context of technological change.                 |

| Title                  | Course Instructor     | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-----------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty | Dr. M.Srinivasa Reddy | Dr. K. R. Kavitha     | Dr. A. Rami Reddy     | Dr. A. Rami Reddy         |
| Signature              |                       |                       |                       |                           |


# **COURSE HANDOUT**

# PART-A

Name of Course Instructors:Dr.M.V.Sudhakar /Dr.G.L.N.Murthy / Mr.M.K.Linga Murthy /Mr.T. AnilRajuSignal Modeling and Analysis- 20ECS1Regulation:R20L-T-P Structure:1-0-2Credits:2Program/Sem/Sec:B.Tech., ECE., III-Sem., Section-CA.Y.:2023-24

#### **PREREQUISITE:**

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

In this course, student will learn about basic signal modeling and analysis concepts like generations of signals using trigonometric function, solving linear equations and analyzing time function in frequency using MATLAB software.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1 | Understand the programming concept of plotting trigonometric function, linear equations solutions in MATLAB |
|-----|-------------------------------------------------------------------------------------------------------------|
| CO2 | Analyze the time frequency relations of signals in MATLAB.                                                  |
| CO3 | Adapt effective communication, presentation and report writing.                                             |

#### P01 **PO2 PO3 PO4** P05 P06 **P07 P08** P09 P010 P011 P012 PS01 PSO2 PSO3 COs 1 1 1 2 2 CO1 --\_ \_ -\_ -**CO2** 2 2 1 -------2 ---2 **CO3** 2 -2 3 1 \_ --\_ 1 ---**1** - Low **2** – Medium **3 -** High

#### **COURSE ARTICULATION MATRIX**(Correlation between COs, POs & PSOs):

#### **TEXTBOOKS:**

- T1 Rudra Pratap., Getting started with MATLAB: A Quick Introduction for Scientists and Engineers
- **T2** B.P. Lathi., Principles of LINEAR SYSTEMS and SIGNALS, second edition, OXFORD University PRESS.

#### **REFERENCE BOOKS:**

**R1** Larry E. Knop .,Linear Algebra: A First Course with Applications.

# PART-A

### **UNIT-1:MATLAB Basics**

| S.<br>No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to MATLAB                                               | 1                             | 11-08-23                           |                                 | TLM4                            |                       |
| 2.        | MATLAB windows                                                       | 1                             | 11-08-23                           |                                 | TLM4                            |                       |
| 3.        | On-line help, File types,                                            | 1                             | 11-08-23                           |                                 | TLM4                            |                       |
| 4         | Input-output,Platform                                                | 1                             | 18-08-23                           |                                 | TLM4                            |                       |
| 4.        | dependence, General command                                          |                               |                                    |                                 |                                 |                       |
| 5.        | Programming in MATLAB                                                | 1                             | 18-08-23                           |                                 | TLM4                            |                       |
| 6.        | Script Files and Function Files                                      | 1                             | 18-08-23                           |                                 | TLM4                            |                       |
| 7.        | Executing a function                                                 | 1                             | 25-08-23                           |                                 | TLM4                            |                       |
| 8.        | Plotting Graphs.                                                     | 1                             | 25-08-23                           |                                 | TLM4                            |                       |
| No.       | No. of classes required to complete UNIT-I: 08 No. of classes taken: |                               |                                    |                                 |                                 |                       |

### **UNIT – II: Linear Algebra and Signal Operations**

| S.<br>No. | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Solving a linear system                                             | 1                             | 01-09-23                           |                                 | TLM1                            |                       |
| 2.        | Gaussian elimination,<br>Cramer's Rule                              | 1                             | 08-09-23                           |                                 | TLM1                            |                       |
| 3.        | Finding Eigen values and eigenvectors,                              | 1                             | 08-09-23                           |                                 | TLM1                            |                       |
| 4.        | Vector operations, Element-by-<br>element operations                | 1                             | 15-09-23                           |                                 | TLM1                            |                       |
| 5.        | Continuous time signals,<br>operations on signals                   | 1                             | 22-09-23                           |                                 | TLM1                            |                       |
| 6.        | Convolution                                                         | 1                             | 22-09-23                           |                                 | TLM1                            |                       |
| 7.        | Frequency analysis                                                  | 1                             | 29-09-23                           |                                 | TLM1                            |                       |
| No.       | No. of classes required to complete UNIT-I:07 No. of classes taken: |                               |                                    |                                 |                                 |                       |

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

| S.No. | Topics to be covered<br>(Experiment Name)                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1     | Introduction to MATLAB                                     | 1                             | 11-08-23                           |                                 | TLM4                            |                       |
| 2     | Generation of continuous time signals.                     | 1                             | 18-08-23                           |                                 | TLM4                            |                       |
| 3     | Product of signals                                         | 2                             | 25-08-23                           |                                 | TLM4                            |                       |
| 4     | Plot the family of curves of a function over a time over   | 4                             | 01-09-23                           |                                 | TLM4                            |                       |
| 5     | Solving linear equations using matrix inverse methods      | 3                             | 08-09-23                           |                                 | TLM4                            |                       |
| 6     | Solving linear equations using<br>Cramer's methods         | 2                             | 15-09-23                           |                                 | TLM4                            |                       |
| 7     | Compute Eigen values and<br>Eigen vectors of given matrix. | 3                             | 22-09-23                           |                                 | TLM4                            |                       |
| 8     | Basic operations on the signals.                           | 1                             | 22-09-23                           |                                 | TLM4                            |                       |
| 9     | Convolution of signals.                                    | 1                             | 29-09-23                           |                                 | TLM4                            |                       |
| 10    | Transformation of signals into                             | 3                             | 29-09-23                           |                                 | TLM4                            |                       |

|       | time and frequency domains.                                                                                                |   |          |      |  |
|-------|----------------------------------------------------------------------------------------------------------------------------|---|----------|------|--|
| 11    | Compute and plot the Fourier coefficients for the periodic signal given signal.                                            | 2 | 13-10-23 | TLM4 |  |
| 12    | Demonstrate the synthesis of<br>the square wave by<br>successively adding of the<br>Fourier components of given<br>signal. | 2 | 13-10-23 | TLM4 |  |
| 13    | Mini Project /Review                                                                                                       | 4 | 20-10-23 | TLM6 |  |
| 14    | Mini Project /Review                                                                                                       | 4 | 27-10-23 | TLM6 |  |
| 15    | Mini Project /Review                                                                                                       | 4 | 03-11-23 | TLM6 |  |
| 16    | Mini Project /Review                                                                                                       | 4 | 10-11-23 | TLM6 |  |
| 17    | Internal Evaluation                                                                                                        | 4 | 17-11-23 | TLM6 |  |
| 18    | Internal Evaluation                                                                                                        | 4 | 24-11-23 | TLM6 |  |
| No. o | No. of weeks required to complete:16 No. of Weeks taken:                                                                   |   |          |      |  |

| Teaching Learning Methods |                |      |                                    |  |
|---------------------------|----------------|------|------------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task       | Expt. no's   | Marks |
|-----------------------|--------------|-------|
| Report=A              | Mini Project | A=10  |
| Quality of work=B     | Mini Project | B=10  |
| Presentation=C        | Mini Project | C=20  |
| Interaction/Queries=D | Mini Project | D=10  |
| Total=A+B+C+D         | Mini Project | 50    |

# PART-D

### PROGRAMME OUTCOMES (POs):

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                    |  |  |  |  |
|------|----------------------------------------------------------------------------------------|--|--|--|--|
|      | engineering fundamentals, and an engineering specialization to the solution of         |  |  |  |  |
|      | complex engineering problems                                                           |  |  |  |  |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze |  |  |  |  |
|      | complex engineering problems reaching substantiated conclusions using first            |  |  |  |  |
|      | principles of mathematics, natural sciences, and engineering sciences                  |  |  |  |  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering      |  |  |  |  |
|      | problems and design system components or processes that meet the specified             |  |  |  |  |
|      | needs with appropriate consideration for the public health and safety, and the         |  |  |  |  |
|      | cultural, societal, and environmental considerations                                   |  |  |  |  |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge       |  |  |  |  |
|      | and research methods including design of experiments, analysis and                     |  |  |  |  |
|      | interpretation of data, and synthesis of the information to provide valid              |  |  |  |  |
|      | conclusions                                                                            |  |  |  |  |

| PO 5  | Modern tool usage: Create, select, and apply appropriate techniques, resources,          |
|-------|------------------------------------------------------------------------------------------|
|       | and modern engineering and IT tools including prediction and modelling to                |
|       | complex engineering activities with an understanding of the limitations                  |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                     |
|       | knowledge to assess societal, health, safety, legal and cultural issues and the          |
|       | consequent responsibilities relevant to the professional engineering practice            |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional        |
|       | engineering solutions in societal and environmental contexts, and demonstrate            |
|       | the knowledge of, and need for sustainable development                                   |
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and                   |
|       | responsibilities and norms of the engineering practice                                   |
| PO 9  | Individual and team work: Function effectively as an individual, and as a                |
|       | member or leader in diverse teams, and in multidisciplinary settings                     |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities         |
|       | with the engineering community and with society at large, such as, being able to         |
|       | comprehend and write effective reports and design documentation, make                    |
|       | effective presentations, and give and receive clear instructions                         |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding          |
|       | of the engineering and management principles and apply these to one's own                |
|       | work, as a member and leader in a team, to manage projects and in                        |
|       | multidisciplinary environments                                                           |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability |
|       | to engage in independent and life-long learning in the broadest context of               |
|       | technological change                                                                     |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

|   | <b>PSO 1</b> | Design and develop modern communication technologies for building the inter         |  |  |  |  |  |
|---|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
|   |              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |
|   | <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |
|   |              | implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |
|   |              | relevant tools                                                                      |  |  |  |  |  |
| Γ | <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |
|   |              | to real time applications                                                           |  |  |  |  |  |
| \ |              |                                                                                     |  |  |  |  |  |

| Title                  | Course Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|-----------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Dr. M.V.Sudhakar  | Dr. B.Rambabu         | Dr. G.L.N.Murthy      | Dr. Y. Amar Babu          |

Signature



(AUTONOMOUS)



Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor:AMANATULLA MOHAMMADCourse Name & Code: DATA STRUCTURES & 20CS03L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech. /III/C-sec

**Credits:** 3 **A.Y.:** 2023-24

PREREQUISITE: Programming Language

#### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

#### COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Write the algorithms for various operations on list using arrays and linked list and analyze the time complexity of its operations.(Understand - L2) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Apply linear data structures like stack and queue in problem solving.(Apply - L3)                                                                    |
| CO3 | Demonstrate various sorting techniques and compare their computational complexities in terms of space and time.(Understand - L2)                     |
| CO4 | Write the algorithms for various operations on binary trees, binary search trees and AVL trees.(Understand - L2)                                     |
| CO5 | Demonstrate graph traversal techniques and hashing techniques.(Understand - L2)                                                                      |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs | PO1 | PO2 | PO3   | PO4 | PO5 | PO6 | PO7   | PO8 | PO9 | PO10 | PO11 | PO12   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------|
| CO1 | 3   | 2   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO2 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO3 | 3   | 2   |       |     |     |     |       |     |     |      |      |        | 2    |      |      |
| CO4 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 3    |      |      |
| CO5 | 3   | 1   |       |     |     |     |       |     |     |      |      |        | 1    |      |      |
|     |     | 1   | - Low |     |     | 2   | -Medi | um  |     |      | 3    | - High |      |      |      |

#### **TEXTBOOKS:**

- T1 Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson Education, 2nd edition [1,2,3 units].
- T2 ReemaThareja, Data Structures using c, Oxford Publications [3,4,5].

#### **REFERENCE BOOKS:**

- R1 Langson, Augenstein & Tenenbaum, 'Data Structures using C and C++', 2nd Ed, PHI.
- **R2** RobertL.Kruse, Leung and Tando, 'Data Structures and Program Design in C', 2ndedition, PHI.

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

# UNIT-I:

| S. No. | Topics to be covered              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion      | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-----------------------------------|-------------------------------|-----------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to Data Structures   | 1                             | 07-08-2023                              |                                 | TLM1                            | •                     |
| 2.     | Classification of Data Structures | 1                             | 08-08-2023                              |                                 | TLM1                            |                       |
| 3.     | Introduction to Algorithm         | 1                             | 10-08-2023                              |                                 | TLM1                            |                       |
| 4.     | Algorithm Analysis                | 1                             | 14-08-2023                              |                                 | TLM1                            |                       |
| 5.     | Asymptotic Notations              | 1                             | 17-08-2023                              |                                 | TLM1                            |                       |
| 6.     | List using Arrays                 | 1                             | 19-08-2023                              |                                 | TLM1                            |                       |
| 7.     | Single Linked List                | 3                             | 21-08-2023,<br>22-08-2023<br>24-08-2023 |                                 | TLM1                            |                       |
| 8.     | Double Linked List                | 3                             | 26-08-2023<br>28-08-2023<br>29-08-2023  |                                 | TLM1                            |                       |
| 9.     | Circular Linked List              | 2                             | 31-08-2023<br>02-09-2023                |                                 | TLM1                            |                       |
|        | No. of classes required to comple | No. of                        | classes tak                             | ken:                            |                                 |                       |

# UNIT-II:

| S. No. | Topics to be covered                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 10.    | STACKS ADT                                      | 1                             | 04-09-2023                         |                                 | TLM2                            |                       |
| 11.    | STACKS USING ARRAYS                             | 1                             | 05-09-2023                         |                                 | TLM1                            |                       |
| 12.    | STACKS USING LINKED LIST                        | 1                             | 07-09-2023                         |                                 | TLM1                            |                       |
| 13.    | INFIX TO POSTFIX CONVERSION                     | 2                             | 09-09-2023<br>&<br>11-09-2023      |                                 | TLM1                            |                       |
| 14.    | POSTFIX EVALUTION                               | 1                             | 12-09-2023                         |                                 | TLM1                            |                       |
| 15.    | CHECKING BALANCED<br>PARANTHESIS                | 1                             | 14-09-2023                         |                                 | TLM1                            |                       |
| 16.    | QUEUE                                           | 1                             | 16-09-2023                         |                                 | TLM1                            |                       |
| 17.    | QUEUE USING ARRAY                               | 1                             | 18-09-2023                         |                                 | TLM1                            |                       |
| 18.    | QUEUE USING LINKED LIST                         | 1                             | 19-09-2023                         |                                 | TLM1                            |                       |
| 19.    | CIRCULAR QUEUE                                  | 2                             | 21-09-2023<br>23-09-2023           |                                 | TLM1                            |                       |
| 20.    | DEQUE                                           | 1                             | 25-09-2023                         |                                 | TLM1                            |                       |
|        | No. of classes required to complete UNIT-II: 13 |                               |                                    |                                 | of classes                      | taken:                |

# UNIT-III: SORTING TECHNIQUES

| S.<br>No. | Topics to be covered              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 21.       | Bubble sort                       | 1                             | 26-09-2023                         |                                 | TLM2                            |                       |
| 22.       | Insertion Sort                    | 1                             | 28-09-2023                         |                                 | TLM1                            |                       |
| 23.       | Selection Sort                    | 1                             | 30-09-2023                         |                                 | TLM1                            |                       |
| 24.       | Merge Sort                        | 2                             | 09-10-2023<br>&<br>10-10-2023      |                                 | TLM1                            |                       |
| 25.       | Quick Sort                        | 2                             | 12-10-2023<br>&<br>14-10-2023      |                                 | TLM1                            |                       |
| 26.       | Heap Sort                         | 2                             | 16-10-2023<br>&<br>17-10-2023      |                                 | TLM1                            |                       |
|           | No. of classes required to comple | No. o                         | of classes t                       | aken:                           |                                 |                       |

#### **UNIT-IV: TREES**

| S.<br>No. | Topics to be covered              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 27.       | Introduction                      | 2                             | 19-10-2023<br>21-10-2023           |                                 | TLM1                            |                       |
| 28.       | Tree Traversals                   | 1                             | 23-10-2023                         |                                 | TLM1                            |                       |
| 29.       | Binary Trees                      | 2                             | 24-10-2023<br>26-10-2023           |                                 | TLM2                            |                       |
| 30.       | Binary Search Trees               | 2                             | 28-10-2023<br>30-10-2023           |                                 | TLM1                            |                       |
| 31.       | AVL Trees                         | 2                             | 31-10-2023<br>02-11-2023           |                                 | TLM1                            |                       |
| 32.       | Operations                        | 1                             | 04-11-2023                         |                                 | TLM1                            |                       |
|           | No. of classes required to comple | No.                           | of classes t                       | taken:                          |                                 |                       |

### **UNIT-V: GRAPHS & HASHING TECHNIQUES**

| S. No. | Topics to be covered     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion     | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------|-------------------------------|----------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 33.    | GRAPHS, FUNDAMENTALS     | 3                             | 06-11-2023<br>07-11-2023<br>09-11-2023 |                                 | TLM1                            |                       |
| 34.    | REPRESENTATION OF GRAPHS | 3                             | 11-11-2023<br>13-11-2023<br>14-11-2023 |                                 | TLM1                            |                       |
| 35.    | BFS                      | 3                             | 16-11-2023<br>18-11-2023<br>20-11-2023 |                                 | TLM1                            |                       |
| 36.    | DFS                      | 2                             | 21-11-2023<br>23-11-2023               |                                 | TLM1                            |                       |

| 37.                                            | Hashing Introduction, Hash function, separate Chaining | 1 | 25-11-2023                             |             | TLM1       |  |
|------------------------------------------------|--------------------------------------------------------|---|----------------------------------------|-------------|------------|--|
| 38.                                            | Linear & Quadratic Probing                             | 1 | 27-11-2023                             |             | TLM1       |  |
| 39.                                            | Double & Re-hasing                                     | 3 | 28-11-2023<br>30-11-2023<br>02-12-2023 |             | TLM2       |  |
| No. of classes required to complete UNIT-V: 16 |                                                        |   |                                        | No. of clas | ses taken: |  |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |  |
| TLM2     | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R17 Regulation):**

| Evaluation Task                                                                      | Marks             |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                   |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   |                   |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |  |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |  |  |  |  |
| Total Marks = CIE + SEE                                                              | 100               |  |  |  |  |

# **PROGRAMME OUTCOMES (POs):**

| PO 1        | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2        | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3        | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4        | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5        | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                       |
| PO 7        | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| <b>PO 8</b> | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9        | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10       | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12       | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

|       | The ability to apply Software Engineering practices and strategies in software project       |
|-------|----------------------------------------------------------------------------------------------|
| 1301  | development using an open-source programming environment for the success of the              |
|       | organization.                                                                                |
|       | The ability to design and develop computer programs in networking, web applications, and IoT |
| PSU 2 | as per society's needs.                                                                      |
|       | To inculcate an ability to analyze, design and implement database applications.              |
| PSO 3 |                                                                                              |

| Title                     | Course Instructor | Course Coordinator | Module Coordinator   | H.O.D          |
|---------------------------|-------------------|--------------------|----------------------|----------------|
| Name of<br>the<br>Faculty | Mr. Md.Amanatulla | Mr.D.Anil Kumar    | Dr. K. N. Prashanthi | Dr. D.Veeraiah |
| Signature                 |                   |                    |                      |                |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I) An ISO 21001:2018.14001:2015.50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

**DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** 

# **COURSE HANDOUT**

# PART-A

**Course Name & Code L-T-P Structure** Program/Sem/Sec

Name of Course Instructor : AMANATULLA MOHAMMAD : DATA STRUCTURES LAB & 20CS53 : 0-0-3 : B.Tech/III sem-ECE /C-Sec.

Credits: 1.5 **A.Y.:** 2022-23

**PREREQUISITE: C Programming Language** 

#### **COURSE OBJECTIVE:**

The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques **COURSE OUTCOMES (CO):** 

**CO1:** Implement Linear Data Structures using array and Linked list. (Apply - L3)

CO2: Implement Various Sorting Techniques. (Apply - L3)

CO3: : Implement Non-Linear Data Structure such as Trees & Graphs. (Apply - L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

#### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):**

| Cos | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | РО<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| CO1 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO2 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO3 |         | 2       | 1       |         | 1       |         |         |         |         |          |          |          |          |          |          |
| CO4 |         |         |         |         |         |         |         | 2       | 2       | 2        |          |          |          |          |          |

Note: 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High)

### PART-B:

# COURSE DELIVERY PLAN (LESSON PLAN):

| S.<br>No. | Topics to be<br>covered                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion                   | Actual<br>Date of<br>Completion | HOD<br>Sign |
|-----------|----------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------|-------------|
| 1.        | Introduction<br>&<br>List using Arrays                   | 3                             | 07-08-2023                                           |                                 |             |
| 2.        | Linked List<br>Programs                                  | 12                            | 14-08-2023<br>21-08-2023<br>28-08-2023<br>04-09-2023 |                                 |             |
| 3.        | Stack, Queue Using<br>Arrays, Linked List                | 6                             | 11-09-2023<br>18-09-2023                             |                                 |             |
| 4.        | Infix to Postfix,<br>Evaluation of Postfix<br>Expression | 3                             | 25-09-2023                                           |                                 |             |
| 5.        | Circular Queue<br>Double Ended<br>Queue                  | 3                             | 09-10-2023                                           |                                 |             |
| 6.        | Bubble sort<br>Selection sort<br>Insertion sort          | 3                             | 16-10-2023                                           |                                 |             |
| 7.        | Merge sort<br>Quick sort                                 | 3                             | 23-10-2023                                           |                                 |             |
| 8.        | Heap sort<br>Binary Tree                                 | 3                             | 31-10-2023                                           |                                 |             |
| 9.        | Binary Search Tree                                       | 3                             | 06-11-2023                                           |                                 |             |
| 10.       | BFS                                                      | 3                             | 13-11-2023                                           |                                 |             |
| 11.       | DFS                                                      | 3                             | 20-11-2023                                           |                                 |             |
| 12.       | Lab Internal Exam                                        | 3                             | 27-11-2023                                           |                                 |             |

# PART-C

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         |

| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

### **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |
| PSO 3 | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                  | Course Instructor | Course Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|-------------------|--------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | Mr. Md.Amanatulla | Mr. D. Anil kumar  | Dr. K Naga Prasanthi  | Dr. D. Veeriah            |
| Signature              |                   |                    |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF ECE**

# **COURSE HANDOUT**

# PART-A

Name of Course Instructor:Mrs.M.Ramya Harika/Dr. K. Ravi Kumar/Mr.K.V AshokCourse Name & Code: DSD Lab-20EC54Regulation: R20L-T-P Structure: 1-0-2Credits: 2Program/Sem/Sec: B. Tech. III-Sem., ECE B SecA.Y.: 2023-24

### **PREREQUISITE: Digital Electronics**

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides practical exposure in Xilinx compiler and in-built simulator to describe the simulation of digital circuits using Verilog HDL and explain Verilog HDL programs to generate test bench simulations.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1        | Demonstrate the functionality of logic gates using Verilog HDL simulator. (Understand-L2)                       |
|------------|-----------------------------------------------------------------------------------------------------------------|
| CO2        | <b>Analyze</b> the behaviour of combinational and sequential circuits using Verilog HDL simulator. (Analyze-L4) |
| CO3        | <b>Understand</b> the functionality of memories using Verilog HDL simulator. (Understand-L2)                    |
| <b>CO4</b> | Adapt effective Communication, presentation and report writing. (Apply-L3)                                      |

**PO3** P04 P05 P06 P07 **P08** P09 P010 P011 P012 **PSO1** PSO2 PSO3 COs P01 **PO2** 2 2 1 1 1 1 2 CO1 -\_ -\_ \_ 3 2 3 2 3 2 3 **CO2** \_ \_ \_ \_ \_ \_ \_ \_ 2 **CO3** 3 3 2 3 2 3 \_ \_ \_ \_ \_ \_ \_ \_ 3 2 2 2 2 **CO4** 1 \_ \_ --\_ --1 - Low 2 – Medium 3 - High

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

#### TEXTBOOKS:

T1 John F. Wakerly, "Digital Design", Principles and Practices, Pearson education, 4th edition

**T2** T.R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", Wiley IEEE Press.

#### **REFERENCE BOOKS:**

**R1** Charles H. Roth Jr., "Digital System Design Using VHDL", PWS Publications, USA, Reprint 2002.

#### PART-B

#### COURSE DELIVERY PLAN (LESSON PLAN): BATCH-I

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 19/08/2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 26/08/2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders<br>and subtractor.                   | 3                             | 02/09/2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 16/09/2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 23/09/2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 30/09/2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and 1X4<br>Demultiplexer – 74155.                | 3                             | 14/10/2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and 4X16<br>Demultiplexer –74154.               | 3                             | 21/10/2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 28/10/2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 04/11/2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip Flops             | 3                             | 11/11/2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 18/11/2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –74194/195.                                      | 3                             | 25/11/2023                         |                                 | TLM4                            |                       |
| 14.       | Internal Examination                                                       | 3                             | 02/12/2023                         |                                 |                                 |                       |
| No. o     | f classes required to complete: 39                                         |                               | No. of classes t                   | aken:                           |                                 |                       |

#### COURSE DELIVERY PLAN (LESSON PLAN): BATCH-II

| S.<br>No. | Topics to be covered<br>(Experiment Name)                                  | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction to Lab, COs                                                   | 3                             | 09/08/2023                         |                                 | TLM4                            |                       |
| 2.        | Implementation of Logic Gates –<br>data flow model and behavioral<br>model | 3                             | 16/08/2023                         |                                 | TLM4                            |                       |
| 3.        | Combinational logic circuits – adders<br>and subtractor.                   | 3                             | 23/08/2023                         |                                 | TLM4                            |                       |
| 4.        | Code converters- binary to gray and gray to binary.                        | 3                             | 30/08/2023                         |                                 | TLM4                            |                       |
| 5.        | 3 to 8 Decoder –74138.                                                     | 3                             | 13/09/2023                         |                                 | TLM4                            |                       |
| 6.        | 4 Bit Comparator –7485.                                                    | 3                             | 20/09/2023                         |                                 | TLM4                            |                       |
| 7.        | 8 x 1 Multiplexer – 74151 and 1X4<br>Demultiplexer – 74155.                | 3                             | 27/09/2023                         |                                 | TLM4                            |                       |
| 8.        | 16 x 1 Multiplexer – 74150 and 4X16<br>Demultiplexer –74154.               | 3                             | 11/10/2023                         |                                 | TLM4                            |                       |
| 9.        | Sequential circuits -Flip-Flops.                                           | 3                             | 18/10/2023                         |                                 | TLM4                            |                       |
| 10.       | Decade counter –7490.                                                      | 3                             | 25/10/2023                         |                                 | TLM4                            |                       |
| 11.       | Synchronous & Asynchronous<br>Counters using D & T- Flip Flops             | 3                             | 01/11/2023                         |                                 | TLM4                            |                       |
| 12.       | Shift registers –7495.                                                     | 3                             | 08/11/2023                         |                                 | TLM4                            |                       |
| 13.       | Universal shift registers –74194/195.                                      | 3                             | 15/11/2023                         |                                 | TLM4                            |                       |
| 14.       | Internal Examination                                                       | 3                             | 29/11/2023                         |                                 |                                 |                       |
| No. o     | f classes required to complete: 39                                         |                               |                                    | No. of classes t                | aken:                           |                       |

| S.<br>No. | Topics to be covered<br>(Experiment Name) | No. of<br>Classes | Tentative<br>Date of | Actual<br>Date of | Teaching<br>Learning | HOD<br>Sign |
|-----------|-------------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------|
|           | (                                         | Required          | Completion           | Completion        | Methods              | Weekly      |
| 1.        | Design of 4-bit ALU                       | 3                 | 22/11/2023           |                   | TLM4                 |             |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                  | Expt. no's      | Marks  |
|--------------------------------------------------|-----------------|--------|
| Day to Day work = A                              | 1,2,3,4,5,6,7,8 | A=05   |
| Record = <b>B</b>                                | 1,2,3,4,5,6,7,8 | B=05   |
| Internal Test = C                                | 1,2,3,4,5,6,7,8 | C = 05 |
| Cumulative Internal Examination : A + B + C = 15 | 1,2,3,4,5,6,7,8 | 15     |
| Semester End Examinations = D                    | 1,2,3,4,5,6,7,8 | D = 35 |
| Total Marks: A + B + C + D = 50                  | 1,2,3,4,5,6,7,8 | 50     |

# PART-D

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

| <b>PEO 1</b> | To Attain a solid foundation in Electronics & Communication Engineering            |
|--------------|------------------------------------------------------------------------------------|
|              | fundamentals with an attitude to pursue continuing education                       |
| <b>PEO 2</b> | To Function professionally in the rapidly changing world with advances in          |
|              | technology                                                                         |
| PEO 3        | To Contribute to the needs of the society in solving technical problems using      |
|              | Electronics & Communication Engineering principles, tools and practices            |
| <b>PEO 4</b> | To Exercise leadership qualities, at levels appropriate to their experience, which |
|              | addresses issues in a responsive, ethical, and innovative manner?                  |

### **PROGRAMME OUTCOMES (POs):**

| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                    |
|------|----------------------------------------------------------------------------------------|
|      | engineering fundamentals, and an engineering specialization to the solution of         |
|      | complex engineering problems                                                           |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze |
|      | complex engineering problems reaching substantiated conclusions using first            |
|      | principles of mathematics, natural sciences, and engineering sciences                  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering      |

|       | problems and design system components or processes that meet the specified<br>needs with appropriate consideration for the public health and safety, and the<br>cultural, societal, and environmental considerations                                                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge<br>and research methods including design of experiments, analysis and<br>interpretation of data, and synthesis of the information to provide valid<br>conclusions                                                       |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                                |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice                                                               |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development                                                                                   |
| P0 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| DCO 4        |                                                                                     |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| PS0 1        | Jesign and develop modern communication technologies for building the inter         |  |  |  |  |  |  |  |  |
|              | disciplinary skills to meet current and future needs of industry                    |  |  |  |  |  |  |  |  |
|              | abelphilary shills to meet carrent and ratare needs of madshy                       |  |  |  |  |  |  |  |  |
| <b>PSO 2</b> | Design and Analyze Analog and Digital Electronic Circuits or systems and            |  |  |  |  |  |  |  |  |
|              | Implement real time applications in the field of VLSI and Embedded Systems using    |  |  |  |  |  |  |  |  |
|              | relevant tools                                                                      |  |  |  |  |  |  |  |  |
| <b>PSO 3</b> | Apply the Signal processing techniques to synthesize and realize the issues related |  |  |  |  |  |  |  |  |
|              | to real time applications                                                           |  |  |  |  |  |  |  |  |

| Title                  | Course Instructor     | Course Coordinator | Module Coordinator | HOD              |
|------------------------|-----------------------|--------------------|--------------------|------------------|
| Name of<br>the Faculty | Smt.M.Ramya<br>Harika | Dr. K. Ravi Kumar  | Dr. P. Lachi Reddy | Dr. Y. Amar Babu |
| Signature              |                       |                    |                    |                  |



# **COURSE HANDOUT**

# PART-A:

| Name of Course Instructor | : Dr. B. Ramesh Reddy                                |
|---------------------------|------------------------------------------------------|
| Course Name & Code        | : Random Variables and Stochastic Processes - 20EC05 |
| L-T-P-Cr Structure        | : 3-0-0-3                                            |
| Program/Sem/Sec           | : B.Tech., ECE., III-Sem., Section - C               |

Pre-Requisites: Probability Theory, Basics of Differentiation and Integration.

**Course Objective:** This course provides the knowledge on random variables and their statistical behavior. It also provides the complete information about temporal and spectral characteristics of random processes. The course also provides the information about evaluation of system response to random inputs and Noise characteristics.

#### Course Outcomes (COs): At the end of the course, students are able to

| COL         | Summarize the concepts of random variables, random processes and noise.                |
|-------------|----------------------------------------------------------------------------------------|
| COI         | (Understand-L2)                                                                        |
| CO2         | Use the mathematical concepts of random variables and random processes for determining |
| 02          | statistical parameters and spectral characteristics (Apply-L3)                         |
| 002         | Analyze the behavior of random variables and random processes using distribution and   |
| 005         | density functions (Analyze-L4)                                                         |
| <b>CO</b> 4 | Apply the knowledge of random variables and stochastic processes for analyzing the     |
|             | system behavior (Apply-L3)                                                             |

| COa        | PO | PSO | PSO | PSO |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COs        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO1        | 3  | 2  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1   | -   | -   |
| CO2        | 3  | 2  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | 2   | -   | -   |
| CO3        | 3  | 2  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | 1   | -   | -   |
| <b>CO4</b> | 3  | 3  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | 2  | -   | -   | 3   |

#### **Course Articulation Matrix (Correlation between COs &POs, PSOs):**

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1-Slight(Low),2-Moderate(Medium),3-Substantial (High).

#### **TEXT BOOK(S):**

- **T1 Peyton Z. Peebles, Jr**, "Probability, Random Variables and Random Signal Principles", Tata Mc Graw-Hill, 4<sup>th</sup> edition, New Delhi.
- **T2 Y.Mallikarjuna Reddy,** "Probability Theory and Stochastic Processes", Universities Press(India) Pvt. Ltd., 2010.

| S.No.  | Topic/s                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to RVSP Course                                                      | 1                             | 07-08-23                           |                                 |                                 |                       |
| 2.     | Introduction to UNIT-I                                                           | 1                             | 09-08-23                           |                                 |                                 |                       |
| 3.     | Concept of Probability                                                           | 1                             | 10-08-23                           |                                 |                                 |                       |
| 4.     | Concept of Random Variable, Conditions<br>for a function to be a Random Variable | 1                             | 11-08-23                           |                                 |                                 |                       |
| 5.     | Classification of Random Variable                                                | 1                             | 14-08-23                           |                                 |                                 |                       |
| 6.     | Cumulative Distribution Function (CDF) and Properties                            | 1                             | 16-08-23                           |                                 |                                 |                       |
| 7.     | Probability Density Function (PDF) and Properties                                | 1                             | 17-08-23                           |                                 |                                 |                       |
| 8.     | Pre-Defined Distributions                                                        | 1                             | 18-08-23                           |                                 |                                 |                       |
| 9.     | Pre-Defined Distributions                                                        | 1                             | 21-08-23                           |                                 |                                 |                       |
| 10.    | Expectation, Moments and Central<br>Moments                                      | 1                             | 23-08-23                           |                                 |                                 |                       |
| 11.    | Characteristic Function with Properties                                          | 1                             | 24-08-23                           |                                 |                                 |                       |
| 12.    | Moment Generating Function with<br>Properties                                    | 1                             | 25-08-23                           |                                 |                                 |                       |
| 13.    | Problem Solving Session                                                          | 1                             | 28-08-23                           |                                 |                                 |                       |
| 14.    | Problem Solving Session                                                          | 1                             | 30-08-23                           |                                 |                                 |                       |
| No. of | classes required to complete UNIT-I                                              | 14                            | No.                                | of classes tak                  | en                              |                       |

### **UNIT-I: Random Variables, Operations on One Random Variable**

### **UNIT-II: Multiple Random Variables, Operations on Multiple Random Variables**

| S.No.  | Topic/s                                                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 15.    | Introduction to UNIT-II                                                                          | 1                             | 31-08-23                           |                                 |                                 |                       |
| 16.    | Joint Distribution Function and<br>Properties, Marginal Distribution<br>Function                 | 1                             | 01-09-23                           |                                 |                                 |                       |
| 17.    | Joint Density Function and Properties,<br>Marginal Density Function                              | 1                             | 04-09-23                           |                                 |                                 |                       |
| 18.    | Statistical Independence                                                                         | 1                             | 07-09-23                           |                                 |                                 |                       |
| 19.    | Distribution and Density of Sum of Random Variables                                              | 1                             | 08-09-23                           |                                 |                                 |                       |
| 20.    | Central Limit Theorem                                                                            | 1                             | 11-09-23                           |                                 |                                 |                       |
| 21.    | Expected Value of Function of Random<br>Variables, Joint Moment about the Origin,<br>Correlation | 1                             | 13-09-23                           |                                 |                                 |                       |
| 22.    | Joint Central Moment, Covariance and<br>Correlation Coefficient                                  | 1                             | 14-09-23                           |                                 |                                 |                       |
| 23.    | Problem Solving Session                                                                          | 1                             | 15-09-23                           |                                 |                                 |                       |
| 24.    | Problem Solving Session                                                                          | 1                             | 20-09-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-II                                                           | 10                            | No.                                | of classes tak                  | en                              |                       |

| S.No. | Topic/s                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 25.   | Introduction to UNIT-III                                                   | 1                             | 21-09-23                           |                                 |                                 |                       |
| 26.   | Concept of Stochastic Processes,<br>Classification of Stochastic Processes | 1                             | 22-09-23                           |                                 |                                 |                       |
| 27.   | Distribution and Density of Stochastic<br>Processes                        | 1                             | 25-09-23                           |                                 |                                 |                       |
| 28.   | Stationary Stochastic Processes                                            | 1                             | 27-09-23                           |                                 |                                 |                       |
| 29.   | Problem Solving Session                                                    | 1                             | 29-09-23                           |                                 |                                 |                       |
| 30.   | Time Averages and Ergodicity                                               | 1                             | 09-10-23                           |                                 |                                 |                       |
| 31.   | Correlation Functions- ACF & Properties                                    | 1                             | 11-10-23                           |                                 |                                 |                       |
| 32.   | Correlation Functions- CCF & Properties                                    | 1                             | 12-10-23                           |                                 |                                 |                       |
| 33.   | Covariance Functions-Autocovariance<br>and Cross-covariance Functions      | 1                             | 13-10-23                           |                                 |                                 |                       |
| 34.   | Problem Solving Session                                                    | 1                             | 16-10-23                           |                                 |                                 |                       |
| 35.   | Problem Solving Session                                                    | 1                             | 18-10-23                           |                                 |                                 |                       |
| 36.   | Problem Solving Session                                                    | 1                             | 19-10-23                           |                                 |                                 |                       |
| ]     | No. of classes required to complete UNIT                                   | Γ-III                         | 12                                 | No. of clas                     | ses taken                       |                       |

#### **UNIT-III: Stochastic Processes-Temporal Characteristics**

# **UNIT-IV: Stochastic Processes-Spectral Characteristics**

| S.No.  | Topic/s                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 37.    | Introduction to UNIT-IV                                     | 1                             | 20-10-23                           |                                 |                                 |                       |
| 38.    | Power Spectral Density and Properties                       | 1                             | 25-10-23                           |                                 |                                 |                       |
| 39.    | Relation between CCF & CPSD -<br>Wiener-Khintchine Relation | 1                             | 26-10-23                           |                                 |                                 |                       |
| 40.    | Cross Power Spectral Density and Properties                 | 1                             | 27-10-23                           |                                 |                                 |                       |
| 41.    | Relation between CCF & CPSD                                 | 1                             | 30-10-23                           |                                 |                                 |                       |
| 42.    | Relation between CCF and CPSD                               | 1                             | 01-11-23                           |                                 |                                 |                       |
| 43.    | Problem Solving Session                                     | 1                             | 02-11-23                           |                                 |                                 |                       |
| 44.    | Problem Solving Session                                     | 1                             | 03-11-23                           |                                 |                                 |                       |
| 45.    | Problem Solving Session                                     | 1                             | 06-11-23                           |                                 |                                 |                       |
| 46.    | Problem Solving Session                                     | 1                             | 08-11-23                           |                                 |                                 |                       |
| 47.    | Problem Solving Session                                     | 1                             | 09-11-23                           |                                 |                                 |                       |
| No. of | f classes required to complete UNIT-IV                      |                               | 11                                 | No. of class                    | es taken                        |                       |

| S.No.                                      | Topic/s                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------------------------------------------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 48.                                        | Introduction to UNIT-V                                                 | 1                             | 10-11-23                           |                                 |                                 |                       |
| 49.                                        | Response of a Linear System                                            | 1                             | 13-11-23                           |                                 |                                 |                       |
| 50.                                        | Mean value of System Response, Mean<br>Square value of System Response | 1                             | 15-11-23                           |                                 |                                 |                       |
| 51.                                        | ACF of Response, CCF of input and output                               | 1                             | 16-11-23                           |                                 |                                 |                       |
| 52.                                        | Relation b/n ACF of Response, and CCF of input and output              | 1                             | 17-11-23                           |                                 |                                 |                       |
| 53.                                        | PSD of Response, CPSD of input and output                              | 1                             | 20-11-23                           |                                 |                                 |                       |
| 54.                                        | Problem Solving Session                                                | 1                             | 22-11-23                           |                                 |                                 |                       |
| 55.                                        | Definition of Noise, and Classification                                | 1                             | 23-11-23                           |                                 |                                 |                       |
| 56.                                        | Modeling of Noise Sources                                              | 1                             | 24-11-23                           |                                 |                                 |                       |
| 57.                                        | Available Power Gain and Noise Figure                                  | 1                             | 27-11-23                           |                                 |                                 |                       |
| 58.                                        | Problem Solving Session                                                | 1                             | 29-11-23                           |                                 |                                 |                       |
| No. of classes required to complete UNIT-V |                                                                        | 11                            | No. of classes taken               |                                 |                                 |                       |

### **UNIT-V: Linear Systems with Random Inputs, Noise**

### **Contents beyond the Syllabus**

| S.No. | Topic/s                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 59.   | Stochastic Signal Processing (SSP) | 1                             | 30-11-23                           |                                 |                                 |                       |
| 60.   | Applications of SSP                | 1                             | 01-12-23                           |                                 |                                 |                       |

| Teaching Learning Methods |                |      |                                 |  |
|---------------------------|----------------|------|---------------------------------|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |

# **PART-C: EVALUATION PROCESS:**

| Evaluation Task                                                                                                       | Marks |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                                                          |       |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                             |       |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                                                    |       |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                                                     |       |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                       |       |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)                                               |       |  |
| Cumulative Internal Examination (CIE) = $80\%$ of Max((M1+Q1+A1), (M2+Q2+A2)) + $20\%$ of Min((M1+Q1+A1), (M2+Q2+A2)) |       |  |
| Semester End Examination (SEE) (Unit-I, Unit – II, Unit –III, Unit-IV and Unit-V)                                     |       |  |
| Total Marks = CIE + SEE                                                                                               | 100   |  |

#### PART-D: ROGRAMME OUTCOMES (POs) & PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PSO 1:** Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- **PSO 2:** VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and implement real time applications in the field of VLSI and Embedded Systems using relevant tools
- **PSO 3:** Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

| Date       | Dr. B. Ramesh Reddy                          | Dr. G L N Murthy   | Dr. Y. Amar Babu |
|------------|----------------------------------------------|--------------------|------------------|
| 07.08.2023 | 23 Course Instructor &<br>Course Coordinator | Module Coordinator | HOD              |