LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** # COURSE HANDOUT PART-A Name of Course Instructor: Mr. A. S. R. C. Murthy. **Course Name & Code** : DATA STRUCTURES & 23CS02 PREREQUISITE: Introduction to Programming-23CS01 #### **COURSE EDUCATIONAL OBJECTIVES (CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the role of linear and nonlinear data structures in organizing and | |------------|--| | | accessing data (Understand-L2) | | CO2 | Implement abstract data type (ADT) and data structures for given application. | | COZ | (Apply-L3) | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | CU3 | (Apply-L3) | | CO4 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | LU4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------| | CO1 | 3 | 2 | | | | - | - | - | ı | - | - | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | ı | - | ı | ı | - | ı | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | 1 | - | - | ı | - | ı | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | ı | - | ı | ı | - | ı | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | - | - | - | 1 | - | - | | 2 | 3 | 3 | | | | 1 | - Low | | | 2 | -Medi | ium | | | 3 | - High | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### **REFERENCE BOOKS:** - **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick ## COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: Introduction to Linear Data Structures | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |-----------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|--| | 1. | Introduction and Discussion of CO's | 1 | 22-01-2025 | | TLM1 | | | | 2. | Definition and Importance of
Linear Data Structures | 1 | 23-01-2025 | | TLM1 | | | | 3. | Abstract Data Types and Implementation | 1 | 24-01-2025 | | TLM1 | | | | 4. | Overview of time and space complexity | 1 | 25-01-2025 | | TLM1 | | | | 5. | Analysis of Liner Data structures | 2 | 29-01-2025
30-01-2025 | | TLM1 | | | | 6. | Revise Arrays | 1 | 31-01-2025 | | TLM1 | | | | 7. | Searching Techniques: Linear
Search | 1 | 01-02-2025 | | TLM1 | | | | 8. | Binary Search & Analysis | 2 | 05-02-2025
06-02-2025 | | TLM1 | | | | 9. | Bubble Sort & Analysis | 1 | 07-02-2025 | | TLM1 | | | | 10. | Insertion Sort & Analysis | 2 | 08-02-2025
12-02-2025 | | TLM1 | | | | 11. | Selection Sort & Analysis | 2 | 13-02-2025
14-02-2025 | | TLM1 | | | | No. | No. of classes required to complete UNIT-I: 15 No. of classes taken: | | | | | | | #### **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |---|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 12. | List Implementation using Arrays and Array Disadvantages | 1 | 15-02-2025 | | TLM1 | | | 13. | Linked List Representation | 1 | 19-02-2025 | | TLM1 | | | 14. | Sing Linked List : Operations | 2 | 20-02-2025
21-02-2025 | | TLM1 | | | 15. | Double Linked List : Operations | 2 | 22-02-2025
27-02-2025 | | TLM1 | | | 16. | Circular Single Linked List | 1 | 28-02-2025 | | TLM1 | | | 17. | Circular Double Linked List | 2 | 01-03-2025
05-03-2025 | | TLM1 | | | 18. | Comparing Arrays and Linked List | 1 | 06-03-2025 | | TLM1 | | | 19. | Applications of Linked Lists:
Polynomial Representation | 1 | 07-03-2025 | | TLM1 | | | 20. | Polynomial Addition | 1 | 08-03-2025 | | TLM1 | | | No. of classes required to complete UNIT-II: 12 No. of classes taken: | | | | | | n: | #### **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Completi
on | Teachin
g
Learnin
g
Method
s | HOD
Sign
Weekly | |-----------|---------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 21. | Introduction to Stacks: Properties | 1 | 19-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 20-03-2025 | | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 21-03-2025 | | TLM1 | | | 24. | Stacks using Linked List | 1 | 22-03-2025 | | TLM1 | | | 25. | Expressions: Expression evaluation | 2 | 26-03-2025
27-03-2025 | | TLM1 | | | 26. | Infix to Postfix Conversion | 2 | 28-03-2025
29-03-2025 | | TLM1 | | | 27. | Checking Balanced Parenthesis | 2 | 04-04-2025
09-04-2025 | | TLM1 | | | 28. | Reversing a List | 1 | 10-04-2025 | | TLM1 | | | No. of classes required to comple | te UNIT | -III: 12 | No. of cl | asses ta | ken: | |-----------------------------------|---------|------------|-----------|----------|------| | 29. Backtracking | 1 | 11-04-2025 | | TLM1 | | UNIT-IV: Queues | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------| | 30. | Introduction to queues: properties and operations, | 1 | 12-04-2025 | | TLM1 | | | 31. | Implementing queues using arrays | 1 | 16-04-2025 | | TLM1 | | | 32. | Implementing queues using
Linked List | 1 | 17-04-2025 | | TLM1 | | | 33. | Applications of Queue :
Scheduling | 1 | 19-04-2025 | | TLM1 | | | 34. | Breadth First Search | 1 | 23-04-2025 | | TLM1 | | | 35. | Circular Queue | 1 | 24-04-2025 | | TLM1 | | | 36. | Double ended queue | 1 | 25-04-2025 | | TLM1 | | | 37. | Applications of Deque | 1 | 26-05-2025 | | TLM1 | | | No. | of classes required to complet | No. of class | es taken: | | | | **UNIT-V: TREES & HASHING TECHNQIUES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------| | 38. | Introduction to Trees, | 1 | 30-04-2025 | | TLM1 | | | 39. | Representation of Trees | 1 | 01-05-2025 | | TLM1 | | | 40. | Tree Traversals | 1 | 02-05-2025 | | TLM1 | | | 41. | Binary Search Trees-
Operations | 2 | 03-05-2025
07-05-2025 | | TLM1 | | | 42. | Hashing Introduction | 1 | 08-05-2025 | | TLM1 | | | 43. | Hash Functions | 1 | 09-05-2025 | | TLM1 | | | 44. | Collison Resolution
Techniques: Separate
Chaining | 1 | 10-05-2025 | | TLM1 | | | 45. | Open Addressing: Linear
Probing | 1 | 14-05-2025 | | TLM1 | | | 46. | Quadratic Probing, Double
Hashing | 1 | 15-05-2025 | | TLM1 | | | 47. | Rehashing, Applications of Hashing | 1 | 16-05-2025 | | TLM1 | | | No. o | of classes required to compl | V: 11 | No. of class | es taken: | | | **Content Beyond Syllabus** | S.
No. | Topics to be
covered | No. of
Classes
Requir
ed | Tentative
Date of
Completion | Actual
Date of
Compl
etion | Teachi
ng
Learni
ng
Method
s | Learni
ng
Outco
me
COs | Text
Book
follow
ed | HOD
Sign
Weekl
y | |----------------|--|-----------------------------------|------------------------------------|-------------------------------------|---|------------------------------------|------------------------------|---------------------------| | 1. | Evaluation
of Prefix Expression, Towers of Hanoi, Extendable Hashing | 1 | 17-05-2025 | | | | | | | No. of classes | | 1 | | • | No. of cla | sses taker | n: | • | | Teaching | Learning Methods | | | |----------|------------------|------|------------------------------------| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | #### PART-C **EVALUATION PROCESS (R17 Regulation):** | Evaluation Task | Marks | |--|-------| | Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus)) | A1=5 | | I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | M1=15 | | I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | Q1=10 | | Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | M2=15 | | II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ### PART-D #### PROGRAMME OUTCOMES (POs): | | Engineering knowledge : Apply the knowledge of mathematics, science, engineering | |-------|---| | PO 1 | fundamentals, and an engineering specialization to the solution of complex | | | engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze | | PO 2 | complex engineering problems reaching substantiated conclusions using first | | | principles of mathematics, natural sciences, and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs | | PO 3 | with appropriate consideration for the public health and safety, and the cultural, | | | societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and | | PO 4 | research methods including design of experiments, analysis and interpretation of | | | data, and synthesis of the information to provide valid conclusions. | | | Modern tool usage : Create, select, and apply appropriate techniques, resources, and | | PO 5 | modern engineering and IT tools including prediction and modeling to complex | | | engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent | | POO | responsibilities relevant to the professional engineering practice. | | | Environment and sustainability : Understand the impact of the professional | | PO 7 | engineering solutions in societal and environmental contexts, and demonstrate the | | | knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and | | 100 | responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member | | | or leader in diverse teams, and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with | | PO 10 | the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective | | | presentations, and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of | | PO 11 | the engineering and management principles and apply these to one's own work, as a | | PO 11 | member and leader in a team, to manage projects and in multidisciplinary | | | environments. | | | Life-long learning : Recognize the need for and have the preparation and ability to | | PO 12 | engage in independent and life-long learning in the broadest context of technological | | | change. | #### PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success oforganization. | |--------------|--| | F30 1 | using open-source programming environment for the success oforganization. | | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as | | 1302 | per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|------------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. A. S. R. C. Murthy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D.Veeraiah | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Mr. A. S. R. C. Murthy **Course Name & Code** : DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/A A.Y.: 2024-25 PREREQUISITE: PPSC #### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. #### **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) **CO3:** Develop and implement hashing techniques for solving problems (**Apply - L3**) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. #### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 2 | 1 | 3 | • | - | - | - | - | - | - | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO4 | - | - | - | - | - | - | - | 2 | 2 | 2 | 2 | 2 | | - | - | **Note: 1-** Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S. No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | HOD
Sign | |--------|---|-------------------------------|------------------------------|---------------------------|-------------| | 1. | Array Manipulations | 3 | 24-01-2025 | | | | 2. | Searching and Sorting Techniques | 3 | 31-01-2025 | | | | 3. | Single Linked List | 3 | 07-02-2025 | | | | 4. | Double Linked List | 3 | 14-02-2025 | | | | 5. | Circular Linked List | 3 | 21-02-2025 | | | | 6. | Polynomial Representation & Polynomial Addition | 3 | 28-02-2025 | | | | 7. | Linked List Applications | 3 | 07-03-2025 | | | | 8. | Stack Implementation | 3 | 21-03-2025 | | | | 9. | Stack Applications | 3 | 28-03-2025 | | | | 10. | Queue Implementation &
Circular Queue | 3 | 04-04-2025 | | | | 11. | Double Ended Queue | 3 | 11-04-2025 | | | | 12. | Trees | 3 | 25-04-2025 | | | | 13. | Trees | 3 | 02-05-2025 | | | | 14. | Hashing | 3 | 09-05-2025 | | | | 15. | Internal Exam | 3 | 16-05-2025 | | | ### PART-C **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-------| | Day to Day Work + Record | 15 | | Internal Test | 15 | | Continuous Internal Assessment | 30 | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | #### PART-D #### PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health
and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | #### PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | | | | | |-------|---|--|--|--|--|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | | | | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | | | | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------|------------------------|--------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. A. S. R. C. Murthy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** #### Part-A PROGRAM: I B. Tech., II-Sem., CSE- A ACADEMIC YEAR : 2024-25 **COURSE NAME & CODE**: Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR :Dr. K.R. Kavitha COURSE COORDINATOR :Dr. K.R. Kavitha **PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration #### **COURSE EDUCATIONAL OBJECTIVES (CEOs):** - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. #### **COURSE OUTCOMES (COs)** After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields -L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations – L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence – L3 CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – L3 #### **COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs):** | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | - | 1 | | CO2 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### **BOS APPROVED TEXT BOOKS:** - T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### **BOS APPROVED REFERENCE BOOKS:** - **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018. - **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - **R4** R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - **R5** B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. #### Part-B #### **COURSE DELIVERY PLAN (LESSON PLAN):** No. of **Tentative** Actual Teaching Learning Text HOD S. Book Sign No Topics to be covered Classes Date of Date of Learning Outcome Required Completion Completion Methods **COs** followed Weekly | 1 | Introduction to the course | 1 | 21-01-2025 | TLM2 | | | |---|-----------------------------------|---|------------|------|--|--| | 2 | Course Outcomes, Program Outcomes | 1 | 22-01-2025 | TLM2 | | | UNIT-I: Differential Equations of first order and first degree | S. | | No. of | Tentative | Actual | Teaching | 0 | Text | HOD | |-----|--|----------|------------|------------|----------|--------------|------------|--------| | No. | Topics to be covere | | Date of | Date of | Learning | | Book | Sign | | | • F - • • • • • • • • • • • • • • • • • • | Required | | Completion | Methods | COs | followed | Weekly | | 3. | Introduction to UNIT I | 1 | 23-01-2025 | • | TLM1 | CO1 | T1,T2 | | | 4. | Linear Differential equation | 1 | 24-01-2025 | | TLM1 | CO1 | T1,T2 | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | 6. | Exact DE | 1 | 28-01-2025 | | TLM1 | CO1 | T1,T2 | | | 7. | Exact DE | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | 8. | Non-exact DE
Type I | 1 | 30-01-2025 | | TLM1 | CO1 | T1,T2 | | | 9. | TUTORIAL - 1 | 1 | 31-01-2025 | | TLM3 | CO1 | T1,T2 | | | 10. | Non-exact DE
Type II | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | 11. | Non-exact DE
Type III | 1 | 04-02-2025 | | TLM1 | CO1 | T1,T2 | | | 12. | Non-exact DE
Type IV | 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | 13. | Newton's Law of cooling | 1 | 06-02-2025 | | TLM1 | CO1 | T1,T2 | | | 14. | TUTORIAL - 2 | 1 | 07-02-2025 | | TLM3 | CO1 | T1,T2 | | | 15. | Law of natural growt and decay | h 1 | 11-02-2025 | | TLM1 | CO1 | T1,T2 | | | 16. | Electrical circuits | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | | f classes required to
lete UNIT-I | 14 | | | | No. of class | ses taken: | | **UNIT-II: Linear Differential equations of higher order (Constant Coefficients)** | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | |-----|---|----------|------------|---------|----------|----------|----------|--------| | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | . | Required | | | U | COs | followed | Weekly | | 17. | Introduction to UNIT II | 1 | 13-02-2025 | | TLM1 | CO1 | T1,T2 | | | 18. | Solving a homogeneous DE | 1 | 14-02-2025 | | TLM1 | CO1 | T1,T2 | | | 19. | Finding Particular Integral, P.I for e^{ax+b} | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | 20. | P.I for Cosbx, or sinbx | 1 | 18-02-2025 | | TLM1 | CO1 | T1,T2 | | | 21. | P.I for polynomial function | 1 | 19-02-2025 | | TLM1 | CO1 | T1,T2 | | | 22. | P.I for $e^{ax+b}v(x)$ | 1 | 20-02-2025 | | TLM1 | CO1 | T1,T2 | | | 23. | TUTORIAL - 3 | 1 | 21-02-2025 | | TLM3 | CO1 | T1,T2 | | | 24. | P.I for $x^k v(x)$ | 1 | 22-02-2025 | | TLM1 | CO1 | T1,T2 | | | 25. | Method of Variation of parameters | 1 | 25-02-2025 | | TLM1 | CO1 | T1,T2 | | | 26. | Method of Variation of parameters | 1 | 27-02-2025 | | TLM1 | CO1 | T1,T2 | | | 27. | TUTORIAL - 4 | 1 | 28-02-2025 | | TLM3 | CO1 | T1,T2 | | | 28. | Simultaneous linear equations | 1 | 01-03-2025 | | TLM1 | CO1 | T1,T2 | | |-----|--|----|------------|-----------------------|------|-----|-------|--| | 29. | L-C-R circuits | 1 | 04-03-2025 | | TLM1 | CO1 | T1,T2 | | | 30. | Simple Harmonic motion | 1 | 05-03-2025 | | TLM1 | CO1 | T1,T2 | | | 31. | TUTORIAL - 5 | 1 | 07-03-2025 | | TLM3 | CO1 | T1,T2 | | | 32. | Revision | 1 | 06-03-2025 | | | | | | | N | o. of classes required to complete UNIT-II | 16 | | No. of classes taken: | |
| | | #### I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) **UNIT-III: Partial Differential Equations** | | UNIT-III: Partial Differential Equations | | | | | | | | |-----------|---|-------------------|----------------------|-------------------|----------------------|------------------|--------------|-------------| | S.
No. | Topics to be covered | No. of
Classes | Tentative
Date of | Actual
Date of | Teaching
Learning | Learning Outcome | Text
Book | HOD
Sign | | | _ | Required | Completion | Completion | Methods | COs | followed | Weekly | | 33. | Introduction to Unit III | 1 | 18-03-2025 | | TLM1 | CO2 | T1,T2 | | | 34. | Formation of PDE by elimination of arbitrary constants | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-2025 | | TLM1 | CO2 | T1,T2 | | | 36. | Formation of PDE by elimination of arbitrary functions | 1 | 21-03-2025 | | TLM1 | CO2 | T1,T2 | | | 37. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 38. | Lagrange's Method | 1 | 25-03-2025 | | TLM1 | CO2 | T1,T2 | | | 39. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | 40. | Homogeneous Linear
PDE with constant
coefficients | 1 | 27-03-2025 | | TLM1 | CO2 | T1,T2 | | | 41. | TUTORIAL - 6 | 1 | 28-03-2025 | | TLM3 | CO2 | T1,T2 | | | 42. | Homogeneous Linear
PDE with constant
coefficients | 1 | 29-03-2025 | | TLM1 | CO2 | T1,T2 | | | | Homogeneous Linear
PDE with constant
coefficients | 1 | 01-04-2025 | | TLM1 | CO2 | T1,T2 | | | | of classes required to complete UNIT-III | 11 | | | No. of classo | es taken: | | | #### **UNIT-IV: Vector Differentiation** | S. | Topics to be | No. of
Classes | Tentative
Date of | Actual
Date of | Teaching
Learning | Learning
Outcome | Text
Book | HOD
Sign | |-----|---------------------------|-------------------|----------------------|-------------------|----------------------|---------------------|--------------|-------------| | No. | covered | Required | | Completion | O | COs | followed | Weekly | | 44. | Introduction to UNIT IV | 1 | 02-04-2025 | | TLM1 | CO3 | T1,T2 | | | 45. | Vector
Differentiation | 1 | 03-04-2025 | | TLM1 | CO3 | T1,T2 | | | 46. | TUTORIAL - 7 | 1 | 04-04-2025 | | TLM3 | CO3 | T1,T2 | | | 47. | Gradient | 1 | 08-04-2025 | | TLM1 | CO3 | T1,T2 | | | 48. | Directional Derivative | 1 | 09-04-2025 | | TLM1 | CO3 | T1,T2 | | | 49. | Divergence | 1 | 10-04-2025 | | TLM1 | CO3 | T1,T2 | | | 50. | TUTORIAL - 8 | 1 | 11-04-2025 | | TLM3 | CO3 | T1,T2 | | | 51. | Curl | 1 | 15-04-2025 | | TLM1 | CO3 | T1,T2 | | | 52. | Solenoidal fields,
Irrotational fields, | 1 | 16-04-2025 | TLM1 | CO3 | T1,T2 | | |---|--|----|------------|------|--------------|-------------|--| | | potential surfaces Solenoidal fields, | | 17-04-2025 | | | | | | 53. | Irrotational fields, potential surfaces | 1 | | TLM1 | CO3 | T1,T2 | | | 54. | Laplacian, second order operators | 1 | 19-04-2025 | TLM1 | CO3 | T1,T2 | | | 55. | Vector Identities | 1 | 22-04-2025 | TLM1 | CO3 | T1,T2 | | | 56. | Vector Identities | 1 | 23-04-2025 | TLM1 | CO3 | T1,T2 | | | 57. | TUTORIAL - 9 | 1 | 25-04-2025 | TLM3 | CO3 | T1,T2 | | | No. of classes required to complete UNIT-IV | | 14 | | | No. of class | sses taken: | | **UNIT-V: Vector Integration** | | UNII-V: Vector Integration | | | | | | | | |------|---|----------|------------|------------|--------------|------------|----------|--------| | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | 110. | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 59. | Introduction to Unit-V | 1 | 24-04-2025 | | TLM1 | CO4 | T1,T2 | | | 60. | Line Integral | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | 61. | Circulation | 1 | 29-04-2025 | | TLM1 | CO4 | T1,T2 | | | 62. | Work done | 1 | 30-04-2025 | | TLM1 | CO4 | T1,T2 | | | 63. | Surface Integral, Flux | 1 | 01-05-2025 | | TLM1 | CO4 | T1,T2 | | | 64. | TUTORIAL - 10 | 1 | 02-05-2025 | | TLM3 | CO4 | T1,T2 | | | 65. | Volume Integral | 1 | 03-05-2025 | | TLM1 | CO4 | T1,T2 | | | 66. | Green's Theorem | 1 | 06-05-2025 | | TLM1 | CO4 | T1,T2 | | | 67. | Green's Theorem | 1 | 07-05-2025 | | TLM1 | CO4 | T1,T2 | | | 68. | Stoke's Thoerem | 1 | 08-05-2025 | | TLM1 | CO4 | T1,T2 | | | 69. | TUTORIAL - 11 | 1 | 09-05-2025 | | TLM3 | CO4 | T1,T2 | | | 70. | Divergence Theorem | 1 | 13-05-2025 | | TLM1 | CO4 | T1,T2 | | | 71. | Divergence Theorem | 1 | 14-05-2025 | | TLM1 | CO4 | T1,T2 | | | 72. | Revision | 1 | 15-05-2025 | | | | | | | No | o. of classes required to complete UNIT-V | 14 | | | No. of class | ses taken: | | | Content beyond the Syllabus | S. No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 73. | Non-homogeneous
Linear PDE with
constant
coefficients | 2 | 17-05-2025,
16-05-2025 | | TLM2 | CO2 | T1,T2 | | | | No. of classes | No. of classes taken: | | | | | | | | | II MID EXAMINATIONS (02-06-2025 TO 07-06-2025) | | | | | | | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|------------------------------------|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | TLM2 | PPT | TLM5 | LM5 ICT (NPTEL/SwayamPrabha/MOOCS) | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | <u>PART-C</u>EVALUATION PROCESS (R23 Regulation): | Evaluation Task | Marks | |----------------------------|-------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | |--|-----------------| | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30 | | Cumulative Internal Examination (CIE): | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | PART-D PROGRAMME OUTCOMES (POs): | | PART-D PROGRAMME OUTCOMES (POs): | |-------------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals | | PUI | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature and analyze complex engineering | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | | and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for | | | the public health and safety and the cultural, societal and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | professional engineering practice | | | Environment and sustainability : Understand the impact of the professional engineering solutions | | PO 7 | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable | | | development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms | | 100 | of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in | | 10) | diverse teams and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as being able to comprehend and write effective reports | | | and design documentation, make effective presentations and give and receive clear instructions. | | 70 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering | | PO 11 | and management principles and apply these to one's own work, as a member and leader in a team, | | | to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in | | | independent and life-long learning in the broadest context of technological change. | | Dr. K.R. Kavitha | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY |
-------------------|--------------------|--------------------|-------------------| | | | | | | Course Instructor | Course Coordinator | Module Coordinator | HOD | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING Phone: 08659-222933, Fax: 08659-222931 ### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Dr A.V.G.A.MARTHANDA **Course Name & Code** : BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01 L-T-P Structure : 3-0-0 Credits: 3 Program/Branch/Sem/Sec: B.Tech/CSE II SEM A SECTION A.Y.: 2024-25 **Pre-requisites:** Physics **Course Educational Objective:** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | | PART-A | | | | | | |-----|---|--|--|--|--|--| | CO1 | Extract electrical variables of AC & DC circuits usin fundamental laws. (Understand) | | | | | | | CO2 | Understand the operation of electrical machines and measuring instruments. | | | | | | | COZ | (Understand) | | | | | | | CO3 | Classify various energy resources, safety measures and interpret electricity bill | | | | | | | COS | generation in electrical sysems. | | | | | | | | PART-B | | | | | | | CO4 | Interpret the characteristics of various semiconductor devices. (Knowledge) | | | | | | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | | | | | | CO6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | | | | | | #### **CO-PO Articulation Matrix:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO 1 | 3 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | CO 3 | 2 | 2 | _ | _ | _ | 3 | _ | _ | _ | _ | 2 | 2 | | CO 4 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 5 | 3 | 2 | 1_ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 6 | 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | Where: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) #### Textbooks: - Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition - Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013 - Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition #### Reference Books: - 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. - 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 #### <u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN): #### **UNIT-I: DC & AC CIRCUITS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Electrical circuit elements | 1 | 20-01-2025 | | TLM1 | | | 2. | Ohm's Law and its limitations | 1 | 21-01-2025 | | TLM1 | | | 3. | KCL & KVL | 1 | 22-01-2025 | | TLM1 | | | 4. | series, parallel, series-parallel circuits | 1 | 25-01-2025 | | TLM1 | | | 5. | Problems | 1 | 27-01-2025 | | TLM3 | | | 6. | Super Position theorem | 1 | 28-01-2025 | | TLM1 | | | 7. | Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference | 1 | 29-01-2025 | | TLM2 | | | 8. | average value, RMS value, form factor, peak factor | 1 | 01-02-2025 | | TLM1 | | | 9. | RLC Circuits | 1 | 03-02-2025 | | TLM1 | | | 10. | Impedance, Power | 1 | 04-02-2025 | | TLM1 | | | 11. | Problems | 1 | 05-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-I: 11 | | | No. of classes | taken: | | #### **UNIT – II: MACHINES AND MEASURING INSTRUMENTS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | Construction, principle and operation of (i) DC Motor | 1 | 8-02-2025 | | TLM2 | | | 13. | Construction, principle and operation of (ii) DC Generator. | | 10-02-2025 | | TLM2 | | | 14. | Single Phase Transformer | 1 | 11-02-2025 | | TLM2 | | | 15. | Three Phase Induction Motor | 1 | 12-02-2025 | | TLM2 | | | 16. | Alternators | 1 | 15-02-2025 | | TLM2 | | | 17. | Applications of electrical machines | 1 | 17-02-2025 | | TLM2 | | | 18. | Construction and working
principle of Permanent Magnet
Moving Coil (PMMC) | 1 | 18-02-2025 | | TLM2 | | | 19. | Moving Iron (MI) Instruments | 1 | 19-02-2025 | | TLM2 | | | 20. | Wheat Stone bridge | 1 | 22-02-2025 | | TLM2 | | | 21. | Problems | 1 | 24-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-II: 09 | | | No. of classes | taken: | | #### UNIT – III: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 22. | Conventional and non-conventional energy resources | 1 | 25-02-2025 | | TLM2 | | | 23. | Hydel & Nuclear power generation | 1 | 26-02-2025 | | TLM2 | | | 24. | Solar & Wind power plants | 1 | 01-03-2025 | | TLM2 | | | 25. | Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1 | 03-03-2025 | | TLM2 | | | 26. | Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, | 1 | 04-03-2025 | | TLM2 | | | 27. | calculation of electricity bill for
domestic consumers. Working
principle of Fuse and Miniature circuit
breaker (MCB | 1 | 05-03-2025 | | TLM2 | | | 28. | merits and demerits. Personal safety
measures: Electric ShockEarthing
and its types& Safety Precaution | 1 | 8-03-2025 | | TLM2 | | | | | | | | | | | No. o | f classes required to complete UNIT-III: 9 | | | No. of classes | taken: | | | Teaching Lo | Teaching Learning Methods | | | | | | | |-------------|---------------------------|------|---------------------------------|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | #### PART-C #### **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |--|---------------| | Assignment-I (Units-I, II, III) | A1=5 | | I-Descriptive Examination (Units-I, II, III) | M1=15 | | I-Quiz Examination (Units-I, II, III) | Q1=10 | | Assignment-II (Units-IV, V, VI) | A2=5 | | II- Descriptive Examination (Units-IV, V, VI) | M2=15 | | II-Quiz Examination (Units-IV, V, VI) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ### PART-D #### **PROGRAMME OUTCOMES (POs):** | OIMINI | VIE OUTCOMES (1 Os). | |--------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and | | 101 | an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety,
legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |------------------------|---------------------|----------------------|--------------------|---------------------------| | Name of the
Faculty | DrA.V.G.A.MARTHANDA | Dr A.V.G.A.MARTHANDA | Dr.G.Nageswara Rao | Dr.JSV prasad | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING # COURSE HANDOUT PART-A Name of Course Instructor: Dr A.V.G.A.MARTHANDA Dr.M.Uma Vani **Course Name & Code** : ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP & 23EE51 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/CSE, II SEM A section A.Y.: 2024-25 **Course Educational Objective:** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |------------|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | CO6 | Demonstrate the working of various logic gates using ICs. (Understand) | **COURSE ARTICULATION MATRIX** (Correlation between COs & POs): | | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | PO 11 | PO 12 | |-----|-----|-----|-----|---------|-----|------|---------------|---------|-----------|------|-------|-------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | | C06 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | | | | 1 - Low | | 2 -N | 1edium | 3 - Hig | jh | | | | #### **PART-B** #### COURSE DELIVERY PLAN (LESSON PLAN): ELECTRICAL ENGINEERING | S.No. | Topics to be covered. (Experiment Name) | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekl | |-------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------| | 1. | Introduction to BEEE Lab, Importance of Electrical Lab, its Objectives and Outcomes, BASIC MEASURING METERS, SAFETY | 3 | 22-01-2025 | | TLM4 | | | 2. | PRECUATIONS & Other suggestions. Verification of KCL and KVL | 3 | 29-01-2025 | | TLM4 | | | 3. | Verification of Superposition theorem | 3 | 05-02-2025 | | TLM4 | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 05-02-2025 | | TLM4 | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 12-02-2025 | | TLM4 | | | No. of | classes required: 21 | | | No. of classes t | taken: | | |--------|--|---|------------|------------------|--------|--| | 8. | Internal Lab Examination (Electrical) | 3 | 05-03-2025 | | TLM4 | | | 7. | Calculation of Electrical Energy for Domestic Premises | 3 | 26-02-2025 | | TLM4 | | | 6. | Measurement of Power and Power factor using Single-phase wattmeter | 3 | 19-02-2025 | | TLM4 | | | Teaching Learning Methods | | | | | | | |--|----------|------|------------------------------------|--|--|--| | TLM1 Chalk and Talk TLM4 Demonstration (Lab/Field Visi | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | #### PART-C #### **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Expt. no's | Marks | |--|-----------------|--------| | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | #### PART-D #### PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, | |-------|---| | 101 | and an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective | | | reports and design documentation, make effective presentations, and give and receive clear instructions. | |-------|---| | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |------------------------|------------------------------------|-----------------------|--------------------|---------------------------| | Name of the
Faculty | Dr.AVGAM,Dr.MUV,
Dr.PSR,Mr.AVRK | Dr. A.V.G.A.MARTHANDA | Dr.G.NAGESWARA RAO | Dr.J.S.V.PRASAD |
| Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) #### FRESHMANENGINEERINGDEPARTMENT COURSEHANDOUT PART-A PROGRAM :I B.Tech.,II-Sem.,CSE-A ACADEMICYEAR :2024-25 COURSENAME & CODE : ENGINEERING PHYSICS L-T-PSTRUCTURE :4-0-0 COURSECREDITS 3 COURSEINSTRUCTOR :Dr. P. Sobhanachalam PRE-REQUISITE :Basic Knowledge of Physics #### **Course Objectives:** To bridge the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. #### **COURSEOUTCOMES(COs):**At the end of this course, the student will be able to | CO1 | Analyze the intensity variation of light due to interference, diffraction and Polarization | |-----|--| | | (Apply) | | CO2 | Understand the basics of crystals and their structures (Understand) | | CO3 | Summarize various types of polarization of dielectrics and classify the magnetic | | | materials (Understand) | | CO4 | xplain fundamentals of quantum mechanics and free electron theory of metals | | | (Understand) | | CO5 | Identify the type of semiconductor using Hall Effect (Apply) | #### **COURSEARTICULATIONMATRIX**(Correlation between COs, Pos & PSOs): | ENGINEERING PHYSICS | | | | | | | | | | | | | |-----------------------|------------|---------------------------------|-----|------|----------|---------|----|-----|--------|------------|-----|----| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course | Progr | Programme Outcomes | | | | | | | | | | | | Outcomes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | PO's | | | | | | | | | | | | | | co1. → | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO3. | 3 | 3 | 2 | 1 | 1 | 1 | | | | | | 1 | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | 1 = | Slight (Lo | ow) | 2 = | Mode | rate (N | /ledium | 1) | 3 = | Substa | ntial (Hi | gh) | ı | #### **TEXT BOOKS** - 1. A Text book of "Engineering Physics" M.N. Avadhanulu, P.G. Kshirsagar, TVS Arun Murthy, S. Chand & Co., 11th Edition, 2019. - 2. Engineering Physics D.K. Bhattacharya & Poonam Tandon, Oxford press (2015) #### **REFERENCES** - 1. Engineering Physics -B.K.Pandey& S. Chaturvedi, Cengage Learning 2021. - 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018. - 3. Engineering Physics -Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press 2010. - 4. Engineering Physics -M.R. Srinivasan, New Age international publishers (2009). #### **WEBRESOURCES** - 1. http://www.loc.gov/rr/scitech/selected-internet/physics.html - 2. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 3. http://physicsdatabase.com/free-physics-books/ - 4. http://www.e-booksdirectory.com - 5. http://www.thphys.physics.ox.ac.uk | | TEACHINGLEARNINGMETHODS | | | | | | | | |--|--------------------------|-------|------------------------------------|--|--|--|--|--| | TLM-1Chalk and TalkTLM-4Demonstration(Lab/Field Visit) | | | | | | | | | | TLM-2 | PPT/A illustrations | TLM-5 | ICT(NPTEL/Swayam
Prabha /MOOCS) | | | | | | | TLM-3 | Tutorial/Quiz/Assignment | TLM-6 | Group Discussion/Project | | | | | | #### PART-B #### COURSEDELIVERYPLAN(LESSONPLAN): #### <u>UNIT-I:INTERFERENCE, DIFFRACTION& POLARIZATION</u> Course Outcome :-CO1;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Introduction to the Subject, Course Outcomes | 1 | 21.1.25 | | TLM-2 | | | | 2. | Principle of superposition, Interference of light | 1 | 23.1.25 | | TLM-3 | | | | 3. | Interference in thin films by reflection & applications | 1 | 24.1.25 | | TLM-2 | | | | 4. | Colors in thin films,
Newton's rings | 1 | 28.1.25 | | TLM-1 | | | | 5. | Determination of wave and refractive index | 1 | 30.1.25 | | TLM-4 | | | | 6. | Problems&
Assignment/Quiz | 1 | 31.1.25 | | TLM-1 | | | | 7. | Introduction, Fresnel and Fraunhoffer diffractions | 1 | 1.2.25 | | TLM-3 | | | | 8. | Fraunhoffer diffraction due to single slit | 1 | 4.2.25 | TLM-2 | | |-----|--|---------------|-----------|----------------------|--| | 9. | Double slit& N
slits(Qualitative) | 1 | 6.2.25 | TLM-4 | | | 10. | Diffraction Grating, Dispersive power & Resolving power of Grating-Qualitative | 1 | 7.2.25 | TLM-4 | | | 11. | Problems&
Assignment/Quiz | 1 | 8.2.25 | TLM-3 | | | 12. | Introduction – Types of polarization | 1 | 11.2.25 | TLM-2 | | | 13. | Polarization by reflection, refraction & double refraction | 1 | 13.2.25 | TLM-2 | | | 14. | Nicol's prism | 1 | 14.2.25 | TLM-5 | | | 15. | Half wave and
Quarter wave plates | 1 | 15.2.25 | TLM-2 | | | 16. | Problems&
Assignment/Quiz | 1 | 18.2.25 | TLM-3 | | | | No.of classes require | d to complete | UNIT-I:16 | No.of classes taken: | | #### UNIT-II:CRYSTALLOGRAPHY & X- RAY DIFFRACTION Course Outcome :-CO2;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Space lattice; Basis, Unit cell & Lattice parameters | • | 20.2.25 | Completion | TLM-3 | | | | 2. | Bravais Lattices | 1 | 21.2.25 | | TLM-2 | | | | 3. | Crystal
Systems(3D) | 1 | 22.2.25 | | TLM-2 | | | | 4. | Coordination
number – Packing
fraction of –SC,
BCC | 1 | 25.2.25 | | TLM-1 | | | | 5. | Coordination
number – Packing
fraction of FCC | 1 | 27.2.25 | | TLM-1 | | | | 6. | Miller indices&
Properties | 1 | 28.2.25 | | TLM-2 | | | | 7. | Separation
between
successive (hkl)
planes | 1 | 1.3.25 | | TLM-1 | | | | 8. | Bragg's law; X–
ray Diffractometer | 1 | 4.3.25 | | TLM-3 | | | | 9. | Crystal Structure
determination by
Laue's method | 1 | 6.3.25 | | TLM-2 | | | | 10. | Crystal Structure determination by Powder method | 1 | 7.3.25 | TLM-5 | | |-----|--|------------|------------|---------------------|--| | 11. | Problems&
Assignment/Quiz | 1 | 8.3.25 | TLM-3 | | | 12. | MID-1
Examinations | 1 | 11.4.25 | | | | 13. | MID-1
Examinations | 1 | 13.3.25 | | | | 14. | MID-1
Examinations | 1 | 15.3.25 | | | | No. | of classes required to | complete U | NIT-II: 14 | No.of classes taken | | #### UNIT-III : DIELECTRIC & MAGNETIC MATERIALS Course Outcome :-CO3;TextBook:-T1,R2 | S.No | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |------|---|------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Dielectric polarization Dielectric polarizability, Susceptibility | 1 | 18.3.25 | | TLM-2 | | | | 2. | Dielectric constant &
Displacement Vector,
Relation between the
electric vectors | 1 | 20.3.25 | | TLM-3 | | | | 3. | Types of polarizations-
Electronic polarization | 1 | 21.3.25 | | TLM-1 | | | | 4. | Types of polarizations- ionic & orientation polarizations (Qualitative) | 1 | 22.3.25 | | TLM-1 | | | | 5. | Lorentz internal field | 1 | 25.3.25 | | TLM-2 | | | | 6. | Claussius-Mosotti
equation, Complex
dielectric constant | 1 | 27.3.25 | | TLM-1 | | | | 7. | Frequency dependence of polarization dielectric loss | 1 | 28.3.25 | | TLM-5 | | | | 8. | Problems&
Assignment/Quiz | 1 | 29.3.25 | | TLM-3 | | | | 9. | Introduction Magnetic dipole moment, Magnetization Magnetic susceptibility & permeability | 1 | 1.4.25 | | TLM-4 | | | | 10. | Atomic origin of magnetism | 1 | 3.4.25 | TLM-1 | | |-----|--|-------------|----------|----------------------|--| | 11. | Classification of
magnetic materials-
Dia, para, Ferro, anti-
ferro & Ferri
magnetic materials | 1 | 4.4.25 | TLM-2 | | | 12. | Domain concept for Ferromagnetism & Domain walls | 1 | 8.4.25 | TLM-2 | | | 13. | Hysteresis | 1 | 10.4.25 | TLM-5 | | | 14. | soft and hard magnetic materials | 1 | 11.4.25 | TLM-1 | | | 15. | Problems&
Assignment/Quiz | 1 | 12.4.25 | TLM-3 | | | No. | of classes required to co | mplete UNI' | Г-ІІІ:15 | No.of classes taken: | | #### UNIT-IV: QUANTUM MECHANICS&FREEELECTRONTHEORY Course Outcome :-CO4;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Dual nature
of
matter,De-Broglie's
Hypothesis | 1 | 15.4.25 | | TLM-2 | | | | 2. | Heisenberg's Uncertainty Principle | 1 | 17.4.25 | | TLM-2 | | | | 3. | Significance & properties of wave function | 1 | 19.4.25 | | TLM-2 | | | | 4. | Schrodinger's time independent and dependent wave equations | 1 | 22.4.25 | | TLM-1 | | | | 5. | Particle in a one – dimensional infinite potential well | 1 | 24.4.25 | | TLM-1 | | | | 6. | Problems&
Assignment/Quiz | 1 | 25.4.25 | | TLM-3 | | | | 7. | Classical free
electron theory-
merits and demerits,
Quantum free
electron theory | 1 | 26.4.25 | | TLM-2 | | | | 8. | Electrical conductivity based on quantum free electron theory | 1 | 29.4.25 | | TLM-1 | | | | 9. | Fermi -Dirac distribution and temperature dependence | 1 | 1.5.25 | | TLM-5 | | | | 10. | Density of states,
Fermi energy | 1 | 2.5.25 | | TLM-1 | | | | 11. | Problems&
Assignment/Quiz | 1 | 3.5.25 | | TLM-3 | | | |-----|------------------------------|-------------|-----------|---------|---------------|---|--| | No | o.of classes required to | complete Ul | NIT-IV:11 | No.of c | lasses taken: | • | | #### UNIT-V:SEMICONDUCTORPHYSICS Course Outcome :-CO5;TextBook:-T2,R1 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Formation of energy bands, Classification of crystalline solids | 1 | 6.5.25 | | TLM-6 | | | | 2. | Intrinsic semiconductors, Density of charge carriers | 1 | 8.5.25 | | TLM-1 | | | | 3. | Electrical conductivity, Fermi level | 1 | 9.5.25 | | TLM-2 | | | | 4. | Extrinsic semiconductors, Density of charge carriers | 1 | 10.5.25 | | TLM-1 | | | | 5. | Dependence of Fermi energy on carrier concentration &temperature | 1 | 13.5.25 | | TLM-2 | | | | 6. | Drift and Diffusion
Currents, Einstein's
equation | 1 | 15.5.25 | | TLM-1 | | | | 7. | Hall Effect & its applications | 1 | 16.5.25 | | TLM-4 | | | | 8. | Problems&
Assignment/Quiz | 1 | 17.5.25 | | TLM-3 | | | | 9. | MID-2
Examinations | 1 | 3.6.25 | | | | | | 10. | MID-2
Examinations | 1 | 5.6.25 | | | | | | 11. | MID-2
Examinations | 1 | 6.6.25 | | | | | | No | of classes required to | complete U | NIT-V:11 | No.of classes | taken: | | | #### PART-C #### **EVALUATION PROCESS(R-23Regulation)** | Evaluation Task | Marks | |--|---------------| | Assignment-I (Units-I, II) | A1= 5 | | I-Descriptive Examination (Units-I, II) | M1= 15 | | I-Quiz Examination (Units-I, II) | Q1= 10 | | Assignment-II (Unit-III, IV & V) | A2= 5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2= 15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2= 10 | |--|---------------| | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M= 30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | #### PART-D #### PROGRAMMEOUTCOMES(POs): | | Engineering knowledge: Apply the knowledge of mathematics, science, | |---------------|---| | PO 1 | engineeringfundamentals, and an engineering specialization to the solution of complex | | | engineeringproblems. | | | Problemanalysis : Identify, formulate, review research literature, and analyze | | PO 2 | complexengineeringproblemsreachingsubstantiatedconclusionsusingfirstprinciplesofm | | | athematics,naturalsciences,and engineeringsciences. | | | Design/developmentofsolutions : Designsolutions for complex engineering problems | | PO 3 | and design system components or processes that meet the specified | | | needswithappropriateconsiderationforthepublichealthandsafety, and the cultural, | | | societal, and environmental considerations. | | | Conductinvestigationsofcomplexproblems: Useresearch-basedknowledgeand | | PO 4 | researchmethodsincludingdesignofexperiments, analysis and interpretation of data, and syn | | | thesisoftheinformationtoprovidevalidconclusions. | | | Moderntoolusage:Create,select,andapplyappropriatetechniques,resources,and | | PO 5 | modernengineeringandITtoolsincludingpredictionandmodelingtocomplexengineeringa | | | ctivitieswithanunderstandingofthe limitations | | | The engineer and society: Apply reasoning informed by the contextual | | PO 6 | knowledgetoassesssocietal,health,safety,legalandculturalissuesandtheconsequent | | | responsibilitiesrelevanttotheprofessionalengineeringpractice | | | Environmentandsustainability :Understandtheimpactoftheprofessionalengineeringsol | | PO 7 | utionsinsocietalandenvironmentalcontexts,anddemonstratethe | | | knowledgeof,andneed forsustainabledevelopment. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and | | | responsibilities and norms of the engineering practice. | | PO 9 | Individualandteamwork:Functioneffectivelyasanindividual,andasamember | | | orleaderindiverseteams, and in multidisciplinary settings. | | | Communication: Communicate effectively on complex engineering activities | | PO 10 | withtheengineeringcommunityandwithsocietyatlarge, suchas, being able to comprehenda | | | ndwriteeffectivereportsanddesigndocumentation,makeeffective | | | presentations, and give and receive clear instructions. | | DC 44 | Projectmanagementandfinance : Demonstrate knowledge andunderstandingofthe | | PO 11 | engineering and management principles and apply these to one's own work, as | | | amemberandleaderinateam,tomanageprojectsandinmultidisciplinary | | | environments. | | D 0 12 | Life-longlearning: Recognize the need for and have the preparation and ability to | | PO 12 | engageinindependentandlife-longlearninginthebroadestcontextoftechnologicalchange. | | | | | CourseInstructor | CourseCoordinator | ModuleCoordinator | HOD | |----------------------|-------------------|-------------------|----------------| | Dr. P. Sobhanachalam | Dr.S.YUSUF | Dr.S.YUSUF | Dr.A.RAMIREDDY | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) ### FRESHMANENGINEERINGDEPARTMENT COURSEHANDOUT #### Part-A PROGRAM : B.Tech.,II-Sem.,CSE-A ACADEMICYEAR : 2024-25 COURSENAME &CODE : ENGINEERING PHYSICS LAB L-T-PSTRUCTURE : 0-0-3 COURSECREDITS : 1 COURSEINSTRUCTOR : Dr. P. Sobhanachalam / Prof. S. Yusub COURSECOORDINATOR : Pre-requisites : Nil **Course Objective:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). #### Course articulation matrix (Correlation between CO's and PO's): | | | | Eng | ineerin | g Phy | sics Lab |) | | | | | | |-----------------------|----------|---------------------------------|-------|---------|--------|----------|-------|----------|---------|---------|----|----| | COURSE DESIGNED
BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | | | | Р | rogram | me Ou | tcomes | | | | | | PO's | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | co1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO2. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | соз. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | 1 = sligi | ht (Low) | | 2 = M | oderate | e (Me | dium) | 3 | s = Subs | tantial | (High) | • | | #### **List of Experiments** - 1. Determination of radius of curvature of a given Plano Convex lens by Newton's rings. - 2. Determination of dielectric constant using charging and discharging method. - 3. Determination of wavelength of a laser light using diffraction grating. - 4. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method. - 5. Determination of temperature coefficients of a thermistor. - 6. Determination of acceleration due to gravity and radius of Gyration by using a compound #### pendulum. - 7. Determination of Frequency of electrically maintained tuning fork by Melde's experiment. - 8. Determination of rigidity modulus of the material of the given wire using Torsional pendulum. - 9. Sonometer- Verification of laws of a stretched string. - 10. Determination of energy band gap of a semiconductor using p-n junction diode. - 11. Verification of Brewster's Law. - 12. Determination of Hall coefficient and Hall voltage. #### **References:** • A Textbook of Practical Physics – S. Balasubramanian, M.N. Srinivasan, S. Chand publishers-2017. #### **BOSAPPROVEDTEXTBOOKS:** 1. LabManualPreparedbytheLBRCE. #### **EVALUATIONPROCESS:** | Evaluation Task | Marks | |---|----------------| | Day-to-Day Work | A1 = 10 | | Record & Observation | B1 = 5 | | Internal Exam | C1 = 15 | | Cumulative Internal Examination (CIE): (A1+B1+C1) | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ### Part-B COURSEDELIVERYPLAN
(LESSONPLAN): CSE-A | S.N
o. | Topics
to be
cove
red | No.
of
Class
es
Requi
red | Tentati ve Date of Comple tion | Actual
Date of
Comple
tion | TeachingLearning
Methods | LearningOutco
meCOs | Text
Book
follo
wed | H
O
D
Si
gn | |-----------|---|--|--------------------------------|-------------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------| | 1. | Introducti
on &
Demonstr
ation | 3 | 20.1.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T
1 | | | 2. | Experime nt1 | 3 | 27.1.25 | TLM-4 | CO1,
CO2,CO3,CO4 | T 1 | |------|--------------------------------------|---|---------|----------|------------------------------|-------------| | 3. | Experime nt2 | 3 | 3.2.25 | TLM-4 | & CO5
CO1,
CO2,CO3,CO4 | T 1 | | 4. | Experime | 3 | 10.2.25 | TLM-4 | & CO5
CO1,
CO2,CO3,CO4 | Т | | 5. | nt3 Experime | 3 | 17.2.25 | TLM-4 | & CO5
CO1,
CO2,CO3,CO4 | 1
T | | 6. | nt 3 Experime | 3 | 24.2.25 | TLM-4 | & CO5
CO1,
CO2,CO3,CO4 | 1
T | | 7. | nt 4 Experimen | 3 | 3.3.25 | TLM-4 | & CO5
CO1,
CO2,CO3,CO4 | 1
T | | | t5
MID-1 | | | 1 L/VI-4 | & CO5 | 1 - | | 8. | Exam | 3 | 10.3.25 | | CO1, | -
-
T | | 9. | Experime nt 6 | 3 | 17.3.25 | TLM-4 | CO2,CO3,CO4
& CO5
CO1, | 1 | | | Experime nt 7 | 3 | 24.3.25 | TLM-4 | CO2,CO3,CO4
& CO5
CO1, | T
1 | | . 11 | Experime nt8 | 3 | 7.4.25 | TLM-4 | CO2,CO3,CO4
& CO5 | T 1 | | . 12 | Experimen
t 8 | 3 | 21.4.25 | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T
1 | | 13 | Experimen
t 9 | 3 | 28.4.25 | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | 14 | Internal
Exam | 3 | 5.5.25 | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | 15 | Internal
Exam | 3 | 12.5.25 | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T
1 | | 16 | MID-2
Exam | 3 | 2.6.25 | | | | | 1 | of classes
required
ompletelab | | 15 | | No.of classes take | en: | #### **PROGRAM OUT COMES:** Engineering Graduates will be able to: - (1).Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2). Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3).Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **(4). Conduct investigations ofcomplex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation provide valid conclusions. - **(5)**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with anunderstandingofthelimitations. - **(6)**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - **(9)**. **Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams and in multi disciplinary settings. - **(10).Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11).Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12). Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | CourseInstructor | CourseCoordinator | ModuleCoordinator | HOD | | | |----------------------|-------------------|-------------------|----------------|--|--| | Dr. P. Sobhanachalam | Dr.S.YUSUF | Dr.S.YUSUF | Dr.A.RAMIREDDY | | | (AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) under Tier - I #### DEPARTMENT OF MECHANICAL ENGINEERING #### **COURSE HANDOUT** PROGRAM: B.Tech. II-Sem, Computer Science Engineering **ACADEMIC YEAR** : 2024-25 **COURSE NAME & CODE :** Engineering Workshop, 23ME51 L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1.5 **COURSE INSTRUCTOR**: Dr.B.Sudheer Kumar, Sr.Asst. Professor Mrs.B.Kamala Priya, Asst. Professor **COURSE COORDINATOR**: Seelam Srinivasa Reddy, Assoc. Professor PRE REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. #### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as Cross lap joint, Dove tail joint. | |-----|--| | CO2 | Fabricate and model various basic prototypes in the trade of fitting such as Straight fit, V-fit. | | CO3 | Produce various basic prototypes in the trade of Tin smithy such as Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | # COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs): | COs | PO PSO | PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | **Note:** Enter Correlation Levels **1**or **2** or **3.** If there is no correlation, **put"1** Slight (Low), **2**-Moderate (Medium), **3**-Substantial (High). #### **REFERENCE:** | R1 | LabManual | |----|-----------| |----|-----------| | S.
No. | to be | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Reference | HOD
Sign
Weekly | |-----------|---------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------|-----------------------| | 1. | Demonstration | 3 | 21-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 28-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 04-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 11-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 18-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 25-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 04-03-2025 | | TLM8 | R1 | | | | | I-Mid E | xaminations (10 | 0.03.2025 to 1 | 5.03.2025) | | | | 8. | Experiment-7 | 3 | 18-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 25-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 01-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 08-04-2025 | | TLM8 | R1 | | | 12. | Additional
Experiments | 3 | 15-04-2025 | | TLM8 | R1 | | | 13. | Additional
Experiments | 3 | 22-04-2025 | | TLM8 | R1 | | | 14. | Repetition lab | 3 | 29-04-2025 | | TLM8 | R1 | | | 15. | Repetition lab | 3 | 06-05-2025 | | TLM8 | R1 | | | 16. | Lab Internal | 3 | 13-05-2025 | | TLM6 | - | | | | | | | | | | | | Teach | Teaching Learning Methods | | | | | | | | | | |-------|----------------------------------|------|--------------------|------|----------------|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | | | | | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | | | | | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | | | | | | #### **ACADEMIC CALENDAR:** | , i.e. i.e. i.i.i.e. i.i.i. | | | | | | | | | |-----------------------------|--|---|--|--|--|--|--|--| | From | To | Weeks | | | | | | | | 13-01-2025 | 08-03-2025 | 8W | | | | | | | | 10-03-2025 | 15-03-2025 | 1W | | | | | | | | 17-03-2025 | 17-05-2025 | 9W | | | | | | | | 02-06-2025 | 07-06-2025 | 1W | | | | | | | | 09-06-2025 | 14-06-2025 | 1W | | | | | | | | 16-06-2025 | 28-06-2025 | 2W | | | | | | | | | 13-01-2025
10-03-2025
17-03-2025
02-06-2025
09-06-2025 | 13-01-2025 08-03-2025 10-03-2025 15-03-2025 17-03-2025 17-05-2025 02-06-2025 07-06-2025 09-06-2025 14-06-2025 | | | | | | | ### **Part-C** #### **EVALUATION PROCESS:** | Parameter | Marks | |---------------------------------|------------------| | Day-to-Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15
Marks | | Cumulative Internal Examination | A1+B1+C1=30Marks | | (CIE = A1 + B1 + C1) | A1+B1+C1=30Warks | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: A-SEC** | Batch
No. | Reg.No.of
Students | Number of
Students | Batch
No. | Reg.No.of
Students | Number of
Students | |--------------|-------------------------------|-----------------------|--------------|-------------------------------|-----------------------| | B11 | 23761A0529,
24761A0501-512 | 13 | B21 | 23761A0529,
24761A0501-512 | 13 | | B12 | 24761A0513-525 | 13 | B22 | 24761A0513-525 | 13 | | B13 | 24761A0526-538 | 13 | B23 | 24761A0526-538 | 13 | | B14 | 24761A0539-551 | 13 | B24 | 24761A0539-551 | 13 | | B15 | 24761A0552-565 | 14 | B25 | 24761A0552-565 | 14 | | Batch
No: | Exp
01 | Exp. 02 | Exp. 03 | Exp. 04 | Exp. 05 | Exp. 06 | Exp. 07 | Exp.
08 | Exp. 09 | Exp. 10 | |--------------|-----------|---------|---------|---------|---------|---------|---------|------------|---------|---------| | B11 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | T2 | | B12 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | Т2 | T1 | | B13 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | T2 | C1 | C2 | | B14 | F2 | F1 | P2 | P1 | E2 | E1 | T2 | T1 | C2 | C1 | | B15 | P1 | P2 | E1 | E2 | T1 | T2 | C1 | C2 | F1 | F2 | | B21 | P2 | P1 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | | B22 | E1 | E2 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | | B23 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | | B24 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | | B25 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | ### **LIST OF EXPERIMENTS:** | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | 3. | Fitting-1(F1)-T- J oint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 8. | Plumbing-2(P2)-Pipe Layout | CO3 | | 9. | House Wiring-1(E1)—Series and Parallel connection | CO4 | | 10. | HouseWiring-2(E2)–Fluorescent Lamp and Calling | CO4 | | Bell Circuit | | |--------------|--| #### **NOTIFICATION OF CYCLE:** | cycle | Exp. No. | Name of the Experiment | Related CO | |---------|----------|--|------------| | | | | | | Cycle 1 | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | | 3. | Fitting-1(F1)-T-Joint | CO2 | | | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 2 | 8. | Plumbing-2(P2)-PipeLayout | CO3 | | Cycle | 9. | House Wiring-1(E1)—Series and Parallel Connection | CO4 | | | 10. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | PROGR AMME **EDUCA TIONA OBJECT** IVES: **PEO1:** To build professi onal career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. #### PROGRAM OUT COMES (POs) **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - **2. Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi disciplinary settings. - **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course | Course | Module | HOD | |--------------------|----------------|------------------|----------------| | Instructors | Coordinator | Coordinator | | | Dr.B.Sudheer Kumar | Mr.S.Srinivasa | Mr.J.Subba Reddy | Dr. M. B. S | | Mrs.B.Kamala Priya | Reddy | | Sreekara Reddy | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230 # <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> <u>COURSE HANDOUT</u> #### **PART-A** Name of Course Instructor: Dr. B. Sudheer Kumar, Sr.Asst.Professor, Dr. A.Nageswara Rao, Sr. Asst. Professor, Dr. A. Dhanunjaya Kumar, Sr. Asst. Professor | Course Name & Code | : Engineering Drawing – 23ME01 | | |--------------------|--------------------------------|----------------------| | L-T-P Structure | : 3-0-4 | Credits: 4 | | Program/Sem/Sec | : B.Tech/II Sem | A.Y.: 2024-25 | **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. #### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | 000101 | = 0 = 1 = 0 = 1.12 (0 = 5) v 1 iv tille tille tille to tille to tille to | |--------|---| | CO1 | Understand the principles of engineering drawing, including engineering curves, scales, Orthographic and | | | isometric projections. (Understanding Level –L2) | | CO2 | Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views. | | | (Applying Level –L3) | | CO3 | Understand and draw projection of solids in various positions in first quadrant. (Applying Level –L3) | | CO4 | Draw the development of surfaces of simple objects. (Applying Level –L3) | | CO5 | Prepare isometric and orthographic sections of simple solids. (Applying Level –L3) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|-------|------|------|------|------| | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | 1 | 2 | | CO2 | 3 | 2 | 1 | 2 | - | - | - | - | - | - | - | 3 | 1 | 1 | 2 | | CO3 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - | 1 | 2 | | CO4 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | 1 | 2 | | CO5 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - | - | 1 | | | | | 1 - L | ow | | 2 | -Medi | um | | | 3 - H | igh | • | • | | ### TEXTBOOKS: N. D. Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers, 2012 #### **REFERENCE BOOKS:** - **R1** Narayana K L, Kannaiah P, Textbook on Engineering Drawing, 2nd Edition, SciTech publishers. - **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD. - **R3** Venugopal, Engineering Drawing and Graphics, New Age publishers - R4 Dhananjay A. Jolhe,
Engineering Drawing, Tata McGraw Hill Publishers - **R5** N.S.Parthasarathy, Vela Murali, Engineering Drawing, Oxford Higher Education ### PART-B ## **COURSE DELIVERY PLAN (LESSON PLAN):** # UNIT-I: INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, LINES ANDDIMENSIONING, CONICS, CYCLOIDS, INVOLUTES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual Date | Teaching
Learnin
g
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|-------------------|-------------|-------------------------------------|-----------------------| | 1 | UNIT I: INTRODUCTION: Introduction to Engineering Drawing, CEOs, COs, PEOs, and POs and PSOs | | | | | | | 2 | Principles of Engineering Graphics and their significance, Drawing Instruments and their use- Conventions in Drawing - Practical orientation | 3 | 21-01-2025 | | TLM1/
TLM2 | | | 3 | Lettering and Dimensioning – BIS
Conventions- Geometrical Constructions
– Theory Class | | | | | | | 4 | Practice | 2 | 23-01-2025 | | TLM4 | | | 5 | Engineering Curves: Conic Sections-
Construction of ellipse, parabola and
Hyperbola –Theory class | 3 | 28-01-2025 | | TLM1/
TLM2 | | | 6 | Construction of Parabola, ellipse, hyperbola – General method -Practice | 2 | 30-01-2025 | | TLM4 | | | 7 | Cycloids and Involutes–Theory class | 3 | 04-02-2025 | | TLM1/
TLM5 | | | 8 | Construction of Cycloids and Involutes – Practice | 2 | 06-02-2025 | | TLM4 | | | | No. of classes required to complete UNIT-I: 18 (Lecture:6 Practice:12) | | | | es taken:
Practice) | | UNIT-II: PROJECTIONS OF POINTS, LINES AND PLANES | S. | CNII-II. I ROJECTIONS OF TOINTS, I | No. of | Tentative | Actual | Teaching | HOD | |------|--|----------|------------|--------|-------------------------|--------| | No. | Topics to be covered | Classes | Date | Date | Learning | Sign | | 1,00 | zopies es se se vereu | Required | 2.00 | 2 | Methods | Weekly | | 9 | Orthographic Projections, First and third angle projection methods, Projections of Points, Lines inclined to one plane | 2 | 11-02-2025 | | TLM1/
TLM2 | | | 10 | Practice | 3 | 13-02-2025 | | TLM4 | | | 11 | Projection of lines - Projections of
Straight Line Inclined to both the
reference planes | 3 | 18-02-2025 | | TLM1/
TLM2 | | | 12 | Practice | 2 | 20-02-2025 | | TLM4 | | | 13 | Projections of planes- Regular planes
Perpendicular to both reference planes,
parallel to one reference plane and
inclined to the other reference plane;
plane inclined to both the reference
planes. | 3 | 25-02-2025 | | TLM1/
TLM2 | | | 14 | Practice | 2 | 27-02-2025 | | TLM4 | | | 15 | Revision | 3 | 04-03-2025 | | TLM1/
TLM2 | | | | No. of classes required to complete UNIT-II: 15 (Lecture:6 Practice:9) | | | | ses taken:
Practice) | | ## **UNIT-III: PROJECTIONS OF SOLIDS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|-------------------|----------------|---------------------------------|-----------------------| | 16 | Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane – Theory and practice | 2 | 06-03-2025 | | TLM1/
TLM2/
TLM4 | | | 17 | Axis parallel to both the reference planes,
Projection of Solids with axis inclined to
one reference plane and parallel to
another plane. | 3 | 18-03-2025 | | TLM1/
TLM2 | | | 18 | Practice Session | 2 | 20-03-2025 | | TLM 4 | | | | No. of classes required to complete UNIT-III: 08
(Lecture:3 Practice:5) | | | | ses
luding | | ### UNIT-IV: SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES | S.
No. | Topics to be covered | No. of
Class
Required | Tentative
Date | Actual
Date | Teaching
Learning
ng
Method | HOD
Sign
Weekly | |-----------|---|-----------------------------|-------------------|----------------|--------------------------------------|-----------------------| | 19 | Sections of Solids
Solids in simple positions, Perpendicular
and inclined section planes | 3 | 25-03-2025 | | TLM1/
TLM2 | | | 20 | Practice Session | 2 | 27-03-2025 | | TLM4 | | | 21 | Sections of solids: Sectional views and
True shape of section | 3 | 01-04-2025 | | TLM1/
TLM2 | | | 22 | Practice | 2 | 03-04-2025 | | TLM4 | | | 23 | Development of solids
Methods of Development: Parallel line
development and radial line development | 3 | 08-04-2025 | | TLM1/
TLM2 | | | 24 | Practice | 2 | 10-04-2025 | | TLM4 | | | 25 | Development of solids Development of a cube, prism, cylinder, pyramid and cone. | 3 | 15-04-2025 | | TLM4 | | | | No. of classes required to complete UNIT-IV: 18 (Lecture:6 Practice:12) | | | | ses taken:
Practice) | | ## **UNIT-V:** CONVERSION OF VIEWS | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|-------------------|----------------|---------------------------------|-----------------------| | | Introduction to Isometric Views – Theory Isometric views, isometric axes, scale, lines & planes | 2 | 17-04-2025 | | TLM1/
TLM2 | | | 27 | Practice | 3 | 22-04-2025 | | TLM4 | | | 28 | Orthographic projections to Isometric Projections | 2 | 24-04-2025 | | TLM1/
TLM2 | | | 29 | Practice | 3 | 29-04-2025 | | TLM4 | | | 30 | Orthographic Projections to Isometric Projections | 2 | 01-05-2025 | | TLM1/
TLM2 | | | 31 | Practice | 3 | 06-05-2025 | TLM4 | | |--|--------------------------------------|---|------------|-------|--| | | | | | | | | 32 | Content beyond the syllabus: Scales, | 2 | 08-05-2025 | TLM1/ | | | | Planes inclined to both the planes. | 2 | 08-03-2023 | TLM2 | | | 33 | Revision of I Unit | 3 | 13-05-2025 | TLM1 | | | 34 | Revision of II Unit | 2 | 15-05-2025 | TLM1/ | | | | | 2 | 13-03-2023 | TLM2 | | | 35 | Revision of III Unit | 3 | 20-05-2025 | TLM1/ | | | | | י | 20-03-2023 | TLM2 | | | 36 | Revision of IV Unit | 2 | 22-05-2025 | TLM1/ | | | | | 2 | 22-03-2023 | TLM2 | | | 37 | Revision of V Unit | 3 | 27-05-2025 | TLM1/ | | | | | 3 | 21-03-2023 | TLM2 | | | No. of classes required to complete UNIT-V: 20 No. of classes taken: | | | | | | | (Lect | ture:12 Practice:15) | | | | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|---------------------------------|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS) | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |---|-----------------| | I-Descriptive Examination (Units-I, II) | M1=15 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | Day to Day Evaluation (Assignment) | 15 | | Mid Marks =80% of Max (M1,M2)+ 20% of Min ((M1, M2) + Day to Day Evaluation | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | # PART-D # **PROGRAMME OUTCOMES (POs):** Engineering Graduates will be able to: | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | |-------------|--| | | fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze complex | | PO 2 | engineering problems reaching substantiated conclusions using first principles of mathematics, | | | natural sciences, and engineering sciences. | | | Design/development of solutions: Design solutions for complex engineering problems and | | PO 3 | design system components or processes that meet the specified needs with appropriate | | | consideration for the public health and safety, and the cultural, societal, and environmental | | | considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data, and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities | | | with anunderstanding of the limitations. | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | |-------
--| | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of theengineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, tomanage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO1 | To apply the principles of thermal sciences to design and develop various thermal systems. | | | | | | | |------|---|--|--|--|--|--|--| | | To apply the principles of manufacturing technology, scientific management towards | | | | | | | | PSO2 | improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | | | | | | | PSO3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | | | | | | | Title | Course Instructor | Course Coordinator | Head of the Department | |-------------|-------------------|--------------------|------------------------| | Name of the | Dr.B.Sudheer | Mr.J.Subba Reddy | Dr. M B S S Reddy | | Faculty | Kumar | | | | Signature | | | | | | | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) #### FRESHMAN ENGINEERING DEPARTMENT ### **COURSE HANDOUT** #### **PART-A** PROGRAM : I B.Tech., I-Sem., CSE-B ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : ENGINEERING PHYSICS L-T-P STRUCTURE : 4-0-0 COURSE CREDITS 3 COURSE INSTRUCTOR : Dr. N. T. SARMA PRE-REQUISITE : Basic Knowledge of Physics #### **Course Objectives:** To bridge the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. #### **COURSE OUTCOMES (COs):** At the end of this course, the student will be able to | CO 1 | Analyze the intensity variation of light due to interference, diffraction and Polarization | |------|--| | | (Apply) | | CO 2 | Understand the basics of crystals and their structures (Understand) | | CO 3 | Summarize various types of polarization of dielectrics and classify the magnetic | | | materials (Understand) | | CO 4 | Explain fundamentals of quantum mechanics and free electron theory of metals | | | (Understand) | | CO5 | Identify the type of semiconductor using Hall Effect (Apply) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | ENGINEERING PHYSICS | | | | | | | | | | | | | | | |-----------------------|---------|---------------------------------|-------|-------|---------|---|---|---|---|----|----|----|--|--| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | | | Course | Progr | amme | Outco | mes | | | | | | | | | | | | Outcomes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | PO's | | | | | | | | | | | | | | | | CO1.→ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | | CO3. | 3 | 3 | 2 | 1 | 1 | 1 | | | | | | 1 | | | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | | 1 = Slig | ht (Lov | <u>v)</u> | 2 = 1 | Moder | ate (N | 1 = Slight (Low) 2 = Moderate (Medium) 3 = Substantial (High) | | | | | | | | | #### **TEXT BOOKS** - 1. A Text book of "Engineering Physics" M.N. Avadhanulu, P.G. Kshirsagar, TVS Arun Murthy, S. Chand & Co., 11th Edition, 2019. - 2. Engineering Physics D.K. Bhattacharya & Poonam Tandon, Oxford press (2015) #### **REFERENCES** - 1. Engineering Physics B.K.Pandey & S. Chaturvedi, Cengage Learning 2021. - 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018. - 3. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press 2010. - 4. Engineering Physics M.R. Srinivasan, New Age international publishers (2009). #### WEB RESOURCES - 1. http://www.loc.gov/rr/scitech/selected-internet/physics.html - 2. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 3. http://physicsdatabase.com/free-physics-books/ - 4. http://www.e-booksdirectory.com - 5. http://www.thphys.physics.ox.ac.uk | | TEACHING LEARNING METHODS | | | | | | | | | |-------|---------------------------|-------|------------------------------------|--|--|--|--|--|--| | TLM-1 | Chalk and Talk | TLM-4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM-2 | PPT/AV illustrations | TLM-5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | TLM-3 | Tutorial/Quiz/Assignment | TLM-6 | Group Discussion/Project | | | | | | | ### PART-B ### **COURSE DELIVERY PLAN (LESSON PLAN):** ### **UNIT-I: INTERFERENCE, DIFFRACTION & POLARIZATION** Course Outcome :- CO 1; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Introduction to the Subject, Course Outcomes | 1 | 14/01/2025 | | TLM-2 | | | | 2. | Principle of superposition, Interference of light | 1 | 15/01/2025 | | TLM-3 | | | | 3. | Interference in thin films by reflection & applications | 1 | 17/01/2025 | | TLM-2 | | | | 4. | Colors in thin films,
Newton's rings | 1 | 18/01/2025 | | TLM-1 | | | | 5. | Determination of wavelength and refractive index | 1 | 21/01/2025 | | TLM-4 | | | | 6. | Problems & Assignment/Quiz | 1 | 22/01/2025 | | TLM-1 | | | | 7. | Introduction,
Fresnel and | 1 | 24/01/2025 | | TLM-3 | | | | | Fraunhoffer diffractions | | | | | |-----|---|---------------|------------|-----------------------|--| | 8. | Fraunhoffer diffraction due to single slit | 1 | 25/01/2025 | TLM-2 | | | 9. | Double slit & N
slits (Qualitative) | 1 | 28/01/2025 | TLM-4 | | | 10. | Diffraction Grating,
Dispersive power &
Resolving power of
Grating-Qualitative | 1 | 29/01/2025 | TLM-4 | | | 11. | Problems & Assignment/Quiz | 1 | 31/01/2025 | TLM-3 | | | 12. | Introduction –
Types of
polarization | 1 | 01/02/2025 | TLM-2 | | | 13. | Polarization by reflection, refraction & double refraction | 1 | 04/02/2025 | TLM-2 | | | 14. | Nicol's prism | 1 | 05/02/2025 | TLM-5 | | | 15. | Half wave and
Quarter wave plates | 1 | 07/02/2025 | TLM-2 | | | 16. | Problems & Assignment/Quiz | 1 | 08/02/2025 | TLM-3 | | | | No. of classes required | d to complete | UNIT-I: 16 | No. of classes taken: | | # UNIT-II: CRYSTALLOGRAPHY & X-RAY DIFFRACTION Course Outcome :- CO 2; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Space lattice; Basis, Unit cell & Lattice parameters | 1 | 11/02/2025 | | TLM-3 | | | | 2. | Bravais Lattices | 1 | 12/02/2025 | | TLM-2 | | | | 3. | Crystal Systems (3D) | 1 | 14/02/2025 | | TLM-2 | | | | 4. | Coordination
number – Packing
fraction of –SC,
BCC | 1 | 15/02/2025 | | TLM-1 | | | | 5. | Coordination
number – Packing
fraction of FCC | 1 | 18/02/2025 | | TLM-1 | | | | 6. | Miller indices & Properties | 1 | 19/02/2025 | | TL-2 | | | | 7. | Separation
between
successive (hkl)
planes | 1 | 21/02/2025 | | TLM-1 | | | | 8. | Problems &
Assignment
/Quiz | 1 | 22/02/2025 | TLM- | 3 | |-----|--|--------------|-------------|-------------------|------| | 9. | Bragg's law; X–
ray Diffractometer | 1 | 25/02/2025 | TLM- | 2 | | 10. | Crystal Structure determination by Laue's method | 1 |
28/02/2025 | TLM- | 5 | | 11. | Crystal Structure determination by Powder method | 1 | 04/03/2025 | TLM- | 5 | | 12. | Problems & Assignment/Quiz | 1 | 05/03/2025 | TLM-; | 3 | | 13. | Revision | 1 | 07/03/2025 | TLM-2 | 2 | | 14. | Revision | 1 | 08/03/2025 | TLM-2 | 2 | | 15. | MID-1
Examinations | 1 | 11/03/2025 | | | | 16. | MID-1
Examinations | 1 | 12/03/2025 | | | | 17. | MID-1
Examinations | 1 | 15/03/2025 | | | | No. | of classes required to | o complete U | JNIT-II: 12 | No. of classes ta | ken: | # <u>UNIT-III : DIELECTRIC & MAGNETIC MATERIALS</u> Course Outcome :- CO 3; Text Book :- T1, R2 | S.No | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Dielectric polarization Dielectric polarizability, Susceptibility, Dielectric constant | 1 | 18/03/2025 | | TLM-2 | | | | 2. | Types of polarizations-
Electronic polarization | 1 | 19/03/2025 | | TLM-1 | | | | 3. | Types of polarizations - ionic & orientation polarizations (Qualitative) | 1 | 21/03/2025 | | TLM-1 | | | | 4. | Lorentz internal field | 1 | 22/03/2025 | | TLM-2 | | | | 5. | Claussius-Mosotti
equation, Complex
dielectric constant | 1 | 25/03/2025 | | TLM-1 | | | | 6. | Frequency
dependence of
polarization
dielectric loss | 1 | 26/03/2025 | | TLM-5 | | | | 7. | Problems & Assignment/Quiz | 1 | 28/03/2025 | TLM-3 | | |-----|--|-------------|------------|-----------------------|--| | 8. | Introduction Magnetic dipole moment, Magnetization Magnetic susceptibility & permeability | 1 | 29/03/2025 | TLM-4 | | | 9. | Atomic origin of magnetism | 1 | 01/04/2025 | TLM-1 | | | 10. | Classification of
magnetic materials-
Dia, para, Ferro, anti-
ferro & Ferri
magnetic materials | 1 | 02/04/2025 | TLM-2 | | | 11. | Domain concept for Ferromagnetism & Domain walls | 1 | 04/04/2025 | TLM-2 | | | 12. | Hysteresis, soft and hard magnetic materials | 1 | 08/04/2025 | TLM-5 | | | 13. | Problems & Assignment/Quiz | 1 | 09/04/2025 | TLM-3 | | | No. | of classes required to co | omplete UNI | T-V: 13 | No. of classes taken: | | # <u>UNIT-IV: OUANTUM MECHANICS & FREE ELECTRON THEORY</u> Course Outcome :- CO 4; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-------------|------------| | 1. | Dual nature of
matter, De-Broglie's
Hypothesis | 1 | 11/04/2025 | | TLM-2 | | Extra hour | | 2. | Heisenberg's Uncertainty Principle | 1 | 12/04/2025 | | TLM-2 | | | | 3. | Significance & properties of wave function | 1 | 15/04/2025 | | TLM-2 | | | | 4. | Schrodinger's time independent and dependent wave equations | 1 | 16/04/2025 | | TLM-1 | | | | 5. | Particle in a one – dimensional infinite potential well | 1 | 19/04/2025 | | TLM-1 | | | | 6. | Problems & Assignment/Quiz | 1 | 22/04/2025 | | TLM-3 | | | | 7. | Classical free
electron theory-
merits and demerits | 1 | 23/04/2025 | | TLM-2 | | | | 8. | Quantum free electron theory | 1 | 25/04/2025 | | TLM-2 | | | | 9. | Electrical conductivity Expression | 1 | 26/04/2025 | | TLM-1 | | | | | based on quantum free electron theory | | | | | | | |-----|--|------------|-------------|----------|--------------|----|--| | 10. | Fermi -Dirac distribution and temperature dependence | 1 | 29/04/2025 | | TLM-5 | | | | 11. | Density of states & Fermi energy | 1 | 30/04/2025 | | TLM-1 | | | | 12. | Problems & Assignment/Quiz | 1 | 02/05/2024 | | TLM-3 | | | | No | o. of classes required to | complete U | NIT-III: 12 | No. of c | lasses taken | n: | | # <u>UNIT-V: SEMICONDUCTOR PHYSICS</u> Course Outcome :- CO 5; Text Book :- T2, R1 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Formation of energy bands, Classification of crystalline solids | 1 | 03/05/2024 | | TLM-6 | | | | 3. | Intrinsic semiconductors, Density of charge carriers | 1 | 06/05/2024 | | TLM-1 | | | | 4. | Electrical conductivity, Fermi level | 1 | 07/05/2025 | | TLM-2 | | | | 5. | Extrinsic semiconductors, Density of charge carriers | 1 | 09/05/2024 | | TLM-1 | | | | 6. | Dependence of Fermi energy on carrier concentration & temperature | 1 | 10/05/2024 | | TLM-2 | | | | 7. | Drift and Diffusion
Currents, Einstein's
equation | 1 | 13/05/2024 | | TLM-1 | | | | 8. | Hall Effect & its applications | 1 | 14/05/2024 | | TLM-1 | | | | 9. | Problems & Assignment/Quiz | 1 | 16/05/2024 | | TLM-4 | | | | 10. | Revision-All units | 1 | 17/05/2024 | | | | | | 11. | MID-2
Examinations | 1 | 03/06/2025 | | | | | | 12. | MID-2
Examinations | 1 | 04/06/2025 | | | | | | 13. | MID-2
Examinations | 1 | 07/06/2025 | | | | | | No | of classes required to | complete U | JNIT-IV: 09 | No. of classes | taken: | | | # PART-C # **EVALUATION PROCESS (R-23 Regulation)** | Evaluation Task | Marks | |--|---------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1= 15 | | I-Quiz Examination (Units-I, II) | Q1= 10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2= 10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # **PROGRAMME OUTCOMES (POs):** | | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | |-------|--| | PO 1 | fundamentals, and an engineering specialization to the solution of complex | | | engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze | | PO 2 | complex engineering problems reaching substantiated conclusions using first | | | principles of mathematics, natural sciences, and engineering sciences. | | | Design/development of solutions: Design solutions for complex engineering | | PO 3 | problems and design system components or processes that meet the specified needs | | 103 | with appropriate consideration for the public health and safety, and the cultural, | | | societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and | | PO 4 | research methods including design of experiments, analysis and interpretation of | | | data, and synthesis of the information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and | | PO 5 | modern engineering and IT tools including prediction and modeling to complex | | | engineering activities with an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge | | PO 6 | to assess societal, health, safety, legal and cultural issues and the consequent | | | responsibilities relevant to the professional engineering practice | | | Environment and sustainability: Understand the impact of the professional | | PO 7 | engineering solutions in societal and environmental contexts, and demonstrate the | | | knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and | | 100 | responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member | | 10) | or leader in diverse teams, and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with | | PO 10 | the engineering community and with society at large, such as, being able to | | 1010 | comprehend and write effective reports and design documentation, make effective | | | presentations, and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of the | | PO 11 | engineering and management principles and apply these to one's own work, as a | | 1011 | member and leader in a team, to manage projects and in multidisciplinary | | | environments. | | | Life-long learning : Recognize the need for and have the preparation and ability to | | PO 12 | engage in independent and life-long learning in the broadest context of technological | | | change. | Course Instructor Course Coordinator Module Coordinator HOD Dr. N. T. Sarma Dr. S. Yusuf Dr. S. Yusuf Prof A. Rami Reddy #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY
NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** Part-A PROGRAM : I B. Tech., II-Sem., CSE - B ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : G.VIJAYA LAKSHMI. COURSE COORDINATOR : Dr. K.R. Kavitha PRE-REQUISITES : Basics of Vectors, Differentiation, Integration #### COURSE EDUCATIONAL OBJECTIVES (CEOs): - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. #### COURSE OUTCOMES (COs) After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields – L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations – L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence – L3 CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – L3 #### COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs): | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | 1 | - | ı | - | - | 1 | | CO2 | 3 | 1 | - | - | - | - | 1 | - | ı | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | - | - | - | _ | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### **BOS APPROVED TEXT BOOKS:** - T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - T2 Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### **BOS APPROVED REFERENCE BOOKS:** - R1 George B. Thomas, Maurice D. Weir and Joel Hass, "Thomas Calculus", 14th Edition, Pearson Publishers, 2018. - R2 Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - R3 Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - R4 R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - R5 B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. ### Part-B # COURSE DELIVERY PLAN (LESSON PLAN): | _ | S.
No | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | |---|----------|--------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|--| | | 1. | Introduction to the course | 1 | 21-01-2025 | | TLM2 | | | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 22-01-2025 | | TLM2 | | | | | UNIT-I: Differential Equations of first order and first degree | | 01111 | i. Differentie | ii Equations of | first order and | That degree | , | | | |-----------|-----------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | 3. | Introduction to UNIT I | 1 | 24-01-2025 | | TLM1 | CO1 | T1,T2 | | | 4. | Linear Differential equation | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | 6. | Exact DE | 1 | 28-01-2025 | | TLM1 | CO1 | T1,T2 | | | 7. | Exact DE | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | 8. | Non-exact DE Type
I | 1 | 31-01-2025 | | TLM1 | CO1 | T1,T2 | | | 9. | TUTORIAL - 1 | 1 | 01-02-2025 | | TLM3 | CO1 | T1,T2 | | | 10. | Non-exact DE Type
II | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | 11. | Non-exact DE
Type III | 1 | 04-02-2025 | | TLM1 | CO1 | T1,T2 | | | 12. | Non-exact DE Type IV | 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | 13. | Newton's Law of cooling | 1 | 07-02-2025 | | TLM1 | CO1 | T1,T2 | | | 14. | TUTORIAL - 2 | 1 | 08-02-2025 | | TLM3 | CO1 | T1,T2 | | | 15. | Law of natural growth and decay | 1 | 8-02-2025 | | TLM1 | CO1 | T1,T2 | | | 16. | Electrical circuits | 1 | 11-02-2025 | | TLM1 | CO1 | T1,T2 | | | | f classes required to lete UNIT-I | 14 | | | | No. of class | es taken: | | ## UNIT-II: Linear Differential equations of higher order (Constant Coefficients) | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 17. | Introduction to UNIT II | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | 18. | Solving a homogeneous DE | 1 | 14-02-2025 | | TLM1 | CO1 | T1,T2 | | | 19. | Finding Particular
Integral, P.I for e ^{ax□b} | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | 20. | P.I for Cos bx, or sin bx | 1 | 15-02-2025 | TLM1 | CO1 | T1,T2 | | |--------|--------------------------------------|----|------------|------|--------------|-----------|--| | 21. | P.I for polynomial function | 1 | 18-02-2025 | TLM1 | CO1 | T1,T2 | | | 22. | P.I for $e^{ax \Box b}v(x)$ | 1 | 19-02-2025 | TLM1 | CO1 | T1,T2 | | | 23. | P.I for $x^k v(x)$ | 1 | 21-02-2025 | TLM1 | CO1 | T1,T2 | | | 24. | TUTORIAL-3 | 1 | 22-02-2025 | TLM3 | CO1 | T1,T2 | | | 25. | Method of Variation of parameters | 1 | 22-02-2025 | TLM1 | CO1 | T1,T2 | | | 26. | Method of Variation of parameters | 1 | 25-02-2025 | TLM1 | CO1 | T1,T2 | | | 27. | Simultaneous linear equations | 1 | 28-02-2025 | TLM1 | CO1 | T1,T2 | | | 28. | TUTORIAL - 4 | 1 | 01-03-2025 | TLM3 | CO1 | T1,T2 | | | 29. | L-C-R circuits | 1 | 01-03-2025 | TLM1 | CO1 | T1,T2 | | | 30. | Simple Harmonic motion | 1 | 04-03-2025 | TLM1 | CO1 | T1,T2 | | | 31. | TUTORIAL - 5 | 1 | 05-03-2025 | TLM3 | CO1 | T1,T2 | | | 32. | Revision | 1 | 07-03-2025 | | | | | | No. of | classes required to complete UNIT-II | 16 | | | No. of class | es taken: | | # I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) # UNIT-III: Partial Differential Equations | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 33. | Introduction to Unit III | 1 | 18-03-2025 | | TLM1 | CO2 | T1,T2 | | | 34. | Formation of PDE by elimination of arbitrary constants | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | 35. | Formation of PDE by elimination of arbitrary functions | 1 | 21-03-2025 | | TLM1 | CO2 | T1,T2 | | | 36. | Formation of PDE by elimination of arbitrary functions | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 37. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 38. | Lagrange's Method | 1 | 25-03-2025 | | TLM1 | CO2 | T1,T2 | | | 39. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | 40. | Homogeneous Linear
PDE with constant
coefficients | 1 | 28-03-2025 | | TLM1 | CO2 | T1,T2 | | | 41. | TUTORIAL - 6 | 1 | 29-03-2025 | | TLM3 | CO2 | T1,T2 | | | 42. | Homogeneous Linear
PDE with constant
coefficients | 1 | 29-03-2025 | | TLM1 | CO2 | T1,T2 | | | 43. Homogeneous Linear PDE with constant coefficients | 1 | 01-04-2025 | TLM1 | CO2 | T1,T2 | | |---|----|------------|--------------|-----------|-------|--| | No. of classes required to complete UNIT-III | 11 | | No. of class | es taken: | | | ## UNIT-IV: Vector Differentiation | | UNIT-IV: Vector Differentiation | | | | | | | | | |-----------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | | 44. | Introduction to UNIT IV | 1 | 02-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 45. | Vector
Differentiation | 1 | 04-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 46. | TUTORIAL - 7 | 1 | 05-04-2025 | | TLM3 | CO3 | T1,T2 | | | | 47. | Gradient | 1 | 05-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 48. | Directional
Derivative | 1 | 08-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 49. | Divergence | 1 | 9-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 50. | Curl | 1 | 11-04-2025 | | TLM1 | CO3 | T1,T2 | | |
| | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 15-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 52. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 16-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 53. | TUTORIAL - 8 | 1 | 19-04-2025 | | TLM3 | CO3 | T1,T2 | | | | | Laplacian, second order operators | 1 | 19-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 55. | Vector Identities | 1 | 22-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 56. | Vector Identities | 1 | 23-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 57. | TUTORIAL - 9 | 1 | 25-04-2025 | | TLM3 | CO3 | T1,T2 | | | | | asses required to
lete UNIT-IV | 14 | | | | No. of class | ses taken: | | | # UNIT-V: Vector Integration | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 58. | Introduction to Unit-V | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | 59. | Line Integral | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | 60. | Circulation | 1 | 29-04-2025 | | TLM1 | CO4 | T1,T2 | | | 61. | Work done | 1 | 30-04-2025 | | TLM1 | CO4 | T1,T2 | | | 62. | Surface Integral, Flux | 1 | 02-05-2025 | | TLM1 | CO4 | T1,T2 | | | 63. | TUTORIAL - 10 | 1 | 03-05-2025 | | TLM3 | CO4 | T1,T2 | | | 64. | Volume Integral | 1 | 03-05-2025 | TLM1 | CO4 | T1,T2 | | |-----|--|---|------------|--------------|------------|-------|--| | 65. | Green's Theorem | 1 | 06-05-2025 | TLM1 | CO4 | T1,T2 | | | 66. | Green's Theorem | 1 | 07-05-2025 | TLM1 | CO4 | T1,T2 | | | 67. | Stoke's Thoerem | 1 | 09-05-2025 | TLM1 | CO4 | T1,T2 | | | 68. | TUTORIAL - 11 | 1 | 10-05-2025 | TLM3 | CO4 | T1,T2 | | | 69. | Divergence Theorem | 1 | 10-05-2025 | TLM1 | CO4 | T1,T2 | | | 70. | Divergence Theorem | 1 | 13-05-2025 | TLM1 | CO4 | T1,T2 | | | 71. | Revision | 1 | 14-05-2025 | | | | | | 72 | Revision | 1 | 16-05-2025 | | | | | | No | No. of classes required to complete UNIT-V | | | No. of class | ses taken: | | | Content beyond the Syllabus | S. No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |----------------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 73. | Non-homogeneous
Linear PDE with
constant
coefficients | 2 | 17-05-2025,
17-05-2025 | | TLM2 | CO2 | T1,T2 | | | No. of classes | | 2 | | | No. of clas | ses taken: | | | # II MID EXAMINATIONS (02-06-2025 TO 07-06-2025) | | reach | ing L | earning Methods | | | | | | |----|-------|------------|-----------------|----|-----|-----|---------------------------------|--| | | TLN | 1 1 | Chalk and Talk | | TLM | 14 | Demonstration (Lab/Field Visit) | | | TL | .M2 | PPT | | TI | LM5 | ICT | (NPTEL/SwayamPrabha/MOOCS) | | | TL | .M3 | Tuto | orial | TI | LM6 | Gro | up Discussion/Project | | # <u>PART-C</u>EVALUATION PROCESS (R23 Regulation): | Evaluation Task | Marks | |--|-------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # <u>PART-D</u> PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. | | |------|--|--| | PO 2 | Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | | PO 3 | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. | |-------|---| | PO 4 | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | G.VIJAYA LAKSHMI | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | |-------------------|--------------------|--------------------|-------------------| | | | | | | | | | | | Course Instructor | Course Coordinator | Module Coordinator | HOD | | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 # DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING # **COURSE HANDOUT** PART-A L-T-P Structure : 3-0-0 Name of Course Instructor: Dr A.V.G.A.MARTHANDA **Course Name & Code** : BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01 Credits: 3 Program/Branch/Sem/Sec: B.Tech/CSE II SEM B SECTION A.Y.: 2024-25 **Pre-requisites:** Physics **Course Educational Objective:** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | | PART-A | | | | | | | |-----|---|--|--|--|--|--|--| | CO1 | Extract electrical variables of AC & DC circuits usin fundamental laws. (Understand) | | | | | | | | CO2 | Understand the operation of electrical machines and measuring instruments. | | | | | | | | COZ | (Understand) | | | | | | | | CO3 | Classify various energy resources, safety measures and interpret electricity bill | | | | | | | | COS | generation in electrical sysems. | | | | | | | | | PART-B | | | | | | | | CO4 | Interpret the characteristics of various semiconductor devices. (Knowledge) | | | | | | | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | | | | | | | CO6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | | | | | | | #### **CO-PO Articulation Matrix:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO 1 | 3 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | CO 3 | 2 | 2 | _ | _ | _ | 3 | _ | _ | _ | _ | 2 |
2 | | CO 4 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 5 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 6 | 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | Where: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) #### Textbooks: - Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition - Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013 - 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition ## Reference Books: - 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. - 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 # **PART-B** ## **COURSE DELIVERY PLAN (LESSON PLAN):** ## **UNIT-I: DC & AC CIRCUITS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Electrical circuit elements | 1 | 20-01-2025 | | TLM1 | | | 2. | Ohm's Law and its limitations | 1 | 21-01-2025 | | TLM1 | | | 3. | KCL & KVL | 1 | 23-01-2025 | | TLM1 | | | 4. | series, parallel, series-parallel circuits | 1 | 25-01-2025 | | TLM1 | | | 5. | Problems | 1 | 27-01-2025 | | TLM3 | | | 6. | Super Position theorem | 1 | 30-01-2025 | | TLM1 | | | 7. | Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference | 1 | 01-02-2025 | | TLM2 | | | 8. | average value, RMS value, form factor, peak factor | 1 | 03-02-2025 | | TLM1 | | | 9. | RLC Circuits | 1 | 04-02-2025 | | TLM1 | | | 10. | Impedance, Power | 1 | 06-02-2025 | | TLM1 | | | 11. | Problems | 1 | 06-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-I: 11 | | | No. of classes | taken: | | ### **UNIT – II: MACHINES AND MEASURING INSTRUMENTS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | Construction, principle and operation of (i) DC Motor | 1 | 8-02-2025 | | TLM2 | | | 13. | Construction, principle and operation of (ii) DC Generator. | | 10-02-2025 | | TLM2 | | | 14. | Single Phase Transformer | 1 | 11-02-2025 | | TLM2 | | | 15. | Three Phase Induction Motor | 1 | 13-02-2025 | | TLM2 | | | 16. | Alternators | 1 | 15-02-2025 | | TLM2 | | | 17. | Applications of electrical machines | 1 | 17-02-2025 | | TLM2 | | | 18. | Construction and working
principle of Permanent Magnet
Moving Coil (PMMC) | 1 | 18-02-2025 | | TLM2 | | | 19. | Moving Iron (MI) Instruments | 1 | 20-02-2025 | | TLM2 | | | 20. | Wheat Stone bridge | 1 | 22-02-2025 | | TLM2 | | | 21. | Problems | 1 | 24-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-II: 09 | | | No. of classes | taken: | | # UNIT – III: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 22. | Conventional and non-conventional energy resources | 1 | 25-02-2025 | | TLM2 | | | 23. | Hydel & Nuclear power generation | 1 | 27-02-2025 | | TLM2 | | | 24. | Solar & Wind power plants | 1 | 01-03-2025 | | TLM2 | | | 25. | Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1 | 03-03-2025 | | TLM2 | | | 26. | Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, | 1 | 04-03-2025 | | TLM2 | | | 27. | calculation of electricity bill for
domestic consumers. Working
principle of Fuse and Miniature circuit
breaker (MCB | 1 | 06-03-2025 | | TLM2 | | | 28. | merits and demerits. Personal safety
measures: Electric ShockEarthing
and its types& Safety Precaution | 1 | 8-03-2025 | | TLM2 | | | No. o | f classes required to complete UNIT-III: 9 | | | No. of classes | taken: | | | Teaching Lo | earning Methods | | | | | |-------------|-----------------|--------------------------------------|---------------------------------|--|--| | TLM1 | Chalk and Talk | TLM4 Demonstration (Lab/Field Visit) | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | ## PART-C ## **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II, III) | A1=5 | | I-Descriptive Examination (Units-I, II, III) | M1=15 | | I-Quiz Examination (Units-I, II, III) | Q1=10 | | Assignment-II (Units-IV, V, VI) | A2=5 | | II- Descriptive Examination (Units-IV, V, VI) | M2=15 | | II-Quiz Examination (Units-IV, V, VI) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | # PART-D # **PROGRAMME OUTCOMES (POs):** | | divine of cones (10s). | |-------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and | | | an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |---------------------|---------------------|----------------------|--------------------|---------------------------| | Name of the Faculty | DrA.V.G.A.MARTHANDA | Dr A.V.G.A.MARTHANDA | Dr.G.Nageswara Rao | Dr.JSV prasad | | Signature | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 ### **DEPARTMENT OF MECHANICAL ENGINEERING** ### **COURSE HANDOUT** ## **PART-A** Name of Course Instructor: Dr.K.Dilip Kumar, Professor Mr.K.Lakshmi Prasad, Sr. Assistant Professor (A)
Ms.B.Kamala Priya, Assistant Professor (A) **Course Name & Code**: Engineering Graphics – 20ME01 L-T-P Structure : 2-0-3 Credits: 3 Program/Sem/Sec : B.Tech/II Sem/B-Section A.Y.: 2024-25 **PREREQUISITE** : Engineering Physics, Mathematics **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Identify the geometrical objects considering BIS standards. (Remember-L1) | |------------|---| | CO2 | Comprehend the basics of orthographic projections and deduce orthographic | | COZ | projections of a point and a line at different orientations. (Understand-L2) | | CO3 | Represent graphically the geometrical planes at different positions and orientations. | | CO3 | (Understand-L2) | | CO4 | Analyze and draw solid objects at different positions and orientations. (Apply-L3) | | CO5 | Visualize isometric and orthographic views of geometrical objects and convert one | | | form to another. (Understand-L2) | **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |----------------|-----|-----|-----|-----|-----|-------|-----|-----|-----|------|--------|------|------|------|------| | CO1 | 3 | 3 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO2 | 3 | 3 | 1 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO3 | 3 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO4 | 3 | 2 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO5 | 2 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | 1 - Low | | | | | 2 | -Medi | ium | | | 3 | - High | | | | | #### TEXTBOOKS: T1 N. D. Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers, 2012 #### **REFERENCE BOOKS:** - **R1** Narayana K L, Kannaiah P, Textbook on Engineering Drawing, 2nd Edition, SciTech publishers. - **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD. - **R3** Venugopal, Engineering Drawing and Graphics, New Age publishers - R4 Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill Publishers - **R5** N.S.Parthasarathy, Vela Murali, Engineering Drawing, Oxford Higher Education # **PART-B** # **COURSE DELIVERY PLAN (LESSON PLAN):** UNIT-I: INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, LINES AND DIMENSIONING, CONICS, CYCLOIDS, INVOLUTES, ORTHOGRAPHIC PROJECTIONS OF POINTS | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | | UNIT I: INTRODUCTION: Introduction to Engineering Drawing, COs, CEOs, | | | | | | | 4 | POs and PEOs, Principles of Engineering Graphics and their significance, | | 20.01.2025 | | TI MO | | | 1. | Drawing Instruments and their use-Conventions in Drawing, Practice, | 2 | 20-01-2025 | | TLM3 | | | | Lettering and Dimensioning – BIS conventions. | | | | | | | 2. | Geometrical Constructions, Practice | 3 | 23-01-2025 | | TLM1 | | | 0 | Engineering Curves: Conic Sections- Ellipse, Parabola, Hyperbola General | 2 | 27 01 2025 | | TI MO | | | 3. | methods | 2 | 27-01-2025 | | TLM3 | | | 4. | Practice | 3 | 30-01-2025 | | TLM1 | | | 5. | Introduction to Engineering Curves, conics Cycloid, Epicycloid and Practice | 2 | 03-02-2025 | | TLM3 | | | 6. | Hypocycloid; Involutes | 3 | 06-02-2025 | | TLM1 | | | 7. | ORTHOGRAPHIC PROJECTIONS | 2 | 10-02-2025 | | TLM3 | | | 7. | Introduction to Orthographic Projections, First and third angle projection methods, Practice | 2 | 10-02-2023 | | LUMO | | | 8. | Projections of Points | 3 | 13-02-2025 | | TLM1 | | | 9. | Practice | 2 | 17-02-2025 | | TLM3 | | | No. of | classes required to complete UNIT-I: 22 | | | No. of clas | ses taken: | | # UNIT-II: ORTHOGRAPHIC PROJECTIONS OF POINTS AND LINES | _ | | | | | | | | |---|--------|-----------------------|---------|-----------|---------|----------|------| | | S. No. | Toning to be governed | No. of | Tentative | Actual | Teaching | HOD | | | 5. NO. | Topics to be covered | Classes | Date of | Date of | Learning | Sign | | | | Required | Completion | Completion | Methods | Weekly | | |-------|---|----------|----------------|------------|---------|--------|--| | | UNIT II: Projections of straight lines | | | | | | | | 10. | Projections of straight lines of different orientations when line is parallel to | 3 | 20-02-2025 | | TLM1, 3 | | | | | one and inclined to the other, Practice | | | | | | | | 11. | Projections of lines when inclined to both the planes | 2 | 24-02-2025 | | TLM1 | | | | 12. | Projections of lines when inclined to both the planes | 3 | 27-02-2025 | | TLM3 | | | | 13. | PROJECTIONS OF PLANES: Introduction to Projection of Planes | 2 | 03-03-2025 | | TLM1 | | | | 14. | Planes parallel to one of the reference planes, Practice | 3 | 06-03-2025 | | | | | | 15. | Inclined to one reference plane and perpendicular to other, Practice | 2 | 10-03-2025 | | | | | | 16. | Inclined to one reference plane and perpendicular to other, Practice | 3 | 13-03-2025 | | TLM3 | | | | 17. | I Mid Examinations | 17-03-20 | 025 to 22-03-2 | 2025 | | | | | No. o | No. of classes required to complete UNIT-II: 18 No. of classes taken: (including | | | | | | | # UNIT-III: PROJECTIONS OF SOLIDS | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--| | 18. | PROJECTIONS OF SOLIDS – Introduction to Projections of Solids, Practice | 2 | 24-03-2025 | | TLM1, 3 | | | | | 19. | Projection of solids in simple positions, resting on HP | 3 | 27-03-2025 | | TLM1, 3 | | | | | 20. | Projection of solids in simple positions, resting on VP | 3 | 03-04-2025 | | TLM1 | | | | | 21. | Practice | 2 | 07-04-2025 | | TLM3 | | | | | 22. | Axis inclined to one of the reference planes and parallel to the other, Practice | 3 | 10-04-2025 | | TLM1 | | | | | 23. | Axis inclined to one of the reference planes and parallel to the other, Practice | 3 | 17-04-2025 | | TLM3 | | | | | No. of | lo. of classes required to complete UNIT-III: 16 No. of classes taken: | | | | | | | | ## **UNIT-IV: SECTIONS OF SOLIDS** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 24. | Perpendicular and inclined section planes | 2 | 21-04-2025 | | TLM1, 3 | | | 25. | Sectional views and true shape of section | 3 | 24-04-2025 | | TLM1 | | | 26. | Sections of solids in simple position | 2 | 28-04-2025 | | TLM3 | | | 27. | DEVELOPMENT OF SURFACES: Methods of development: Parallel line development | 3 | 01-05-2025 | | TLM1 | | | 28. | Radial line development | 2 | 05-05-2025 | | TLM3 | | | 29. | Development of a cube, prism, cylinder, pyramid and cone. | 3 | 08-05-2025 | | TLM1 |] | | No. of | classes required to complete UNIT-IV: 15 | No. of class
Practice) | ses taken: | (including | | | # UNIT-V: ISOMETRIC VIEWS: TRANSFORMATION OF PROJECTIONS FROM ORTHOGRAPHIC PROJECTIONS TO ISOMETRIC VIEW and VICE VERSA | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 30. | UNIT V: ISOMETRIC VIEWS – Introduction to Isometric Views, Practice | 2 | 12-05-2025 | | TLM1, 3 | | | 31. | Theory of isometric projection, isometric views, isometric axes, scale, lines & planes, Practice | 3 | 15-05-2025 | | TLM1 | | | 32. | Isometric view of prism, pyramid, cylinder & cone, non-isometric lines-
methods to generate an isometric drawing, Practice | | 19-05-2025 | | TLM3 | | | 33. | TRANSFORMATION OF PROJECTIONS: Introduction | 3 | 22-05-2025 | | TLM1 | | | 34. | Conversion of Orthographic Projections to Isometric Views of composite objects, Practice | 2 | 26-05-2025 | | TLM1, 3 | | | 35. | Conversion of Isometric Views to Orthographic Projections of composite objects, Practice | 3 | 29-05-2025 | | TLM1 | | | 36. | Practice, Solids | 2 | 02-06-2025 | | TLM3 | | | | No. of classes required to complete UNIT-V:25 No. of classes taken: | | | | | | | |-----|--|---|------------|------|--|--|--| | 39. | Practice, Solids | 3 | 12-06-2025 | TLM3 | | | | | 38. | Practice, Solids | 2 | 09-06-2025 | TLM3 | | | | | 37. | Practice, Solids | 3 | 05-06-2025 | TLM3 | | | | | Teaching Learning Methods | | | | | | | | | | |---------------------------
----------------|------|------------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | #### **PART-C** ### **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |---|-----------------| | I-Descriptive Examination (Units-I, II (Half of the Syllabus)) | M1=15 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | Day to Day Evaluation | 15 | | Mid Marks =80% of Max (M1,M2)+ 20% of Min ((M1, M2) + Day to Day Evaluation | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): ## **Engineering Graduates will be able to:** | Er | igineering Graduates will be able to: | |-------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering | | 20.0 | | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and | | | engineering sciences. | | | Design/development of solutions: Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for the | | | public health and safety, and the cultural, societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research methods | | PO 4 | including design of experiments, analysis and interpretation of data, and synthesis of the information to | | | provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modelling to complex engineering activities with an | | | understanding of the limitations. | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, | | PO 6 | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional | | 100 | engineering practice. | | | Environment and sustainability: Understand the impact of the professional engineering solutions in | | PO 7 | | | PO / | societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable | | | development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the | | | engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or leader in diverse | | 103 | teams, and in multidisciplinary settings. | | | Communication: Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as, being able to comprehend and write effective reports and | | | design documentation, make effective presentations, and give and receive clear instructions. | | | Project management and finance: Demonstrate knowledge and understanding of the engineering and | | PO 11 | management principles and apply these to one's own work, as a member and leader in a team, to | | | manage projects and in multidisciplinary environments. | | | Life-long learning: Recognize the need for, and have the preparation and ability to engage in | | PO 12 | independent and life-long learning in the broadest context of technological change. | | | macpendent and me long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems. | |-------|---| | PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the Department | |------------------------|--------------------|--------------------|---------------------------|------------------------| | Name of the
Faculty | Dr. K. DILIP KUMAR | Mr. J. Subba Reddy | Mr. J. Subba Reddy | Dr. M.B.S.S. Reddy | | Signature | | | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** ### **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Dr. Y. Vijay Bhaskar Reddy Course Name & Code : DATA STRUCTURES & 23CS02 PREREQUISITE: Programming for Problem Solving Using C-20CS01 #### **COURSE EDUCATIONAL OBJECTIVES (CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | 000102 | CHOL COT GOTTES (GOS) The the end of the course, student win be able to | | | | | | | |------------|--|--|--|--|--|--|--| | CO1 | Understand the role of linear and nonlinear data structures in organizing and | | | | | | | | | accessing data (Understand-L2) | | | | | | | | CO2 | Implement abstract data type (ADT) and data structures for given application. | | | | | | | | COZ | (Apply-L3) | | | | | | | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | | | | | | | COS | (Apply-L3) | | | | | | | | CO4 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | | | | | | | CO4 | problem. (Apply-L3) | | | | | | | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | | | | | | | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |---------|-----|-----|-----|-------------|-----|-----|-----|-----|--------|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | | | | | | | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 3 | 3 | | 1 - Low | | | | 2 -Medium 3 | | | | 3 | - High | | • | | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### **REFERENCE BOOKS:** - **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick # PART-B # COURSE DELIVERY PLAN (LESSON PLAN): # **UNIT-I: Introduction to Linear Data Structures** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Introduction and Discussion of CO's | 1 | 22-01-2025 | | TLM1 | | | 2. | Definition and Importance of
Linear Data Structures | 1 | 23-01-2025 | | TLM1 | | | 3. | Abstract Data Types and Implementation | 1 | 24-01-2025 | | TLM1 | | | 4. | Overview of time and space complexity | 1 | 25-01-2025 | | TLM1 | | | 5. | Examples – Time Complexity,
Space Complexity | 2 | 29-01-2025
30-01-2025 | | TLM1 | | | 6. | Revise Arrays-Basic Operations | 1 | 31-01-2025 | | TLM1 | | | 7. | Searching Techniques: Linear
Search | 1 | 05-02-2025 | | TLM1 | | | 8. | Binary Search & Analysis | 2 | 06-02-2025
07-02-2025 | | TLM1 | | | 9. | Bubble Sort & Analysis | 1 | 12-02-2025 | | TLM1 | | | 10. | Insertion Sort & Analysis | 1 | 13-02-2025 | | TLM1 | | | 11. | Selection Sort & Analysis | 1 | 14-02-2205 | | TLM1 | | | No. o | of classes required to complete U | | No. of classes | s taken: |
| | # **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--| | 12. | List Implementation using Arrays and Array Disadvantages | 1 | 15-02-2025 | | TLM1 | | | | | | 13. | Linked List Representation | 1 | 19-02-2025 | | TLM1 | | | | | | 14. | Sing Linked List: Operations | 2 | 20-02-2025
21-02-2025 | | TLM1 | | | | | | 15. | Double Linked List: Operations | 2 | 22-02-2025
27-02-2025 | | TLM1 | | | | | | 16. | Circular Single Linked List | 1 | 28-02-2025 | | TLM1 | | | | | | 17. | Circular Double Linked List | 2 | 05-03-2025
06-03-2025 | | TLM1 | | | | | | 18. | Comparing Arrays and Linked
List | 1 | 07-03-2025 | | TLM1 | | | | | | 19. | Applications of Linked Lists:
Polynomial Representation | 1 | 19-03-2025 | | TLM1 | | | | | | 20. | Polynomial Addition | 1 | 20-03-2025 | | TLM1 | | | | | | No. | No. of classes required to complete UNIT-II: 12 No. of classes taken: | | | | | | | | | # **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 21. | Introduction to Stacks: Properties | 1 | 21-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 22-03-2025 | | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 26-03-2025 | | TLM1 | | | 24. | Stacks using Linked List | 1 | 27-03-2025 | | TLM1 | | | 25. | Expressions: Expression evaluation | 2 | 28-03-2025
29-03-2025 | | TLM1 | | | 26. | Infix to Postfix Conversion | 2 | 02-04-2025
03-04-2025 | | TLM1 | | | 27. | Checking Balanced Parenthesis | 1 | 04-04-2025 | | TLM1 | | | 28. | Reversing a List | 1 | 10-04-2025 | | TLM1 | | | 29. | Backtracking | 1 | 11-04-2025 | | TLM1 | | | | No. of classes required to con | No. of classes | taken: | | | | # **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 30. | Introduction to queues: properties and operations, | 1 | 16-04-2025 | | TLM1 | | | 31. | Implementing queues using arrays | 1 | 17-04-2025 | | TLM1 | | | 32. | Implementing queues using
Linked List | 1 | 19-04-2025 | | TLM1 | | | 33. | Applications of Queue: Scheduling | 1 | 23-04-2025 | | TLM1 | | | 34. | Breadth First Search | 1 | 24-04-2025 | | TLM1 | | | 35. | Circular Queue | 2 | 25-04-2025
26-04-2025 | | TLM1 | | | 36. | Double ended queue | 2 | 30-04-2025
01-05-2025 | | TLM1 | | | 37. | Applications of Deque | 1 | 02-05-2025 | | TLM1 | | | No. o | f classes required to complete Ul | NIT-IV: 10 | | No. of classe | es taken: | | # **UNIT-V: TREES & HASHING TECHNQIUES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 38. | Introduction to Trees, | 1 | 03-05-2025 | | TLM1 | | | 39. | Representation of Trees | 1 | 07-05-2025 | | TLM1 | | | 40. | Tree Traversals | 1 | 08-05-2025 | | TLM1 | | | 41. | Binary Search Trees- Operations | 2 | 09-05-2025
14-05-2025 | | TLM1 | | | 42. | Hashing Introduction, Hash
Functions | 1 | 15-05-2025 | | TLM1 | | | 43. | Collison Resolution Techniques:
Separate Chaining | 1 | 16-05-2025 | | TLM1 | | | 44. | Open Addressing: Linear Probing,
Quadratic Probing | 1 | 17-05-2025 | | TLM1 | | | 45. | Double Hashing, Rehashing | 1 | 17-05-2025 | | TLM1 | | | No. o | f classes required to complete UN | IIT-V: 09 | | No. of classe | es taken: | | **Content Beyond Syllabus** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
follo
wed | HOD
Sign
Weekly | |----------------|---------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|------------------------------|-----------------------| | 1. | Evaluation of Prefix Expression | 1 | 01-03-2025 | | | | | | | 2. | Towers of Hanoi | 1 | 09-04-2025 | | | | | | | 3. | Extendable Hashing | 1 | 17-05-2025 | | | | | | | No. of classes | | 3 | | | No. of classe | s taken: | | | | | | II MID EXA | MINATIONS (19 | 9-05-2025 TO 2 | 4-05-2024) | | | | | Teaching Learning Methods | | | | | | | | | | |---------------------------|----------------|------|------------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III ,IV & V) | A2=5 | | II- Descriptive Examination (Unit-III ,IV & V) | M2=15 | | II-Quiz Examination (Unit-III ,IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | | | | | | | |-------|--|--|--|--|--|--|--| | | fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | | | | | | DO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex | | | | | | | | PO 2 | engineering problems reaching substantiated conclusions using first principles of mathematics, | | | | | | | | | natural sciences, and engineering sciences. | | | | | | | | | Design/development of solutions : Design solutions for complex engineering problems and | | | | | | | | PO 3 | design system components or processes that meet the specified needs with appropriate | | | | | | | | | consideration for the public health and safety, and the cultural, societal, and environmental | | | | | | | | | considerations. | | | | | | | | DO 4 | Conduct investigations of complex problems : Use research-based knowledge and research | | | | | | | | PO 4 | methods including design of experiments, analysis and interpretation of data, and synthesis of the | | | | | | | | | information to provide valid conclusions. | | | | | | | | DO F | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern | | | | | | | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | | | | | | | an understanding of the limitations. | | | | | | | | DO C | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | | | | | | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | | | | | | | professional engineering practice. | | | | | | | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering | | | | | | | | PU / | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for | | | | | | | | | sustainable development. | | | | | | | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms | | | | | | | | | of the engineering practice. | | | | | | | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in | | | | | | | | | diverse teams, and in multidisciplinary settings. | | | | | | | | | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write | | | | | | | | PO 10 | | | | | | | | | | effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | | | | | | | | Project management and finance : Demonstrate knowledge and understanding of the | | | | | | | | PO 11 | engineering and management principles and apply these to one's own work, as a member and | | | | | | | | 1011 | leader in a team, to manage projects and in multidisciplinary environments. | | | |
 | | | | Life-long learning : Recognize the need for, and have the preparation and ability to engage in | | | | | | | | PO 12 | | | | | | | | | FU 12 | independent and life-long learning in the broadest context of technological change | | | | | | | | | | | | | | | | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | |-------|---|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | Title | Course Instructor Course Coordinator | | Module
Coordinator | Head of the
Department | | |---------------------|--------------------------------------|-----------------|-----------------------|---------------------------|--| | Name of the Faculty | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | | Signature | | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) # FRESHMAN ENGINEERING DEPARTMENT COURSE HANDOUT #### Part-A PROGRAM : B.Tech., I-Sem., CSE-B ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : ENGINEERING PHYSICS LAB L-T-P STRUCTURE : 0-0-2 COURSE CREDITS : 1 COURSE INSTRUCTOR : Dr. N. T. SARMA / Mrs. P.V. Sirisha **COURSE COORDINATOR** : Pre-requisites : Nil **Course Objective:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). #### **Course articulation matrix** (Correlation between CO's and PO's): | Engineering Physics Lab | | | | | | | | | | | | | |---|---|---------------------------------|---|---|----|-------|-------|---------|--------|-----------|----|----| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | | | | Pr | ogram | me Ot | itcomes | | | | | | PO's | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO2. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | СОЗ. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | 1 = slight (Low) 2 = Moderate (Medium) | | | | | | | | 3 = Sul | stanti | al (High | n) | • | # **List of Experiments** - 1. Determination of radius of curvature of a given Plano Convex lens by Newton's rings. - 2. Determination of dielectric constant using charging and discharging method. - 3. Determination of wavelength of a laser light using diffraction grating. - 4. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method. - 5. Determination of temperature coefficients of a thermistor. - 6. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum. - 7. Determination of Frequency of electrically maintained tuning fork by Melde's experiment. - 8. Determination of rigidity modulus of the material of the given wire using Torsional pendulum. - 9. Sonometer- Verification of laws of a stretched string. - 10. Determination of energy band gap of a semiconductor using p-n junction diode. #### **References:** • A Textbook of Practical Physics – S. Balasubramanian, M.N. Srinivasan, S. Chand publishers-2017. #### **BOS APPROVED TEXT BOOKS:** 1. Lab Manual Prepared by the LBRCE. #### **EVALUATION PROCESS:** | Evaluation Task | Marks | |---|----------------| | Day-to-Day Work | A1 = 10 | | Record & Observation | B1 = 5 | | Internal Exam | C1 = 15 | | Cumulative Internal Examination (CIE): (A1+B1+C1) | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | Part-B COURSE DELIVERY PLAN (LESSON PLAN): EEE-A | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign | | |-------|-------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|--------------------------------|--------------------------|-------------|--| | 1. | Introduction & Demonstration | 3 | 13/01/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 2. | Experiment 1 | 3 | 20/01/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 3. | Experiment 2 | 3 | 27/01/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 4. | Experiment 3 | 3 | 03/02/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | Т1 | | | | 5. | Experiment 3 | 3 | 10/02/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | Т1 | | | | 6. | Experiment 4 | 3 | 17/02/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 7. | Experiment 5 | 3 | 24/02/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | Т1 | | | | 8. | Experiment 6 | 3 | 03/03/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | Т1 | | | | 9. | MID-1 Exam | 3 | 10/03/2025 | | | | | | | | 10. | Experiment 7 | 3 | 17/03/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 11. | Experiment 8 | 3 | 24/03/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 12. | Experiment 8 | 3 | 07/04/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 13. | Experiment 9 | 3 | 21/04/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 14. | Experiment 10 | 3 | 28/04/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | T1 | | | | 15. | Internal Exam | 3 | 05/05/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | | | | | 16. | Internal Exam | 3 | 12/05/2025 | | TLM-4 | CO1, CO2,
CO3, CO4
& CO5 | | | | | 17. | MID-2 Exam | 3 | 02/06/2025 | | | | | | | | | classes required complete lab | | 14 | | No. of classes taken: | | | | | #### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - (1). Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (2). Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, naturalsciences, and engineering sciences. - (3). **Design/development of solutions**: Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. (4). **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - (5). **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **(6)**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leaderin a team, to manage projects and in multidisciplinary environments.(12). Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Course Instructor Course Coordinator Module Coordinator H.O.D Dr. N. T. SARMA Dr. S. Yusuf Dr. S. Yusuf Prof. A. Rami Reddy # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING** # **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Dr.G.Nageswara Rao / Dr.P.Sobharani **Course Name & Code** : ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP & 23EE51 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/CSE/II SEM/B A.Y.: 2024-25 Course Educational Objective: To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |------------|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | CO6 | Demonstrate the working of various logic gates using ICs. (Understand) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs & POs): | | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | PO 11 | PO 12 | |-----|-----|-----|------|--------|-----|------|-----|-----|-----|------|-------|-------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | ow | | 2 -1 | Medium | 3 - | High | | | | | | | <u>PART-B</u> COURSE DELIVERY PLAN (LESSON PLAN): ELECTRICAL ENGINEERING | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Introduction to BEEE Lab, Importance of Electrical Lab, its Objectives and Outcomes, BASIC MEASURING METERS, SAFETY PRECUATIONS & Other suggestions. | 3 | 21-01-2025 | | TLM4 | | | 2. | Verification of KCL and KVL | 3 | 28-01-2025 | | TLM4 | | | 3. | Verification of Superposition theorem | 3 | 04-02-2025 | | TLM4 | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 11-02-2025 | | TLM4 | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 18-02-2025 | | TLM4 | | | 6. | Measurement of Power and Power factor using Single-phase wattmeter | 3 | 25-02-2025 | | TLM4 | | | 7. | Calculation of Electrical Energy
for Domestic Premises | 3 | 25-03-2025 | | TLM4 | | | 8. | Internal Lab Examination (Electrical) | 3 | 4-03-2025 | | TLM4 | | | No. of | classes required: 21 | | No. of classes | taken: | | | | Teaching | Teaching Learning Methods | | | | | | | | | | | |----------|--|------|------------------------------------|--|--|--|--|--|--|--|--| | TLM1 | M1 Chalk and Talk TLM4 Demonstration (Lab, | | | | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | | # PART-C # **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Expt. no's | Marks | |--|-----------------|--------| | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, | |-------|---| | PO 1 | and an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | Date: 20-01-2025 | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------------|--------------------|--------------------|-----------------------|---------------------------| | Name of
the
Faculty | Dr.G.Nageswara Rao | Dr.G.Nageswara Rao | Dr.G.NAGESWARA
RAO | Dr.J.S.V.PRASAD | | Signature | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### DEPARTMENT OF MECHANICAL ENGINEERING #### **COURSE HANDOUT** PROGRAM : B.Tech. II-Sem, CSE-B/S **ACADEMIC YEAR** : 2024-25 **COURSE NAME & CODE**: Engineering Workshop, 23ME51 L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1.5 **COURSE INSTRUCTOR** : S. Srinivasa Reddy, Assoc. Professor, S. Uma Maheswara Reddy, Asst Professor COURSE COORDINATOR: Seelam Srinivasa Reddy, Assoc. Professor PRE REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. #### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as | |-----|---| | | Cross lap joint, Dove tail joint. | | | | | CO2 | Fabricate and model various basic prototypes in the trade of fitting such as Straight fit, V-fit. | | | as Straight Int, v-Int. | | CO3 | Produce various basic prototypes in the trade of Tin smithy such as | | | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | #### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | COs | PO PSO | PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----| | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | **Note:** Enter Correlation Levels **1**or **2** or **3**. If there is no correlation, **put"1** Slight (Low), **2**-Moderate (Medium), **3**-Substantial (High). #### **REFERENCE:** # COURSE DELIVERY PLAN (LESSON PLAN): Section-B (BATCH-B1) | S.
No. | Experiment
to be
conducted | No. of
Classes
Required | Tentative Actual
Date Date of of Completion Completion | | Teaching
Learning
Methods | Reference | HOD
Sign
Weekly | |-----------|----------------------------------|-------------------------------|--|----------------|---------------------------------|-----------|-----------------------| | 1 | Demonstration | 3 | 24/01/2025 | | TLM8 | R1 | | | 2 | Experiment-1 | 3 | 31/01/2025 | | TLM8 | R1 | | | 3 | Experiment-2 | 3 | 07/02/2025 | | TLM8 | R1 | | | 4 | Experiment-3 | 3 | 14/02/2025 | | TLM8 | R1 | | | 5 | Experiment-4 | 3 | 21/02/2025 | | TLM8 | R1 | | | 6 | Experiment-5 | 3 | 28/02/2025 | | TLM8 | R1 | | | 7 | Experiment-6 | 3 | 07/03/2025 | | TLM8 | R1 | | | | I-N | Aid Examina | ations (10.03.20) | 25 to 15.03.20 | 25) | | | | 8 | Experiment-7 | 3 | 21/03/2025 | | TLM8 | R1 | | | 9 | Experiment-8 | 3 | 28/03/2025 | | TLM8 | R1 | | | 10 | Repetition lab | 3 | 04/04/2025 | | TLM8 | | | | 11 | Repetition lab | 3 | 11/04/2025 | | TLM6 | | | | 12 | Viva voce | 3 | 02/05/2025 | | TLM6 | | | | 13 | Viva voce | 3 | 09/05/2025 | | TLM6 | | _ | | 14 | Lab Internal | | 16/05/2025 | | | | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|--------------------|------|----------------| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | # **ACADEMIC CALENDAR:** | Description | From | То | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions-1 | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | Summer vacation | 19-05-2025 | 31-05-2025 | 1W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | #### **EVALUATION PROCESS:** | Parameter | Marks | |--|------------------| | Day-to-Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination (CIE = A1 + B1 + C1) | A1+B1+C1=30Marks | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | #### **Details of Batches: B-SEC** | Batch No. | Reg.No.of Students | Number of Students | |-----------|--------------------|--------------------| | | | | | B1 | 24761A0566-582 | 17 | | B2 | 24761A0583-599 | 17 | | В3 | 24761A05A0-5B5 | 16 | | B4 | 24761A05B6-5D1 | 16 | | Batch
No: | Exp.
01 | Exp.
02 | Exp.
03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp.
07 | Exp.
08 | |--------------|------------|------------|------------|------------|------------|------------|------------|------------| | B1 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | | B2 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | | В3 | F1 | F2 | C1 | C2 | E1 | E2 | P1 | P2 | | B4 | F2 | F1 | C2 | C1 | E2 | E1 | P2 | P1 | #### LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|--|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | 3. | Fitting-1(F1)-T-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | 7. | House Wiring-1(E1)-Series and Parallel connection | CO4 | | 8. | HouseWiring-2(E2)-Fluorescent Lamp and Calling
Bell Circuit | CO4 | #### **NOTIFICATION OF CYCLE:** | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|----------|--|------------| | | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 7 | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | C | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 2 | 6. | Plumbing-2(P2)-PipeLayout | CO3 | | Cycle | 7. | House Wiring-1(E1)–Series and Parallel Connection | CO4 | | 8. | | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | #### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. #### PROGRAM OUT COMES (POs) #### **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. **Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi disciplinary settings. - 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course | Course | Module | HOD | |--------------------------|-------------------|----------------------|----------------------| | Instructors | Coordinator | Coordinator | | | S.Srinivasa Reddy | S.Srinivasa Reddy | Dr. M. B. S Sreekara | Dr. M. B. S Sreekara | | S.Uma maheswara
Reddy | | Reddy | Reddy | # SECON COLLEGE CALLED TO THE PARTY TRAVAR IN #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Dr. Y. Vijay Bhaskar Reddy **Course Name & Code**: DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/B A.Y.: 2024-25 PREREQUISITE: PPSC #### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. #### **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) CO3: Develop and implement hashing techniques for solving problems (Apply - L3) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. #### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | PO2 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------
------| | CO1 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO4 | | | | | | | | 2 | 2 | 2 | | | | | | **Note: 1-** Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S. | | No. of | Tentative | Actual | HOD | |-----|--|----------|------------|------------|------| | No. | Topics to be covered | Classes | Date of | Date of | Sign | | NO. | | Required | Completion | Completion | | | 1. | Array Manipulations | 3 | 22-01-2025 | | | | 2. | Searching and Sorting
Techniques | 3 | 29-01-2025 | | | | 3. | Single Linked List | 3 | 05-02-2025 | | | | 4. | Double Linked List | 3 | 12-02-2025 | | | | 5. | Circular Linked List | 3 | 19-02-2025 | | | | | Polynomial Representation | 3 | 05-03-2025 | | | | 6. | & Polynomial Addition | | | | | | 7. | Linked List Applications | 3 | 19-03-2025 | | | | 8. | Stack Implementation | 3 | 26-03-2025 | | | | 9. | Stack Applications | 3 | 02-04-2025 | | | | 10. | Queue Implementation &
Circular Queue | 3 | 09-04-205 | | | | 11. | Double Ended Queue | 3 | 16-04-2025 | | | | 12. | Trees | 3 | 23-04-2025 | | | | 13. | Hashing | 3 | 30-04-2025 | | | | 14. | Internal Exam | 3 | 07-05-2025 | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-------| | Day to Day Work: | 15 | | Internal Test | 15 | | Continuous Internal Assessment | 30 | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | |--------------|---| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the Department | |------------------------|-------------------|--------------------|-----------------------|------------------------| | Name of the
Faculty | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** Part-A PROGRAM: B. Tech., II-Sem., CSE-C ACADEMIC YEAR : 2024-2025 **COURSE NAME & CODE**: Engineering Physics-23FE04 L-T-P STRUCTURE : 3-0-0 **COURSE CREDITS** :3 COURSE INSTRUCTOR : Dr. S. YUSUF COURSE COORDINATOR : Dr. S. YUSUF To bridge the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. #### **Course Outcomes:** **CO1:** Analyze the intensity variation of light due to interference, diffraction and Polarization (Apply-L3). **CO2:** Understand the basics of crystals and their structures (Understand-L2). **CO3:** Summarize various types of polarization of dielectrics and classify the magnetic materials (Understand-L2) **CO4:** Explain fundamentals of quantum mechanics and free electron theory of metals (Understand-L2). **CO5:** Identify the type of semiconductor using Hall Effect (Apply-L3). #### **COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):** | COURSE
DESIGNED BY | | ENGINEERING PHYSICS FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | |-----------------------|--------------------|---|--------|--------|--------|-------|---|-----|-------|----------|-------|----| | Course Outcomes | Programme Outcomes | | | | | | | | | | | | | PO's → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO3. | 3 | 3 | 2 | 1 | 1 | 1 | | | | | | 1 | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | 1 = slight (| (Low) | | 2 = Mc | oderat | e (Me | dium) | | 3 = | Subst | antial (| High) | | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### **BoS APPROVED TEXT BOOKS:** #### TEXT BOOKS - 1. A Text book of "Engineering Physics" M.N. Avadhanulu, P.G. Kshirsagar, TVS Arun Murthy, S. Chand & Co., 11th Edition, 2019. - 2. Engineering Physics D.K. Bhattacharya & Poonam Tandon, Oxford press (2015) #### REFERENCES - 1. Engineering Physics B.K.Pandey & S. Chaturvedi, Cengage Learning 2021. - 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018. - 3. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press 2010. - 4. Engineering Physics M.R. Srinivasan, New Age international publishers (2009). Web Resource: //www.loc.gov/rr/scitech/selected-internet/physics.html #### Part-B #### COURSE DELIVERY PLAN (LESSON PLAN): CSE-C #### **UNIT-I:** Interference and diffraction | UNIT-1: Interference and diffraction | | | | | | | | | | | | |--------------------------------------|---|---------------------|-----------------------|-----------------------|---------------------|----------------|------------------|--------|--|--|--| | | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | | | | S.No. | Topics to be covered | Classes
Required | Date of
Completion | Date of
Completion | Learning
Methods | Outcome
COs | Book
followed | Sign | | | | | | | Kequirea | Completion | Completion | Methous | CO1 | T1 | Weekly | | | | | 1. | Course Outcomes INTERFERENCE: Introduction | 1 | 20-01-2025 | | TLM1 | COI | 11 | | | | | | 2. | Principle of superposition | 1 | 22-01-2025 | | TLM1 | CO1 | T1 | | | | | | 3. | Interference of light, Interference in thin
films by reflection reflection & applications | 1 | 23-01-2025 | | TLM2 | CO1 | T1 | | | | | | 4. | colors in thin films | 1 | 25-01-2025 | | TLM1 | CO1 | T1 | | | | | | 5. | Newton's rings | 1 | 27-01-2025 | | TLM1 | CO1 | T1 | | | | | | 6. | nation of wavelength active index. | 1 | 29-01-2025 | | TLM1 | CO1 | T1 | | | | | | 7. | DIFFRACTION:
Introduction, | 1 | 30-01-2025 | | TLM1 | CO1 | T1 | | | | | | 8. | Fresnel and Fraunhoffer diffractions | 1 | 01-02-2025 | | TLM2 | CO1 | T1 | | | | | | | No. of classes required to complete UNIT-I | | | | No. of cla | sses taken: | | | | | | | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-------|------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | | Fraunhoffer | 1 | | - | TLM1 | CO1 | T1 | | | 9. | diffraction due to | | 03-02-2025 | | | | | | | | single slit, | 1 | | | TT 1 / 1 | CO1 | TT:1 | | | 10. | double slit & N slits | 1 | 05-02-2025 | | TLM1 | CO1 | T1 | | | | (Qualitative) | | | | | | | | | 11. | Diffraction Grating, | 1 | 06-02-2025 | | TLM2 | CO1 | T1 | | | 11. | Dispersive power | | | | | | | | | 12. | Resolving power of | 1 | 08-02-2025 | | TLM1 | CO1 | T1 | | | 12. | Grating(Qualitative) | | | | | | | | | 10 | Polarization: | 1 | 10-02-2025 | | TLM1 | CO1 | T1 | | | 13. | Introduction | | | | | | | | | 4.4 | Types of | 1 | 12-02-2025 | | TLM1 | CO1 | T1 | | | 14. | polarization | | 12 02 2028 | | | | | | | | Polarization by | 1 | 13-02-2025 | | TLM1 | CO1 | T1 | | | 15. | reflection | | 13 02 2023 | | | | | | | | refraction & double | 1 | 15-02-2025 | | TLM2 | CO1 | T1 | | | 16. | refraction | | 15 02 2025 | | | | | | | | | 1 | 17-02-2025 | | TLM1 | CO1 | T1 | | | 17. | Nicol's prism | | | | | | | | | 1.0 | half wave and | 1 | 19-02-2025 | | TLM1 | CO1 | T 1 | | | 18. | quarter wave plates | | = | | | | | | | | f classes required to lete UNIT-II | 10 | | | No. of cla | asses taker | ı: | 1 | # **UNIT – II: Crystallography & X– ray Diffraction** | S.
No | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followe
d | HOD
Sign
Weekly | |----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|------------------------------|-----------------------| | 19 | Crystallography, Space lattice; Basis, Unit cell | 1 | 20-02-2025 | | TLM1 | CO2 | T1 | | | 20 | Lattice parameters, Bravais Lattices | 1 | 22-02-2025 | | TLM2 | CO2 | T1 | | | 21 | Crystal Systems (3D)-
Coordination number,
Packing fraction of -SC | 1 | 24-02-2025 | | TLM1 | CO2 | T1 | | | 22 | BCC, FCC | 1 | 27-02-2025 | | TLM1 | CO2 | T1 | | | | ndices, separation between
ive (hkl) planes. | 1 | 01-03-2025 | | TLM2 | CO2 | T1 | | | 24 | X-ray diffraction:
Bragg's law; X-ray
Diffractometer, | 1 | 03-03-2025 | | TLM1 | CO2 | T1 | | | | Structure determination by vder methods. | 1 | 05-03-2025 | | TLM1 | CO2 | T1 | | | | | 1 | | TLM2 | CO1, | | |-----|---|-----|------------|---------------|--------------|--| | 26 | Revision | | 06-03-2025 | | CO2 | | | | | 1 | | TLM2 | CO1 | | | 27 | Revision | 1 | 08-03-2025 | 1 LIVIZ | CO1,
CO2, | | | 21 | Revision | | 08-03-2023 | | CO2, | | | | | 1.5 | | | CO1, | | | 28 | I MID | | 10-03-2025 | | CO2, | | | | | | | | | | | | | 1.5 | | | CO1, | | | 29 | I MID | | 11-03-2025 | | CO2, | | | | | 1.5 | | | CO1, | | | 30 | IMID | 1.3 | 12-03-2025 | | CO1,
CO2, | | | 30 | 111111111111111111111111111111111111111 | | 12 03 2023 | | CO2, | | | | | 1.5 | | | CO1, | | | 31 | I MID | | 13-03-2025 | | CO2, | | | | | | | | | | | | | 1.5 | 11.02.2025 | | CO1, | | | 32 | I MID | | 14-03-2025 | | CO2, | | | | | 1.5 | | | CO1, | | | 33 | IMID | 1.5 | 15-03-2025 | | CO1, | | | 33 | 11.110 | | 10 00 2020 | | CO2, | | | No. | of classes required to | 16 | <u> </u> | No. of class | as takan: | | | com | plete UNIT-II | 10 | | TNO. OI CIASS | es lakeli. | | # **UNIT – III : DIELECTRIC & MAGNETIC MATERIALS** | S.No. | Topics to be covered | No. of
Classes | Tentative Date of | Actual Date of | Teaching
Learning | Learning
Outcome | Text
Book | HOD
Sign | |-------|-----------------------|-------------------|-------------------|----------------|----------------------|---------------------|----------------|-------------| | | DIELECTRIC | Required 1 | Completion | Completion | Methods
TLM1 | COs
CO3 | followed
T1 | Weekly | | 34. | MATERIALS: | | 17-03-2025 | | | | | | | | Introduction | | | | | | | | | | Dielectric | 1 | | | TLM2 | CO3 | T1 | | | | polarization- | | | | | | | | | | Dielectric | | | | | | | | | 35. | polarizability, | | | | | | | | | | Susceptibility, | | | | | | | | | | Dielectric constant & | | 19-03-2025 | | | | | | | | Displacement Vector | | | | | | | | | 36. | Relation between the | 1 | 20-03-2025 | | TLM1 | CO3 | T1 | | | 30. | electric vectors | | | | 1 LIVI I | | | | | | Types of | | | | TLM2 | CO3 | T 1 | | | | polarizations- | | | | | | | | | | Electronic | | 22 02 2025 | | | | | | | 37. | (Quantitative), ionic | 1 | 22-03-2025 | | | | | | | | (Quantitative) & | | | | | | | | | | orientation | | | | | | | | | | polarizations | | | | | | | | | | (Qualitative) | | | | | | | |------|---------------------------------------|----|------------|----------|-------------|------------|--| | | (Quantum (V) | 1 | 24-03-2025 | TLM1 | CO3 | T1 | | | 38. | Lorentz internal field | 1 | 24-03-2023 | ILMII | CO3 | 11 | | | 39. | Claussius-Mosotti | 1 | 26-03-2025 | TLM2 | CO3 | T1 | | | | equation | | | | | | | | | ex dielectric constant – | 1 | | TLM1 | CO3 | T1 | | | 40. | cy dependence of polariz | | | | | | | | | tric loss. | | 27-03-2025 | | | | | | | MAGNETIC | 1 | | | CO3 | T1 | | | 41. | MATERIALS : | 1 | 29-03-2025 | TLM2 | 003 | 11 | | | 11. | Introduction: | | 29-03-2023 | 112,112 | | | | | | Magnetic dipole | | | TLM2 | CO3 | T 1 | | | | moment – | | | | | | | | 42. | Magnetization- | 1 | 02-04-2025 | | | | | | 42. | Magnetic | 1 | | | | | | | | susceptibility & | | | | | | | | | permeability | | | | 900 | | | | 43. | Atomic origin of | 1 | 03-04-2025 | TLM2 | CO3 | T1 | | | | magnetism Classification of | 1 | | | CO3 | T1 | | | | magnetic materials- | 1 | | | COS | 11 | | | 44. | Dia, para, Ferro, anti- | | | TLM1 | | | | | 7-7- | ferro & Ferri | | 05-04-2025 | 1 LAVII | | | | | | magnetic materials | | 03-04-2023 | | | | | | | Domain concept for | 1 | | | CO3 | T1 | | | 45. | Ferromagnetism & | | 07-04-2025 | TLM2 | | | | | | Domain walls | | | | | | | | | Hysteresis – soft and | 1 | | | CO3 | T1 | | | 46. | hard magnetic | | 09-04-2025 | TLM2 | | | | |) T | materials | | | | | | | | | f classes required to
lete UNIT-IV | 14 | | No. of c | lasses take | n: | | | comp | ICIC UIVII-IV | | | | | | | # UNIT – IV: QUANTUM MECHANICS & FREE ELECTRON THEORY | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-------|-----------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | | QUANTUM | 1 | | | TLM1 | CO4 | T1 | | | | MECHANICS: Dual | | | | | | | | | 47. | nature of matter- | | | | | | | | | | Heisenberg's | | 10-04-2025 | | | | | | | | Uncertainty Principle | | | | | | | | | | significance & | 1 | | | TLM2 | CO4 | T 1 | | | 48. | properties of wave | | 12-04-2025 | | | | | | | | function | | | | | | | | | | Schrodinger's time | 1 | | | TLM2 | CO4 | T1 | | | 49. | independent and | | | | | | | | | | dependent wave | | 14-04-2025 | | | | | | | | equations | | | | | | | | | | in a one –dimensional i | 1 | | TLM1 | CO4 | T1 | | |-----|----------------------------|-------|------------|----------|-----|-----|---| | 50. | l well. | | 16-04-2025 | | | | | | | | | 10 01 2023 | | | | | | | FREE ELECTRON | 1 | | TLM2 | CO4 | T1 | | | | THEORY: Classical | | | | | | | | 51. | free electron theory | | | | | | | | 31. | (Qualitative with | | | | | | | | | discussion of merits | | 17-04-2025 | | | | | | | and demerits) Quantum free | 1 | 10.01.005 | TLM1 | CO4 | T1 | _ | | 52. | electron theory | 1 | 19-04-2025 | 1 LIVI 1 | CO4 | 11 | | | | electrical | 1 | | TLM2 | CO4 | T1 | | | | conductivity based | _ | | 122/12 | | | | | 53. | on quantum free | | 21-04-2025 | | | | | | | electron theory | | 21 01 2020 | | | | | | | Fermi -Dirac | 1 | | TLM2 | CO4 | T1 | | | 54. | distribution | | 23-04-2025 | | | | | | | | | | | | | | | | Density of states – | 1 | | TLM1 | CO4 | T1 | | | 55. | Fermi energy | | 24-04-2025 | | | | | | , | X7 CENTE | CONDI | HOTODO | | | | | | | V: SEMI | COND | UCTORS | | | | | | | SEMI | 1 | | TLM2 | CO5 | T1 | | | ~ ~ | CONDUCTORS: | | | | | | | | 56. | Formation of energy | | 26-04-2025 | | | | | | | bands | | | | | | | | | classification of | 1 | | TLM1 | CO5 | T1 | | | | crystalline solids- | | | | | | | | 57. | Intrinsic | | | | | | | | | semiconductors | | 28-04-2025 | | | | | | | D '. C 1 | 1 | | TY M 1 | COF | TD1 | | | | Density of charge | 1 | | TLM1 | CO5 | T1 | | | | carriers- Electrical | | | | | | | | 58. | conductivity- Fermi | | | | |
| | | | level -Extrinsic | | | | | | | | | semiconductors | | 30-04-2025 | | | | | | | Density of charge | 1 | | TLM1 | CO5 | T1 | | | 59. | carriers | 1 | 01.05.2025 | 117111 | | 11 | | | 3). | Calleis | | 01-05-2025 | | | | | | | dependence of Fermi | 1 | | TLM1 | CO5 | T1 | | | | energy on carrier | | | | | | | | 60. | concentration and | | | | | | | | | temperature | | 03-05-2025 | | | | | | | r · ······ | | | | | | | | 61. | Drift and Diffusion | 1 | 05-05-2025 | TLM1 | CO5 | T1 | | | 01. | Currents | | | | | | | | 62. | Einstein's equation | 1 | 07-05-2025 | TLM2 | CO5 | T1 | | | | | | | | | | | | | Hall effect & its application | 1 | | TLM1 | CO5 | T1 | | |-----|-----------------------------------|----|------------------|------------|-------------|----|--| | 63. | | | 08-05-2025 | | | | | | 64. | Revision | 1 | 10-05-2025 | TLM1 | | T1 | | | 65. | Revision | 1 | 12-05-2025 | TLM1 | | T1 | | | 66. | Revision | 1 | 14-05-2025 | TLM1 | | T1 | | | 67. | Revision | 1 | 15-05-2025 | TLM1 | | T1 | | | 68. | Revision | 1 | 17-05-2025 | TLM1 | | T1 | | | | | | 19-05-2025 | | | | | | 69. | Summer vacation | | to
31-05-2025 | | | | | | | f classes required to lete UNIT-V | 12 | | No. of cla | asses taken | : | | **Contents beyond the Syllabus** | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign | |-------|-----------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-------------| | 70. | SEM | 1 | 10-05-2025 | | TLM1 | | R1 | | | 71. | Conventional energy sources | 1 | 12-05-2025 | | TLM1 | | R1 | | | 75 | Mid II | 1 | 02-06-2025 | | | CO3,
CO4,
CO5 | | | | 76 | Mid II | 1 | 03-06-2025 | | | CO3,
CO4,
CO5 | | | | 77 | Mid II | 1 | 04-06-2025 | | | CO3,
CO4,
CO5 | | | | 78 | Mid II | 1 | 05-06-2025 | | | CO3,
CO4,
CO5 | | | | 79 | Mid II | 1 | 06-06-2025 | | | CO3,
CO4,
CO5 | | | | 80 | Mid II | 1 | 07-06-2025 | | | CO3,
CO4,
CO5 | | | | 81 | Preparation and Practicals | | | 09-06-2025 | to 14-06-2 | .025 | | | | 82 | Semester end examinations | | | 16-06-2025 | to 28-06-2 | .025 | | | # **Teaching Learning Methods** | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | |------|----------------|------|---------------------------------| | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | #### Part - C #### **EVALUATION PROCESS:** | Evaluation Task | Marks | |---|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | #### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) Graduates of Information Technology programme will be: PEO 1: Pursue a successful career in the area of Information Technology or its allied fields. PEO 2: Exhibit sound knowledge in the fundamentals of Information Technology and apply practical experience with programming techniques to solve real world problems. PEO 3: Able to demonstrate self-learning, life-long learning and work in teams on multidisciplinary projects. PEO 4: Able to understand the professional code of ethics and demonstrate ethical behaviour, effective communication, team work and leadership skills in their job. #### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - 7. Environment and sustainability: Understand the impact of the professional engineering solution sin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings - 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### **PROGRAM SPECIFIC OUTCOMES (PSOs):** Graduate of the Information Technology will have the ability to - 1.Organize, Analyze and Interpret the meaningful conclusions. data to extract 2.Design, Implement and Evaluate computer-based meet desired needs. a system to - 3. Develop IT application services with the help of different current engineering tools. | Course Instructor | Course Coordinator | Module Coordinator | HOD | | | |-------------------|--------------------|--------------------|-------------------|--|--| | | | | | | | | D G MIGHE | D a Miane | D G MIGHE | D A DAMINEDDA | | | | Dr. S. YUSUF | Dr. S. YUSUF | Dr. S. YUSUF | Dr. A. RAMI REDDY | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** #### Part-A PROGRAM : I B. Tech., II-Sem., CSE-C ACADEMIC YEAR : 2024-25 **COURSE NAME & CODE**: Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : Dr. T.Radha Rani COURSE COORDINATOR : Dr. K.R. Kavitha **PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration #### **COURSE EDUCATIONAL OBJECTIVES (CEOs):** - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. #### **COURSE OUTCOMES (COs)** After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields – L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations -L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence - **L3** CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – L3 #### **COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs):** | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | - | 1 | | CO2 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | • | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### **BOS APPROVED TEXT BOOKS:** - **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### **BOS APPROVED REFERENCE BOOKS:** - **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018. - **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018.
- **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - **R4** R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - **R5** B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. Part-B COURSE DELIVERY PLAN (LESSON PLAN): | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | |----|--------------------------------------|----------|------------|------------|----------|----------|----------|--------| | No | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 1. | Introduction to the course | 1 | 20-01-2025 | | TLM2 | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 22-01-2025 | | TLM2 | | | | UNIT-I: Differential Equations of first order and first degree | UNIT-1: Differential Equations of first order and first degree | | | | | | | | | | | | | |--|--------------------------------------|-----------|------------|------------|----------|--------------|-----------|--------|--|--|--|--| | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | | | | | No. | Topics to be covered | l Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | | | | • | Required | Completion | Completion | Methods | COs | followed | Weekly | | | | | | 3. | Introduction to UNIT I | 1 | 23-01-2025 | • | TLM1 | CO1 | T1,T2 | | | | | | | 4. | Linear Differential equation | 1 | 24-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 6. | Exact DE | 1 | 27-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 7. | Non-exact DE
Type I | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 8. | TUTORIAL - I | 1 | 30-01-2025 | | TLM3 | CO1 | T1,T2 | | | | | | | 9. | Non-exact DE
Type II | 1 | 31-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 10. | Non-exact DE
Type III | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 11. | Non-exact DE
Type IV | 1 | 03-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 12. | Newton's Law of coolin | ng 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 13. | Law of natural growth a decay | and 1 | 06-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 14. | TUTORIAL - II | 1 | 07-02-2025 | | TLM3 | CO1 | T1,T2 | | | | | | | 15. | Law of natural growth a decay | and 1 | 10-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 16. | Electrical circuits | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | | f classes required to
lete UNIT-I | 14 | | | | No. of class | es taken: | | | | | | **UNIT-II: Linear Differential equations of higher order (Constant Coefficients)** | Citi II. Emedi Emerentia equations of ingret of the (Constant Coefficients) | | | | | | | | | | | | | |---|---|-------------------|----------------------|-------------------|----------------------|------------------|--------------|-------------|--|--|--|--| | S.
No. | Topics to be covered | No. of
Classes | Tentative
Date of | Actual
Date of | Teaching
Learning | Learning Outcome | Text
Book | HOD
Sign | | | | | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | | | | | 17. | Introduction to UNIT II | 1 | 13-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 18. | Solving a homogeneous DE | 1 | 14-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 19. | Solving a homogeneous DE | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 20. | Finding Particular Integral, P.I for e^{ax+b} | 1 | 17-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 21. | P.I for Cos bx, or sin bx | 1 | 19-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 22. | P.I for polynomial function | 1 | 20-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | | | 23. | TUTORIAL - III | 1 | 21-02-2025 | | TLM3 | CO1 | T1,T2 | | | | | | | 24. | P.I for $e^{ax+b}v(x)$ | 1 | 22-02-2025 | TLM1 | CO1 | T1,T2 | | |-----|--|----|------------|------|--------------|-----------|--| | 25. | P.I for $x^k v(x)$ | 1 | 24-02-2025 | TLM1 | CO1 | T1,T2 | | | 26. | Method of Variation of parameters | 1 | 27-02-2025 | TLM1 | CO1 | T1,T2 | | | 27. | TUTORIAL - IV | 1 | 28-02-2025 | TLM3 | CO1 | T1,T2 | | | 28. | Method of Variation of parameters | 1 | 01-03-2025 | TLM1 | CO1 | T1,T2 | | | 29. | Simultaneous linear equations | 1 | 03-03-2025 | TLM1 | CO1 | T1,T2 | | | 30. | L-C-R circuits | 1 | 05-03-2025 | TLM1 | CO1 | T1,T2 | | | 31. | Simple Harmonic motion | 1 | 06-03-2025 | TLM1 | CO1 | T1,T2 | | | 32. | TUTORIAL - V | 1 | 07-03-2025 | TLM3 | CO1 | T1,T2 | | | N | o. of classes required to complete UNIT-II | 16 | | | No. of class | es taken: | | # I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) #### **UNIT-III: Partial Differential Equations** | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | | | |-----|---|----------|------------|------------|---------------|-----------|----------|--------|--|--|--| | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | | | _ | Required | Completion | Completion | Methods | COs | followed | Weekly | | | | | 33. | Introduction to Unit III | 1 | 17-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 34. | Formation of PDE by elimination of arbitrary constants | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 35. | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 36. | TUTORIAL - VI | 1 | 21-03-2025 | | TLM3 | CO2 | T1,T2 | | | | | | 37. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 38. | Solving of PDE | 1 | 24-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 39. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 40. | Lagrange's Method | 1 | 27-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 41. | TUTORIAL - VII | 1 | 28-03-2025 | | TLM3 | CO2 | T1,T2 | | | | | | 42. | Homogeneous Linear
PDE with constant
coefficients | 1 | 29-03-2025 | | TLM1 | CO2 | T1,T2 | | | | | | 43. | Homogeneous Linear
PDE with constant
coefficients | 1 | 02-04-2025 | | TLM1 | CO2 | T1,T2 | | | | | | | of classes required to complete UNIT-III | 11 | | | No. of classo | es taken: | | | | | | # **UNIT-IV: Vector Differentiation** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 44. | Introduction to UNIT IV | 1 | 03-04-2025 | | TLM1 | CO3 | T1,T2 | | | 45. | Vector
Differentiation | 1 | 04-04-2025 | | TLM1 | CO3 | T1,T2 | | | 46. | Gradient | 1 | 07-04-2025 | | TLM1 | CO3 | T1,T2 | | | 47. | Directional
Derivative | 1 | 09-04-2025 | TLN | M1 CO3 | T1,T2 | | |-----|--|----|------------|-----|-----------|--------------|---| | 48. | Directional
Derivative | 1 | 10-04-2025 | TLN | 11 CO3 | T1,T2 | | | 49. | Divergence | 1 | 11-04-2025 | TLN | 11 CO3 | T1,T2 | | | 50. | Curl | 1 | 16-04-2025 | TLN | 11 CO3 | T1,T2 | 1 | | 51. | TUTORIAL VIII | 1 | 17-04-2025 | TLN | 13 CO3 | T1,T2 | | | 52. | Problems | 1 | 19-04-2025 | TLN | 11 CO3 | T1,T2 | | | 53. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 21-04-2025 | TLN | M1 CO3 | T1,T2 | | | 54. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 23-04-2025 | TLM | M1 CO3 | T1,T2 | | | 55. | Laplacian, second order operators | 1 | 24-04-2025 | TLN | 11 CO3 | T1,T2 | | | 56. | TUTORIAL IX | 1 | 25-04-2025 | TLN | 13 CO3 | T1,T2 | | | 57. | Vector Identities | 1 | 26-04-2025 | TLN | 11 CO3 | T1,T2 | 1 | | 58. | Vector Identities | 1 | 28-04-2025 | TLN | 11 CO3 | T1,T2 | | | | of classes required to omplete UNIT-IV | 15 | | | No. of cl | asses taken: | | **UNIT-V: Vector Integration** | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | | | | |-----|---|----------|------------|------------|--------------|------------|----------|--------|--|--|--|--| | | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | | | No. | • | Required | Completion | Completion | Methods | COs | followed | Weekly | | | | | | 59. | Introduction to Unit-V | 1 | 30-04-2025 | _ | TLM1 | CO4 | T1,T2 | | | | | | | 60. | Line Integral | 1 | 01-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 61. | Circulation | 1 | 02-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 62. | Work done | 1 | 03-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 63. | Surface Integral | 1 | 05-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 64. | Surface Integral | 1 | 07-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 65. | Flux | 1 | 08-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 66. | TUTORIAL - X | 1 | 09-05-2025 | | TLM3 | CO4 | T1,T2 | | | | | | | 67. | Green's Theorem | 1 | 12-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 68. | Stoke's Thoerem | 1 | 14-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 69. | Divergence Theorem | 1 | 15-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 70. | TUTORIAL - XI | 1 | 16-05-2025 | | TLM3 | CO4 | T1,T2 | | | | | | | No | o. of classes required to complete UNIT-V | 12 | | | No. of class | ses taken: | , | | | | | | **Content beyond the Syllabus** | S. No. | Topics to be covered
| No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 71. | Non-homogeneous Linear PDE with constant coefficients | 1 | 17-05-2025 | | TLM2 | CO2 | T1,T2 | | | | No. of classes | 1
II MID FYA | MINATIONS | S (02-06-2025] | No. of clas | | | | | Teaching Learning Methods | | | | | | | | | | |---------------------------|----------------|------|---------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | <u>PART-C</u>EVALUATION PROCESS (R23 Regulation): | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | PART-D PROGRAMME OUTCOMES (POs): | | <u>PART-D</u> PROGRAMME OUTCOMES (POs): | |-------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals | | 101 | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature and analyze complex engineering | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | | and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for | | | the public health and safety and the cultural, societal and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | professional engineering practice | | | Environment and sustainability : Understand the impact of the professional engineering solutions | | PO 7 | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable | | | development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms | | 100 | of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in | | 10) | diverse teams and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as being able to comprehend and write effective reports | | | and design documentation, make effective presentations and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of the engineering | | PO 11 | and management principles and apply these to one's own work, as a member and leader in a team, | | | to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in | | | independent and life-long learning in the broadest context of technological change. | | Dr. T.Radha Rani | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | | |-------------------|--------------------|--------------------|-------------------|--| | Course Instructor | Course Coordinator | Module Coordinator | HOD | | # HERDY COLLEGE OR SERVING THE S #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING** # COURSE HANDOUT PART-A Name of Course Instructor: Dr. B. Pangedaiah Course Name & Code: BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01L-T-P Structure: 3-0-0Credits: 3Program/Sem/Sec: B.Tech/II/CSE-CA.Y.: 2024-25 PREREQUISITE: Physics **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. COURSE OUTCOMES (COs): At the end of the course, student will be able to | CO1 | Extract electrical variables of AC & DC circuits using fundamental laws. (Understand) | |-----|--| | CO2 | Understand the operation of electrical machines and measuring instruments. (Understand) | | соз | Classify various energy resources, safety measures and interpret electricity bill generation in electrical systems. (Understand) | | CO4 | Interpret the characteristics of various semiconductor devices (Knowledge) | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | C06 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 | PSO1 | PSO2 | PSO3 | PSO4 | |----------------|-----|-----|-----|-----|------|-------|-----|-----|-----|----------------|------|------|------|-------------|-------------|------| | CO1 | 3 | 2 | 3 | | | | | | | | | 1 | 3 | 2 | | 2 | | CO2 | 2 | 2 | | | | | | | | | | | | 2 | | 3 | | CO3 | 2 | 2 | | | | 3 | | | | | 2 | 2 | 2 | | | | | CO4 | 3 | 2 | | | | | | | | | | 1 | 2 | | 3 | 2 | | CO5 | 3 | 2 | | | | | | | | | | 1 | 2 | | 3 | 2 | | C06 | 2 | 2 | 2 | | | | | | | | | | 2 | | 2 | 1 | | 1 - Low | | | | | 2 -M | ediun | 1 | | | 3 - Hig | gh | | | | | | #### **TEXTBOOKS:** | T1 | Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition | |-----------|---| | T2 | Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & | | 12 | Co, 20 | | T3 | Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition | | T4 | R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. | | T5 | R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 | # PART-B # **COURSE DELIVERY PLAN (LESSON PLAN):** # PART A: BASIC ELECTRICAL ENGINEERING # **UNIT-I: DC & AC Circuits** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|--| | 1. | Introduction to subject and course outcomes | 1 | 21-01-2025 | | TLM1 | | | | | 2. | DC Circuits: Electrical circuit elements (R, L and C) | 1 | 24-01-2025 | | TLM1 | | | | | 3. | Ohm's Law and its limitations | 1 | 25-01-2025 | | TLM1 | | | | | 4. | KCL & KVL | 1 | 25-01-2025 | | TLM1 | | | | | 5. | series, parallel, series-parallel circuits | 1 | 28-01-2025 | | TLM1 | | | | | 6. | Super Position theorem | 1 | 31-01-2025 | | TLM1 | | | | | 7. | AC Circuits: A.C. Fundamentals: | 1 | 01-02-2025 | | TLM1 | | | | | 8. | Equation of AC Voltage and current, waveform | 1 | 01-02-2025 | | TLM1 | | | | | 9. | Time period, frequency, amplitude, phase, phase difference, average value, RMS value | 1 | 04-02-2025 | | TLM1 | | | | | 10. | Form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits | 1 | 07-02-2025 | | TLM1 | | | | | 11. | Concept of Impedance, Active power, reactive power and apparent power | 1 | 08-02-2025 | | TLM1 | | | | | 12. | Concept of power factor (Simple Numerical problems). | 1 | 08-02-2025 | | TLM1 | | | | | No. o | No. of classes required to complete UNIT-I: 12 No. of classes taken: | | | | | | | | #### **UNIT-II: Machines and Measuring Instruments** | UNI | UNIT-II:
Machines and Measuring Instruments | | | | | | | | | | | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | | | 13. | Machines: Construction, principle and operation of DC Motor | 1 | 11-02-2025 | | TLM1 | - | | | | | | | 14. | Construction, principle and operation of DC Generator | 1 | 14-02-2025 | | TLM1 | | | | | | | | 15. | Construction, principle and operation of Three Phase Induction Motor | 1 | 15-02-2025 | | TLM1 | | | | | | | | 16. | Construction, principle and operation of Alternator | 1 | 15-02-2025 | | TLM1 | | | | | | | | 17. | Applications of electrical machines | 1 | 18-02-2025 | | TLM1 | | | | | | | | 18. | Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil | 2 | 21-02-2025 | | TLM1 | | | | | | | | | (PMMC), Moving Iron (MI)
Instruments | | | | | | | | | | | | 19. | Wheat Stone bridge. | 1 | 22-02-2025 | | TLM1 | | | | | | | | No. o | No. of classes required to complete UNIT-II: 08 No. of classes taken: | | | | | | | | | | | # **UNIT-III: Energy Resources, Electricity Bill & Safety Measures** | 20. | Energy Resources: : Conventional and non-conventional energy resources | 1 | 25-02-2025 | TLM1 | |-----|---|--------|------------|-----------------------| | 21. | Layout and operation of various
Power Generation systems: Hydel
power generation | 1 | 28-02-2025 | TLM1 | | 22. | Layout and operation of Nuclear power generation | 1 | 01-03-2025 | TLM1 | | 23. | Layout and operation of Solar power generation | 1 | 01-03-2025 | TLM1 | | 24. | Layout and operation of Wind power generation. | 1 | 04-03-2025 | TLM1 | | 25. | Electricity bill: Power rating of household appliances including air conditioners PCs, Laptops, Printers, etc | 1 | 04-03-2025 | TLM1 | | 26. | Definition of "unit" used for
consumption of electrical energy,
two-part electricity tariff, calculation
of electricity bill for domestic
consumers | 1 | 07-03-2025 | TLM1 | | 27. | Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker(MCB), merits and demerits | 1 | 08-03-2025 | TLM1 | | 28. | Personal safety measures: Electric
Shock, Earthing and its types, Safety
Precautions to avoid shock. | 1 | 08-03-2025 | TLM1 | | No. | of classes required to complete UNIT-I | II: 09 | | No. of classes taken: | | Teaching Learning Methods | | | | | | | | | | |---------------------------|----------------|------|---------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | # PART-C **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |---|-----------------| | Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus)) | A1=5 | | I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | M1=15 | | I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | Q1=10 | | Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | M2=15 | | II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | Q2=10 | | Mid Marks =80% of Max $((M1+Q1+A1), (M2+Q2+A2)) + 20\%$ of Min $((M1+Q1+A1), (M2+Q2+A2))$ | M=30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | # ACADEMIC CALENDAR: | Tenbernie eneer bin. | | | | |-----------------------------|------------|------------|-------| | Description | From | To | Weeks | | I Phase of Instructions | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | Summer Vacation | 19-05-2025 | 31-06-2025 | 2W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | # PART-D PROGRAMME OUTCOMES (POs): | - 110 011 | AMME OUTCOMES (1 OS). | |-----------|--| | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering | | | problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze complex | | PO 2 | engineering problems reaching substantiated conclusions using first principles of | | | mathematics, natural sciences, and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and | | 200 | design system components or processes that meet the specified needs with appropriate | | PO 3 | consideration for the public health and safety, and the cultural, societal, and environmental | | | considerations. | | | Conduct investigations of complex problems : Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data, and synthesis of | | | the information to provide valid conclusions. | | | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modelling to complex engineering activities | | | with an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to | | | the professional engineering practice | | | Environment and sustainability: Understand the impact of the professional engineering | | PO 7 | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need | | | for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and | | PUB | norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader | | PU 9 | in diverse teams, and in multidisciplinary settings. | | | Communication: Communicate effectively on complex engineering activities with the | | PO 10 | engineering community and with society at large, such as, being able to comprehend and | | 1010 | write effective reports and design documentation, make effective presentations, and give and | | | receive clear instructions. | | | Project management and finance: Demonstrate knowledge and understanding of the | | PO 11 | engineering and management principles and apply these to one's own work, as a member and | | | leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in | | 1012 | independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO a | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power | |-------|---| | PSO b | Design and analyze electrical machines, modern drive and lighting systems | | PSO c | Specify, design, implement and test analog and embedded signal processing electronic systems | | PSO d | Design controllers for electrical and electronic systems to improve their performance. | | Title | Course Instructor | Course Instructor Course Coordinator | | Head of the
Department | |---------------------|-------------------|--------------------------------------|------------------------|---------------------------| | Name of the Faculty | Dr. B. Pangedaiah | Dr. A.V.G.A.
Marthanda | Dr. G.
Nageswararao | Dr. J. Sivavara Prasad | | Signature | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF MECHANICAL ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Dr.K.Dilip Kumar, Professor Dr.B.Sudheer Kumar, Sr. Assistant Professor (A) Mr.S.Umamaheswara Reddy, Assistant Professor (A) **Course Name & Code**: Engineering Graphics – 20ME01 L-T-P Structure : 2-0-3 Credits: 3 Program/Sem/Sec : B.Tech/II Sem/C-Section A.Y.: 2024-25 **PREREQUISITE** : Engineering Physics, Mathematics **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Identify the geometrical objects considering BIS standards. (Remember-L1) | |------------
---| | CO2 | Comprehend the basics of orthographic projections and deduce orthographic projections of a point and a line at different orientations. (Understand-L2) | | | Represent graphically the geometrical planes at different positions and orientations. | | CO3 | (Understand-L2) | | | | | CO4 | Analyze and draw solid objects at different positions and orientations. (Apply-L3) | | CO4 | Analyze and draw solid objects at different positions and orientations. (Apply-L3) Visualize isometric and orthographic views of geometrical objects and convert one | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | | (00110211111111111111111111111111111111 | | | | | | | | | | | | | | | |----------------|--|-----|-----|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------| | COs | P01 | PO2 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO2 | 3 | 3 | 1 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO3 | 3 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO4 | 3 | 2 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO5 | 2 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | 1 - Low | | | | | | 2 | -Medi | ium | | | 3 | - High | | | | #### TEXTBOOKS: T1 $\frac{\text{N. D. Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers,}}{2012}$ #### **REFERENCE BOOKS:** - **R1** Narayana K L, Kannaiah P, Textbook on Engineering Drawing, 2nd Edition, SciTech publishers. - **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD. - **R3** Venugopal, Engineering Drawing and Graphics, New Age publishers - R4 Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill Publishers - **R5** N.S.Parthasarathy, Vela Murali, Engineering Drawing, Oxford Higher Education #### **PART-B** #### **COURSE DELIVERY PLAN (LESSON PLAN):** UNIT-I: INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, LINES AND DIMENSIONING, CONICS, CYCLOIDS, INVOLUTES, ORTHOGRAPHIC PROJECTIONS OF POINTS | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | | UNIT I: INTRODUCTION: Introduction to Engineering Drawing, COs, CEOs, | | - | | | _ | | 4 | POs and PEOs, Principles of Engineering Graphics and their significance, | | 21 01 2025 | | TIMO | | | 1. | Drawing Instruments and their use-Conventions in Drawing, Practice, | 2 | 21-01-2025 | | TLM3 | | | | Lettering and Dimensioning – BIS conventions. | | | | | | | 2. | Geometrical Constructions, Practice | 3 | 24-01-2025 | | TLM1 | | | | Engineering Curves: Conic Sections- Ellipse, Parabola, Hyperbola General | 0 | | | TIL MO | | | 3. | methods | 2 | 28-01-2025 | | TLM3 | | | 4. | Practice | 3 | 31-01-2025 | | TLM1 | | | 5. | Introduction to Engineering Curves, conics Cycloid, Epicycloid and Practice | 2 | 04-02-2025 | | TLM3 | | | 6. | Hypocycloid; Involutes | 3 | 07-02-2025 | | TLM1 | | | | ORTHOGRAPHIC PROJECTIONS | | | | | | | 7. | Introduction to Orthographic Projections, First and third angle projection | 2 | 11-02-2025 | | TLM3 | | | | methods, Practice | | | | | | | 8. | Projections of Points | 3 | 14-02-2025 | | TLM1 | | | 9. | Practice | 2 | 18-02-2025 | | TLM3 | | | No. of | classes required to complete UNIT-I: 22 | • | • | No. of clas | ses taken: | | # UNIT-II: ORTHOGRAPHIC PROJECTIONS OF POINTS AND LINES | C No | Tonics to be covered | No. of | Tentative | Actual | Teaching | HOD | | |------|----------------------|----------------------|-----------|---------|----------|----------|------| | | 5. NO. | Topics to be covered | Classes | Date of | Date of | Learning | Sign | | | | Required | Completion | Completion | Methods | Weekly | |-------|--|--------------------------|------------|----------------|--------------|-----------------| | | UNIT II: Projections of straight lines | | | | | | | 10. | Projections of straight lines of different orientations when line is parallel to | 3 | 21-02-2025 | | TLM1, 3 | | | | one and inclined to the other, Practice | | | | | | | 11. | Projections of lines when inclined to both the planes | 2 | 25-02-2025 | | TLM1 | | | 12. | Projections of lines when inclined to both the planes | 3 | 28-02-2025 | | TLM3 | | | 13. | PROJECTIONS OF PLANES: Introduction to Projection of Planes | 2 | 04-03-2025 | | TLM1 | | | 14. | Planes parallel to one of the reference planes, Practice | 3 | 07-03-2025 | | TLM3 | | | 15. | Inclined to one reference plane and perpendicular to other, Practice | 2 | 11-03-2025 | | TLM3 | | | 16. | I Mid Examinations | 17-03-2025 to 22-03-2025 | | | | | | No. o | f classes required to complete UNIT-II: 15 | | | No. of classes | taken: (incl | uding Practice) | # UNIT-III: PROJECTIONS OF SOLIDS | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |---|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 17. | PROJECTIONS OF SOLIDS – Introduction to Projections of Solids, Practice | 2 | 25-03-2025 | | TLM1, 3 | | | 18. | Projection of solids in simple positions, resting on HP | 3 | 28-03-2025 | | TLM1, 3 | | | 19. | Projection of solids in simple positions, resting on VP | 2 | 01-04-2025 | | TLM1 | | | 20. | Practice | 3 | 04-04-2025 | | TLM3 | | | 21. | Axis inclined to one of the reference planes and parallel to the other, Practice | 2 | 08-04-2025 | | TLM1 | | | 22. | Axis inclined to one of the reference planes and parallel to the other, Practice | 3 | 11-04-2025 | | TLM3 | | | No. of classes required to complete UNIT-III: 15 No. of classes taken: | | | | : | | | #### **UNIT-IV: SECTIONS OF SOLIDS** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 23. | Perpendicular and inclined section planes | 2 | 15-04-2025 | _ | TLM1, 3 | | | 24. | Sectional views and true shape of section | 2 | 22-04-2025 | | TLM1 | | | 25. | Sections of solids in simple position | 3 | 25-04-2025 | | TLM3 | | | 26. | DEVELOPMENT OF SURFACES: Methods of development: Parallel line development | 2 | 29-04-2025 | | TLM1 | | | 27. | Radial line development | 3 | 02-05-2025 | | TLM3 | | | 28. | Development of a cube, prism, cylinder, pyramid and cone. | 2 | 06-05-2025 | | TLM1 | | | No. of | No. of classes required to complete UNIT-IV: 14 | | | | ses taken: | (including | # UNIT-V: ISOMETRIC VIEWS: TRANSFORMATION OF PROJECTIONS FROM ORTHOGRAPHIC PROJECTIONS TO ISOMETRIC VIEW and VICE VERSA | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 29. | UNIT V: ISOMETRIC VIEWS – Introduction to Isometric Views, Practice | 3 | 09-05-2025 | | TLM1, 3 | | | 30. | Theory of isometric projection, isometric views, isometric axes, scale, lines & planes, Practice | 2 | 13-05-2025 | | TLM1 | | | 31. | Isometric view of prism, pyramid, cylinder & cone, non-isometric lines-
methods to generate an isometric drawing, Practice | 3 | 16-05-2025 | | TLM3 | | | 32. | TRANSFORMATION OF PROJECTIONS: Introduction | 2 | 20-05-2025 | | TLM1 | | | 33. | Conversion of Orthographic Projections to Isometric Views of composite objects, Practice | 3 | 23-05-2025 | | TLM1, 3 | | | 34. | Conversion of Isometric Views to Orthographic Projections of composite objects, Practice | 2 | 27-05-2025 | | TLM1 | | | 35. | Practice, Solids | 3 | 30-05-2025 | | TLM3 | | | 36. | Practice, Solids | 2 | 03-06-2025 | | TLM3 | | | 37. | Practice, Solids | 2 | 10-06-2025 | TLM3 | |-------|--|---|------------|-----------------------| | 38. | Practice, Solids | 3 | 13-06-2025 | TLM3 | | No. o | f classes required to complete UNIT-V:25 | | | No. of classes taken: | | Teaching Learning Methods | | | | | | | | | |---------------------------|---|------|------------------------------------|--|--|--|--|--| | TLM1 | TLM1 Chalk and Talk TLM4 Demonstration (Lab/Field Vis | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | #### **PART-C** ### **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |---
-----------------| | I-Descriptive Examination (Units-I, II (Half of the Syllabus)) | M1=15 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | Day to Day Evaluation | 15 | | Mid Marks =80% of Max (M1,M2)+ 20% of Min ((M1, M2) + Day to Day Evaluation | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): ### **Engineering Graduates will be able to:** | EII | igineering Graduates will be able to: | |--------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering | | DO 3 | | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and | | | engineering sciences. | | | Design/development of solutions: Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for the | | | public health and safety, and the cultural, societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research methods | | PO 4 | including design of experiments, analysis and interpretation of data, and synthesis of the information to | | | provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modelling to complex engineering activities with an | | | understanding of the limitations. | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, | | PO 6 | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional | | | engineering practice. | | | Environment and sustainability: Understand the impact of the professional engineering solutions in | | PO 7 | societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable | | | development. | | | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the | | PO 8 | engineering practice. | | | Individual and team work: Function effectively as an individual, and as a member or leader in diverse | | PO 9 | teams, and in multidisciplinary settings. | | | Communication: Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as, being able to comprehend and write effective reports and | | PO 10 | | | | design documentation, make effective presentations, and give and receive clear instructions. | | | Project management and finance: Demonstrate knowledge and understanding of the engineering and | | PO 11 | management principles and apply these to one's own work, as a member and leader in a team, to | | | manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in | | . 0 12 | independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems. | |-------|---| | PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the Department | |------------------------|--------------------|--------------------|---------------------------|------------------------| | Name of the
Faculty | Dr. K. DILIP KUMAR | Mr. J. Subba Reddy | Mr. J. Subba Reddy | Dr. M.B.S.S. Reddy | | Signature | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** # COURSE HANDOUT PART-A Name of Course Instructor: Mr. N. SRINIVASARAO **Course Name & Code** : DATA STRUCTURES & 23CS02 L-T-P Structure : 3-0-0 Credits: 3 Program/Sem/Sec : B.Tech/CSE/II /C sec. A.Y.: 2024-25 PREREQUISITE: Introduction to Programming-23CS01 ### **COURSE EDUCATIONAL OBJECTIVES(CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like lists, stacks, queues, trees, graphs, and various sorting techniques. COURSE OUTCOMES (COs): At the end of the course, students will be able to | CO1 | Understand the role of linear and nonlinear data structures in organizing and | |-----|--| | | accessing data (Understand-L2) | | COR | Implement abstract data type (ADT) and data structures for given application. | | CO2 | (Apply-L3) | | COR | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | CO3 | (Apply-L3) | | 604 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | CO4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |-----|----------------|-----|-----|-----|-----------|-----|-----|-----|-----------------|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | - | - | - | - | - | - | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | - | - | - | - | - | - | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | - | ı | ı | ı | 1 | 1 | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | - | ı | ı | ı | ı | ı | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | - | ı | ı | ı | ı | ı | | 2 | 3 | 3 | | | 1 - Low | | | • | 2 -Medium | | | • | 3 - High | | | | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C. Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### **REFERENCE BOOKS:** - R1 Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick # PART-B # COURSE DELIVERY PLAN (LESSON PLAN): # UNIT-I: Introduction to Linear Data Structures & Searching, sorting techniques | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 1. | Introduction and Discussion of CO's | 1 | 22-01-2025 | | TLM1 | | | 2. | Definition and Importance of Linear Data Structures | 1 | 23-01-2025 | | TLM1 | | | 3. | Abstract Data Types and Implementation | 1 | 24-01-2025 | | TLM1 | | | 4. | Overview of time and space complexity | 1 | 25-01-2025 | | TLM1 | | | 5. | Analysis of Liner Data structures | 2 | 29-01-2025
30-01-2025 | | TLM1 | | | 6. | Revise Arrays | 1 | 31-01-2025 | | TLM1 | | | 7. | Searching Techniques: Linear
Search | 1 | 01-02-2025 | | TLM1 | | | 8. | Binary Search & Analysis | 2 | 05-02-2025
06-02-2025 | | TLM1 | | | 9. | Bubble Sort & Analysis | 1 | 07-02-2025 | | TLM1 | | | 10. | Insertion Sort & Analysis | 2 | 08-02-2025
12-02-2025 | | TLM1 | | | 11. | Selection Sort & Analysis | 2 | 13-02-2025
14-02-2025 | | TLM1 | | | No. o | of classes required to complete UN | No. of classes | s taken: | | | | # **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--| | 12. | List Implementation using
Arrays and Array Disadvantages | 1 | 15-02-2025 | | TLM1 | | | | | 13. | Linked List
Representation | 1 | 19-02-2025 | | TLM1 | | | | | 14. | Sing Linked List: Operations | 2 | 20-02-2025
21-02-2025 | | TLM1 | | | | | 15. | Double Linked List: Operations | 2 | 22-02-2025
27-02-2025 | | TLM1 | | | | | 16. | Circular Single Linked List | 1 | 28-02-2025 | | TLM1 | | | | | 17. | Circular Double Linked List | 2 | 01-03-2025
05-03-2025 | | TLM1 | | | | | 18. | Comparing Arrays and Linked
List | 1 | 06-03-2025 | | TLM1 | | | | | 19. | Applications of Linked Lists:
Polynomial Representation | 1 | 07-03-2025 | | TLM1 | | | | | 20. | Polynomial Addition | 1 | 08-03-2025 | | TLM1 | | | | | No. o | No. of classes required to complete UNIT-II: 12 No. of classes taken: | | | | | | | | ### **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Completio
n | Teachin
g
Learnin
g
Methods | HOD
Sign
Weekly | |-----------|---------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 21. | Introduction to Stacks: Properties | 1 | 19-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 20-03-2025 | | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 21-03-2025 | | TLM1 | | | 24. | Stacks using Linked List | 1 | 22-03-2025 | | TLM1 | | | 25. | Expressions: Expression evaluation | 2 | 26-03-2025
27-03-2025 | | TLM1 | | | 26. | Infix to Postfix Conversion | 2 | 28-03-2025
29-03-2025 | | TLM1 | | | 27. | Checking Balanced Parenthesis | 2 | 04-04-2025
09-04-2025 | | TLM1 | | | 28. | Reversing a List | 1 | 10-04-2025 | | TLM1 | | | 29. | Backtracking | 1 | 11-04-2025 | | TLM1 | | | | No. of classes required to comp | No. of classe | s taken: | | | | # **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 30. | Introduction to queues: properties and operations, | 1 | 12-04-2025 | | TLM1 | | | 31. | Implementing queues using arrays | 1 | 16-04-2025 | | TLM1 | | | 32. | Implementing queues using
Linked List | 1 | 17-04-2025 | | TLM1 | | | 33. | Applications of Queue:
Scheduling | 1 | 19-04-2025 | | TLM1 | | | 34. | Breadth First Search | 1 | 23-04-2025 | | TLM1 | | | 35. | Circular Queue | 1 | 24-04-2025 | | TLM1 | | | 36. | Double ended queue | 1 | 25-04-2025 | | TLM1 | | | 37. | Applications of Deque | 1 | 26-04-2025 | | TLM1 | | | No. o | of classes required to complete UN | No. of classes | s taken: | | | | # **UNIT-V: TREES & HASHING TECHNQIUES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 38. | Introduction to Trees, | 1 | 30-04-2025 | | TLM1 | | | 39. | Representation of Trees | 1 | 01-05-2025 | | TLM1 | | | 40. | Tree Traversals | 1 | 02-05-2025 | | TLM1 | | | 41. | Binary Search Trees- Operations | 2 | 03-05-2025
07-05-2025 | | TLM1 | | | 42. | Hashing Introduction | 1 | 08-05-2025 | | TLM1 | | | 43. | Hash Functions | 1 | 09-05-2025 | | TLM1 | | | 44. | Collison Resolution Techniques:
Separate Chaining | 1 | 10-05-2025 | | TLM1 | | | 45. | Open Addressing: Linear
Probing | 1 | 14-05-2025 | | TLM1 | | | 46. | Quadratic Probing, Double
Hashing | 1 | 15-05-2025 | | TLM1 | | | 47. | Rehashing, Applications of Hashing | 1 | 16-05-2025 | | TLM1 | | | No. o | of classes required to complete U | NIT-V: 11 | | No. of classes | s taken: | | # **Content Beyond Syllabus** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Complet ion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 1. | Evaluation of Prefix Expression, Towers of Hanoi, Extendable Hashing | 1 | 17-05-2025 | | | | | | | N | No. of classes | | 1 | | N | lo. of class | es taken: | | | | II M | IID EXAMI | NATIONS (02 | -06-2025 | TO 07-06 | -2025) | | | | Teaching | Teaching Learning Methods | | | | | | | | | |----------|---------------------------|------|------------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment – I (Units-I, II) | A1 = 5 | | I – Descriptive Examination (Units-I, II) | M1 = 15 | | I – Quiz Examination (Units-I, II) | Q1 = 10 | | Assignment – II (Unit-III, IV & V) | A2 = 5 | | II – Descriptive Examination (UNIT-III, IV & V) | M2 = 15 | | II – Quiz Examination (UNIT-III, IV & V) | Q2 = 10 | | Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project | | | | | |---|--|--|--|--|--| | F30 1 | development using open-source programming environment for the success oforganization. | | | | | | PSO 2 The ability to design and develop computer programs in networking, web applications are | | | | | | | P30 2 | as per the society needs. | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | Title | Course Instructor
| Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|---------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. N. SrinivasaRao | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** #### Part-A **PROGRAM** : B. Tech., II-Sem., CSE-C ACADEMIC YEAR : 2024-2025 **COURSE NAME & CODE** : ENGINEERING PHYSICS LAB & 23FE53 **L-T-P STRUCTURE**: 0-0-2 **COURSE CREDITS** : 1 COURSE INSTRUCTOR : Dr. S. YUSUF COURSE COORDINATOR : Dr. S. YUSUF ### **Course Objectives:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). #### Course articulation matrix (Correlation between CO's and PO's): | | Engineering Physics Lab | | | | | | | | | | | | |------------------------|-------------------------|---------------------------------|---|---|--|--|--|---|----|--|--|---| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | Programme Outcomes | | | | | | | | | | | | PO's
→ | 1 | 1 2 3 4 5 6 7 8 9 10 11 12 | | | | | | | 12 | | | | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO2. | 3 3 2 1 1 1 1 | | | | | | | 1 | | | | | | CO3. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | | CO5. 1 = slight | 3 | 3 | 2 = Mo | 1 | | | 1 | l (High | 1 | |---|------------------|---|---|--------|---|--|---|---|----------|---| | = | CO4. | 3 | 3 | 2 | 1 | | 1 | 1 | | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). # **BOS APPROVED TEXT BOOKS:** 1. Lab Manual Prepared by the LBRCE. Part-B COURSE DELIVERY PLAN (LESSON PLAN): Section- CSE-C | S.No | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |------|----------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------------------------|--------------------------|-----------------------| | 1. | Introduction | 3 | 21-01-2025 | | TLM4 | 1,2,3,4 | T1 | | | 2. | Demonstration | 3 | 28-01-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 3. | Experiment 1 | 3 | 04-02-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 4. | Experiment 2 | 3 | 11-02-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 5. | Experiment 3 | 3 | 18-02-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 6. | Experiment 4 | 3 | 25-02-2025 | | TLM4 | CO1, CO2,
CO3, CO4 | T1 | | | 7. | Experiment 5 | 3 | 04-03-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 8. | Demonstration | 3 | 11-03-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 9. | Experiment 6 | 3 | 18-03-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 10. | Experiment 7 | 3 | 25-03-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 11. | Experiment 8 | 3 | 01-04-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 12. | Experiment 9 | 3 | 08-04-2025 | | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 13. | Experiment 10 | 3 | 15-04-2025 | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | |-----|----------------------------------|----|------------|--------------|-------------------------------|----|--| | 14. | Revision | 3 | 22-04-2025 | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 15. | Revision | 3 | 29-04-2025 | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 16. | Internal Exam | 3 | 06-05-2025 | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | 17. | Internal Exam | 3 | 13-05-2025 | TLM4 | CO1, CO2,
CO3, CO4,
CO5 | T1 | | | | f classes required mplete UNIT-I | 51 | | No. of class | ses taken: | | | #### **EVALUATION PROCESS:** | Evaluation Task | Marks | |---|---------| | Day-to-Day Work | A1 = 10 | | Record & Observation | B1 = 5 | | Internal Exam | C1 = 15 | | Cumulative Internal Examination (CIE): (A1+B1+C1) | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | #### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) - 1.To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education. - 2. To Function professionally in the rapidly changing world with advances in technology. - 3. To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices. - 4. To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner . #### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - (1). **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2). **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3). **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - (4). Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - (5). **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. - (6). The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12).Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ### **PROGRAM SPECIFIC OUTCOMES (PSOs):** Graduate of the ECE will have the ability to - (1)Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry. - (2) Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools - (3) Apply the Signal processing techniques to synthesize and realize the issues related to real time applications. | Course Instructor | Course Coordinator | Module Coordinator | HOD | | | |----------------------|--------------------|--------------------|-------------------|--|--| Dr. S. YUSUF / | Dr. S. YUSUF | Dr. S. YUSUF | Dr. A. RAMI REDDY | | | | Dr. P. Sobhanachalam | | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with "A" Grade & NBA (Under Tier - I) An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF EEE** # LAB HANDOUT ### **PART-A** Name of Course Instructor : Dr. B. Pangedaiah, Mrs. T. Himabindu **Course Name & Code** : Electrical & Electronics Engineering Workshop (E & EE
WS) L-T-P Structure : 0-0-3 Credits : 1.5 Program/Sem : B.Tech. CSE- II Sem-Sec C A.Y. : 2024-25 PREREQUISITE: NIL **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. To impart knowledge on the principles of digital electronics and fundamentals of electron devices & its applications. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |-----|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | C06 | Demonstrate the working of various logic gates using ICs. (Understand) | ### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |------------|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | | | | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | 2 | | | | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | 3 | | | | 1 - Low 2 - Medium 3 - High | | | | | | | | | | | | | | | | ### **PART-B** # **COURSE DELIVERY PLAN (LESSON PLAN):** | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--| | 1. | Introduction to BEEE Lab,
Course Objectives and Outcomes. | 3 | 20-01-2025 | | TLM4 | | | | 2. | Verification of KCL and KVL | 3 | 27-01-2025 | | TLM4 | | | | 3. | Verification of Superposition theorem | 3 | 03-02-2025 | | TLM4 | | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 10-02-2025 | | TLM4 | | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 17-02-2025 | | TLM4 | | | | 6. | Measurement of Power and Power factor using Single-phase wattmeter | 3 | 24-02-2025 | | TLM4 | | | | 7. | Calculation of Electrical Energy for Domestic Premises. | 3 | 03-03-2025 | | TLM4 | | | | 8. | Internal Lab Examination | 3 | 17-03-2025 | | TLM4 | | | | No. of | classes required: 24 | | No. of classes | taken: | | | | | Teaching | Teaching Learning Methods | | | | | | | | |----------|---|------|------------------------------------|--|--|--|--|--| | TLM1 | Chalk and Talk TLM4 Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | # PART-C ### **EVALUATION PROCESS (R20 Regulation):** | EVALUATION I ROCESS (RZO Regulation). | | | | | | | | |--|-----------------|--------|--|--|--|--|--| | Evaluation Task | Expt. no's | Marks | | | | | | | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | | | | | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | | | | | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | | | | | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | | | | | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | | | | | | Total Marks=CIE+SEE | | 100 | | | | | | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, | | | | | | | | | |------|---|--|--|--|--|--|--|--|--| | PUI | and an engineering specialization to the solution of complex engineering problems. | | | | | | | | | | | Problem analysis : Identify, formulate, review research literature, and analyze complex | | | | | | | | | | PO 2 | engineering problems reaching substantiated conclusions using first principles of mathematics, | | | | | | | | | | | natural sciences, and engineering sciences. | | | | | | | | | | | Design/development of solutions : Design solutions for complex engineering problems and | | | | | | | | | | PO 3 | design system components or processes that meet the specified needs with appropriate | | | | | | | | | | | consideration for the public health and safety, and the cultural, societal, and environmental | | | | | | | | | | | considerations. | |-------|---| | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO a | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power | |-------|---| | PSO b | Design and analyze electrical machines, modern drive and lighting systems | | PSO c | Specify, design, implement and test analog and embedded signal processing electronic systems | | PSO d | Design controllers for electrical and electronic systems to improve their performance. | Course InstructorCourse CoordinatorModule CoordinatorHead of the DepartmentDr. B. PangedaiahDr. A.V.G.A.MarthandaDr. G. NageswararaoDr. J. Sivavara Prasad Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) under Tier - I Approved by AICTE and Permanently Affiliated to JNTUK, Kakinada ### DEPARTMENT OF MECHANICAL ENGINEERING #### COURSE HANDOUT : B.Tech. II-Sem, Computer Science Engineering **PROGRAM** ACADEMIC YEAR : 2024-25 **COURSE NAME & CODE :** Engineering Workshop, 23ME51 L-T-P STRUCTURE : 0-0-3 **COURSE CREDITS** : 1.5 **COURSE INSTRUCTOR**: Mr.K.Venkateswara Reddy, Asst. Professor Mr.K.Sai Babu, Asst. Professor **COURSE COORDINATOR:** Seelam Srinivasa Reddy, Assoc. Professor PRE REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. ### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as | |-----|---| | CO1 | Cross lap joint, Dove tail joint. | | | Fabricate and model various basic prototypes in the trade of fitting such | | CO2 | as Straight fit, V-fit. | | | Produce various basic prototypes in the trade of Tin smithy such as | | CO3 | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | ### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | COa | PO PSO | PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|-----------|-----|-----|-----| | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2
| 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put"1 Slight (Low), **2-**Moderate (Medium), **3-**Substantial (High). #### **REFERENCE:** | R1 | LabManual | |----|-----------| |----|-----------| COURSE DELIVERY PLAN (LESSON PLAN): Section-C | S.
No. | Experiment
to be
conducted | No. of
Classes
Required | Tentative Date of Completion | Actual Date
of
Completion | Teaching
Learning
Methods | Reference | HOD
Sign
Weekly | |-----------|----------------------------------|-------------------------------|------------------------------|---------------------------------|---------------------------------|-----------|-----------------------| | 1. | Demonstration | 3 | 23-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 30-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 06-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 13-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 20-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 27-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 06-03-2025 | | TLM8 | R1 | | | | | I-Mid Ex | xaminations (10 | .03.2025 to 1 | 5.03.2025) | | | | 8. | Experiment-7 | 3 | 20-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 27-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 03-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 10-04-2025 | | TLM8 | R1 | | | 12. | Additional Experiments | 3 | 24-04-2025 | | TLM8 | R1 | | | 13. | Repetition lab | 3 | 01-05-2025 | | TLM8 | R1 | | | 14. | Repetition lab | 3 | 08-05-2025 | | TLM8 | R1 | | | 15. | Lab Internal | 3 | 15-05-2025 | | TLM6 | - | | | Teach | Teaching Learning Methods | | | | | | | | | |-------|---------------------------|------|--------------------|------|----------------|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | | | | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | | | | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | | | | | # **ACADEMIC CALENDAR:** | Description | From | То | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | # Part-C ### **EVALUATION PROCESS:** | Parameter | Marks | |---------------------------------|------------------| | Day-to-Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination | A1+B1+C1=30Marks | | (CIE = A1 + B1 + C1) | | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: D-SEC** | Batch
No. | Reg.No.of
Students | Number of
Students | Batch
No. | Reg.No.of
Students | Number of
Students | |--------------|-----------------------|-----------------------|--------------|-----------------------|-----------------------| | B11 | 24761A05D2-5E4 | 13 | B21 | 24761A05D2-5E4 | 13 | | B12 | 24761A05E5-5F7 | 13 | B22 | 24761A05E5-5F7 | 13 | | B13 | 24761A05F8-5H0 | 13 | B23 | 24761A05F8-5H0 | 13 | | B14 | 24761A05H1-5I3 | 13 | B24 | 24761A05H1-5I3 | 13 | | B15 | 24761A05I4-5J6 | 13 | B25 | 24761A05I4-5J6 | 13 | | Batch
No: | Exp.
01 | Exp.
02 | Exp.
03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp.
07 | Exp.
08 | Exp.
09 | Exp.
10 | |--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | B11 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | Т2 | | B12 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | T2 | T1 | | B13 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | T2 | C1 | C2 | | B14 | F2 | F1 | P2 | P1 | E2 | E1 | T2 | Т1 | C2 | C1 | | B15 | P1 | P2 | E1 | E2 | Т1 | T2 | C1 | C2 | F1 | F2 | | B21 | P2 | P1 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | | B22 | E1 | E2 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | | B23 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | | B24 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | | B25 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | ### LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | 3. | Fitting-1(F1)-T-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 8. | Plumbing-2(P2)-Pipe Layout | CO3 | | 9. | House Wiring-1(E1)–Series and Parallel connection | CO4 | | 10. | HouseWiring-2(E2)-Fluorescent Lamp and Calling Bell Circuit | CO4 | #### **NOTIFICATION OF CYCLE:** | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|----------|--|------------| | | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 4 | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | ζ, | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 2 | 8. | Plumbing-2(P2)-PipeLayout | CO3 | | Cycle | 9. | House Wiring-1(E1)–Series and Parallel Connection | CO4 | | | 10. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | #### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. #### PROGRAM OUT COMES (POs) #### **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. **Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi disciplinary settings. - **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course
Instructors | Course
Coordinator | Module
Coordinator | HOD | |---|-------------------------|-----------------------|-------------------------------| | Mr.K.Venkateswara
Reddy
Mr.K.Sai Babu | Mr.S.Srinivasa
Reddy | Mr.J.Subba Reddy | Dr. M. B. S Sreekara
Reddy | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous
Institution since 2010) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** ### **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Mr. N. SRINIVASARAO **Course Name & Code** : DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/C sec. A.Y.: 2024-25 PREREQUISITE: Introduction to Programming, Computer Programming Lab #### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like lists, stacks, queues, trees and graphs, and various sorting techniques. #### **COURSE OUTCOMES (CO):** **CO1:** Apply Linear Data Structures for organizing the data efficiently **(Apply-L3) CO2:** Apply Non- Linear Data Structures for organizing the data efficiently **(Apply-L3) CO3:** Develop and implement hashing techniques for solving problems **(Apply - L3)** COA. Improve individual / teamwork abilla communication ? report writing abilla **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. ### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | PO2 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO4 | - | - | - | - | - | - | - | 2 | 2 | 2 | 2 | 2 | | - | - | **Note: 1-** Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S. No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Delivery
Method | HOD
Sign | |--------|--|-------------------------------|------------------------------|---------------------------|--------------------|-------------| | 1. | Introduction & COs Discussion | 3 | 22-01-2025 | | TLM4 | | | 2. | Array Manipulations | 3 | 29-01-2025 | | TLM4 | | | 3. | Searching and Sorting
Techniques | 3 | 05-02-2025 | | TLM4 | | | 4. | Single Linked List | 3 | 12-02-2025 | | TLM4 | | | 5. | Double Linked List | 3 | 19-02-2025 | | TLM4 | | | 6. | Circular Linked List | 3 | 05-03-2025 | | TLM4 | | | 7. | Polynomial Representation
& Polynomial Addition | 3 | 19-03-2025 | | TLM4 | | | 8. | Linked List Applications | 3 | 26-03-2025 | | TLM4 | | | 9. | Stack Implementation | 3 | 02-04-2025 | | TLM4 | | | 10. | Stack Applications | 3 | 09-04-2025 | | TLM4 | | | 11. | Queue Implementation & Circular Queue | 3 | 16-04-2025 | | TLM4 | | | 12. | Double Ended Queue | 3 | 23-04-2025 | | TLM4 | | | 13. | Trees | 3 | 30-04-2025 | | TLM4 | | | 14. | Hashing | 3 | 07-05-2025 | | TLM4 | | | 15. | Internal Exam | 3 | 14-05-2025 | | TLM4 | | | Teaching Learning Methods | | | | | | | |---------------------------|------|---------------------------------|--|--|--|--| | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | Tutorial | TLM6 | Group Discussion/Project | | | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-------| | Day to Day Work + Record | 15 | | Internal Test | 15 | | Continuous Internal Assessment | 30 | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | | | | |-------|--|--|--|--|--|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | | | | | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | | | | | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | | | | | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | | | | | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | | | | | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | | | | | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | | | | | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | | | | | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | | | | | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | | | | | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | | | | | | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | |-------|---|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | | | | | PSO 3 | Γο inculcate an ability to analyze, design and implement database applications. | | | | | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------|---------------------|--------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. N. SrinivasaRao | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING** # COURSE HANDOUT PART-A Name of Course Instructor: Dr. B. Pangedaiah Course Name & Code: BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01L-T-P Structure: 3-0-0Credits: 3Program/Sem/Sec: B.Tech/II/CSE-DA.Y.: 2024-25 **PREREQUISITE: Physics** **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Extract electrical variables of AC & DC circuits using fundamental laws. (Understand) | |------------|--| | CO2 | Understand the operation of electrical machines and measuring instruments. (Understand) | | соз | Classify various energy resources, safety measures and interpret electricity bill generation in electrical systems. (Understand) | | CO4 | Interpret the characteristics of various semiconductor devices (Knowledge) | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | СО6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | ### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs &
PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | PSO4 | |------------|-----|-----|---------------|-----|-----|-----|------|-------|-----|------|------|----------------|------|-------------|-------------|------| | CO1 | 3 | 2 | 3 | | | | | | | | | 1 | 3 | 2 | | 2 | | CO2 | 2 | 2 | | | | | | | | | | | | 2 | | 3 | | CO3 | 2 | 2 | | | | 3 | | | | | 2 | 2 | 2 | | | | | CO4 | 3 | 2 | | | | | | | | | | 1 | 2 | | 3 | 2 | | CO5 | 3 | 2 | | | | | | | | | | 1 | 2 | | 3 | 2 | | C06 | 2 | 2 | 2 | | | | | | | | | | 2 | | 2 | 1 | | | | | 1 - Lo | W | | | 2 -M | ediun | 1 | | | 3 - Hig | gh | | | | #### **TEXTBOOKS:** | T1 | Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition | |-----------|---| | T2 | Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & | | | Co, 20 | | Т3 | Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition | | T4 | R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. | | T5 | R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 | # PART-B # **COURSE DELIVERY PLAN (LESSON PLAN):** # PART A: BASIC ELECTRICAL ENGINEERING # **UNIT-I: DC & AC Circuits** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------| | 1. | Introduction to subject and course outcomes | 1 | 21-01-2025 | | TLM1 | | | 2. | DC Circuits: Electrical circuit elements (R, L and C) | 1 | 22-01-2025 | | TLM1 | | | 3. | Ohm's Law and its limitations | 1 | 24-01-2025 | | TLM1 | | | 4. | KCL & KVL | 1 | 24-01-2025 | | TLM1 | | | 5. | series, parallel, series-parallel circuits | 1 | 28-01-2025 | | TLM1 | | | 6. | Super Position theorem | 1 | 29-01-2025 | | TLM1 | | | 7. | AC Circuits: A.C. Fundamentals: | 1 | 31-01-2025 | | TLM1 | | | 8. | Equation of AC Voltage and current, waveform | 1 | 31-01-2025 | | TLM1 | | | 9. | Time period, frequency, amplitude, phase, phase difference, average value, RMS value | 1 | 04-02-2025 | | TLM1 | | | 10. | Form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits | 1 | 05-02-2025 | | TLM1 | | | 11. | Concept of Impedance, Active power, reactive power and apparent power | 1 | 07-02-2025 | | TLM1 | | | 12. | Concept of power factor (Simple Numerical problems). | 1 | 07-02-2025 | | TLM1 | | | No. o | of classes required to complete UNIT-I: 1 | 12 | | No. of classes | taken: | | **UNIT-II: Machines and Measuring Instruments** | UNIT-11: Machines and Measuring Instruments | | | | | | | | |---|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | 13. | Machines: Construction, principle and operation of DC Motor | 1 | 11-02-2025 | | TLM1 | • | | | 14. | Construction, principle and operation of DC Generator | 1 | 12-02-2025 | | TLM1 | | | | 15. | Construction, principle and operation of Three Phase Induction Motor | 1 | 14-02-2025 | | TLM1 | | | | 16. | Construction, principle and operation of Alternator | 1 | 14-02-2025 | | TLM1 | | | | 17. | Applications of electrical machines | 1 | 18-02-2025 | | TLM1 | | | | 18. | Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil | 2 | 19-02-2025 | | TLM1 | | | | | (PMMC), Moving Iron (MI)
Instruments | | 21-02-2025 | | | | | | 19. | Wheat Stone bridge. | 1 | 21-02-2025 | | TLM1 | | | | No. o | of classes required to complete UNIT-I | No. of classes | taken: | | | | | UNIT-III: Energy Resources, Electricity Bill & Safety Measures | S.
No | Topics to be covered | No. of
Classes
Requir
ed | Tentative
Date of
Completion | Actual
Date of
Completio
n | Teaching
Learning
Methods | HOD
Sign
Weekly | |----------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------| |----------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------| | 20. | Energy Resources: : Conventional and non-conventional energy resources | 1 | 25-02-2025 | TLM1 | |-----|---|-----------------------|------------|------| | 21. | Layout and operation of various
Power Generation systems: Hydel
power generation | 1 | 28-02-2025 | TLM1 | | 22. | Layout and operation of Nuclear power generation | 1 | 28-02-2025 | TLM1 | | 23. | Layout and operation of Solar power generation | 1 | 04-03-2025 | TLM1 | | 24. | Layout and operation of Wind power generation. | 1 | 04-03-2025 | TLM1 | | 25. | Electricity bill: : Power rating of household appliances including air conditioners PCs, Laptops, Printers, etc | 1 | 05-03-2025 | TLM1 | | 26. | Definition of "unit" used for
consumption of electrical energy,
two-part electricity tariff, calculation
of electricity bill for domestic
consumers | 1 | 05-03-2025 | TLM1 | | 27. | Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker(MCB), merits and demerits | 1 | 07-03-2025 | TLM1 | | 28. | Personal safety measures: Electric
Shock, Earthing and its types, Safety
Precautions to avoid shock. | 1 | 07-03-2025 | TLM1 | | No. | of classes required to complete UNIT-I | No. of classes taken: | | | | Teaching Learning Methods | | | | | | | |---------------------------|----------------|------|---------------------------------|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | # PART-C ### **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus)) | A1=5 | | I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | M1=15 | | I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | Q1=10 | | Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | M2=15 | | II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | # ACADEMIC CALENDAR: | Description | From | То | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | Summer Vacation | 19-05-2025 | 31-06-2025 | 2W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | # PART-D # PROGRAMME OUTCOMES (POs): | INUUN | AMME OUT COMES (FOS): | |-------|---| | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | РО 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and
society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO a | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power | |-------|---| | PSO b | Design and analyze electrical machines, modern drive and lighting systems | | PSO c | Specify, design, implement and test analog and embedded signal processing electronic systems | | PSO d | Design controllers for electrical and electronic systems to improve their performance. | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------|-------------------|---------------------------|------------------------|---------------------------| | Name of the Faculty | Dr. B. Pangedaiah | Dr. A.V.G.A.
Marthanda | Dr. G.
Nageswararao | Dr. J. Sivavara Prasad | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** Part-A PROGRAM : I B. Tech., II-Sem., CSE - D ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : G.VIJAYA LAKSHMI. COURSE COORDINATOR : Dr. K.R. Kavitha PRE-REQUISITES : Basics of Vectors, Differentiation, Integration #### COURSE EDUCATIONAL OBJECTIVES (CEOs): - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. #### COURSE OUTCOMES (COs) After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields – L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations – L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence – L3 CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – L3 #### COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs): | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | _ | 1 | | CO2 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### BOS APPROVED TEXT BOOKS: - T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - T2 Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### BOS APPROVED REFERENCE BOOKS: - R1 George B. Thomas, Maurice D. Weir and Joel Hass, "Thomas Calculus", 14th Edition, Pearson Publishers, 2018. - R2 Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - R3 Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - R4 R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - R5 B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. Part-B ### COURSE DELIVERY PLAN (LESSON PLAN): | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | |----|--------------------------------------|----------|------------|------------|----------|----------|----------|--------| | No | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 1. | Introduction to the course | 1 | 20-01-2025 | | TLM2 | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 20-01-2025 | | TLM2 | | | | UNIT-I: Differential Equations of first order and first degree | | UNIT-1: Differential Equations of first order and first degree | | | | | | | | | | |-----------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|--|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | | | 3. | Introduction to UNIT I | 1 | 22-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 4. | Linear Differential equation | 1 | 23-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 6. | Exact DE | 1 | 27-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 7. | Exact DE | 1 | 27-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 8. | Non-exact DE Type I | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 9. | Non-exact DE Type II | 1 | 30-01-2025 | | TLM1 | CO1 | T1,T2 | | | | | 10. | Non-exact DE Type III | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | 11. | TUTORIAL - 1 | 1 | 03-02-2025 | | TLM3 | CO1 | T1,T2 | | | | | 12. | Non-exact DE Type IV | 1 | 03-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | 13. | Newton's Law of cooling | g 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | 14. | Law of natural growth ar decay | nd 1 | 06-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | 15. | Electrical circuits | 1 | 10-02-2025 | | TLM1 | CO1 | T1,T2 | | | | | 16. | TUTORIAL - 2 | 1 | 10-02-2025 | | TLM3 | CO1 | T1,T2 | | | | | | f classes required to lete UNIT-I | 14 | | | | No. of class | ses taken: | | | | #### UNIT-II: Linear Differential equations of higher order (Constant Coefficients) | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 17. | Introduction to UNIT II | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | 18. | Solving a homogeneous DE | 1 | 13-02-2025 | | TLM1 | CO1 | T1,T2 | | | 19. | Finding Particular
Integral, P.I for e ^{ax□b} | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | 20. | P.I for Cos bx, or sin bx | 1 | 17-02-2025 | TLM1 | CO1 | T1,T2 | | |--------|--------------------------------------|----|------------|------|--------------|-----------|--| | 21. | TUTORIAL - 3 | 1 | 17-02-2025 | TLM3 | CO1 | T1,T2 | | | 22. | P.I for polynomial function | 1 | 19-02-2025 | TLM1 | CO1 | T1,T2 | | | 23. | P.I for $e^{ax \Box b}v(x)$ | 1 | 20-02-2025 | TLM1 | CO1 | T1,T2 | | | 24. | P.I for x ^k v(x) | 1 | 22-02-2025 | TLM1 | CO1 | T1,T2 | | | 25. | Method of Variation of parameters | 1 | 24-02-2025 | TLM1 | CO1 | T1,T2 | | | 26. | Method of Variation of parameters | 1 | 24-02-2025 | TLM1 | CO1 | T1,T2 | | | 27. | Simultaneous linear equations | 1 | 27-02-2025 | TLM1 | CO1 | T1,T2 | | | 28. | L-C-R circuits | 1 | 01-03-2025 | TLM1 | CO1 | T1,T2 | | | 29. | TUTORIAL - 4 | 1 | 03-03-2025 | TLM3 | CO1 | T1,T2 | | | 30. | Simple Harmonic motion | 1 | 03-03-2025 | TLM1 | CO1 | T1,T2 | | | 31. | Simple Harmonic motion | 1 | 05-03-2025 | TLM1 | CO1 | T1,T2 | | | 32. | Revision | 1 | 06-03-2025 | | | | | | 33. | Revision | | 08-03-2025 | | | | | | No. of | classes required to complete UNIT-II | 16 | , | | No. of class | es taken: | | # I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) # UNIT-III: Partial Differential Equations | S.
No. | Topics to be covered Introduction to Unit III | No. of
Classes
Required
| Tentative Date of Completion 17-03-2025 | Actual
Date of
Completion | Teaching
Learning
Methods
TLM1 | Learning
Outcome
COs | Text
Book
followed
T1,T2 | HOD
Sign
Weekly | |-----------|---|-------------------------------|---|---------------------------------|---|----------------------------|-----------------------------------|-----------------------| | | Formation of PDE by elimination of arbitrary constants | 1 | 17-03-2025 | | TLM1 | CO2 | T1,T2 | | | 35. | Formation of PDE by elimination of arbitrary functions | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | 36. | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-2025 | | TLM1 | CO2 | T1,T2 | | | 37. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 38. | TUTORIAL - 5 | 1 | 24-03-2025 | | TLM3 | CO2 | T1,T2 | | | 39. | Lagrange's Method | 1 | 24-03-2025 | | TLM1 | CO2 | T1,T2 | | | 40. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | 41. | Homogeneous Linear
PDE with constant
coefficients | 1 | 27-03-2025 | | TLM1 | CO2 | T1,T2 | | | 42. Homogeneous Linear PDE with constant coefficients | 1 | 29-03-2025 | TLM1 | CO2 | T1,T2 | | |---|----|------------|------------------|-----------|-------|--| | 43. TUTORIAL - 6 | 1 | 31-03-2025 | TLM3 | CO2 | T1,T2 | | | No. of classes required to complete UNIT-III | 11 | |
No. of class | es taken: | | | #### UNIT-IV: Vector Differentiation | | 1 | | 1 | CIOI DITICICIII | | | ı | | |-----|--|----------|------------|-----------------|----------|--------------|------------|--------| | C | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | S. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | No. | 1 | Required | Completion | Completion | Methods | COs | followed | Weekly | | 44. | Introduction to UNIT IV | 1 | 31-03-2025 | | TLM1 | CO3 | T1,T2 | | | 45. | Vector
Differentiation | 1 | 02-04-2025 | | TLM1 | СОЗ | T1,T2 | | | 46. | Gradient | 1 | 03-04-2025 | | TLM1 | CO3 | T1,T2 | | | 47. | Directional
Derivative | 1 | 05-04-2025 | | TLM1 | CO3 | T1,T2 | | | 48. | TUTORIAL - 7 | 1 | 07-04-2025 | | TLM3 | CO3 | T1,T2 | | | 49. | Divergence | 1 | 7-04-2025 | | TLM1 | CO3 | T1,T2 | | | 50. | Curl | 1 | 09-04-2025 | | TLM1 | CO3 | T1,T2 | | | | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 10-04-2025 | | TLM1 | CO3 | T1,T2 | | | 52. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 16-04-2025 | | TLM1 | CO3 | T1,T2 | | | | Laplacian, second order operators | 1 | 17-04-2025 | | TLM1 | CO3 | T1,T2 | | | 54. | Vector Identities | 1 | 19-04-2025 | | TLM1 | СОЗ | T1,T2 | | | 55. | TUTORIAL - 8 | 1 | 21-04-2025 | | TLM3 | CO3 | T1,T2 | | | 56. | Vector Identities | 1 | 21-04-2025 | | TLM1 | CO3 | T1,T2 | | | 57. | Vector Identities | 1 | 23-04-2025 | | TLM1 | CO3 | T1,T2 | | | | of classes required to omplete UNIT-IV | 14 | , | | | No. of class | ses taken: | | UNIT-V: Vector Integration | | | | 01111 7. 71 | ctor integration | J11 | | | | |-----------|--------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | 58 | . Introduction to Unit-V | 1 | 24-04-2025 | | TLM1 | CO4 | T1,T2 | | | 59 | . Line Integral | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | 60 | .TUTORIAL - 8 | 1 | 28-04-2025 | | TLM3 | CO4 | T1,T2 | | | 61 | . Circulation | 1 | 28-04-2025 | | TLM1 | CO4 | T1,T2 | | | 62. Work done | 1 | 30-04-2025 | TLM1 | CO4 | T1,T2 | | |--|----|------------|-------------|------------|-------|--| | 63. Surface Integral, Flux | 1 | 01-05-2025 | TLM1 | CO4 | T1,T2 | | | 64. Volume Integral | 1 | 03-05-2025 | TLM1 | CO4 | T1,T2 | | | 65. TUTORIAL - 11 | 1 | 05-05-2025 | TLM3 | CO4 | T1,T2 | | | 66. Green's Theorem | 1 | 05-05-2025 | TLM1 | CO4 | T1,T2 | | | 67. Green's Theorem | 1 | 07-05-2025 | TLM1 | CO4 | T1,T2 | | | 68. Stoke's Thoerem | 1 | 08-05-2025 | TLM1 | CO4 | T1,T2 | | | 69. Divergence Theorem | 1 | 12-05-2025 | TLM1 | CO4 | T1,T2 | | | 70. TUTORIAL - 11 | 1 | 12-05-2025 | TLM3 | CO4 | T1,T2 | | | 71. Divergence Theorem | 1 | 14-05-2025 | | | | | | No. of classes required to complete UNIT-V | 14 | | No. of clas | ses taken: | | | Content beyond the Syllabus | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed
T1,T2 | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|-----------------------------------|-----------------------| | 72. | Non-homogeneous
Linear PDE with
constant coefficients | 2 | 15-05-2025,
17-05-2025 | | TLM2 | CO2 | T1,T2 | | | | No. of classes | 2 | | | No. of clas | ses taken: | | | # II MID EXAMINATIONS (02-06-2025 TO 07-06-2025) | | Teaching Learning Methods | | | | | | | | | |----|---------------------------|--|---|-----|----------------------------------|---------------------------------|--|--|--| | | TLM1 Chalk and Talk | | | TLN | 1 4 | Demonstration (Lab/Field Visit) | | | | | TI | TLM2 PPT | | Т | LM5 | LM5 ICT (NPTEL/SwayamPrabha/MOOC | | | | | | TI | LM2 PP1
LM3 Tutorial | | T | LM6 | Gro | up Discussion/Project | | | | ### <u>PART-C</u>EVALUATION PROCESS (R23 Regulation): | Evaluation Task | Marks | |--|-------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems. | |------|--| | PO 2 | Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations. | |-------|---| | PO 4 | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change. | | G.VIJAYA LAKSHMI | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | |-------------------|--------------------|--------------------|-------------------| | | | | | | | | | | | Course Instructor | Course Coordinator | Module Coordinator | HOD | | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** # COURSE HANDOUT PART-A Name of Course Instructor: Mr. S. GOVINDU **Course Name & Code** : DATA STRUCTURES & 23CS02 L-T-P Structure : 3-0-0 Credits: 3 Program/Sem/Sec : B.Tech/CSE/II /D A.Y.: 2024-25 #### PREREQUISITE: Introduction to Programming-23CS01 ### **COURSE EDUCATIONAL OBJECTIVES (CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the role of linear and nonlinear data structures in organizing and | |------------|--| | COI | accessing data (Understand-L2) | | CO2 | Implement abstract data type (ADT) and data structures for given application. | | COZ | (Apply-L3) | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | LUS | (Apply-L3) | | COA | Apply the appropriate linear and nonlinear data structure techniques for solving a | | CO4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |----------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------| | CO1 | 3 | 2 | | | | - | ı | - | ı | - | - | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | - | - | - | ı | - | - | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | - | - | - | ı | - | - | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | - | ı | - | ı | - | - | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | - | ı | - | ı | - | - | | 2 | 3 | 3 | | 1 - Low | | | | 2 | -Medi | ium | | | 3 | - High | | | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### REFERENCE BOOKS: - R1 Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick ## PART-B ## COURSE DELIVERY PLAN (LESSON PLAN): ## **UNIT-I: Introduction to Linear Data Structures** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |-----------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--| | 1. | Introduction and Discussion of CO's | 1 | 22-01-2025 | | TLM1 | | | | 2. | Definition and Importance of
Linear Data Structures | 1 | 23-01-2025 | | TLM1 | | | | 3. | Abstract Data Types and Implementation | 1 | 24-01-2025 | | TLM1 | | | | 4. | Overview of time and space complexity | 1 | 25-01-2025 | | TLM1 | | | | 5. | Analysis of Liner Data structures | 2 | 29-01-2025
30-01-2025 | | TLM1 | | | | 6. | Revise Arrays | 1 | 31-01-2025 | | TLM1 | | | | 7. | Searching Techniques: Linear
Search | 1 | 01-02-2025 | | TLM1 | | | | 8. | Binary Search & Analysis | 2 | 05-02-2025
06-02-2025 | | TLM1 | | | | 9. | Bubble Sort & Analysis | 1 | 07-02-2025 | | TLM1 | | | | 10. | Insertion Sort & Analysis | 2 | 08-02-2025
12-02-2025 | | TLM1 | | | | 11. | Selection Sort & Analysis | 2 | 13-02-2025
14-02-2025 | | TLM1 | | | | No. | No. of classes required to complete UNIT-I: 15 No. of classes taken: | | | | | | | #### **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|--| | 12. | List Implementation using Arrays and Array Disadvantages | 1 | 15-02-2025 | | TLM1 | | | | | 13. | Linked List Representation | 1 | 19-02-2025 | | TLM1 | | | | | 14. | Sing Linked List : Operations | 2 | 20-02-2025
21-02-2025 | | TLM1 | | | | | 15. | Double Linked List : Operations | 2 | 22-02-2025
27-02-2025 | | TLM1 | | | | | 16. | Circular Single Linked List | 1 | 28-02-2025 | | TLM1 | | | | | 17. | Circular Double Linked List | 2 | 01-03-2025
05-03-2025 | | TLM1 | | | | | 18. | Comparing Arrays and Linked List | 1 | 06-03-2025 | | TLM1 | | | | | 19. | Applications of Linked Lists:
Polynomial Representation | 1 | 07-03-2025 | | TLM1 | | | | | 20. | Polynomial Addition | 1 | 08-03-2025 | | TLM1 | | | | | No. | No. of classes required to complete UNIT-II: 12 No. of classes taken: | | | | | | | | #### **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Completi
on | Teachin
g
Learnin
g
Method
s | HOD
Sign
Weekly | |-----------|-------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 21. | Introduction to Stacks : Properties | 1 | 19-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 20-03-2025 | | TLM1 | | | | No. of classes required to comple | No. of classes take | en: | | | |-----|---------------------------------------|---------------------|--------------------------|------|--| | 29. | Backtracking | 1 | 11-04-2025 | TLM1 | | | 28. | Reversing a List | 1 | 10-04-2025 | TLM1 | | | 27. | Checking Balanced Parenthesis | 2 | 04-04-2025
09-04-2025 | TLM1 | | | 26. | Infix to Postfix Conversion | 2 | 28-03-2025
29-03-2025 | TLM1 | | | 25. | Expressions: Expression evaluation | 2 | 26-03-2025
27-03-2025 | TLM1 | | | 24. | Stacks using Linked List | 1 | 22-03-2025 | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 21-03-2025 | TLM1 | | ## **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------| | 30. | Introduction to queues: properties and operations, | 1 | 12-04-2025 | | TLM1 | | | 31. | Implementing queues using arrays | 1 | 16-04-2025 | | TLM1 | | | 32. | Implementing queues using
Linked List | 1 | 17-04-2025 | | TLM1 | | | 33. | Applications of Queue :
Scheduling | 1 | 19-04-2025 | | TLM1 | | | 34. | Breadth First Search | 1 | 23-04-2025 | | TLM1 | | | 35. | Circular Queue | 1 | 24-04-2025 | | TLM1 | | | 36. | Double ended queue | 1 | 25-04-2025 | | TLM1 | | | 37. | Applications of Deque | 1 | 26-05-2025 | | TLM1 | | | No. | of classes required to complet | No. of class | ses taken: | | | | ## **UNIT-V: TREES & HASHING TECHNQIUES** | | | _ | | | | | | | |-----------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | 38. | Introduction to Trees, | 1 | 30-04-2025 | | TLM1 | | | | | 39. | Representation of Trees | 1 | 01-05-2025 | | TLM1 | | | | | 40. | Tree Traversals | 1 | 02-05-2025 | | TLM1 | | | | | 41. | Binary Search Trees-
Operations | 2 | 03-05-2025
07-05-2025 | | TLM1 | | | | | 42. | Hashing Introduction | 1 | 08-05-2025 | | TLM1 | | | | | 43. | Hash Functions | 1 | 09-05-2025 | | TLM1 | | | | | 44. | Collison Resolution
Techniques: Separate
Chaining | 1 | 10-05-2025 | | TLM1 | | | | | 45. | Open Addressing: Linear
Probing | 1 | 14-05-2025 | | TLM1 | | | | | 46. | Quadratic Probing, Double
Hashing | 1 | 15-05-2025 | | TLM1 | | | | | 47. | Rehashing, Applications of
Hashing | 1 | 16-05-2025 | | TLM1 | | | | | No. o | No. of classes required to complete UNIT-V: 11 No. of classes taken: | | | | | | | | **Content Beyond Syllabus** | S.
No. | Topics to be covered | No. of
Classes
Requir
ed
 Tentative
Date of
Completion | Actual
Date of
Compl
etion | Teachi
ng
Learni
ng
Method
s | Learni
ng
Outco
me
COs | Text
Book
follow
ed | HOD
Sign
Weekl
y | |----------------|--|-----------------------------------|------------------------------------|-------------------------------------|---|------------------------------------|------------------------------|---------------------------| | 1. | Evaluation of Prefix Expression, Towers of Hanoi, Extendable Hashing | 1 | 17-05-2025 | | | | | | | No. of classes | | 1 | 1 | | No. of classes taken: | | | | II MID EXAMINATIONS (02-06-2025 TO 07-06-2025) | Teaching Learning Methods | | | | | | | | |---------------------------|----------------|------|------------------------------------|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/M00CS) | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | ## PART-C ## **EVALUATION PROCESS (R17 Regulation):** | Evaluation Task | Marks | | | |---|-----------------|--|--| | Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus)) | | | | | I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | | | | | I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus)) | Q1=10 | | | | Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V) | A2=5 | | | | II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | | | | | II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V) | Q2=10 | | | | Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | | | Semester End Examination (SEE) | <mark>70</mark> | | | | Total Marks = CIE + SEE | 100 | | | ## PART-D ## PROGRAMME OUTCOMES (POs): | | Engineering knowledge : Apply the knowledge of mathematics, science, engineering | |-----------------|--| | PO 1 | fundamentals, and an engineering specialization to the solution of complex | | | engineering problems. | | | Problem analysis : Identify, formulate, review research literature, and analyze | | PO 2 | complex engineering problems reaching substantiated conclusions using first | | | principles of mathematics, natural sciences, and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering | | РО 3 | problems and design system components or processes that meet the specified needs | | | with appropriate consideration for the public health and safety, and the cultural, | | | societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and | | PO 4 | research methods including design of experiments, analysis and interpretation of | | | data, and synthesis of the information to provide valid conclusions. | | DO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and | | PO 5 | modern engineering and IT tools including prediction and modeling to complex | | | engineering activities with an understanding of the limitations. The engineer and society : Apply reasoning informed by the contextual knowledge to | | PO 6 | assess societal, health, safety, legal and cultural issues and the consequent | | 100 | responsibilities relevant to the professional engineering practice. | | | | | | | | PO 7 | Environment and sustainability: Understand the impact of the professional | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the | | | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and | | | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary
settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of | | PO 8 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. Life-long learning: Recognize the need for and have the preparation and ability to | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological | | PO 8 PO 9 PO 10 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. Life-long learning: Recognize the need for and have the preparation and ability to | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development | |--------------|--| | F 30 1 | using open-source programming environment for the success oforganization. | | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as | | P30 2 | per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|-------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. S.Govindu | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D.Veeraiah | | Signature | | | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Mr. S. GOVINDU **Course Name & Code** : DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/D A.Y.: 2024-25 PREREQUISITE: PPSC #### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. #### **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) **CO3:** Develop and implement hashing techniques for solving problems (**Apply - L3**) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. #### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 2 | 1 | 3 | ı | - | - | - | - | - | - | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | CO4 | - | - | ı | - | - | Ī | - | 2 | 2 | 2 | 2 | 2 | | - | - | **Note: 1-** Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | HOD
Sign | |--------|---|-------------------------------|------------------------------------|---------------------------|-------------| | 1. | Array Manipulations | 3 | 29-01-2025 | | | | 2. | Searching and Sorting Techniques | 3 | 05-02-2025 | | | | 3. | Single Linked List | 3 | 12-02-2025 | | | | 4. | Double Linked List | 3 | 19-02-2025 | | | | 5. | Circular Linked List | 3 | 05-03-2025 | | | | 6. | Polynomial Representation & Polynomial Addition | 3 | 19-03-2025 | | | | 7. | Linked List Applications | 3 | 26-03-2025 | | | | 8. | Stack Implementation | 3 | 02-04-2025 | | | | 9. | Stack Applications | 3 | 09-04-2025 | | | | 10. | Queue Implementation & Circular Queue | 3 | 16-04-2025 | | | | 11. | Double Ended Queue | 3 | 23-04-2025 | | | | 12. | Trees | 3 | 30-04-2025 | | | | 13. | Hashing | 3 | 07-05-2025 | | | | 14. | Internal Exam | 3 | 14-05-2025 | | | ## PART-C ## **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-------| | Day to Day Work + Record | 15 | | Internal Test | 15 | | Continuous Internal Assessment | 30 | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | |--------------|---| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |-------------------|--------------------|-----------------------|--| | Mr. S.Govindu | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | | | | | | | | | Course Instructor Course Coordinator Coordinator | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with "A" Grade & NBA (Under Tier - I) An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### **DEPARTMENT OF EEE** ## LAB HANDOUT ## **PART-A** Name of Course Instructor : Dr. B. Pangedaiah, Dr. M. Umavani **Course Name & Code** : Electrical & Electronics Engineering Workshop (E & EE WS) L-T-P Structure : 0-0-3 Credits : 1.5 Program/Sem : B.Tech. CSE- II Sem-Sec D A.Y. : 2024-25 PREREQUISITE: NIL **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. To impart knowledge on the principles of digital electronics and fundamentals of electron devices & its applications. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |-----|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | C06 | Demonstrate the working of various logic gates using ICs. (Understand) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |------------|-----|-----|--------------|-----|-----|-----|------|-------|-----|------|------|---------------|------|------|------|------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | | | | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | 2 | | | | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | 3 | | | | | | 1 - L | ow | | | 2 -1 | Mediu | m | | | 3 - Hi | igh | | | | #### **PART-B** ## **COURSE DELIVERY PLAN (LESSON PLAN):** | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |--------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--| | 1. | Introduction to BEEE Lab,
Course Objectives and Outcomes. | 3 | 23-01-2025 | | TLM4 | | | | 2. | Verification of KCL and KVL | 3 | 30-01-2025 | | TLM4 | | | | 3. | Verification of Superposition theorem | 3 | 06-02-2025 | | TLM4 | | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 13-02-2025 | | TLM4 | | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 20-02-2025 | | TLM4 | | | | 6. | Measurement of Power and Power factor using Single-phase wattmeter | 3 | 27-02-2025 | | TLM4 | | | | 7. | Calculation of Electrical Energy for Domestic Premises. | 3 | 06-03-2025 | | TLM4 | | | | 8. | Internal Lab Examination | 3 | 20-03-2025 | | TLM4 | | | | No. of | classes required: 24 | l | No. of classes | taken: | | | | | Teaching Learning Methods | | | | | | | |---------------------------|----------------|------|------------------------------------|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | ## **PART-C** #### **EVALUATION PROCESS (R20 Regulation):** | EVALUATION I ROCESS (RZO Regulation). | | | |--|-----------------|--------| | Evaluation Task | Expt. no's | Marks | | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination
(SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, | |------|--| | PUI | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature, and analyze complex | | PO 2 | engineering problems reaching substantiated conclusions using first principles of mathematics, | | | natural sciences, and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and | | PO 3 | design system components or processes that meet the specified needs with appropriate | | | consideration for the public health and safety, and the cultural, societal, and environmental | | | considerations. | |-------|---| | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO a | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power | |-------|---| | PSO b | Design and analyze electrical machines, modern drive and lighting systems | | PSO c | Specify, design, implement and test analog and embedded signal processing electronic systems | | PSO d | Design controllers for electrical and electronic systems to improve their performance. | Course InstructorCourse CoordinatorModule CoordinatorHead of the DepartmentDr. B. PangedaiahDr. A.V.G.A.MarthandaDr. G. NageswararaoDr. J. Sivavara Prasad ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING TANK (AUTONOMOUS) #### Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India #### **COURSE HANDOUT** #### Part-A **PROGRAM** : B.Tech., II-Sem., (CSE) / D ACADEMIC YEAR : 2024-2025 **COURSE NAME & CODE** : ENGINEERING PHYSICS LAB L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1 COURSE INSTRUCTOR : P.Vijaya Sirisha/ Dr N Aruna COURSE COORDINATOR : Dr S Yusub #### **Course Objectives:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). #### COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs): | | Engineering Physics Lab | | | | | | | | | | | | | | |------------------------|----------------------------|---------------------------------|---|---|--|--|--|----|---|--|--|---|--|--| | COURSE | | | | | | | | | | | | | | | | DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | | | Course Outcomes | | Programme Outcomes | | | | | | | | | | | | | | PO's
→ | 1 2 3 4 5 6 7 8 9 10 11 12 | | | | | | | 12 | | | | | | | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | | | CO2. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | |------------------|-----|------|-------|-------|-------|---|-----|------|---------|---------|----|---| | CO3. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | 1 = slight (Low) | 2 = | Mode | erate | (Med | lium) | , | 3 = | Subs | stantia | l (Hig | h) | | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). ## **BOS APPROVED TEXT BOOKS:** 1. Lab Manual Prepared by the LBRCE. Part-B COURSE DELIVERY PLAN (LESSON PLAN): Section- AI&DS | S.No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Methods | HOD
Sign
Weekly | |-------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 1. | Introduction | 3 | 21-01-2025 | | TLM4 | | | 2. | Demonstration | 3 | 28-01-2025 | | TLM4 | | | 3. | Experiment 1 | | 04-02-2025 | | TLM4 | | | 4. | Experiment 2 | 3 | 11-02-2025 | | TLM4 | | | 5. | Experiment 3 | 3 | 18-02-2025 | | TLM4 | | | 6. | Experiment 4 | 3 | 25-02-2025 | | TLM4 | | | 7. | Experiment 5 | 3 | 04-03-2025 | | TLM4 | | | 8. | MID -1 | 3 | 11-03-2025 | | TLM4 | | | 9. | Demonstration | 3 | 18-03-2025 | | TLM4 | | | 10. | Experiment 6 | 3 | 25-03-2025 | | TLM4 | | | 11. | Experiment 7 | 3 | 10-04-2025 | | TLM4 | | | 12. | Experiment 8 | 3 | 08-04-2025 | | TLM4 | | | 13. | Experiment 9 | 3 | 15-04-2025 | | TLM4 | | | 14. | Experiment 10 | 3 | 22-04-2025 | | TLM4 | | | 15. | Revision | 3 | 29-04-2025 | | TLM4 | | | 16. | Internal Exam | 3 | 06-05-2025 | | | | | 17. | Internal Exam | 3 | 13-05-2025 | | | | | | No. of classes | required to
Syllabus: | o complete | 51 | | | | Teaching I | Teaching Learning Methods | | | | | | | | | | |------------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | #### **EVALUATION PROCESS:** | Evaluation Task | Marks | |--|-----------------| | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | #### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) - 1.To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education. - 2. To Function professionally in the rapidly changing world with advances in technology. - 3. To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices. - 4. To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner. #### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - (1). Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2). Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3). **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - (4). Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - (5). Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. - **(6)**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12).Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### **PROGRAM SPECIFIC OUTCOMES (PSOs):** Graduate of the ECE will have the ability to - (1)Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry. - (2) Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools - (3) Apply the Signal processing techniques to synthesize and realize the issues related to real time applications. | P Vijaya Sirisha/ Dr N
Aruna | Dr. S. Yusub | Dr. S. Yusub | Dr A. Rami Reddy | |---------------------------------|--------------------|--------------------|------------------| | Course Instructor | Course Coordinator | Module Coordinator | HOD | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) #### Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** #### **PART-A** PROGRAM : B.Tech., II-Sem., CSE D ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : ENGINEERING PHYSICS L-T-P STRUCTURE : 3-1-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : P VIJAYA SIRISHA PRE-REQUISITE : Nil **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To bring the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction, etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. COURSE OUTCOMES (COs): At the end of this course, the student will be able to | CO 1 | Analyze the intensity of variation of light due to interference, diffraction and | |-------------|--| | | polarization | | CO 2 | Understand the basics of crystals and their structures | | CO 3 | Summarize various types of polarization of dielectrics and classify the magnetic materials | | CO 4 | Explain the fundamentals of quantum mechanics and free electron theory of metals | | CO5 | Identify the type of semiconductor using Hall Effect | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | | ENGINEERING PHYSICS | | | | | | | | | | | | | |-----------------------|---|---------------------------------|---|---|-----|-------|-------|-------|---|----|----|----|--| | COURSE
DESIGNED BY | FRES | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | | Course Outcomes | | | | | Pro | gramn | ne Ou | tcome | S | | | | | | PO's → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | CO1. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | | СОЗ. | 3 | 3 | 2 | 1 | 1 | 1 | | - | - | - | - | 1 | | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | | CO5. | 3 | 3 3 2 1 1 1 1 1 | | | | | | | | | | | | | 1 = slight (L | = slight (Low) 2 = Moderate (Medium) 3 = Substantial (High) | | | | | | | | | | | | | #### **BOS APPROVED TEXT BOOKS:** T1: V. Rajendran, "Engineering Physics", TMH, New Delhi, 6th Edition, 2014. T2: M.N. Avadhanulu, P.G. Kshirsagar, "Engineering Physics", S. Chand &Co., 2nd Edition, 2014. #### **BOS APPROVED REFERENCE BOOKS:** **R1**: M.N. Avadhanulu, TVS Arun Murthy, "Applied *Physics*", S. Chand & Co., 2nd Edition, 2007. R2: P.K. Palani Samy, "Applied Physics", Sci. Publ. Chennai, 4th Edition, 2016. **R3**: P. Sreenivasa Rao, K Muralidhar, "*Applied Physics*", Him. Publi. Mumbai,1st Edition, 2016. **R4**: Hitendra K Mallik, AK Singh "Engineering Physics", TMH, New Delhi, 1st Edition, 2009. #### WEB REFERENCES AND E-TEXT BOOKS - 1. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 2. http://physicsdatabase.com/free-physics-books/ - 3. http://www.e-booksdirectory.com - 4. http://www.thphys.physics.ox.ac.uk | | TEACHING LEARNING METHODS | | | | | | | | | | |--|---------------------------|------|------------------------------------|--|--|--|--|--|--|--| | TLM1 Chalk and Talk TLM4 Demonstration (Lab/Field Visit) | | | | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | #### **PART-B** #### **COURSE DELIVERY PLAN (LESSON PLAN):** #### **UNIT-I: WAVE OPTICS** Course Outcome :- CO 1; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Requir
ed | Tentative
Date of
Completion | Actual Date of Comple tion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|------------------------|-----------------------------------|------------------------------------|----------------------------|---------------------------------|-------------|---------| | | Introduction to the | | 20/01/2025 | | | | | | 1. | Subject, Course | 1 | | | TLM2 | | | | | Outcomes | | | | | | | | | Superposition of | | 23/01/2025 | | | | | | 2. | Coherence, Conditions | 1 | | | TLM1 | | | | | for Interference | | | | | | | | 3. | Interference from thin | 1 | 25/01/2025 | | TLM1 | | | | 3. | films | 1 | | | ILIVII | | | | 4. | Newton's rings | 1 | 25/01/2025 | | TLM2 | | | | 5. | Colours in thin films | | 27/01/2025 | | | | | | ٥. | Applications | | | | | | | | 6. | Introduction – Diffraction, Types | 1 | 30/01/2025 | TLM1 | | |-----|---|----------|------------|-----------------------|--| | 7. | Single slit diffraction | 1 | 30/01/2025 | TLM2 | | | 8. | Double slit | 1 | 01/02/2025 | | | | 9. | N Slits | 1 | 01/02/2025 | TLM1 | | | 10. | Diffraction grating | 1 | 03/02/2025 | TLM1 | | | 11. | TUTORIAL | 1 | 07/02/2025 | TLM3 | | | 12. | Dispersive power & Resolving power of Grating | 1 | 08/02/2025 | TLM1 | | | 13. | Polarization introduction | 1 | 08/02/2025 | TLM1 | | | 14. | Polarization by reflection, refraction | 1 | 10/02/2025 | TLM1 | | | 15. | Double refraction, | 1 | 13/02/2025 | TLM1 | | | 16. | Nicol's prism | 1 | 15/02/2025 | TLM1 | | | 17. | Half wave and quarter wave plate | 1 | 15/02/2025 | TLM2 | | | 18. | problems | 1 | 17/02/2025 | TLM1 | | | | No. of classes required to | complete | UNIT-I: 17 | No. of classes taken: | | ## UNIT-II: CRYSTALLOGRAPHY AND X RAY DIFFRACTION Course Outcome :- CO 2; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classe
s
Requi
red | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|---------------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Crystallography Basic defnitions | 1 | 20/02/2025 | | TLM2 | | | | 2. | Crystal systems | 1 | 22/02/2025 | | TLM1 | | | | 3. | Bravais Lattices | | 22/02/2025 | | TLM1 | | | | 4. | Packing fraction of SC | 1 | 24/02/2025 | | TLM1 | | | | 5. | BCC, FCC | 1 | 27/03/2025 | | TLM1 | | | | 6. | Miller Indices,
separation between
(hkl) planes | 1 | 01/03/2025 | | TLM1 | | | | 7. | Bragg's law | 1 | 01/03/2025 | | TLM2 | | | | 8. | X-ray
Diffractometer | 1 | 03/03/2025 | TLM1 | | |-----|---|---|------------|-----------------------|--| | 9. | Laue's method | 1 | 06/03/2025 | TLM1 | | | 10. | powder method | 1 | 08/03/2025 | TLM1 | | | 11. | Problems | 1 | 08/03/2025 | | | | 12. | Mid 1 | 1 | 10/03/2025 | | | | No. | No. of classes required to complete UNIT-II: 09 | | | No. of classes taken: | | ## UNIT-III: DIELECTRIC AND MAGNETIC MATERIALS Course Outcome :- CO 3; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date
of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Basic Definitions
Relation between
electric vectors | 1 | 17/03/2025 | | TLM1 | | | | 2. | Electronic polarization | 1 | 20/03/2025 | | TLM1 | | | | 3. | Ionic & Orientation polarization | 1 | 22/03/2025 | | TLM1 | | | | 4. | Local field, | 1 | 22/03/2025 | | TLM1 | | | | 5 | Clausius Mosotti
equation,
complex dielectric
constant | 1 | 24/03/2025 | | TLM2 | | | | 6 | Frequency dependence of polarization Dielectric loss and problems | 1 | 27/03/2025 | | TLM1 | | | | 7 | Introduction to Magnetic parameters origin of magnetic moment | 1 | 29/03/2025 | | TLM1 | | | | 8 | Classification of magnetic materials – Dia, para & Ferro | 1 | 29/03/2025 | | TLM1 | | | | 9 | Classification of magnetic materials – Dia, para & Ferro Anti ferro and ferri | 1 | 31/03/2025 | | TLM2 | | | | 10 | Domain concept of ferromagnetismand domain walls | 1 | 03/04/2025 | | TLM2 | | | | 11 | Hysteresis curve | 1 | 05/04/2025 | | TLM1 | | | | 12 | soft and hard
magnetic materials | 1 | 05/04/2025 | | | | | | No. of classes required to complete UNIT-III: 12 | No. of classes taken: | | | |--|-----------------------|--|--| |--|-----------------------|--|--| ## UNIT-IV QUANTUM MECHANICS & FREE ELECTRON THEORY | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Introduction quantum mechanics, DeBroglie hypothesis | 1 | 07/04/2025 | | TLM1 | | | | 2. | Heisenberg
uncertainty
principle, Physical
significance of
wave function | 1 | 10/04/2025 | | TLM1 | | | | 3. | Schrodinger time dependent & independent wave equations | 1 | 12/04/2025 | | TLM1 | | | | 4. | Particle in a box | 1 | 12/04/2025 | | TLM1 | | | | 5. | Classical free
electron theory-
postulates, Success
& Failures | 1 | 17/04/2025 | | TLM2 | | | | 6. | Quantum free
electron theory,
electrical
conductivity | 1 | 19/04/2025 | | TLM1 | | | | 7. | Tutorial | 1 | 19/04/2025 | | TLM3 | | | | 8. | Fermi-Dirac distribution function- Temperature dependence | 1 | 21/04/2025 | | TLM2 | | | | 9. | Density of states
Fermi energy | 1 | 24/04/2025 | | TLM2 | | | | No | . of classes required to | complete U | NIT-IV: 09 | No. of o | classes taken | : | | ## <u>UNIT-V</u>:SEMICONDUCTOR PHYSICS Course Outcome :- CO 4; Text Book :- T2, R1 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Introduction - | 1 | 26/04/2025 | | TLM1 | | | | 2. | Classification of semiconductors | 1 | 26/04/2025 | | TLM1 | | | | 3. | Density of Intrinsic and semiconductors Electrons, | 1 | 28/05/2025 | | TLM1 | | | | 4. | Holes | 1 | 01/05/2025 | | TLM1 | | | | 5. | Density of
Intrinsic and
semiconductors
Holes | 1 | 03/05/2025 | | TLM1 | | | | 6. | Electrical conductivity and fermi level | 1 | 03/05/2025 | | TLM1 | | | | 7. | Density of Extrinsic semiconductors P- Type | 1 | 05/05/2025 | | TLM1 | | | | 8. | Tutorial | 1 | 08/05/2025 | | TLM2 | | | | 9. | Density of Extrinsic semiconductors N Type | 1 | 10/05/2025 | | TLM1 | | | | 10. | Drift and diffusion currents Einstein equation | 1 | 10/05/2025 | | TLM2 | | | | 11. | Hall effect and applications | 1 | 12/05/2025 | | TLM1 | | | | 12. | Problems | 1 | 15/05/2025 | | TLM1 | | | | 13. | Revision | 1 | 17/05/2025 | | | | | | 14. | Revision | 1 | 17/05/2025 | | | | | | No | o. of classes required t | o complete U | JNIT-V: 10 | No. of classes | taken: | | | ## PART-C ## **EVALUATION PROCESS (R-20 Regulation):** | Evaluation Task | Marks | |-------------------------|-------| | Assignment-I (Unit-I) | A1=5 | | Assignment-II (Unit-II) | A2=5 | | I-Mid Examination (Units-I, II) | M-1=18 | |--|--------| | I-Quiz Examination (Units-I, II) | Q1=07 | | Assignment-III (Unit-III) | A3=5 | | Assignment-IV (Unit-IV) | A4=5 | | Assignment-V (Unit-V) | A5=5 | | II-Mid Examination (Units-III , IV & V) | M-2=18 | | II-Quiz Examination (Units-III, IV & V) | Q2=07 | | Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5 | | Mid Marks =75% of Max(M-1,M-2)+25% of Min(M-1,M-2) | M=18 | | Quiz Marks =75% of Max(Q-1,Q-2)+25% of Min(Q-1,Q-2) | Q=07 | | Cumulative Internal Examination (CIE): A+M+Q | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ## PART-D ## **PROGRAMME OUTCOMES (POs):** | | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | |------|---| | PO 1 | fundamentals, and an engineering specialization to the solution of complex | | | engineering problems. | | | Problem analysis: Identify, formulate, review research literature, and analyze | | PO 2 | complex engineering problems reaching substantiated conclusions using first | | | principles of mathematics, natural sciences, and engineering sciences. | | | Design/development of solutions: Design solutions for complex engineering | | PO 3 | problems and design system components or processes that meet the specified needs | | 105 | with appropriate consideration for the public health and safety, and the cultural, | | | societal, and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and | | PO 4 | research methods including design of experiments, analysis and interpretation of data, | | | and synthesis of the information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and | | PO 5 | modern engineering and IT tools including prediction and modelling to complex | | | engineering activities with an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to | | PO 6 | assess societal, health, safety, legal and cultural issues and the consequent | | | responsibilities relevant to the professional engineering practice | | | Environment and sustainability: Understand the impact of the professional | | PO 7 | engineering solutions in societal and environmental contexts, and demonstrate the | | | knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities | | 100 | and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or | | 10) | leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective | |-------|---| | | presentations, and give and receive clear instructions. | | | Project management and finance: Demonstrate knowledge and understanding of the | | PO 11 | engineering and management principles and apply these to one's own work, as a | | 1011 | member and leader in a team, to manage projects and in multidisciplinary | | | environments. | | | Life-long learning: Recognize the need for and have the preparation and ability to | | PO 12 | engage in independent and life-long learning in the broadest context of technological | | | change. | Course Instructor Course Coordinator Module Coordinator HOD P Vijaya Sirisha Dr. S. Yusub Dr. S. Yusub Dr. A. Rami Reddy Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) under Tier - I Approved by AICTE and Permanently Affiliated to JNTUK, Kakinada #### DEPARTMENT OF MECHANICAL ENGINEERING #### COURSE HANDOUT : B.Tech. II-Sem, Computer Science Engineering **PROGRAM** ACADEMIC YEAR : 2024-25 **COURSE NAME & CODE :** Engineering Workshop, 23ME51 L-T-P STRUCTURE : 0-0-3 **COURSE CREDITS** : 1.5 **COURSE INSTRUCTOR**: Mr.K.Venkateswara Reddy, Asst. Professor Dr.S.Rami Reddy, Sr.Asst. Professor **COURSE COORDINATOR:** Seelam Srinivasa Reddy, Assoc. Professor PRE REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. #### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as | |-----|---| | CO1 | Cross lap joint, Dove tail joint. | | | Fabricate and model various basic prototypes in the trade of fitting such | | CO2 | as Straight fit, V-fit. | |
| Produce various basic prototypes in the trade of Tin smithy such as | | CO3 | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | ### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | COa | PO PSO | PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|-----------|-----|-----|-----| | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put"1 Slight (Low), **2-**Moderate (Medium), **3-**Substantial (High). #### **REFERENCE:** | R1 | LabManual | |----|-----------| |----|-----------| COURSE DELIVERY PLAN (LESSON PLAN): Section-D | S.
No. | Experiment
to be
conducted | No. of
Classes
Required | Tentative Date of Completion | Actual Date
of
Completion | Teaching
Learning
Methods | Reference | HOD
Sign
Weekly | |-----------|----------------------------------|-------------------------------|------------------------------|---------------------------------|---------------------------------|-----------|-----------------------| | 1. | Demonstration | 3 | 20-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 27-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 03-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 10-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 17-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 24-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 03-03-2025 | | TLM8 | R1 | | | | | I-Mid Ex | xaminations (10 | .03.2025 to 1 | 5.03.2025) | | | | 8. | Experiment-7 | 3 | 17-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 24-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 07-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 21-04-2025 | | TLM8 | R1 | | | 12. | Additional Experiments | 3 | 28-04-2025 | | TLM8 | R1 | | | 13. | Repetition lab | 3 | 05-05-2025 | | TLM8 | R1 | | | 14. | Lab Internal | 3 | 12-05-2025 | | TLM6 | - | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|--------------------|------|----------------| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | ## **ACADEMIC CALENDAR:** | Description | From | To | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | ### Part-C ### **EVALUATION PROCESS:** | Parameter | Marks | |---------------------------------|------------------| | Day-to-Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination | A1+B1+C1=30Marks | | (CIE = A1 + B1 + C1) | | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: D-SEC** | Batch
No. | Reg.No.of
Students | Number of
Students | Batch
No. | Reg.No.of
Students | Number of
Students | |--------------|-----------------------|-----------------------|--------------|-----------------------|-----------------------| | B11 | 24761A05J7-5L0 | 13 | B21 | 24761A05J7-5L0 | 13 | | B12 | 24761A05L1-5M3 | 13 | B22 | 24761A05L1-5M3 | 13 | | B13 | 24761A05M4-5N6 | 13 | B23 | 24761A05M4-5N6 | 13 | | B14 | 24761A05N7-509 | 13 | B24 | 24761A05N7-509 | 13 | | B15 | 24761A05P0-5Q2 | 13 | B25 | 24761A05P0-5Q2 | 13 | | Batch
No: | Exp.
01 | Exp.
02 | Exp.
03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp. 07 | Exp.
08 | Exp.
09 | Exp.
10 | |--------------|------------|------------|------------|------------|------------|------------|---------|------------|------------|------------| | B11 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | T2 | | B12 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | T2 | T1 | | B13 | F1 | F2 | P1 | P2 | E1 | E2 | T1 | Т2 | C1 | C2 | | B14 | F2 | F1 | P2 | P1 | E2 | E1 | T2 | Т1 | C2 | C1 | | B15 | P1 | P2 | E1 | E2 | T1 | T2 | C1 | C2 | F1 | F2 | | B21 | P2 | P1 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | | B22 | E1 | E2 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | | B23 | E2 | E1 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | | B24 | T1 | T2 | C1 | C2 | F1 | F2 | P1 | P2 | E1 | E2 | | B25 | T2 | T1 | C2 | C1 | F2 | F1 | P2 | P1 | E2 | E1 | #### LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | 3. | Fitting-1(F1)-T-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 8. | Plumbing-2(P2)-Pipe Layout | CO3 | | 9. | House Wiring-1(E1)-Series and Parallel connection | CO4 | | 10. | HouseWiring-2(E2)-Fluorescent Lamp and Calling Bell Circuit | CO4 | #### **NOTIFICATION OF CYCLE:** | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|--|--|------------| | | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 4 | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | , Q, | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Tin Smithy-1(T1)-Conical funnel | CO2 | | | 6. | Tin Smithy-2(T2)-Tapered tray | CO2 | | | 7. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 2 | 8. | Plumbing-2(P2)-PipeLayout | CO3 | | Cycle | 9. House Wiring-1(E1)–Series and Parallel Connection | | CO4 | | | 10. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | #### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. #### PROGRAM OUT COMES (POs) #### **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. **Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi disciplinary settings. - **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and
power, conservation of energy and other process equipment. | Course
Instructors | Course
Coordinato
r | Module
Coordinator | нор | |---|---------------------------|-----------------------|-------------------------------| | Mr.K.Venkateswara
Reddy
Dr.S.Rami Reddy | Mr.S.Srinivasa
Reddy | Mr.J.Subba Reddy | Dr. M. B. S Sreekara
Reddy | # OT LAND TO SURE TREE #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS #### Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** ### **PART-A** PROGRAM : B.Tech., II-Sem., CSE E ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : ENGINEERING PHYSICS L-T-P STRUCTURE : 3-1-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : Dr.N.Aruna PRE-REQUISITE : Nil **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To bring the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction, etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. COURSE OUTCOMES (COs): At the end of this course, the student will be able to | CO 1 | Analyze the intensity of variation of light due to interference, diffraction and | |------|---| | | polarization | | CO 2 | Understand the basics of crystals and their structures | | CO 3 | Summarize various types of polarization of dielectrics and classify the magnetic material | | CO 4 | Explain the fundamentals of quantum mechanics and free electron theory of metals | | CO5 | Identify the type of semiconductor using Hall Effect | #### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs): | | ENGINEERING PHYSICS | | | | | | | | | | | | |-----------------------|---|--------------------------------|---|---|-----|-------|-------|--------|----|----|----|----| | COURSE
DESIGNED BY | FRE | RESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | | | | Pro | gramr | ne Ou | itcome | es | | | | | PO's → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | CO3. | 3 | 3 | 2 | 1 | 1 | 1 | | - | - | - | - | 1 | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | 1 = slight (L | 1 = slight (Low) 2 = Moderate (Medium) 3 = Substantial (High) | | | | | | | | | | | | #### **BOS APPROVED TEXT BOOKS:** T1: V. Rajendran, "Engineering Physics", TMH, New Delhi, 6th Edition, 2014. T2: M.N. Avadhanulu, P.G. Kshirsagar, "Engineering Physics", S. Chand &Co., 2nd Edition, 2014. #### **BOS APPROVED REFERENCE BOOKS:** **R1**: M.N. Avadhanulu, TVS Arun Murthy, "Applied *Physics*", S. Chand & Co., 2nd Edition, 2007. R2: P.K. Palani Samy, "Applied Physics", Sci. Publ. Chennai, 4th Edition, 2016. **R3**: P. Sreenivasa Rao, K Muralidhar, "*Applied Physics*", Him. Publi. Mumbai, 1st Edition, 2016. **R4**: Hitendra K Mallik, AK Singh "*Engineering Physics*", TMH, New Delhi, 1st Edition, 2009. #### WEB REFERENCES AND E-TEXT BOOKS - 1. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 2. http://physicsdatabase.com/free-physics-books/ - 3. http://www.e-booksdirectory.com - 4. http://www.thphys.physics.ox.ac.uk | | TEACHING LEARNING METHODS | | | | | | | | |------|---------------------------|------|------------------------------------|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | #### **PART-B** #### **COURSE DELIVERY PLAN (LESSON PLAN):** #### **UNIT-I: WAVE OPTICS** Course Outcome :- CO 1; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Requir
ed | Tentative Date of Completion | Actual Date of Comple tion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|------------------------|-----------------------------------|------------------------------|----------------------------|---------------------------------|-------------|---------| | | Introduction to the | | 20/01/2025 | | | | | | 1. | Subject, Course | 1 | | | TLM2 | | | | | Outcomes | | | | | | | | | Superposition of | | 21/01/2025 | | | | | | 2. | Coherence, Conditions | 1 | | | TLM1 | | | | | for Interference | | | | | | | | 3. | Interference from thin | 1 | 23/01/2025 | | TLM1 | | | | 3. | films | 1 | | | 1121/11 | | | | 4. | Newton's rings | 1 | 24/01/2025 | | TLM2 | | | | 5. | Colours in thin films | | 27/01/2025 | | |] | | | 3. | Applications | | | | | | | | 6. | Introduction – Diffraction, Types | 1 | 28/01/2025 | TLM1 | | |-----|---|----------|------------|-----------------------|--| | 7. | Single slit diffraction | 1 | 30/01/2025 | TLM2 | | | 8. | Double slit | | 01/02/2025 | | | | 9. | N Slits | 1 | | TLM1 | | | 10. | Diffraction grating | 1 | 03/02/2025 | TLM1 | | | 11. | TUTORIAL | 1 | 04/02/2025 | TLM3 | | | 12. | Dispersive power & Resolving power of Grating | 1 | 06/02/2025 | TLM1 | | | 13. | Polarization introduction | 1 | 08/02/2025 | TLM1 | | | 14. | Polarization by reflection, refraction | 1 | 10/02/2025 | TLM1 | | | 15. | Double refraction, | 1 | 11/02/2025 | TLM1 | | | 16. | Nicol's prism | 1 | 13/02/2025 | TLM1 | | | 17. | Half wave and quarter wave plate | 1 | 15/02/2025 | TLM2 | | | 18. | problems | 1 | 17/02/2025 | TLM1 | | |] | No. of classes required to | complete | UNIT-I: 17 | No. of classes taken: | | ## UNIT-II: CRYSTALLOGRAPHY AND X RAY DIFFRACTION Course Outcome :- CO 2; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classe
s
Requi | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|--------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Crystallography Basic defnitions | 1 | 18/02/2025 | | TLM2 | | | | 2. | Crystal systems | 1 | 20/02/2025 | | TLM1 | | | | 3. | Bravais Lattices | | 22/02/2025 | | TLM1 | | | | 4. | Packing fraction of SC | 1 | 24/02/2025 | | TLM1 | | | | 5. | BCC, FCC | 1 | 25/03/2025 | | TLM1 | | | | 6. | Miller Indices,
separation between
(hkl) planes | 1 | 27/03/2025 | | TLM1 | | | | 7. | Bragg's law | 1 | 01/03/2025 | | TLM2 | | | | 8. | X-ray
Diffractometer | 1 | 03/03/2025 | TLM1 | | |-----|---------------------------|-----------|-------------|-----------------------|--| | 9. | Laue's method | 1 | 04/03/2025 | TLM1 | | | 10. | powder method | 1 | 06/03/2025 | TLM1 | | | 11. | Problems | 1 | 08/03/2025 | | | | 12. | Mid 1 | 1 | 10/03/2025 | | | | No. | of classes required to co | omplete U | JNIT-II: 09 | No. of classes taken: | | ## **UNIT-III: DIELECTRIC AND MAGNETIC MATERIALS** Course Outcome :- CO 3; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Basic Definitions Relation between electric vectors | 1 | 17/03/2025 | | TLM1 | | | | 2. | Electronic polarization | 1 | 18/03/2025 | | TLM1 | | | | 3. | Ionic & Orientation polarization | 1 | 20/03/2025 | | TLM1 | | | | 4. | Local field, | 1 | 22/03/2025 | | TLM1 | | | | 5 | Clausius Mosotti equation, complex dielectric constant | 1 | 24/03/2025 | | TLM2 | | | | 6 | Frequency dependence of polarization Dielectric loss and problems | 1 | 25/03/2025 | | TLM1 | | | | 7 | Introduction to Magnetic parameters origin of magnetic moment | 1 | 27/03/2025 | | TLM1 | | | | 8 | Classification of magnetic materials – Dia, para & Ferro | 1 | 29/03/2025 | | TLM1 | | | | 9 | Classification of magnetic materials – Dia, para & Ferro Anti ferro and ferri | 1 | 01/03/2025 | | TLM2 | | | | 10 | Domain concept of ferromagnetismand domain walls | 1 | 03/04/2025 | | TLM2 | | | | 11 | Hysteresis curve | 1 | 05/04/2025 | | TLM1 | | | | 12 | soft and hard
magnetic materials | 1 | 07/04/2025 | | | | | | N. C. 1 | 31 61 11 | | |---|-------------------------|--| | No. of classes required to complete UNIT-III: 12 | No. of classes taken: | | | 140. Of classes required to complete of 111-111. 12 | INU. UI CIASSES LANCII. | | ## <u>UNIT-IV QUANTUM MECHANICS & FREE ELECTRON THEORY</u> | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Introduction quantum mechanics, DeBroglie hypothesis | 1 | 08/04/2025 | | TLM1 | | | | 2. | Heisenberg uncertainty principle, Physical significance of wave function | 1 | 10/04/2025 | | TLM1 | | | | 3. | Schrodinger time dependent & independent wave equations | 1 | 12/04/2025 | | TLM1 | | | | 4. |
Particle in a box | 1 | 15/04/2025 | | TLM1 | | | | 5. | Classical free
electron theory-
postulates, Success
& Failures | 1 | 17/04/2025 | | TLM2 | | | | 6. | Quantum free electron theory, electrical conductivity | 1 | 19/04/2025 | | TLM1 | | | | 7. | Tutorial | 1 | 19/04/2025 | | TLM3 | | | | 8. | Fermi-Dirac distribution function-Temperature dependence | 1 | 21/04/2025 | | TLM2 | | | | 9. | Density of states
Fermi energy | 1 | 22/04/2025 | | TLM2 | | | | No | . of classes required to | complete U | NIT-IV: 09 | No. of o | classes taken | : | | ## **UNIT-V:SEMICONDUCTOR PHYSICS** Course Outcome :- CO 4; Text Book :- T2, R1 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Introduction - | 1 | 24/04/2025 | | TLM1 | | | | 2. | Classification of semiconductors | 1 | 26/04/2025 | | TLM1 | | | | 3. | Density of Intrinsic and semiconductors Electrons, | 1 | 28/04/2025 | | TLM1 | | | | 4. | Holes | 1 | 29/04/2025 | | TLM1 | | | | 5. | Density of Intrinsic and semiconductors Holes | 1 | 01/05/2025 | | TLM1 | | | | 6. | Electrical conductivity and fermi level | 1 | 03/05/2025 | | TLM1 | | | | 7. | Density of Extrinsic semiconductors P- Type | 1 | 05/05/2025 | | TLM1 | | | | 8. | Tutorial | 1 | 06/05/2025 | | TLM2 | | | | 9. | Density of Extrinsic semiconductors N Type | 1 | 08/05/2025 | | TLM1 | | | | 10. | Drift and diffusion currents Einstein equation | 1 | 10/05/2025 | | TLM2 | | | | 11. | Hall effect and applications | 1 | 12/05/2025 | | TLM1 | | | | 12. | Problems | 1 | 13/05/2025 | | TLM1 | | | | 13. | Revision | 1 | 15/05/2025 | | | | | | 14. | Revision | 1 | 17/05/2025 | | | | | | No | o. of classes required t | o complete U | JNIT-V: 10 | No. of classes | s taken: | ı | | ## PART-C ## **EVALUATION PROCESS (R-20 Regulation):** | Evaluation Task | Marks | |-------------------------|-------| | Assignment-I (Unit-I) | A1=5 | | Assignment-II (Unit-II) | A2=5 | | I-Mid Examination (Units-I, II) | M-1=18 | |--|--------| | I-Quiz Examination (Units-I, II) | Q1=07 | | Assignment-III (Unit-III) | A3=5 | | Assignment-IV (Unit-IV) | A4=5 | | Assignment-V (Unit-V) | A5=5 | | II-Mid Examination (Units-III , IV & V) | M-2=18 | | II-Quiz Examination (Units-III, IV & V) | Q2=07 | | Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5 | | Mid Marks =75% of Max(M-1,M-2)+25% of Min(M-1,M-2) | M=18 | | Quiz Marks =75% of Max(Q-1,Q-2)+25% of Min(Q-1,Q-2) | Q=07 | | Cumulative Internal Examination (CIE): A+M+Q | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | |------|---| | | fundamentals, and an engineering specialization to the solution of complex | | | engineering problems. | | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze | | | complex engineering problems reaching substantiated conclusions using first | | | principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions: Design solutions for complex engineering | | | problems and design system components or processes that meet the specified needs | | | with appropriate consideration for the public health and safety, and the cultural, | | | societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems: Use research-based knowledge and | | | research methods including design of experiments, analysis and interpretation of data, | | | and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources, and | | | modern engineering and IT tools including prediction and modelling to complex | | | engineering activities with an understanding of the limitations | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to | | | assess societal, health, safety, legal and cultural issues and the consequent | | | responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability: Understand the impact of the professional | | | engineering solutions in societal and environmental contexts, and demonstrate the | | | knowledge of, and need for sustainable development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities | | | and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or | | | leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective | |-------|---| | | presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | Course Instructor Course Coordinator Module Coordinator HOD Dr. N. Aruna Dr. S. Yusub Dr. A. Rami Reddy # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** # Part-A **PROGRAM** : I B. Tech., II-Sem., CSE-E ACADEMIC YEAR : 2023-24 **COURSE NAME & CODE**: Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : Dr. M.Srinivasa Reddy COURSE COORDINATOR : Dr. K.R.Kavitha **PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration ## **COURSE EDUCATIONAL OBJECTIVES (CEOs):** - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. # **COURSE OUTCOMES (COs)** After completion of the course, the student will be able to - CO1: Solve the differential equations related to various engineering fields L3 - CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations L3 - CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence L3 - CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus **L3** # **COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs):** | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). ### **BOS APPROVED TEXT BOOKS:** - T1 Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### **BOS APPROVED REFERENCE BOOKS:** - **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018. - **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - **R4** R.K. Jain and S.R.K. Iyengar, "*Advanced Engineering Mathematics*", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - **R5** B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. **COURSE DELIVERY PLAN (LESSON PLAN):** | S.
No | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | 0 | Text
Book
followed | HOD
Sign
Weekly | |----------|--------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|---|--------------------------|-----------------------| | 1. | Introduction to the course | 1 | 20-01-2025 | | TLM2 | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 22-01-2025 | | TLM2 | | | | UNIT-I: Differential Equations of first order and first degree | C | 01,12
 | Tandadions | | | | Tr4 | ПОВ | |-----|-----------------------------------|----------|------------|------------|----------|--------------|------------|--------| | S. | | No. of | Tentative | Actual | Teaching | | Text | HOD | | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 3. | Introduction to UNIT I | 1 | 22-01-2025 | | TLM1 | CO1 | T1,T2 | | | 4. | Linear Differential equation | 1 | 23-01-2025 | | TLM1 | CO1 | T1,T2 | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | 6. | Exact DE | 1 | 27-01-2025 | | TLM1 | CO1 | T1,T2 | | | 7. | Exact DE | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | 8. | Tutorial-1 | 1 | 29-01-2025 | | TLM3 | CO1 | T1,T2 | | | 9. | Non-exact DE
Type I | 1 | 30-01-2025 | | TLM1 | CO1 | T1,T2 | | | 10. | Non-exact DE
Type II | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | 11. | Non-exact DE
Type III | 1 | 03-02-2025 | | TLM1 | CO1 | T1,T2 | | | 12. | Non-exact DE
Type IV | 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | 13. | Tutorial-2 | 1 | 05-02-2025 | | TLM3 | CO1 | T1,T2 | | | 14. | Newton's Law of cooling | 1 | 06-02-2025 | | TLM1 | CO1 | T1,T2 | | | 15. | Law of natural growth and decay | d 1 | 08-02-2025 | | TLM1 | CO1 | T1,T2 | | | 16. | Electrical circuits | 1 | 10-02-2025 | | TLM3 | CO1 | T1,T2 | | | | f classes required to lete UNIT-I | 14 | | | | No. of class | ses taken: | | **UNIT-II: Linear Differential equations of higher order (Constant Coefficients)** | S. | ervii II. Einea | No. of | | | , | | Text | HOD | |-----|---|----------|------------|------------|----------|---------|----------|--------| | | | | Tentative | Actual | Teaching | 0 | | | | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 17. | Introduction to UNIT II | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | 18. | Solving a homogeneous DE | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | 19. | Finding Particular Integral, P.I for e^{ax+b} | 1 | 13-02-2025 | | TLM1 | CO1 | T1,T2 | | | 20. | P.I for Cos bx, or sin bx | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | 21. | P.I for polynomial function | 1 | 17-02-2025 | | TLM1 | CO1 | T1,T2 | | | 22. | P.I for $e^{ax+b}v(x)$ | 1 | 19-02-2025 | | TLM1 | CO1 | T1,T2 | | | 23. | Tutorial-3 | 1 | 19-02-2025 | | TLM3 | CO1 | T1,T2 | | | 24. | P.I for $x^k v(x)$ | 1 | 20-02-2025 | | TLM1 | CO1 | T1,T2 | | | 25. | Method of Variation of parameters | 1 | 22-02-2025 | TLM1 | CO1 | T1,T2 | | |-----|---|---|------------|------|--------------|-----------|--| | 26. | Simultaneous linear equations | 1 | 24-02-2025 | TLM1 | CO1 | T1,T2 | | | 27. | Simultaneous linear equations | 1 | 27-02-2025 | TLM1 | CO1 | T1,T2 | | | 28. | L-C-R circuits | 1 | 01-03-2025 | TLM1 | CO1 | T1,T2 | | | 29. | Simple Harmonic motion | 1 | 03-03-2025 | TLM1 | CO1 | T1,T2 | | | 30. | Problems on SHM | 1 | 05-03-2025 | TLM1 | CO1 | T1,T2 | | | 31. | Tutorial-4 | 1 | 05-03-2025 | TLM3 | CO1 | T1,T2 | | | 32. | Revision on Unit-1 | 1 | 06-03-2025 | TLM1 | CO1 | T1,T2 | | | 33. | Revision on Unit-1 | 1 | 08-03-2025 | TLM1 | CO1 | T1,T2 | | | N | No. of classes required to complete UNIT-II | | | | No. of class | es taken: | | # I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) # **UNIT-III: Partial Differential Equations** | ~ | N C T () A () T | | | | | | | | |-----|---|----------|------------|------------|---------------|-----------|----------|--------| | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | · · · | Required | Completion | Completion | Methods | COs | followed | Weekly | | 34. | Introduction to Unit III | 1 | 17-03-2025 | - | TLM1 | CO2 | T1,T2 | | | 35. | Formation of PDE by elimination of arbitrary constants | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | 36. | Formation of PDE by elimination of arbitrary functions | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | 37. | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-2025 | | TLM1 | CO2 | T1,T2 | | | 38. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 39. | Lagrange's Method | 1 | 24-03-2025 | | TLM1 | CO2 | T1,T2 | | | 40. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | 41. | Tutorial-6 | 1 | 26-03-2025 | | TLM3 | CO2 | T1,T2 | | | 42. | Homogeneous Linear
PDE with constant
coefficients | 1 | 27-03-2025 | | TLM1 | CO2 | T1,T2 | | | | of classes required to complete UNIT-III | 09 | | | No. of classo | es taken: | | | # **UNIT-IV: Vector Differentiation** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 43. | Introduction to UNIT IV | 1 | 29-03-2025 | | TLM1 | CO3 | T1,T2 | | | 44. | Vector
Differentiation | 1 | 02-04-2025 | | TLM1 | CO3 | T1,T2 | | | 45. | Tutorial-7 | 1 | 02-04-2025 | | TLM3 | CO3 | T1,T2 | | | 46. | Directional
Derivative | 1 | 03-04-2025 | | TLM1 | CO3 | T1,T2 | | | 47. | Problems on
Directional
Derivative | 1 | 07-04-2025 | TLM1 | CO3 | T1,T2 | | |-----|--|---|------------|------|--------------|-------------|--| | 48. | Divergence | 1 | 09-04-2025 | TLM1 | CO3 | T1,T2 |
 | 49. | Tutorial-8 | 1 | 09-04-2025 | TLM3 | CO3 | T1,T2 | | | 50. | Curl | 1 | 10-04-2025 | TLM1 | CO3 | T1,T2 | | | 51. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 12-04-2025 | TLM1 | СОЗ | T1,T2 | | | 52. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 16-04-2025 | TLM1 | CO3 | T1,T2 | | | 53. | Tutorial-9 | 1 | 16-04-2025 | TLM3 | CO3 | T1,T2 | | | 54. | Vector Identities | 1 | 17-04-2025 | TLM1 | CO3 | T1,T2 | | | 55. | Problems on Identities | 1 | 19-04-2025 | TLM3 | CO3 | T1,T2 | | | | No. of classes required to complete UNIT-IV | | | | No. of class | sses taken: | | # **UNIT-V: Vector Integration** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 56 | Introduction to Unit-V | 1 | 21-04-2025 | | TLM1 | CO4 | T1,T2 | - | | 57. | Line Integral | 1 | 23-04-2025 | | TLM1 | CO4 | T1,T2 | | | 58. | Tutorial-10 | 1 | 23-04-2025 | | TLM3 | CO4 | T1,T2 | | | 59. | Work done | 1 | 24-04-2025 | | TLM1 | CO4 | T1,T2 | | | 60. | Circulation | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | 61. | Surface Integral | 1 | 28-04-2025 | | TLM1 | CO4 | T1,T2 | | | 62. | Surface Integral | 1 | 30-04-2025 | | TLM1 | CO4 | T1,T2 | | | 63. | Volume Integral | 1 | 30-04-2025 | | TLM1 | CO4 | T1,T2 | | | 64. | Tutorial-11 | 1 | 01-05-2025 | | TLM3 | CO4 | T1,T2 | | | 65. | Green's Theorem | 1 | 03-05-2025 | | TLM1 | CO4 | T1,T2 | | | 66. | Problems on GT | 1 | 05-05-2025 | | TLM1 | CO4 | T1,T2 | | | 67. | Stoke's Thoerem | 1 | 07-05-2025 | | TLM1 | CO4 | T1,T2 | | | 68. | Tutorial-12 | 1 | 07-05-2025 | | TLM3 | CO4 | T1,T2 | | | 69. | Divergence Theorem | 1 | 08-05-2025 | | TLM1 | CO4 | T1,T2 | | | 70. | Problems on Divergence theorem | 1 | 10-05-2025 | | TLM1 | CO4 | T1,T2 | | | 71. | Revision on Unit-3 | 1 | 12-05-2025 | | TLM1 | CO4 | T1,T2 | | | 72. | Revision on Unit-4 | 1 | 14-05-2025 | | TLM1 | CO4 | T1,T2 | | | 73. | Revision on Unit-5 | 1 | 14-05-2025 | | TLM1 | CO4 | T1,T2 | | | 74. | Revision on Unit-5 | 1 | 15-05-2025 | | TLM1 | CO4 | T1,T2 | | | | No. of classes required to complete UNIT-V | | | | No. of class | ses taken: | | | **Content beyond the Syllabus** | | v | • | | | | | | | |--------|--------------|---------|-----------|---------|----------|----------|------|------| | S. No. | Topics to be | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | S. NO. | covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | |-----|--|----------|------------|-----------------------|---------|-----|----------|--------| | 75. | Non-homogeneous
Linear PDE with
constant
coefficients | 1 | 17-05-2025 | | TLM2 | CO2 | T1,T2 | | | | No. of classes | | | No. of classes taken: | | | | | # **II MID EXAMINATIONS (02-06-2025 TO 07-06-2025)** | Teaching Learning Methods | | | | | | | | |---------------------------|----------------|------|---------------------------------|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS) | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | <u>PART-CEVALUATION PROCESS (R23 Regulation):</u> | Evaluation Task | Marks | |--|-----------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | PART-D PROGRAMME OUTCOMES (POs): | | <u>FART-D</u> FROGRAMME OUTCOMES (FOS): | |-------------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals | | 101 | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature and analyze complex engineering | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | | and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for | | | the public health and safety and the cultural, societal and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | professional engineering practice | | _ | Environment and sustainability: Understand the impact of the professional engineering solutions | | PO 7 | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable | | | development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms | | | of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in | | 10) | diverse teams and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with the engineering | | PO 10 | | | | and design documentation, make effective presentations and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of the engineering | | PO 11 | and management principles and apply these to one's own work, as a member and leader in a team, | | | to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in | | 1 0 12 | independent and life-long learning in the broadest context of technological change. | | Dr. M.Srinivasa Reddy | Dr.K.R.Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | |-----------------------|--------------------|--------------------|-------------------| | | | | | | | | | | | Course Instructor | Course Coordinator | Module Coordinator | HOD | | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 # DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING # COURSE HANDOUT PART-A Name of Course Instructor: Mr.P.SRIHARI Course Name & Code : BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01 L-T-P Structure : 3-0-0 Credits: 3 Program/Branch/Sem/Sec: B.Tech/CSE-E II SEM A.Y.: 2024-25 **Pre-requisites:** Physics **Course Educational Objective:** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | | PART-A | | | | | | | | |-----|---|--|--|--|--|--|--|--| | CO1 | Extract electrical variables of AC & DC circuits usin fundamental laws. (Understand) | | | | | | | | | CO2 | Understand the operation of electrical machines and measuring instruments. | | | | | | | | | COZ | (Understand) | | | | | | | | | CO3 | Classify various energy resources, safety measures and interpret electricity bill | | | | | | | | | COS | generation in electrical sysems. | | | | | | | | | | PART-B | | | | | | | | | CO4 | Interpret the characteristics of various semiconductor devices. (Knowledge) | | | | | | | | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | | | | | | | | CO6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | | | | | | | | # **CO-PO Articulation Matrix:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO 1 | 3 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | CO 3 | 2 | 2 | _ | _ | _ | 3 | _ | _ | _ | _ | 2 | 2 | | CO 4 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 5 | 3 | 2 | _ | _ | _ |
_ | _ | _ | _ | _ | _ | 1 | | CO 6 | 2 | 2 | 2 | _ | _ | | _ | | _ | _ | _ | _ | Where: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) # Textbooks: - Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition - Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013 - 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition # Reference Books: - R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. - 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 # **PART-B** # **COURSE DELIVERY PLAN (LESSON PLAN):** # **UNIT-I: DC & AC CIRCUITS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Electrical circuit elements | 1 | 21-01-2025 | | TLM1 | | | 2. | Ohm's Law and its limitations | 1 | 24-01-2025 | | TLM1 | | | 3. | KCL & KVL | 1 | 25-01-2025 | | TLM1 | | | 4. | series, parallel, series-parallel circuits | 1 | 25-01-2025 | | TLM1 | | | 5. | Problems | 1 | 28-01-2025 | | TLM3 | | | 6. | Super Position theorem | 1 | 31-01-2025 | | TLM1 | | | 7. | Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference | 1 | 01-02-2025 | | TLM2 | | | 8. | average value, RMS value, form factor, peak factor | 1 | 01-02-2025 | | TLM1 | | | 9. | RLC Circuits | 1 | 04-02-2025 | | TLM1 | | | 10. | Impedance, Power | 1 | 07-02-2025 | | TLM1 | | | 11. | Problems | 1 | 08-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-I: 11 | | | No. of classes | taken: | | # **UNIT – II: MACHINES AND MEASURING INSTRUMENTS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | Construction, principle and operation of (i) DC Motor | 1 | 08-02-2025 | | TLM2 | | | 13. | Construction, principle and operation of (ii) DC Generator. | | 11-02-2025 | | TLM2 | | | 14. | Single Phase Transformer | 1 | 14-02-2025 | | TLM2 | | | 15. | Three Phase Induction Motor | 1 | 15-02-2025 | | TLM2 | | | 16. | Alternators | 1 | 15-02-2025 | | TLM2 | | | 17. | Applications of electrical machines | 1 | 18-02-2025 | | TLM2 | | | 18. | Construction and working principle of Permanent Magnet Moving Coil (PMMC) | 1 | 21-02-2025 | | TLM2 | | | 19. | Moving Iron (MI) Instruments | 1 | 22-02-2025 | | TLM2 | | | 20. | Wheat Stone bridge | 1 | 22-02-2025 | | TLM2 | | | 21. | Problems | 1 | 25-02-2025 | | TLM3 | · | # UNIT – III: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 22. | Conventional and non-conventional energy resources | 1 | 28-02-2025 | | TLM2 | | | 23. | Hydel & Nuclear power generation | 1 | 01-03-2025 | | TLM2 | | | 24. | Solar & Wind power plants | 1 | 01-03-2025 | | TLM2 | | | 25. | Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1 | 04-03-2025 | | TLM2 | | | 26. | Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, | 1 | 04-03-2025 | | TLM2 | | | 27. | calculation of electricity bill for domestic consumers. | 1 | 07-03-2025 | | TLM2 | | | 28. | Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. | 1 | 07-03-2025 | | TLM2 | | | 29. | Personal safety measures: Electric Shock | 1 | 08-03-2025 | | TLM2 | | | 30. | Earthing and its types& Safety Precautions | 1 | 08-03-2025 | | TLM2 | | | No. o | f classes required to complete UNIT-III: 9 | · | | No. of classes | taken: | | # **UNIT - IV: SEMICONDUCTOR DEVICES** | S. | | No. of | Tentative | Actual | Teaching | HOD | |-------|--|---------------------|-----------------------|--------------------|---------------------|----------------| | No. | Topics to be covered | Classes
Required | Date of
Completion | Date of Completion | Learning
Methods | Sign
Weekly | | 31. | Introduction | 1 | 18-03-2025 | | TLM1 | | | 32. | Evolution of electronics – Vacuum | 1 | | | TLM2 | | | | tubes to nano electronics | | 21-03-2025 | | | | | 33. | PN Junction diode | 1 | 22-03-2025 | | TLM2 | | | 34. | Characteristics of PN Junction Diode | 1 | 22-03-2025 | | TLM2 | | | 35. | Zener Effect — Zener Diode and its | 1 | | | TLM2 | | | 33. | Characteristics | 1 | 25-03-2025 | | I LIVIZ | | | 36. | Bipolar Junction Transistor | 1 | 28-03-2025 | | TLM2 | | | 37. | CB Configuration | 1 | 29-03-2025 | | TLM2 | | | 38. | CE Configuration | 1 | 29-03-2025 | | TLM2 | | | 39. | CC Configuration | 1 | 01-04-2025 | | TLM2 | | | 40. | Elementary Treatment of Small | 1 | | | TLM2 | | | 40. | Signal CE Amplifier. | 1 | 04-04-2025 | | I LIVIZ | | | No. o | f classes required to complete UNIT-IV: 10 | | | No. of classes | taken: | | # UNIT - V: BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION | OTTI | V. Dasie Elle individe encettis and instrument innon | | | | | | | | | |--------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--| | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | 41. | Introduction | 1 | 05-04-2025 | | TLM1 | | | | | | 42. | Block diagram RPS | 1 | 05-04-2025 | | TLM1 | | | | | | 43. | working of a full wave bridge rectifier | 1 | 08-04-2025 | | TLM1 | | | | | | 44. | capacitor filter | 1 | 11-04-2025 | | TLM1 | | | | | | 45. | working of simple zener voltage regulator | 1 | 12-04-2025 | | TLM1 | | | | | | 46. | Block diagram of Public
Address system | 1 | 12-04-2025 | | TLM1 | | | | | | 47. | Circuit diagram and working of RC coupled amplifier | 1 | 15-04-2025 | | TLM1 | | | | | | 50. | electronic instrumentation
system | 1 | 22-04-2025 | TLM1 | | |-----|--------------------------------------|---|------------|------|--| | | Block diagram of an | | | | | | 49. | Electronic Instrumentation | 1 | 19-04-2025 | TLM1 | | | 48. | Frequency response. | 1 | 19-04-2025 | TLM1 | | # **UNIT – VI: DIGITAL ELECTRONICS** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 51. | Number Systems | 1 | 25-04-2025 | | TLM2 | | | 52. | Logic gates | 1 | 26-04-2025 | | TLM1 | | | 53. | BCD & XS-3 code | 1 | 26-04-2025 | | TLM2 | | | 54. | Gray and Hamming code | 1 | 29-04-2025 | | TLM1 | | | 55. | Basic theorems & Boolean
Algebra | 1 | 02-05-2025 | | TLM2 | | | 56. | Logic diagrams using logic gates only | 1 | 03-05-2025 | | TLM2 | | | 57. | Combinational Vs Sequential circuits | 1 | 03-05-2025 | | TLM1 | | | 58. | Half & Full adder | 1 | 06-05-2025 | | TLM1 | | | 59. | Introduction to sequential circuits, | 1 | 09-05-2025 | | TLM1 | | | 60. | Flip flops- SR & D | 1 | 10-05-2025 | | TLM2 | | | 61. | Flip flops- JK & T | 1 | 10-05-2025 | | TLM2 | | | 62. | Registers & counters | 1 | 13-05-2025 | | TLM1 | | | 63 | Content Beyond the Syllabus: Op-Amp and Applications | 1 | 16-05-2025 | | TLM1 | | | No. of c | classes required to complete UNIT-V: 12 | | | No. of classes | taken: | | | Teaching L | earning Methods | | | |------------|-----------------|------|---------------------------------| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | # PART-C # **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |--|-------| | Assignment-I (Units-I, II, III) | A1=5 | | I-Descriptive Examination (Units-I, II, III) | M1=15 | | I-Quiz Examination (Units-I, II, III) | Q1=10 | | Assignment-II (Units-IV, V, VI) | A2=5 | | II- Descriptive Examination (Units-IV, V, VI) | M2=15 | | II-Quiz Examination (Units-IV, V, VI) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | 11001 | CAMINIE OUT COMES (1 Os). | |-------
---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and | | 101 | an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |------------------------|-------------------|----------------------|-----------------------|---------------------------| | Name of the
Faculty | Mr.P.SRIHARI | Dr.A.V.G.A.MARTHANDA | Dr.G.NAGESWARA
RAO | Dr.J.SIVA VARA
PRASAD | | Signature | | | | | # TAMAS TOM # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230 # **DEPARTMENT OF MECHANICAL ENGINEERING** #### **COURSE HANDOUT** # **PART-A** Name of Course Instructor: Dr. P.Vijaya Kumar, Professor, Dr. A.Nageswara Rao, Sr. Asst. Professor, Mr. S. Uma maheswara Reddy, Asst. Professor | Course Name & Code | : Engineering Drawing –23ME01 | | |--------------------------|--------------------------------|----------------------| | L-T-P Structure | : 2-0-3 | Credits:4 | | Program/Semester/Section | : B.Tech/II Sem/ CSE-E section | A.Y.: 2024-25 | **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. # COURSE OUTCOMES(COs): At the end of the course, student will be able to | | \ | |-----|---| | | Understand the principles of engineering drawing, including engineering curves, scales, Orthographic and | | | isometric projections. (Understanding Level –L2) | | COA | Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views. | | CO2 | (Applying Level –L3) | | CO2 | Understand and draw projection of solids in various positions in first quadrant. | | CO3 | (Applying Level –L3) | | CO4 | Draw the development of surfaces of simple objects.(Applying Level –L3) | | CO5 | Prepare isometric and orthographic sections of simple solids. (Applying Level –L3) | #### **COURSE ARTICULATION MATRIX**(Correlation between COs,POs&PSOs): | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|------|-----|-----|-----|--------|-----|-----|------|-------------|------|------|------|------| | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | 1 | 2 | | CO2 | 3 | 2 | 1 | 2 | - | - | - | - | - | - | - | 3 | 1 | 1 | 2 | | CO3 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - | 1 | 2 | | CO4 | 3 | 2 | 2 | - | - | - | - | - | ı | - | - | 3 | 2 | 1 | 2 | | CO5 | 3 | 2 | 2 | - | - | - | - | - | | - | - | 3 | - | - | - | | | | • | 1-Lo | W | | 2 | 2–Medi | um | | | 3 -H | igh | • | | | # **TEXT BOOKS:** N.D.Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers, 2012 #### **REFERENCE BOOKS:** - R1 NarayanaKL, KannaiahP, TextbookonEngineeringDrawing, 2ndEdition, SciTechpublishers. - **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD. - **R3** Venugopal, Engineering Drawingand Graphics, New Age publishers - R4 Dhananjay A.Jolhe, Engineering Drawing, Tata McGraw Hill Publishers - R5 N.S.Parthasarathy, VelaMurali, Engineering Drawing, Oxford Higher Education # PART-B # COURSE DELIVERY PLAN(LESSON PLAN): # UNIT-I:INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, LINES AND DIMENSIONING, CONICS, CYCLOIDS, INVOLUTES, PROJECTION OF POINTS | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
sign
Weekly | |-----------|--|-------------------------------|-------------------|-----------------------------|---------------------------------|-----------------------| | 1 | Introduction to Engineering Drawing, CEOs,COs,PEOs, and POs and PSOs | | | | | | | 2 | Principles of Engineering Graphics and their significance, Drawing Instruments and their use-Conventions in Drawing – | 3 | 21-01-2025 | | TLM1/ TLM2 | | | | Practical orientation | | | | | | | 3 | Lettering and Dimensioning–BIS Conventions-GeometricalConstructions – Theory Class | 2 | 24-01-2025 | | TLM1/ TLM2 | | | 4 | Practice | 3 | 28-01-2025 | | TLM4 | | | 5 | Engineering Curves: Conic Sections-
Construction of ellipse, parabola and
Hyperbola –Theory class | 2 | 31-01-2025 | | TLM1/ TLM2 | | | 6 | Construction of Parabola, ellipse, hyperbola – General method-Practice | 3 | 04-02-2025 | | TLM4 | | | 7 | Cycloids and Involutes-Theory class | 2 | 07-02-2025 | | TLM1/TLM5 | | | 8 | Construction of Cycloids and Involutes – Practice | 3 | 11-02-2025 | | TLM4 | | | 9 | Orthographic Projections, First and third angle projection methods, Projections of Points, Lines inclined to one plane | | 14-02-2025 | | TLM1/ TLM5 | | | 10 | Practice | 3 | 18-02-2025 | | TLM4 | | | No. | of classes required to complete UNIT-I: 23 (I | Lecture:8 Pr | actice:15) | No. of class
taken:(incl | es
udingPractice) | | # UNIT-II:PROJECTIONS OF STRAIGHT LINES AND PLANES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
sign
Weekly | |-----------|---|-------------------------------|-------------------|-------------------------------|---------------------------------|-----------------------| | | Projections of Straight Line parallel to both
the reference planes, perpendicular to H.P
and parallel to V.P, inclined to H.P and
parallel to V,P and vice versa. | 2 | 21-02-2025 | | TLM1/
TLM2 | | | | Practice | 3 | 25-02-2025 | | TLM4 | | | 11 | Projection of lines- Projections of Straight
Line Inclined to both the reference planes | 2 | 28-02-2025 | | TLM1/
TLM2 | | | 12 | Practice | 3 | 04-03-2025 | | TLM4 | | | 13 | Projectionsofplanes- Regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes. | 2 | 07-03-2025 | | TLM1/
TLM2 | | | 14 | Practice | 3 | 18-03-2025 | | TLM4 | | | 15 | Revision | 2 | 21-03-2025 | | TLM1/
TLM2 | | | | of classes required to complete UNIT-II:17 ecture:8 Practice:9) | | | No.of classes
taken:(inclu | ding Practice) | | # **UNIT-III: PROJECTIONS OF SOLIDS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
sign
Weekly | |-----------
---|-------------------------------|-------------------|------------------------------|---------------------------------|-----------------------| | 16 | Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane — Theory and practice | 3 | 25-03-2025 | | TLM4 | | | 17 | Axis parallel to both the reference planes,
Projection of Solids with axis inclined to one
reference plane and parallel to another plane. | 2 | 28-03-2025 | | TLM1/
TLM2 | | | 18 | Practice Session | 3 | 01-04-2025 | | TLM4 | | | | of classes required to complete UNIT-III:08 cture:3 Practice:5) | | | No. of classes taken:(includ | ingPractice) | | | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
sign
Weekly | |-----------|--|-------------------------------|-------------------|----------------|---------------------------------|-----------------------| | 19 | Sections of Solids Solids in simple positions, Perpendicular and inclined section planes | 2 | 04-04-2025 | | TLM1/
TLM2 | | | 20 | Practice Session | 3 | 08-04-2025 | | TLM4 | | | 21 | Sections of solids: Sectional views and
True shape of section | 2 | 11-04-2025 | | TLM1/
TLM2 | | | 22 | Practice | 3 | 15-04-2025 | | TLM4 | | | 23 | Development of solids Methods of Development: Parallel line development and radial line development theory | 3 | 22-04-2025 | | TLM1/
TLM2 | | | 24 | Practice | 3 | 25-04-2025 | | TLM4 | | | 25 | Development of solids Development of a cube, prism, cylinder, pyramid and cone. | 3 | 29-04-2025 | | TLM4 | | | | f classes required to complete UNIT-IV:19 ture:7 Practice:12) |) | No. of | classes take | en:(including Pra | ectice) | # UNIT-V: CONVERSION OF ISOMETRIC VIEWS INTO ORTHOGRAPHIC VIEWS and Vice versa | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
sign
Weekly | |-----------|--|-------------------------------|-------------------|----------------|---------------------------------|-----------------------| | | Introduction to Isometric Views—Theory Isometric views ,isometric axes, scale, lines& planes | 2 | 02-05-2025 | | TLM1/
TLM2 | | | 27 | Practice | 3 | 06-05-2025 | | TLM4 | | | 28 | Conversion of Orthographic views in to Isometric views | 2 | 09-05-2025 | | TLM1/
TLM2 | | | 29 | Practice | 3 | 13-05-2025 | | TLM4 | | | 30 | Conversion of Isometric views in to
Orthographic views | 2 | 16-05-2025 | | TLM1/
TLM2 | | | 31 | Practice | 3 | 20-05-2025 | | TLM4 | | | | of classes required to complete UNIT-V: 22 ture:7 Practice:15) | | | No.of classes taken: | |----|--|---|------------|----------------------| | 34 | Revision of IV and V Units | 2 | 30-05-2025 | TLM1/
TLM2 | | 33 | Revision of I, II and III Units | 3 | 27-05-2025 | TLM1 | | 32 | Content beyond the syllabus: Scales, Planes inclined to both the planes. | 2 | 23-05-2025 | TLM1/
TLM2 | | TeachingLearningMethods | | | | | | | | | |-------------------------|--------------|------|---------------------------------|--|--|--|--|--| | TLM1 | ChalkandTalk | TLM4 | Demonstration(Lab/FieldVisit) | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | GroupDiscussion/Project | | | | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | EvaluationTask | Marks | |--|-----------------| | I-DescriptiveExamination(Units-I,II) | M1=15 | | II-DescriptiveExamination(UNIT-III,IV&V) | M2=15 | | DaytoDayEvaluation (Assignment) | 15 | | MidMarks=80% of Max(M1,M2)+20% of Min((M1,M2)+DaytoDayEvaluation | M = 30 | | CumulativeInternalExamination(CIE):M | 30 | | SemesterEndExamination(SEE) | <mark>70</mark> | | TotalMarks=CIE+SEE | 100 | # PART-D # PROGRAMME OUTCOMES(POs): # **Engineering Graduates will be able to:** | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |--| | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | Modern tool usage: Create, select, and apply appropriate techniques ,resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of theengineering practice. | | Individual and team work: Function effectively as an individual, and as a member or lead er in diverse teams ,and in multidisciplinary settings. | | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | | | | Project management and finance: Demonstrate knowledge and understanding of the engineering and | | | | | | | |------|--|--|--|--|--|--|--| | PO11 | management principles and apply these to one's own work, as a member and leader in a team, to manage projects | | | | | | | | | and in multidisciplinary environments. | | | | | | | | PO12 | PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent | | | | | | | | 1012 | life-long learning in the broadest context of technological change. | | | | | | | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSC | D1 | To apply the principles of thermal sciences to design and develop various thermal systems. | |-----|-----------|---| | PSC |)2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | PSC | 03 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | Title | Course
Instructor | Course
Coordinator | Head of the
Department | |---------------------|----------------------|-----------------------|---------------------------| | Name of the Faculty | Dr. P.Vijaya Kumar | Mr.J.Subba Reddy | Dr.M.B.S.S Reddy | | Signature | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 # **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** # **COURSE HANDOUT** # **PART-A** Name of Course Instructor: Dr. S. NAGARJUNA REDDY Course Name & Code : DATA STRUCTURES & 23CS02 PREREQUISITE: Programming for Problem Solving Using C-20CS01 # **COURSE EDUCATIONAL OBJECTIVES(CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the role of linear and nonlinear data structures in organizing and | |-----|--| | | accessing data (Understand-L2) | | CO2 | Implement abstract data type (ADT) and data
structures for given application. | | COZ | (Apply-L3) | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | LU3 | (Apply-L3) | | 604 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | CO4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | # **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |----------------|-----|-----|-----|-----|---------------------|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | | | | | | | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 3 | 3 | | 1 - Low | | | | | 2 – Medium 3 - High | | | | | | | | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### **REFERENCE BOOKS:** - **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick # PART-B # **COURSE DELIVERY PLAN (LESSON PLAN):** # **UNIT-I: Introduction to Linear Data Structures** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Introduction and Discussion of CO's | 1 | 20-01-2025 | | TLM1 | | | 2. | Definition and Importance of
Linear Data Structures | 1 | 21-01-2025 | | TLM1 | | | 3. | Abstract Data Types and Implementation | 1 | 23-01-2025 | | TLM1 | | | 4. | Overview of time and space complexity | 1 | 27-01-2025 | | TLM1 | | | 5. | Examples – Time Complexity,
Space Complexity | 2 | 28-01-2025
30-01-2025 | | TLM1 | | | 6. | Revise Arrays-Basic Operations | 1 | 01-02-2025 | | TLM1 | | | 7. | Searching Techniques: Linear
Search | 1 | 03-02-2025 | | TLM1 | | | 8. | Binary Search & Analysis | 2 | 04-02-2025
06-02-2025 | | TLM1 | | | 9. | Bubble Sort & Analysis | 1 | 10-02-2025 | | TLM1 | | | 10. | Insertion Sort & Analysis | 1 | 11-02-2025 | | TLM1 | | | 11. | Selection Sort & Analysis | 1 | 13-02-2205 | | TLM1 | | | No. o | of classes required to complete U | NIT-I: 13 | | No. of classes | s taken: | | # **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | List Implementation using Arrays and Array
Disadvantages | 1 | 15-02-2025 | | TLM1 | | | 13. | Linked List Representation | 1 | 17-02-2025 | | TLM1 | | | 14. | Sing Linked List : Operations | 2 | 18-02-2025
20-02-2025 | | TLM1 | | | 15. | Double Linked List : Operations | 2 | 22-02-2025
24-02-2025 | | TLM1 | | | 16. | Circular Single Linked List | 1 | 25-0202025 | | TLM1 | | | 17. | Circular Double Linked List | 2 | 27-02-2025
01-03-2025 | | TLM1 | | | 18. | Comparing Arrays and Linked List | 1 | 03-03-2025 | | TLM1 | | | 19. | Applications of Linked Lists: Polynomial Representation | 1 | 04-03-2025 | | TLM1 | | | 20. | Polynomial Addition | 1 | 06-03-2025 | | TLM1 | | | No. | of classes required to complete UNIT- | ·II: 12 | | No. of class | sses taker | 1: | # **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completio
n | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---------------------------------------|-------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------| | 21. | Introduction to Stacks : Properties | 1 | 17-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 18-03-2025 | | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 20-03-2025 | | TLM1 | | | 24. | Stacks using Linked List | 1 | 22-03-2025 | TLM1 | | | | | |-----|--|---|--------------------------|------|--|--|--|--| | 25. | Expressions: Expression evaluation | 2 | 24-03-2025
25-03-2025 | TLM1 | | | | | | 26. | Infix to Postfix Conversion | 2 | 27-03-2025
29-03-2025 | TLM1 | | | | | | 27. | Checking Balanced Parenthesis | 1 | 01-04-2025 | TLM1 | | | | | | 28. | Reversing a List | 1 | 03-04-2025 | TLM1 | | | | | | 29. | Backtracking | 1 | 07-04-2025 | TLM1 | | | | | | | No. of classes required to complete UNIT-III: 11 No. of classes taken: | | | | | | | | # **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--| | 30. | Introduction to queues: properties and operations, | 1 | 08-04-2025 | | TLM1 | | | | | | | 31. | Implementing queues using arrays | 1 | 10-04-2025 | | TLM1 | | | | | | | 32. | Implementing queues using Linked
List | 1 | 15-04-2025 | | TLM1 | | | | | | | 33. | Applications of Queue : Scheduling | 1 | 17-04-2025 | | TLM1 | | | | | | | 34. | Breadth First Search | 1 | 19-04-2025 | | TLM1 | | | | | | | 35. | Circular Queue | 2 | 21-04-2025
22-04-2025 | | TLM1 | | | | | | | 36. | Double ended queue | 2 | 24-04-2025
26-04-2025 | | TLM1 | | | | | | | 37. | Applications of Deque | 1 | 28-04-2025 | | TLM1 | | | | | | | No. | No. of classes required to complete UNIT-IV: 10 No. of classes taken: | | | | | | | | | | # UNIT-V: TREES & HASHING TECHNQIUES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--| | 38. | Introduction to Trees, | 1 | 29-04-2025 | | TLM1 | | | | | | 39. | Representation of Trees | 1 | 01-05-2025 | | TLM1 | | | | | | 40. | Tree Traversals | 1 | 03-05-2025 | | TLM1 | | | | | | 41. | Binary Search Trees-
Operations | 2 | 05-05-2025
07-05-2025 | | TLM1 | | | | | | 42. | Hashing Introduction, | 1 | 09-05-2025 | | TLM1 | | | | | | 43. | Hash Functions | 1 | 12-05-2025 | | TLM1 | | | | | | 44. | Collison Resolution Techniques: Separate Chaining | 1 | 13-05-2025 | | TLM1 | | | | | | 45. | Open Addressing: Linear
Probing, Quadratic Probing | 1 | 15-05-2025 | | TLM1 | | | | | | 46. | Double Hashing, Rehashing | 1 | 17-05-2025 | | TLM1 | | | | | | No. o | No. of classes required to complete UNIT-V: 10 No. of classes taken: | | | | | | | | | **Content Beyond Syllabus** | S. No. | Topics to be
covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Method
s | Learnin
g
Outcom
e
COs | Text
Book
followe
d | HOD
Sign
Weekl
y | | | |----------------|--|-----------------------------------|------------------------------------|-------------------------------------|---|------------------------------------|------------------------------|---------------------------|--|--| | 1. | Evaluation of
Prefix Expression | 1 | 24-03-2025 | | | | | | | | | 2. | Towers of Hanoi | 1 | 07-04-2025 | | | | | | | | | 3. | Extendable
Hashing | 1 | 17-05-2025 | | | | | | | | | No. of classes | | 3 | | | No. of class | ses taken: | | | | | | | II MID EXAMINATIONS (19-05-2025 TO 24-05-2024) | | | | | | | | | | | Teaching | Teaching Learning Methods | | | | | | | | | | |----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III
,IV & V) | A2=5 | | II- Descriptive Examination (Unit-III ,IV & V) | M2=15 | | II-Quiz Examination (Unit-III ,IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | P0 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | P0 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | |--------------|---| | PSO 2 | The ability to design and develop computer programs in networking, web applications and | | 100 - | IoT as per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|--------------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Dr. S.Nagarjuna
Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D.Veeraiah | | Signature | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) # Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India # **COURSE HANDOUT** #### Part-A PROGRAM : B.Tech., II-Sem., (CSE-E) ACADEMIC YEAR : 2024-2025 **COURSE NAME & CODE** : ENGINEERING PHYSICS LAB L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1 COURSE INSTRUCTOR : Dr N Aruna / Dr.N.T.Sarma COURSE COORDINATOR : Dr S Yusub # **Course Objectives:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). # COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs): | | Engineering Physics Lab | | | | | | | | | | | | |------------------------|-------------------------|---------------------------------|---|---|---|---|---|---|---|----|----|----| | COURSE | | | | | | | | | | | | | | DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | Programme Outcomes | | | | | | | | | | | | PO's
→ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO2. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | |------------------|---|-----|------|-------|-------|-------|---|-----|------|---------|---------|----| | CO3. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | 1 = slight (Low) |) | 2 = | Mode | erate | (Med | lium) | • | 3 = | Subs | stantia | l (Hig | h) | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). # **BOS APPROVED TEXT BOOKS:** 1. Lab Manual Prepared by the LBRCE. Part-B COURSE DELIVERY PLAN (LESSON PLAN): Section- AI&DS | S.No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Methods | HOD
Sign
Weekly | |-------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 1. | Introduction | 3 | 24-01-2025 | | TLM4 | | | 2. | Demonstration | 3 | 31-01-2025 | | TLM4 | | | 3. | Experiment 1 | | 07-02-2025 | | TLM4 | | | 4. | Experiment 2 | 3 | 14-02-2025 | | TLM4 | | | 5. | Experiment 3 | 3 | 21-02-2025 | | TLM4 | | | 6. | Experiment 4 | 3 | 28-02-2025 | | TLM4 | | | 7. | Experiment 5 | 3 | 07-03-2025 | | TLM4 | | | 8. | MID -1 | 3 | 14-03-2025 | | TLM4 | | | 9. | Demonstration | 3 | 21-03-2025 | | TLM4 | | | 10. | Experiment 6 | 3 | 28-03-2025 | | TLM4 | | | 11. | Experiment 7 | 3 | 04-04-2025 | | TLM4 | | | 12. | Experiment 8 | 3 | 11-04-2025 | | TLM4 | | | 13. | Experiment 9 | 3 | 25-04-2025 | | TLM4 | | | 14. | Experiment 10 | 3 | 02-05-2025 | | TLM4 | | | 15. | Revision | 3 | 09-05-2025 | | TLM4 | | | 16. | Internal Exam | 3 | 06-05-2025 | | | | | | No. of classes | required to
Syllabus: | o complete | 48 | | | | Teaching Learning Methods | | | | | | | | | |---------------------------|----------------|------|------------------------------------|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | #### **EVALUATION PROCESS:** | Evaluation Task | Marks | |--|-----------------| | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) - 1.To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education. - 2. To Function professionally in the rapidly changing world with advances in technology. - 3. To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices. - 4. To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner . #### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - (1). Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2). Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3). **Design/development of
solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **(4)**. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - (5). Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. - **(6)**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7).Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12).Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # PROGRAM SPECIFIC OUTCOMES (PSOs): Graduate of the ECE will have the ability to - (1)Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry. - (2) Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools - (3) Apply the Signal processing techniques to synthesize and realize the issues related to real time applications. | Dr N Aruna /
Dr.N.T.Sarma | Dr. S. Yusub | Dr. S. Yusub | Dr A. Rami Reddy | |------------------------------|--------------------|--------------------|------------------| | Course Instructor | Course Coordinator | Module Coordinator | HOD | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 # **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING** # **COURSE HANDOUT** # **PART-A** Name of Course Instructor: Mr.P.SRIHARI/ Dr.B.PANGEDAIAH **Course Name & Code** : ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP & 23EE51 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/CSE-E, II SEM A.Y.: 2024-25 **Course Educational Objective:** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |-----|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | CO6 | Demonstrate the working of various logic gates using ICs. (Understand) | # **COURSE ARTICULATION MATRIX** (Correlation between COs & POs): | | P01 | PO2 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | PO 11 | PO 12 | |-----|-----|-----|-------|-----|-----|-----|--------|-----|------|------|-------|-------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | | | 1 - I | ow | | 2 – | Medium | 3 - | High | | | | $\underline{PART\text{-}B}$ COURSE DELIVERY PLAN (LESSON PLAN): ELECTRICAL ENGINEERING | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative Date of Completio n | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|--|-------------------------------|-------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Introduction to BEEE Lab, Importance of Electrical Lab, its Objectives and Outcomes, BASIC MEASURING METERS, SAFETY PRECUATIONS & Other suggestions. | 3 | 22-01-2025 | | TLM4 | | | 2. | Verification of KCL and KVL | 3 | 29-01-2025 | | TLM4 | | | 3. | Verification of Superposition theorem | 3 | 04-02-2025 | | TLM4 | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 11-02-2025 | | TLM4 | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 11-02-2025 | | TLM4 | | | 6. | Measurement of Power and
Power factor using Single-phase
wattmeter | 3 | 18-02-2025 | | TLM4 | | | 7. | Calculation of Electrical Energy for Domestic Premises | 3 | 25-02-2025 | | TLM4 | | | 8. | Internal Lab Examination (Electrical) | 3 | 05-03-2025 | | TLM4 | | | No. of | classes required: 21 | <u>I</u> | <u>I</u> | No. of classes | taken: | | | Teaching Learning Methods | | | | | | | | | |---------------------------|---|------|------------------------------------|--|--|--|--|--| | TLM1 | TLM1Chalk and TalkTLM4Demonstration (Lab/Fiel | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | # PART-C # **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Expt. no's | Marks | |--|-----------------|--------| | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and
receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | Date: 20-01-2025 | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------------|-------------------|--------------------------|-----------------------|---------------------------| | Name of
the
Faculty | Mr.P.SRIHARI | Dr.
A.V.G.A.MARTHANDA | Dr.G.NAGESWARA
RAO | Dr.J.S.V.PRASAD | | Signature | | | | | # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING # Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230 #### DEPARTMENT OF AEROSPACE ENGINEERING ### **COURSE HANDOUT** PROGRAM: B.Tech. II-Sem, CSE-E SECTION **ACADEMIC YEAR** : 2024-25 **COURSE NAME & CODE**: Engineering Workshop, 20ME51 L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1.5 **COURSE INSTRUCTOR** : Dr. L. Prabhu, Associate Professor, Mr. S. Srinivasa Reddy, Sr. Asst. Professor COURSE COORDINATOR: Seelam Srinivasa Reddy, Assoc. Professor PRE-REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. #### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as Cross lap joint, Dove tail joint. | |-----|--| | | Closs lap joint, Dove tan joint. | | CO2 | Fabricate and model various basic prototypes in the trade of fitting such | | | as Straight fit, V-fit. | | CO3 | Produce various basic prototypes in the trade of Tin smithy such as | | 003 | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | ### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | CO- | PO PSO | PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----| | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | **Note:** Enter Correlation Levels **1**or **2** or **3**. If there is no correlation, **put"1** Slight (Low), **2**-Moderate (Medium), **3**-Substantial (High). #### REFERENCE: | D1 | Lab Manual | |----|-------------| | KI | Lab Malluai | COURSE DELIVERY PLAN (LESSON PLAN): Section-A | S.
No. | Experiment to be conducted | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Reference | HOD Sign
Weekly | |-----------|----------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------|--------------------| | 1. | Induction | 3 | 23-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 30-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 06-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 13-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 20-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 27-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 06-03-2025 | | TLM8 | R1 | | | | | I-Mid Ex | aminations (10-0 | 03-2025 to 15 | -03-2025) | | | | 8. | Experiment-7 | 3 | 20-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 27-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 03-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 10-04-2025 | | TLM8 | R1 | | | 12. | Repetition lab | 3 | 17-04-2025 | | TLM8 | | | | 13. | Repetition lab | 3 | 24-04-2025 | | TLM8 | | | | 14. | Repetition lab | 3 | 01-05-2025 | | TLM8 | | | | 15. | Repetition lab | 3 | 08-05-2025 | | TLM8 | | | | 16. | Lab Internal | 3 | 15-05-2025 | | TLM6 | | | | Teaching Learning Methods | | | | | | | | | | | |---------------------------|------------------------|------|--------------------|------|----------------|--|--|--|--|--| | TLM1 | M1 Chalk and Talk TLM4 | | Problem Solving | TLM7 | Seminars or GD | | | | | | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | | | | | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | | | | | | # ACADEMIC CALENDAR: | Description | From | То | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions-1 | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | Part-C # **EVALUATION PROCESS:** | Parameter | Marks | |--|------------------| | Day-to-Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination (CIE = A1 + B1 + C1) | A1+B1+C1=30Marks | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: E-SEC** | Batch
No. | Reg. No. of
Students | Number of Students | Batch
No. | Reg. No. of
Students | Number of Students | |--------------|-------------------------------|--------------------|--------------|-----------------------------|--------------------| | B1 | 24761A05Q3 TO
24761A05R0 | 9 | В5 | 24761A05T5 T0
24761A05U3 | 8 | | B2 | 24761A05R1 TO
24761A05R8 | 8 | В6 | 24761A05U4 TO
24761A05V1 | 8 | | В3 | 24761A05Y5R9 TO
24761A05S6 | 8 | В7 | 24761A05V2 TO
24761A05V9 | 8 | | B4 | 24761A05S7 TO
24761A05T4 | 8 | В8 | 24761A05W0 TO
24761A05W7 | 8 | | Batch
No: | Exp.
01 | Exp.
02 | Exp. 03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp.
07 | Exp.
08 | Exp.
09 | |--------------|------------|------------|---------|------------|------------|------------|------------|------------|------------| | B1 | F1 | F2 | P1 | P2 | C1 | C2 | E1 | E2 | T1 | | B2 | F2 | F1 | P2 | P1 | C2 | C1 | E2 | E1 | T1 | | В3 | P1 | P2 | C1 | C2 | E1 | E2 | F1 | F2 | T1 | | B4 | P2 | P1 | C2 | C1 | E2 | E1 | F2 | F1 | Т1 | | В5 | C1 | C2 | E1 | E2 | F1 | F2 | P1 | P2 | T1 | | В6 | C2 | C1 | E2 | E1 | F2 | F1 | P2 | P1 | T1 | | В7 | E1 | E2 | F1 | F2 | P1 | P2 | C1 | C2 | T1 | | В8 | E2 | E1 | F2 | F1 | P2 | P1 | C2 | C1 | T1 | # LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove Tail Joint | CO1 | | 3. | Fitting-1(F1)-L-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | 7. | House Wiring-1(E1)-Series and Parallel connection | CO4 | | 8. | HouseWiring-2(E2)–Fluorescent Lamp and Calling Bell Circuit | CO4 | | 9. | Tinsmity-1(T1)- Cone | CO2 | | 10. | Demonstration- Welding and Foundry | CO2 | #### NOTIFICATION OF CYCLE: | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|----------|--|------------| | _ | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | le 2 | 7. | House Wiring-1(E1)–Series and Parallel Connection | CO4 | | Cycle | 8. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | | | 9. | Tinsmity-1(T1)- Rectangular Tray | CO2 | | | 10. | Demonstration- Welding and Foundry | CO2 | #### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi-disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. **PROGRAM OUT COMES (POs)** **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. **Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. - **9. Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings. - **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. # PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course
Instructors | Course
Coordinator | Module
Coordinator | HOD | |---|---------------------------|-----------------------|-----------------| | Dr. L. Prabhu
Mr. S. Srinivasa Reddy | Mr. S. Srinivasa
Reddy | Mr. J. Subba Reddy | Dr. P. Lovaraju | # HEDDY COLLEGE CAN BE THE STREET OF STREE # LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 # **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** # **COURSE HANDOUT** # **PART-A** Name of Course Instructor: DR.S. NAGARJUNA REDDY **Course Name & Code** : DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/E A.Y.: 2024-25 PREREQUISITE: PPSC # **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. # **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) **CO3:** Develop and implement hashing techniques for solving problems (**Apply - L3**) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. # **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO4 | | | | | | | | 2 | 2 | 2 | | | | | | **Note: 1-** Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S. | | No. of | Tentative | Actual | HOD | |-----|--|----------|------------|------------|------| | No. | Topics to be covered | Classes | Date of | Date of | Sign | | NO. | | Required | Completion | Completion | | | 1. | Array Manipulations | 3 | 20-01-2025 | | | | 2. | Searching and Sorting
Techniques | 3 | 27-01-2025 | | | | 3. | Single Linked List | 3 | 03-02-2025 | | | | 4. | Double Linked List | 3 | 10-02-2025 | | | | 5. | Circular Linked List | 3 | 17-02-2025 | | | | | Polynomial Representation | 3 | 24-02-2025 | | | | 6. | & Polynomial Addition | | | | | | 7. | Linked List Applications | 3 | 03-03-2025 | | | | 8. | Stack Implementation | 3 | 17-03-2025 | | | | 9. | Stack Applications | 3 | 24-03-2025 | | | | 10. | Queue Implementation &
Circular Queue | 3 | 07-04-205 | | | | 11. | Double Ended Queue | 3 | 21-04-2025 | | | | 12. | Trees | 3 | 28-04-2025 | | | | 13. | Hashing | 3 | 05-05-2025 | | | | 14. | Internal Exam | 3 | 12-05-2025 | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-------| | Day to Day Work: | 15 | | Internal Test | 15 | | Continuous Internal Assessment | 30 | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering appearing problems. | | | | | | |-------|--|--|--|--|--|--| | PO 2 | fundamentals, and an engineering specialization to the solution of complex engineering problems. Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | | | | | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | | | | | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | | | | | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | | | | | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | | | | | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | | | | | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | | | | | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | | | | | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | | | | | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | | | | | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | | | | | | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | |--------------|---|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and | | | | | | | IoT as per the society needs. | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the Department | |------------------------
-----------------------|--------------------|-----------------------|------------------------| | Name of the
Faculty | Dr. S.Nagarjuna Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) ### Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India ### FRESHMAN ENGINEERING DEPARTMENT ### **COURSE HANDOUT** ### **PART-A** PROGRAM : B.Tech., II-Sem., CSE -F ACADEMIC YEAR : 2024-25 COURSE NAME & CODE : ENGINEERING PHYSICS L-T-P STRUCTURE : 3-1-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : Dr.N.Aruna PRE-REQUISITE : Nil **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To bring the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction, etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. **COURSE OUTCOMES (COs):** At the end of this course, the student will be able to | CO 1 | Analyze the intensity of variation of light due to interference, diffraction and | |------|--| | | polarization | | CO 2 | Understand the basics of crystals and their structures | | CO 3 | Summarize various types of polarization of dielectrics and classify the magnetic materials | | CO 4 | Explain the fundamentals of quantum mechanics and free electron theory of metals | | CO5 | Identify the type of semiconductor using Hall Effect | ### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs): | ENGINEERING PHYSICS | | | | | | | | | | | | | |-----------------------|---------------------------------|--------------------|------|--------|--------|-------|---|-----|-------|----------|-------|----| | COURSE
DESIGNED BY | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | | Course Outcomes | | Programme Outcomes | | | | | | | | | | | | PO's → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | СОЗ. | 3 | 3 | 2 | 1 | 1 | 1 | | - | - | - | - | 1 | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | _ | - | - | - | 1 | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | | 1 = slight (I | Low) | 2 | = Mo | derate | e (Me | dium) | ı | 3 = | Subst | antial (| High) | | ### **BOS APPROVED TEXT BOOKS:** T1: V. Rajendran, "Engineering Physics", TMH, New Delhi, 6th Edition, 2014. T2: M.N. Avadhanulu, P.G. Kshirsagar, "Engineering Physics", S. Chand & Co., 2nd Edition, 2014. ### **BOS APPROVED REFERENCE BOOKS:** **R1**: M.N. Avadhanulu, TVS Arun Murthy, "Applied *Physics*", S. Chand & Co., 2nd Edition, 2007. R2: P.K. Palani Samy, "Applied Physics", Sci. Publ. Chennai, 4th Edition, 2016. **R3**: P. Sreenivasa Rao, K Muralidhar, "Applied Physics", Him. Publi. Mumbai, 1st Edition, 2016. **R4**: Hitendra K Mallik, AK Singh "Engineering Physics", TMH, New Delhi, 1st Edition, 2009. ### WEB REFERENCES AND E-TEXT BOOKS - 1. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 2. http://physicsdatabase.com/free-physics-books/ - 3. http://www.e-booksdirectory.com - 4. http://www.thphys.physics.ox.ac.uk | | TEACHING LEA | RNING M | ETHODS | | |---|--------------|---------|------------------------------------|--| | TLM1Chalk and TalkTLM4Demonstration (Lab/Fi | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | ### **PART-B** ### **COURSE DELIVERY PLAN (LESSON PLAN):** ### **UNIT-I: WAVE OPTICS** Course Outcome :- CO 1; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Requir
ed | Tentative Date of Completion | Actual Date of Comple tion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|------------------------|-----------------------------------|------------------------------|----------------------------|---------------------------------|-------------|---------| | | Introduction to the | | 21/01/2025 | | | | | | 1. | Subject, Course | 1 | | | TLM2 | | | | | Outcomes | | | | | | | | | Superposition of | | 22/01/2025 | | | | | | 2. | Coherence, Conditions | 1 | | | TLM1 | | | | | for Interference | | | | | | | | 3. | Interference from thin | 1 | 23/01/2025 | | TLM1 | | | | ٥. | films | 1 | | | 1 LIVII | | | | 4. | Newton's rings | 1 | 25/01/2025 | | TLM2 | | | | 5. | Colours in thin films | | 28/01/2025 | | | | | | 3. | Applications | | | | | | | | 6. | Introduction – Diffraction, Types | 1 | 29/01/2025 | TLM1 | | |-----|---|----------|------------|-----------------------|--| | 7. | Single slit diffraction | 1 | 30/01/2025 | TLM2 | | | 8. | Double slit | 1 | 01/02/2025 | | | | 9. | N Slits | 1 | 04/02/2025 | TLM4 | | | 10. | Diffraction grating | 1 | 05/02/2025 | TLM4 | | | 11. | TUTORIAL | 1 | 06/02/2025 | TLM3 | | | 12. | Dispersive power & Resolving power of Grating | 1 | 08/02/2025 | TLM3 | | | 13. | Polarization introduction | 1 | 11/02/2025 | TLM1 | | | 14. | Polarization by reflection, refraction | 1 | 12/02/2025 | TLM1 | | | 15. | Double refraction, | 1 | 13/02/2025 | TLM1 | | | 16. | Nicol's prism | 1 | 15/02/2025 | TLM1 | | | 17. | Half wave and quarter wave plate | 1 | 18/02/2025 | TLM2 | | | 18. | problems | 1 | 19/02/2025 | TLM1 | | | | No. of classes required to | complete | UNIT-I: 17 | No. of classes taken: | | ## UNIT-II: CRYSTALLOGRAPHY AND X RAY DIFFRACTION Course Outcome :- CO 2; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classe
s
Requi
red | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|---------------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Crystallography
Basic defnitions | 1 | 20/02/2025 | | TLM2 | | | | 2. | Crystal systems | 1 | 22/02/2025 | | TLM1 | | | | 3. | Bravais Lattices | | 25/02/2025 | | TLM1 | | | | 4. | Packing fraction of SC | 1 | 27/02/2025 | | TLM1 | | | | 5. | BCC, FCC | 1 | 01/03/2025 | | TLM1 | | | | 6. | Miller Indices,
separation between
(hkl) planes | 1 | 04/03/2025 | | TLM1 | | | | 7. | Bragg's law | 1 | 05/03/2025 | | TLM2 | _ | | | 8. | X-ray
Diffractometer | 1 | 06/03/2025 | TLM1 | | | |-----|-----------------------------|-----------|---------------------|------|--|--| | 9. | Laue's method powder method | 1 | 08/03/2025 | TLM1 | | | | 10. | Mid 1 | 1 | 11/03/2025 | | | | | 11. | Mid 1 | 1 | 12/03/2025 | | | | | 12. | Mid 1 | 1 | 15/03/2025 | | | | | No. | of classes required to co | omplete U | No. of classes take | n: | | | ## <u>UNIT-III: DIELECTRIC AND MAGNETIC MATERIALS</u> Course Outcome :- CO 3; Text Book :- T1, R2 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Basic Definitions
Relation between
electric vectors | 1 | 18/03/2025 | | TLM1 | | | | 2. | Electronic polarization | 1 | 19/03/2025 | | TLM1 | | | | 3. | Ionic & Orientation polarization | 1 | 20/03/2025 | | TLM1 | | | | 4. | Local field, | 1 | 22/03/2025 | | TLM1 | | | | 5 | Clausius Mosotti equation, complex dielectric constant | 1 | 25/03/2025 | | TLM2 | | | | 6 | Frequency dependence of polarization Dielectric loss and problems | 1 | 26/03/2025 | | TLM1 | | | | 7 | Introduction to Magnetic parameters origin of magnetic moment | 1 | 27/03/2025 | | TLM1 | | | | 8 | Classification of magnetic materials – Dia, para & Ferro | 1 | 29/03/2025 | | TLM1 | | | | 9 | Classification of magnetic materials – Dia, para & Ferro Anti ferro and ferri | 1 | 01/04/2025 | | TLM2 | | | | 10 | Domain concept of ferromagnetismand domain walls | 1 | 02/04/2025 | | TLM2 | | | | 11 | Hysteresis curve | 1 | 03/04/2025 | | TLM1 | | | | 12 | soft and hard
magnetic materials | 1 | 08/04/2025 | | | | | |-------|-------------------------------------|-------------|------------|----------|---------------|---|--| | No. c | of classes required to comp | olete UNIT- | III: 12 | No. of o | classes taken | : | | ## <u>UNIT-IV QUANTUM MECHANICS & FREE ELECTRON THEORY</u> | S.No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Introduction quantum mechanics, DeBroglie hypothesis | 1 | 09/04/2025 | | TLM1 | | | | 2. | Heisenberg
uncertainty
principle, Physical
significance of
wave function | 1 | 10/04/2025 | | TLM1 | | | | 3. | Schrodinger time dependent & independent wave equations | 1 | 12/04/2025 | | TLM1 | | | | 4. | Particle in a box | 1 | 12/04/2025 | | TLM1 | | | | 5. | Classical free
electron theory-
postulates, Success
& Failures | 1 | 15/04/2025 | | TLM2 | | | | 6. | Quantum free electron theory, electrical conductivity | 1 | 16/04/2025 | | TLM1 | | | | 7. | Tutorial | 1 | 17/04/2025 | |
TLM3 | | | | 8. | Fermi-Dirac distribution function- Temperature dependence | 1 | 19/04/2025 | | TLM2 | | | | 9. | Density of states
Fermi energy | 1 | 22/04/2025 | | TLM2 | | | | No | of classes required to | complete U | NIT-IV: 09 | No. of o | classes taken | : | | ## <u>UNIT-V :SEMICONDUCTOR PHYSICS</u> Course Outcome :- CO 4; Text Book :- T2, R1 | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Introduction - | 1 | 23/04/2025 | | TLM1 | | | | 2. | Classification of semiconductors | 1 | 24/04/2025 | | TLM1 | | | | 3. | Density of Intrinsic and semiconductors Electrons, | 1 | 26/04/2025 | | TLM1 | | | | 4. | Holes | 1 | 29/04/2025 | | TLM1 | | | | 5. | Density of
Intrinsic and
semiconductors
Holes | 1 | 30/04/2025 | | TLM1 | | | | 6. | Electrical conductivity and fermi level | 1 | 01/05/2025 | | TLM1 | | | | 7. | Density of Extrinsic semiconductors P- Type | 1 | 03/05/2025 | | TLM1 | | | | 8. | Tutorial | 1 | 06/05/2025 | | TLM2 | | | | 9. | Density of Extrinsic semiconductors N Type | 1 | 07/05/2025 | | TLM1 | | | | 10. | Drift and diffusion currents Einstein equation | 1 | 08/05/2025 | | TLM2 | | | | 11. | Hall effect and applications | 1 | 10/05/2025 | | TLM1 | | | | 12. | Problems | 1 | 13/05/2025 | | TLM1 | | | | 13. | Revision | 1 | 14/05/2025 | | | | | | 14. | Revision | 1 | 15/05/2025 | | | | | | 15. | Revision | 1 | 17/05/2025 | | | | | | No | o. of classes required t | o complete U | UNIT-V: 10 | No. of classes | s taken: | | | ## PART-C ## **EVALUATION PROCESS (R-20 Regulation):** | Evaluation Task | Marks | |------------------------|-------| | Assignment-I (Unit-I) | A1=5 | | Assignment-II (Unit-II) | A2=5 | |--|--------| | I-Mid Examination (Units-I, II) | M-1=18 | | I-Quiz Examination (Units-I, II) | Q1=07 | | Assignment-III (Unit-III) | A3=5 | | Assignment-IV (Unit-IV) | A4=5 | | Assignment-V (Unit-V) | A5=5 | | II-Mid Examination (Units-III , IV & V) | M-2=18 | | II-Quiz Examination (Units-III, IV & V) | Q2=07 | | Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5 | | Mid Marks =75% of Max(M-1,M-2)+25% of Min(M-1,M-2) | M=18 | | Quiz Marks =75% of Max(Q-1,Q-2)+25% of Min(Q-1,Q-2) | Q=07 | | Cumulative Internal Examination (CIE): A+M+Q | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ## PART-D ## **PROGRAMME OUTCOMES (POs):** | Engineering knowledge: Apply the knowledge of mathematics, science, engineering | | | | | | |---|--|--|--|--|--| | fundamentals, and an engineering specialization to the solution of complex | | | | | | | engineering problems. | | | | | | | Problem analysis: Identify, formulate, review research literature, and analyze | | | | | | | complex engineering problems reaching substantiated conclusions using first | | | | | | | principles of mathematics, natural sciences, and engineering sciences. | | | | | | | Design/development of solutions: Design solutions for complex engineering | | | | | | | problems and design system components or processes that meet the specified needs | | | | | | | with appropriate consideration for the public health and safety, and the cultural, | | | | | | | societal, and environmental considerations. | | | | | | | Conduct investigations of complex problems: Use research-based knowledge and | | | | | | | research methods including design of experiments, analysis and interpretation of data, | | | | | | | and synthesis of the information to provide valid conclusions. | | | | | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and | | | | | | | modern engineering and IT tools including prediction and modelling to complex | | | | | | | engineering activities with an understanding of the limitations | | | | | | | The engineer and society: Apply reasoning informed by the contextual knowledge to | | | | | | | assess societal, health, safety, legal and cultural issues and the consequent | | | | | | | responsibilities relevant to the professional engineering practice | | | | | | | Environment and sustainability: Understand the impact of the professional | | | | | | | engineering solutions in societal and environmental contexts, and demonstrate the | | | | | | | knowledge of, and need for sustainable development. | | | | | | | Ethics: Apply ethical principles and commit to professional ethics and responsibilities | | | | | | | and norms of the engineering practice. | | | | | | | | | | | | | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or | |-------|--| | 109 | leader in diverse teams, and in multidisciplinary settings. | | | Communication: Communicate effectively on complex engineering activities with | | PO 10 | the engineering community and with society at large, such as, being able to | | 10 10 | comprehend and write effective reports and design documentation, make effective | | | presentations, and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of the | | PO 11 | engineering and management principles and apply these to one's own work, as a | | 1011 | member and leader in a team, to manage projects and in multidisciplinary | | | environments. | | | Life-long learning: Recognize the need for and have the preparation and ability to | | PO 12 | engage in independent and life-long learning in the broadest context of technological | | | change. | Course Instructor Course Coordinator Module Coordinator HOD Dr. N. Aruna Dr. S. Yusub Dr. A. Rami Reddy #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 ### FRESHMAN ENGINEERING DEPARTMENT ### **COURSE HANDOUT** ### Part-A **PROGRAM** : I B. Tech., II-Sem., CSE- F ACADEMIC YEAR : 2024-25 **COURSE NAME & CODE**: Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 **COURSE INSTRUCTOR** :Dr. K. Jhansi Rani **COURSE COORDINATOR** : Dr. K. R. Kavitha **PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration ### **COURSE EDUCATIONAL OBJECTIVES (CEOs):** - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. ### **COURSE OUTCOMES (COs)** After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields – L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations -L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence - L3 CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – L3 ### **COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs):** | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | - | 1 | | CO2 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | • | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). ### **BOS APPROVED TEXT BOOKS:** - **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. ### **BOS APPROVED REFERENCE BOOKS:** - **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018. - **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - **R4** R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - **R5** B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. **Part-B COURSE DELIVERY PLAN (LESSON PLAN):** | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | |----|--------------------------------------|----------|------------|------------|----------|----------|----------|--------| | No | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 1. | Introduction to the course | 1 | 21-01-2025 | | TLM2 | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 22-01-2025 | | TLM2 | | | | UNIT-I: Differential Equations of first order and first degree | S. | | No. of | Tentative | A atreal | , , , | | Тот4 | IIOD | |-----|--------------------------------------|----------|------------|------------|----------|--------------|-----------|--------| | | m • 4 1 | | | Actual | Teaching | | Text | HOD | | No. |
Topics to be covered | | Date of | Date of | Learning | Outcome | Book | Sign | | | | Required | Completion | Completion | Methods | COs | followed | Weekly | | 3. | Introduction to UNIT I | 1 | 23-01-2025 | | TLM1 | CO1 | T1,T2 | | | 4. | Linear Differential equation | 1 | 24-01-2025 | | TLM1 | CO1 | T1,T2 | | | 5. | Bernoulli's DE | 1 | 25-01-2025 | | TLM1 | CO1 | T1,T2 | | | 6. | Exact DE | 1 | 28-01-2025 | | TLM1 | CO1 | T1,T2 | | | 7. | Exact DE | 1 | 29-01-2025 | | TLM1 | CO1 | T1,T2 | | | 8. | Non-exact DE
Type I | 1 | 30-01-2025 | | TLM1 | CO1 | T1,T2 | | | 9. | TUTORIAL - 1 | 1 | 31-01-2025 | | TLM3 | CO1 | T1,T2 | | | 10. | Non-exact DE
Type II | 1 | 01-02-2025 | | TLM1 | CO1 | T1,T2 | | | 11. | Non-exact DE
Type III | 1 | 04-02-2025 | | TLM1 | CO1 | T1,T2 | | | 12. | Non-exact DE
Type IV | 1 | 05-02-2025 | | TLM1 | CO1 | T1,T2 | | | 13. | Newton's Law of coolir | ng 1 | 06-02-2025 | | TLM1 | CO1 | T1,T2 | | | 14. | TUTORIAL - 2 | 1 | 07-02-2025 | | TLM3 | CO1 | T1,T2 | | | 15. | Law of natural growth a decay | and 1 | 11-02-2025 | | TLM1 | CO1 | T1,T2 | | | 16. | Electrical circuits | 1 | 12-02-2025 | | TLM1 | CO1 | T1,T2 | | | | f classes required to
lete UNIT-I | 14 | | | | No. of class | es taken: | | **UNIT-II: Linear Differential equations of higher order (Constant Coefficients)** | S.
No. | Topics to be covered | No. of
Classes | Tentative
Date of | Actual
Date of | Teaching
Learning | Learning
Outcome | Text
Book | HOD
Sign | |-----------|---|-------------------|----------------------|-------------------|----------------------|---------------------|--------------|-------------| | 140. | Topics to be covered | Required | | Completion | Methods | COs | followed | Weekly | | 17. | Introduction to UNIT II | 1 | 13-02-2025 | | TLM1 | CO1 | T1,T2 | | | 18. | Solving a homogeneous DE | 1 | 14-02-2025 | | TLM1 | CO1 | T1,T2 | | | 19. | Finding Particular Integral, P.I for e^{ax+b} | 1 | 15-02-2025 | | TLM1 | CO1 | T1,T2 | | | 20. | P.I for Cosbx, or sinbx | 1 | 18-02-2025 | | TLM1 | CO1 | T1,T2 | | | 21. | P.I for polynomial function | 1 | 19-02-2025 | | TLM1 | CO1 | T1,T2 | | | 22. | P.I for $e^{ax+b}v(x)$ | 1 | 20-02-2025 | | TLM1 | CO1 | T1,T2 | | | 23. | TUTORIAL - 3 | 1 | 21-02-2025 | | TLM3 | CO1 | T1,T2 | | | 24. | P.I for $x^k v(x)$ | 1 | 22-02-2025 | | TLM1 | CO1 | T1,T2 | | | 25. | Method of Variation of parameters | 1 | 25-02-2025 | | TLM1 | CO1 | T1,T2 | | | 26. | Method of Variation of parameters | 1 | 27-02-2025 | | TLM1 | CO1 | T1,T2 | | | |-----|---|---|------------|--|------|-----------------------|-------|--|--| | 27. | TUTORIAL - 4 | 1 | 28-02-2025 | | TLM3 | CO1 | T1,T2 | | | | 28. | Simultaneous linear equations | 1 | 01-03-2025 | | TLM1 | CO1 | T1,T2 | | | | 29. | L-C-R circuits | 1 | 04-03-2025 | | TLM1 | CO1 | T1,T2 | | | | 30. | Simple Harmonic motion | 1 | 05-03-2025 | | TLM1 | CO1 | T1,T2 | | | | 31. | TUTORIAL - 5 | 1 | 07-03-2025 | | TLM3 | CO1 | T1,T2 | | | | 32. | Revision | 1 | 06-03-2025 | | | | | | | | N | No. of classes required to complete UNIT-II | | 16 | | | No. of classes taken: | | | | ## I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) ## **UNIT-III: Partial Differential Equations** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 33. | Introduction to Unit III | 1 | 18-03-2025 | | TLM1 | CO2 | T1,T2 | | | | Formation of PDE by elimination of arbitrary constants | 1 | 19-03-2025 | | TLM1 | CO2 | T1,T2 | | | 35. | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-2025 | | TLM1 | CO2 | T1,T2 | | | 36. | Formation of PDE by elimination of arbitrary functions | 1 | 21-03-2025 | | TLM1 | CO2 | T1,T2 | | | 37. | Solving of PDE | 1 | 22-03-2025 | | TLM1 | CO2 | T1,T2 | | | 38. | Lagrange's Method | 1 | 25-03-2025 | | TLM1 | CO2 | T1,T2 | | | 39. | Lagrange's Method | 1 | 26-03-2025 | | TLM1 | CO2 | T1,T2 | | | 40. | Homogeneous Linear
PDE with constant
coefficients | 1 | 27-03-2025 | | TLM1 | CO2 | T1,T2 | | | 41. | TUTORIAL - 6 | 1 | 28-03-2025 | | TLM3 | CO2 | T1,T2 | | | 42. | PDE with constant coefficients | 1 | 29-03-2025 | | TLM1 | CO2 | T1,T2 | | | | Homogeneous Linear
PDE with constant
coefficients | 1 | 01-04-2025 | | TLM1 | CO2 | T1,T2 | | | | of classes required to complete UNIT-III | 11 | | | No. of classe | es taken: | | | ## **UNIT-IV: Vector Differentiation** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | |-----------|---------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|--| | 44. | Introduction to UNIT IV | 1 | 02-04-2025 | | TLM1 | CO3 | T1,T2 | · | | | 45. | Vector
Differentiation | 1 | 03-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 46. | TUTORIAL - 7 | 1 | 04-04-2025 | | TLM3 | CO3 | T1,T2 | | | | 47. | Gradient | 1 | 08-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 48. | Directional
Derivative | 1 | 09-04-2025 | | TLM1 | CO3 | T1,T2 | | | | 49. | Divergence | 1 | 10-04-2025 | TLM1 | CO3 | T1,T2 | | |---|--|----|------------|------|-------------|-------------|--| | 50. | TUTORIAL - 8 | 1 | 11-04-2025 | TLM3 | CO3 | T1,T2 | | | 51. | Curl | 1 | 15-04-2025 | TLM1 | CO3 | T1,T2 | | | 52. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 16-04-2025 | TLM1 | CO3 | T1,T2 | | | 53. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 17-04-2025 | TLM1 | CO3 | T1,T2 | | | 54. | Laplacian, second order operators | 1 | 19-04-2025 | TLM1 | CO3 | T1,T2 | | | 55. | Vector Identities | 1 | 22-04-2025 | TLM1 | CO3 | T1,T2 | | | 56. | Vector Identities | 1 | 23-04-2025 | TLM1 | CO3 | T1,T2 | | | 57. | TUTORIAL - 9 | 1 | 25-04-2025 | TLM3 | CO3 | T1,T2 | | | No. of classes required to complete UNIT-IV | | 14 | | | No. of clas | sses taken: | | **UNIT-V: Vector Integration** | | UNIT-V: Vector Integration | | | | | | | | | | | | |-----|---|----------|------------|------------|--------------|------------|----------|--------|--|--|--|--| | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | | | | | | | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | | | | | No. | | Required | Completion | Completion | Methods | COs | followed | Weekly | | | | | | 58. | Introduction to Unit-V | 1 | 24-04-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 59. | Line Integral | 1 | 26-04-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 60. | Circulation | 1 | 29-04-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 61. | Work done | 1 | 30-04-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 62. | Surface Integral, Flux | 1 | 01-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 63. | TUTORIAL - 10 | 1 | 02-05-2025 | | TLM3 | CO4 | T1,T2 | | | | | | | 64. | Volume Integral | 1 | 03-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 65. | Green's Theorem | 1 | 06-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 66. | Green's Theorem | 1 | 07-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 67. | Stoke's Thoerem | 1 | 08-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 68. | TUTORIAL - 11 | 1 | 09-05-2025 | | TLM3 | CO4 | T1,T2 | | | | | | | 69. | Divergence Theorem | 1 | 13-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 70. | Divergence Theorem | 1 | 14-05-2025 | | TLM1 | CO4 | T1,T2 | | | | | | | 71. | Revision | 1 | 15-05-2025 | | | | | | | | | | | No | o. of classes required to complete UNIT-V | 14 | | | No. of class | ses taken: | | | | | | | Content beyond the Syllabus | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | | |----------------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|--|--| | 72. | Non-homogeneous
Linear PDE with
constant
coefficients | 2 | 17-05-2025,
16-05-2025 | | TLM2 | CO2 | T1,T2 | | | | | No. of classes | | No. of classes taken: | | | | | | | | | | | II MID EXAMINATIONS (02-06-2025 TO 07-06-2025) | | | | | | | | | | | Teaching I | Teaching Learning Methods | | | | | | | | | | |------------|----------------------------------|------|---------------------------------|--|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | **PART-C**EVALUATION PROCESS (R23 Regulation): | Evaluation Task | Marks | |---|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination
(Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | | | PART-D PROGRAMME OUTCOMES (POs): | |-------|---| | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals | | 101 | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature and analyze complex engineering | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | | and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for | | | the public health and safety and the cultural, societal and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | professional engineering practice | | | Environment and sustainability : Understand the impact of the professional engineering solutions | | PO 7 | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable | | | development. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms | | 100 | of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in | | | diverse teams and in multidisciplinary settings. | | -0.10 | Communication : Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as being able to comprehend and write effective reports | | | and design documentation, make effective presentations and give and receive clear instructions. | | DO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering | | PO 11 | and management principles and apply these to one's own work, as a member and leader in a team, | | | to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in | | | independent and life-long learning in the broadest context of technological change. | | Dr. K. Jhansi Rani | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | |--------------------|--------------------|--------------------|-------------------| | Course Instructor | Course Coordinator | Module Coordinator | HOD | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 ### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ## **COURSE HANDOUT** ## PART-A Name of Course Instructor: Mr.P.SRIHARI Course Name & Code : BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01 L-T-P Structure : 3-0-0 Credits: 3 Program/Branch/Sem/Sec: B.Tech/CSE-F II SEM A.Y.: 2024-25 **Pre-requisites:** Physics **Course Educational Objective:** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | | PART-A | | | | | | | | | |-----|---|--|--|--|--|--|--|--|--| | CO1 | Extract electrical variables of AC & DC circuits usin fundamental laws. (Understand) | | | | | | | | | | CO2 | Understand the operation of electrical machines and measuring instruments. | | | | | | | | | | COZ | (Understand) | | | | | | | | | | CO3 | Classify various energy resources, safety measures and interpret electricity bill | | | | | | | | | | COS | generation in electrical sysems. | | | | | | | | | | | PART-B | | | | | | | | | | CO4 | Interpret the characteristics of various semiconductor devices. (Knowledge) | | | | | | | | | | CO5 | Infer the operation of rectifiers, amplifiers. (Understand) | | | | | | | | | | CO6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | | | | | | | | | ### **CO-PO Articulation Matrix:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO 1 | 3 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | CO 3 | 2 | 2 | _ | _ | _ | 3 | _ | _ | _ | _ | 2 | 2 | | CO 4 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 5 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 6 | 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | Where: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) ### Textbooks: - 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition - Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013 - Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition ## Reference Books: - 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. - 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 ## **PART-B** ## **COURSE DELIVERY PLAN (LESSON PLAN):** ### **UNIT-I: DC & AC CIRCUITS** | | 1-1. DC & AC CIRCUITS | | | | | | | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | 1. | Electrical circuit elements | 1 | 20-01-2025 | | TLM1 | | | | 2. | Ohm's Law and its limitations | 1 | 20-01-2025 | | TLM1 | | | | 3. | KCL & KVL | 1 | 23-01-2025 | | TLM1 | | | | 4. | series, parallel, series-parallel circuits | 1 | 24-01-2025 | | TLM1 | | | | 5. | Problems | 1 | 27-01-2025 | | TLM3 | | | | 6. | Super Position theorem | 1 | 27-01-2025 | | TLM1 | | | | 7. | Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference | 1 | 30-01-2025 | | TLM2 | | | | 8. | average value, RMS value, form factor, peak factor | 1 | 31-01-2025 | | TLM1 | | | | 9. | RLC Circuits | 1 | 03-02-2025 | | TLM1 | | | | 10. | Impedance, Power | 1 | 03-02-2025 | | TLM1 | | | | 11. | Problems | 1 | 06-02-2025 | | TLM3 | | | | No. o | No. of classes required to complete UNIT-I: 11 No. of classes taken: | | | | | | | ### **UNIT – II: MACHINES AND MEASURING INSTRUMENTS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | Construction, principle and operation of (i) DC Motor | 1 | 07-02-2025 | | TLM2 | | | 13. | Construction, principle and operation of (ii) DC Generator. | 1 | 10-02-2025 | | TLM2 | | | 14. | Single Phase Transformer | 1 | 10-02-2025 | | TLM2 | | | 15. | Three Phase Induction Motor | 1 | 13-02-2025 | | TLM2 | | | 16. | Alternators | 1 | 14-02-2025 | | TLM2 | | | 17. | Applications of electrical machines | 1 | 17-02-2025 | | TLM2 | | | 18. | Construction and working principle of Permanent Magnet Moving Coil (PMMC) | 1 | 17-02-2025 | | TLM2 | | | 19. | Moving Iron (MI) Instruments | 1 | 20-02-2025 | | TLM2 | | | 20. | Wheat Stone bridge | 1 | 21-02-2025 | | TLM2 | | | 21. | Problems | 1 | 24-02-2025 | | TLM3 | | ### UNIT – III: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 22. | Conventional and non-conventional energy
resources | 1 | 24-02-2025 | | TLM2 | | | 23. | Hydel & Nuclear power generation | 1 | 27-02-2025 | | TLM2 | | | 24. | Solar & Wind power plants | 1 | 28-02-2025 | | TLM2 | | | 25. | Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1 | 03-03-2025 | | TLM2 | | | 26. | Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, | 1 | 03-03-2025 | | TLM2 | | | 27. | calculation of electricity bill for domestic consumers. | 1 | 06-03-2025 | | TLM2 | | | 28. | Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. | 1 | 06-03-2025 | | TLM2 | | | 29. | Personal safety measures: Electric Shock | 1 | 07-03-2025 | | TLM2 | | | 30. | Earthing and its types& Safety Precautions | 1 | 07-03-2025 | | TLM2 | | | No. o | f classes required to complete UNIT-III: 9 | No. of classes | taken: | | | | ### **UNIT – IV: SEMICONDUCTOR DEVICES** | | TV. SEMICONDUCTOR DEVICES | | | | | | | | |-----------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|--|--| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | 31. | Introduction | 1 | 17-03-2025 | | TLM1 | | | | | 32. | Evolution of electronics – Vacuum tubes to nano electronics | 1 | 17-03-2025 | | TLM2 | | | | | 33. | PN Junction diode | 1 | 20-03-2025 | | TLM2 | | | | | 34. | Characteristics of PN Junction Diode | 1 | 21-03-2025 | | TLM2 | | | | | 35. | Zener Effect — Zener Diode and its Characteristics | 1 | 24-03-2025 | | TLM2 | | | | | 36. | Bipolar Junction Transistor | 1 | 24-03-2025 | | TLM2 | | | | | 37. | CB Configuration | 1 | 27-03-2025 | | TLM2 | | | | | 38. | CE Configuration | 1 | 28-03-2025 | | TLM2 | | | | | 39. | CC Configuration | 1 | 31-03-2025 | | TLM2 | | | | | 40. | Elementary Treatment of Small Signal CE Amplifier. | 1 | 31-03-2025 | | TLM2 | | | | | No. o | f classes required to complete UNIT-IV: 10 | | | No. of classes | taken: | | | | ### UNIT - V: BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION | | VI BILLIE ELLECTION OF CHICCHES IN 12 IN STREET, LITTLES IN | | | | | | | | |--------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|--| | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | 41. | Introduction | 1 | 03-04-2025 | | TLM1 | | | | | 42. | Block diagram RPS | 1 | 04-04-2025 | | TLM1 | | | | | 43. | working of a full wave bridge rectifier | 1 | 07-04-2025 | | TLM1 | | | | | 44. | capacitor filter | 1 | 07-04-2025 | | TLM1 | | | | | 45. | working of simple zener voltage regulator | 1 | 10-04-2025 | | TLM1 | | | | | 46. | Block diagram of Public
Address system | 1 | 17-04-2025 | | TLM1 | | | | | 47. | Circuit diagram and working of RC coupled amplifier | 1 | 21-04-2025 | | TLM1 | | | | | 48. | Frequency response. | 1 | 21-04-2025 | | TLM1 | | |--------|---|---|------------|----------------|--------|--| | 49. | Electronic Instrumentation | 1 | 24-04-2025 | | TLM1 | | | 50. | Block diagram of an electronic instrumentation system | 1 | 25-04-2025 | | TLM1 | | | No. of | classes required to complete UNIT-V: 10 | | | No. of classes | taken: | | ## **UNIT – VI: DIGITAL ELECTRONICS** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | |----------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------|--|--|--|--| | 51. | Number Systems | 1 | 28-04-2025 | | TLM2 | | | | | | | 52. | Logic gates | 1 | 01-05-2025 | | TLM1 | | | | | | | 53. | BCD & XS-3 code | 1 | 02-05-2025 | | TLM2 | | | | | | | 54. | Gray and Hamming code | 1 | 05-05-2025 | | TLM1 | | | | | | | 55. | Basic theorems & Boolean
Algebra | 1 | 05-05-2025 | | TLM2 | | | | | | | 56. | Logic diagrams using logic gates only | 1 | 8-05-2025 | | TLM2 | | | | | | | 57. | Combinational Vs Sequential circuits | 1 | 09-05-2025 | | TLM1 | | | | | | | 58. | Half & Full adder | 1 | 12-05-2025 | | TLM1 | | | | | | | 59. | Introduction to sequential circuits, Registers & counters | 1 | 12-05-2025 | | TLM1 | | | | | | | 60. | Flip flops- SR & D, Flip flops-
JK & T | 1 | 15-05-2025 | | TLM2 | | | | | | | 61. | Content Beyond the Syllabus: Op-Amp and Applications | 1 | 16-05-2025 | | TLM2 | | | | | | | No. of c | No. of classes required to complete UNIT-V: 11 No. of classes taken: | | | | | | | | | | | Teaching L | Teaching Learning Methods | | | | | | | | | |------------|---------------------------|------|---------------------------------|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | ## PART-C ### **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II, III) | A1=5 | | I-Descriptive Examination (Units-I, II, III) | M1=15 | | I-Quiz Examination (Units-I, II, III) | Q1=10 | | Assignment-II (Units-IV, V, VI) | A2=5 | | II- Descriptive Examination (Units-IV, V, VI) | M2=15 | | II-Quiz Examination (Units-IV, V, VI) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | | CAMINE OUTCOMES (1 Os). | |-------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and | | 101 | an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |------------------------|-------------------|----------------------|---------------------------|---------------------------| | Name of the
Faculty | Mr.P.SRIHARI | Dr.A.V.G.A.MARTHANDA | Dr.G.NAGESWARA
RAO | Dr.J.SIVA VARA
PRASAD | | Signature | | | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK,
Kakinada ### **DEPARTMENT OF MECHANICAL ENGINEERING** L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. ## COURSE HANDOUT PART-A Name of Course Instructor: Dr. V. Dhana Raju, Associate Professor, **Course Name & Code** : Engineering Graphics – 23ME01 L-T-P Structure : 1-0-4 Credits: 3 Program/Sem/Sec : B.Tech/I Sem/ CSE-F Section A.Y.: 2024-25 **PREREQUISITE** : Engineering Physics, Mathematics **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. ### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the principles of engineering drawing, including engineering curves, scales, | |------------|---| | | orthographic and isometric projections. (Understand) | | CO2 | Draw and interpret orthographic projections of points, lines, planes and solids in front, top | | COZ | and side views. (Apply) | | con | Understand and draw projection of solids in various positions in first quadrant. (Apply) | | CO3 | | | CO4 | Able to draw the development of surfaces of simple objects (Apply) | | CO5 | Prepare isometric and orthographic sections of simple solids. (Apply) | | 403 | | ### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | (0011011111111111111111111111111111111 | | | | | | | | | | | | | | | | |---|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|------|--------|------|------|------| | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO2 | 3 | 3 | 1 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO3 | 3 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | CO4 | 3 | 2 | 3 | 2 | 3 | | | | | | | 3 | | 1 | 3 | | CO5 | 2 | 3 | 3 | 2 | 1 | | | | | | | 3 | | 1 | 3 | | | | 1 | - Low | | | 2 | -Medi | ium | | | 3 | - High | | | | ### **Textbook:** 1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 2016. ### **Reference Books:** - 1. Engineering Drawing, K.L. Narayana and P. Kannaiah, Tata McGraw Hill, 2013. - 2. Engineering Drawing, M.B.Shah and B.C. Rana, Pearson Education Inc, 2009. - 3. Engineering Drawing with an Introduction to AutoCAD, DhananjayJolhe, Tata McGraw Hill, 2017. ## PART-B ## **COURSE DELIVERY PLAN (LESSON PLAN):** ## UNIT-I: INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, SCALES, CURVES, ORTHOGRAPHIC PROJECTIONS | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | | UNIT I: INTRODUCTION: | 1 | 20 04 2025 | | | | | 1. | Introduction to Engineering | | 20-01-2025 | | TLM2 | | | | Graphics, CEOs, COs, PEOs & POs | | | | | | | | Engineering Graphicsand their significance, Drawing Instruments and | 2 | 20-01-2025 | | TLM1/ | | | 2. | their use, Scales: Plain scales, diagonal scales and vernier scales. | | | | TLM2 | | | 3. | Curves: Construction of ellipse, parabola | 2 | 23-01-2025 | | TLM1 | | | | and hyperbola by general method | | 05 04 0005 | | | | | 4. | Construction of parabola | 3 | 27-01-2025 | | TLM3 | | | | and hyperbola by general method, practice | | | | | | | 5. | Cycloid, Epicycloid, Hypocycloid | 2 | 30-01-205 | | TLM1 | | | 6. | Practice, Involutes | 3 | 03-02-2025 | | TLM3 | | | 7. | Orthographic Projections: Reference plane | 2 | 06-02-2025 | | TLM1 | | | 8. | Projections of a point situated in any one of the four quadrants. | 3 | 10-02-2025 | | TLM3 | | | 9. | Projections of a point, practice | 2 | 13-02-2025 | | TLM1 | | | | of classes required to complete UNIT actice: 12) | ecture:8, | No. of clast (including | | 1: | | ## UNIT-II: PROJECTIONS OF STRAIGHT LINES & PROJECTIONS OF PLANES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 10 | Introduction to Projections, First and third angle projection methods Projections of straight lines parallel to both reference planes | 3 | 17-02-2025 | | TLM1 | | | 11. | Projections of straight lines perpendicular to one reference plane and parallel to other reference plane | 2 | 20-02-2025 | | TLM1 | | | 12. | Projections of straight lines inclined to
one reference plane and parallel to the
other reference plane, practice | 3 | 24-02-2025 | | TLM1 | | | 13. | Projections of straight lines inclined to one reference plane and parallel to the other reference plane | 2 | 27-02-2025 | | TLM3 | | | 14. | Projections of Planes: Regular planes Perpendicular to both reference planes | 3 | 03-03-2025 | | TLM1 | | | | . of classes required to complete UNIT
actice:09) | '-II: 15 (Le | ecture:06 | No. of classe
(including F | | | |----|--|--------------|------------|-------------------------------|------|--| | 15 | parallel to one reference plane and inclined to the other reference plane; Plane inclined to both the reference planes | 2 | 06-03-2025 | | TLM3 | | ## **UNIT-III: PROJECTIONS OF SOLIDS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Da
Completio | | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |-----------|---|-------------------------------|---------------------------|--|---------------------------------|---------------------------------|-----------------------|--| | 16. | UNIT III: PROJECTIONS OF SOLIDS: Introduction, Types of solids: Polyhedra and Solids of revolution | 3 | 17-03-2025 | | | TLM1 | | | | 17 | Projections of solids in simple positions: Axis perpendicular to horizontal plane | 2 | 20-03-2025 | | | TLM3 | | | | 18. | Axis perpendicular to vertical plane and Axis parallel to both the reference planes | 3 | 24-03-2025 | | | TLM3 | | | | 19. | Projection of Solids with axis inclined to one reference plane and parallel to another plane | 2 | 27-03-2025 | | | TLM1 | | | | | No. of classes required to complete UNIT-III: 10 (Lecture: No. of classes taken: (including Practice) | | | | | | | | ## **UNIT-IV: SECTIONS OF SOLIDS & DEVELOPMENT OF SURFACES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | ActualDate
of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|--------------------------------|---------------------------------|-----------------------| | 20 | Perpendicular and inclined section planes | 3 | 31-03-2025 | | TLM1 | | | 21 | Practice | 2 | 03-04-2025 | | TLM3 | | | 22 | Sectional views and True shape of section | 3 | 07-04-2025 | | TLM1 | | | 23 | Sections of solids in simple position only | 2 | 10-04-2025 | | TLM1 | | | 24 | Practice | 3 | 14-04-2025 | | TLM3 | | | | Development of Surfaces: Methods of Development, Parallel line development and radial line development | 2 | 17-02-2025 | | TLM2 | | | 26 | Development of a cube, prism, cylinder, | 3 | 21-04-2025 | | TLM3 | | | 27 | Development of a pyramid and cone | 24-04-2025 | | TLM1 | | | | | of classes required to complete UNIT actice: 12) | No. of class (including | | | | | | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 28. | Introduction to isometric & orthographic views | 3 | 28-04-2025 | | TLM1 | | | 29. | Practice | 2 | 01-05-2025 | | TLM1 | | | 30. | Conversion of isometric views to orthographic views | 3 | 05-05-2025 | | TLM3 | | | 31. | Conversion of orthographic views to isometric views | 2 | 08-05-2025 | | TLM1 | | | 32. | Practice | 3 | 12-05-2025 | | TLM3 | | | 33. | Computer graphics: Creating 2D&3D drawings of objects including PCB and Transformations using Auto CAD | 2 | 15-05-2025 | | TLM2 | | | | of classes required to complete UNIT tice: 09) | No. of class | es taken: | 1 | | | | Teaching | Teaching Learning Methods | | | | | | | | | | |----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | ### PART-C ## **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks |
---|-----------------| | I-Descriptive Examination (Units-I, II) | M1=15 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | Day to Day Evaluation | 15 | | Mid Marks =80% of Max (M1,M2)+ 20% of Min ((M1, M2) + Day to Day Evaluation | M = 30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ### PART-D ## PROGRAMME OUTCOMES (POs): ## **Engineering Graduates will be able to:** | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions: Design solutions for complex engineering problems and designsystem components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with anunderstanding of the limitations. | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change. | | PSO 1 | To apply the principles of thermal sciences to design and develop various thermal systems. | |-------|---| | PSO 2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | PSO 3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | Title | Course
Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|----------------------|-----------------------|-----------------------|-----------------------------| | Name of the Faculty | Dr.V.Dhana Raju | Mr.J.Subba
Reddy | Mr.J.Subba Reddy | Dr. M B S Sreekara
Reddy | | Signature | | · | | | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 ### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** ### **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Mr. R. Ashok **Course Name & Code** : DATA STRUCTURES & 23CS02 PREREQUISITE: Programming for Problem Solving Using C-20CS01 ### **COURSE EDUCATIONAL OBJECTIVES (CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the role of linear and nonlinear data structures in organizing and | |------------|--| | 001 | accessing data (Understand-L2) | | CO2 | Implement abstract data type (ADT) and data structures for given application. | | COZ | (Apply-L3) | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | COS | (Apply-L3) | | CO4 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | CU4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | ### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 | PSO1 | PSO2 | PSO3 | |----------------|-----|-----|-----|-----------|-----|-----|-----|-----|-----------------|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | | | | | | | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 3 | 3 | | 1 - Low | | | | 2 -Medium | | | | | 3 - High | | | | | | | ### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 ### **REFERENCE BOOKS:** - **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick ## PART-B ## **COURSE DELIVERY PLAN (LESSON PLAN):** ## **UNIT-I: Introduction to Linear Data Structures** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--| | 1. | Introduction and Discussion of CO's | 1 | 20-01-2025 | | TLM1 | | | | | | | 2. | Definition and Importance of Linear Data Structures | 1 | 21-01-2025 | | TLM1 | | | | | | | 3. | Abstract Data Types and Implementation | 1 | 22-01-2025 | | TLM1 | | | | | | | 4. | Overview of time and space complexity | 1 | 24-01-2025 | | TLM1 | | | | | | | 5. | Examples – Time Complexity,
Space Complexity | 2 | 27-01-2025
28-01-2025 | | TLM1 | | | | | | | 6. | Revise Arrays-Basic Operations | 1 | 29-01-2025 | | TLM1 | | | | | | | 7. | Searching Techniques: Linear
Search | 1 | 31-01-2025 | | TLM1 | | | | | | | 8. | Binary Search & Analysis | 2 | 03-02-2025
04-02-2025 | | TLM1 | | | | | | | 9. | Bubble Sort & Analysis | 1 | 05-02-2025 | | TLM1 | | | | | | | 10. | Insertion Sort & Analysis | 1 | 07-02-2025 | | TLM1 | | | | | | | 11. | Selection Sort & Analysis | 1 | 10-02-2205 | | TLM1 | | | | | | | No. o | No. of classes required to complete UNIT-I: 13 No. of classes taken: | | | | | | | | | | ## **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |--|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--| | 12. | List Implementation using Arrays and Array Disadvantages | 1 |
11-02-2025 | | TLM1 | | | | 13. | Linked List Representation | 1 | 12-02-2025 | | TLM1 | | | | 14. | Sing Linked List : Operations | 2 | 14-02-2025
17-02-2025 | | TLM1 | | | | 15. | Double Linked List : Operations | 2 | 18-02-2025
19-02-2025 | | TLM1 | | | | 16. | Circular Single Linked List | 1 | 21-0202025 | | TLM1 | | | | 17. | Circular Double Linked List | 2 | 24-02-2025
25-02-2025 | | TLM1 | | | | 18. | Comparing Arrays and Linked List | 1 | 28-02-2025 | | TLM1 | | | | 19. | Applications of Linked Lists:
Polynomial Representation | 1 | 03-03-2025 | | TLM1 | | | | 20. | Polynomial Addition | 1 | 04-03-2025 | | TLM1 | | | | No. of classes required to complete UNIT-II: 12 No. of classes takens | | | | | | | | ### **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completio
n | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|-------------------------------------|-------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------| | 21. | Introduction to Stacks : Properties | 1 | 05-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 07-03-2025 | | TLM1 | | | | No. of classes required to complete UNIT-III: 11 No. of classes taken: | | | | | | | | |-----|--|---|--------------------------|------|--|--|--|--| | 29. | Backtracking | 1 | 01-04-2025 | TLM1 | | | | | | 28. | Reversing a List | 1 | 28-03-2025 | TLM1 | | | | | | 27. | Checking Balanced Parenthesis | 1 | 26-03-2025 | TLM1 | | | | | | 26. | Infix to Postfix Conversion | 2 | 24-03-2025
25-03-2025 | TLM1 | | | | | | 25. | Expressions: Expression evaluation | 2 | 19-03-2025
21-03-2025 | TLM1 | | | | | | 24. | Stacks using Linked List | 1 | 18-03-2025 | TLM1 | | | | | | 23. | Implementation of stacks using arrays | 1 | 17-03-2025 | TLM1 | | | | | ## **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | | | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|--|--| | 30. | Introduction to queues: properties and operations, | 1 | 02-04-2025 | | TLM1 | | | | | | | 31. | Implementing queues using arrays | 1 | 02-04-2025 | | TLM1 | | | | | | | 32. | Implementing queues using Linked
List | 1 | 04-04-2025 | | TLM1 | | | | | | | 33. | Applications of Queue: Scheduling | 2 | 07-04-2025
08-04-2025 | | TLM1 | | | | | | | 34. | Breadth First Search | 2 | 09-04-2025
11-04-2025 | | TLM1 | | | | | | | 35. | Circular Queue | 2 | 15-04-2025
16-04-2025 | | TLM1 | | | | | | | 36. | Double ended queue | 2 | 21-04-2025
22-04-2025 | | TLM1 | | | | | | | 37. | Applications of Deque | 1 | 23-04-2025 | | TLM1 | | | | | | | No. | No. of classes required to complete UNIT-IV: 12 No. of classes taken: | | | | | | | | | | ## UNIT-V: TREES & HASHING TECHNQIUES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--| | 38. | Introduction to Trees, | 1 | 25-04-2025 | | TLM1 | | | | | 39. | Representation of Trees | 1 | 28-04-2025 | | TLM1 | | | | | 40. | Tree Traversals | 2 | 29-04-2025
30-04-2025 | | TLM1 | | | | | 41. | Binary Search Trees-
Operations | 2 | 02-05-2025
05-05-2025 | | TLM1 | | | | | 42. | Hashing Introduction, | 1 | 06-05-2025 | | TLM1 | | | | | 43. | Hash Functions | 1 | 07-05-2025
09-05-2025 | | TLM1 | | | | | 44. | Collison Resolution Techniques: Separate Chaining | 2 | 12-05-2025
13-05-2025 | | TLM1 | | | | | 45. | Open Addressing: Linear
Probing, Quadratic Probing | 1 | 14-05-2025 | | TLM1 | | | | | 46. | Double Hashing, Rehashing | 1 | 16-05-2025 | | TLM1 | | | | | No. o | No. of classes required to complete UNIT-V: 12 No. of classes taken: | | | | | | | | **Content Beyond Syllabus** | S. No. | Topics to be
covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Method
s | Learnin
g
Outcom
e
COs | Text
Book
followe
d | HOD
Sign
Weekl
y | |----------------|------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---|------------------------------------|------------------------------|---------------------------| | 1. | Evaluation of
Prefix Expression | 1 | 24-03-2025 | | | | | | | 2. | Towers of Hanoi | 1 | 07-04-2025 | | | | | | | 3. | Extendable
Hashing | 1 | 17-05-2025 | | | | | | | No. of classes | | 3 | | No. of classes taken: | | | | | | | I | I MID EXAM | INATIONS (19- | 05-2025 T | 0 24-05-20 | 24) | | | | Teaching | Teaching Learning Methods | | | | | | | | | | |----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | | | | ## PART-C ## **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III ,IV & V) | A2=5 | | II- Descriptive Examination (Unit-III ,IV & V) | M2=15 | | II-Quiz Examination (Unit-III ,IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 2 engineeri natural so Design/o design sy considera Conduct methods informati PO 4 PO 5 PO 6 PO 7 PO 7 PO 7 PO 8 PO 9 PO 9 PO 9 PO 10 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 10 PO 11 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 10 PO 10 PO 10 PO 11 PO 11 | | |--|--| | PO 2 engineeri natural so Design/o design sy considera considera Conduct methods informati Modern engineeri an unders PO 5 Environt Solutions sustainab PO 8 PO 9 Individu diverse te Commun engineeri effective clear inst PO 11 engineeri effective engineeri effective engineeri effective engineeri effective engineeri | ntals, and an engineering specialization to the solution of complex engineering problems. | | PO 3 PO 3 PO 4 PO 4 PO 5 PO 6 PO 7 PO 7 PO 8 PO 9 PO 10 PO 10 PO 10 PO 11 PO 5 PO 11 PO 5 PO 11 PO 6 PO 10 11 PO 10 PO 11 PO 10 PO 10 PO 11 PO 10 PO 10 PO 11 | analysis: Identify, formulate, review research literature, and analyze complex | | PO 3 Design/o design s considera considera Conduct methods informati Modern engineeri an unders The engi societal, l professio Environ PO 7 solutions sustainab PO 8 PO 9 Individu diverse te
Commun engineeri effective clear inst Project engineeri engineeri effective clear inst | ng problems reaching substantiated conclusions using first principles of mathematics, | | PO 3 design syconsidera considera considera Conduct methods informati Modern PO 5 engineeri an unders The engineris an unders PO 6 Fo 5 Environt Solutions sustainab PO 8 Fo 6 Fo 9 Individu diverse to commune engineeri effective clear inst PO 11 PO 11 design syconsidera Enductions Information Authority Authority Commune engineeri effective clear inst Project engineeri engineeri engineeri engineeri engineeri | riences, and engineering sciences. | | PO 3 considera considera considera Conduct methods informati Modern engineeri an unders The engi societal, i professio Environt solutions sustainab PO 8 PO 9 Individu diverse te Commun engineeri effective clear inst Project engineeri engineeri effective clear inst | evelopment of solutions : Design solutions for complex engineering problems and | | PO 4 Considera Conduct methods informati Modern engineeri an unders The engi societal, l professio Environt solutions sustainab PO 8 Ethics: A of the eng Individu diverse te Commun engineeri effective clear inst Project engineeri engineeri engineeri engineeri engineeri engineeri engineeri engineeri | ystem components or processes that meet the specified needs with appropriate | | PO 4 methods informati Modern engineeri an unders Societal, I profession Environt solutions sustainab PO 7 Ethics: A of the engineeri effective clear inst PO 11 clear inst | tion for the public health and safety, and the cultural, societal, and environmental | | PO 4 methods informating Modern engineering an understand understand PO 6 societal, head profession Environment solutions sustainable PO 8 Ethics: A of the engineering effective clear instand PO 10 engineering effective clear instand Project engineering engineering engineering engineering engineering effective clear instand Project engineering engineer | | | PO 5 PO 6 PO 7 PO 8 PO 9 PO 9 PO 10 PO 10 PO 11 PO 11 PO 5 PO 6 PO 11 PO 5 PO 6 PO 11 PO 6 PO 6 PO 6 PO 6 PO 7 PO 7 PO 7 PO 8 PO 9 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 11 | investigations of complex problems: Use research-based knowledge and research | | PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 10 PO 10 PO 11 PO 5 PO 5 PO 11 PO 5 PO 6 PO 11 PO 6 PO 10 PO 6 PO 10 PO 6 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 10 PO 10 PO 11 PO 11 PO 11 PO 10 PO 10 PO 11 PO 11 PO 11 PO 10 PO 10 PO 11 PO 11 | including design of experiments, analysis and interpretation of data, and synthesis of the | | PO 5 engineeri an unders The engi societal, l professio Environt solutions sustainab PO 8 PO 9 Individu diverse te Commun engineeri effective clear inst PO 11 engineeri engineeri engineeri engineeri effective clear inst | on to provide valid conclusions. | | PO 6 PO 7 PO 8 PO 9 PO 10 PO 10 PO 11 PO 11 PO 6 PO 6 PO 6 PO 10 PO 7 PO 6 PO 6 PO 6 PO 7 PO 7 PO 7 PO 8 PO 9 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 11 | tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 6 PO 7 PO 7 PO 8 PO 9 PO 10 PO 10 PO 10 PO 11 PO 6 PO 6 PO 10 PO 6 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 6 PO 6 PO 6 PO 11 PO 6 PO 6 PO 6 PO 7 PO 7 Solutions Sustainab Poit Character Solutions Sustainab Poit Character Solutions Sustainab Poit Character Po 11 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 | ng and IT tools including prediction and modeling to complex engineering activities with | | PO 6 societal, in profession Environt Solutions sustainable PO 8 PO 9 For a solutions Sustainable Ethics: A of the engular individual diverse to the engular engineering effective clear instered in the project engineering engineering effective clear instered in the project engineering engineeri | standing of the limitations. | | PO 10 PO 11 PO 7 PO 11 PO 9 PO 10 PO 11 PO 15 PO 16 PO 17 PO 17 PO 17 PO 17 PO 18 PO 18 PO 18 PO 19 PO 19 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 PO 10 PO 11 | neer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 7 solutions sustainable Ethics: A of the engineering effective clear inst PO 11 engineering engineering effective engineering engineering engineering effective clear inst Project engineering engineering engineering effective engineering engine | ealth, safety, legal and cultural issues and the consequent responsibilities relevant to the | | PO 7 solutions sustainable sus | nal engineering practice. | | PO 8 PO 9 PO 10 PO 11 PO 11 Sustainable Ethics: A of the eng Individu diverse to Commun engineeri effective clear inst Project engineeri engineeri | nent and sustainability: Understand the impact of the professional engineering | | PO 8 Commune engineering effective clear inst engineering engineering engineering effective clear inst engineering engineerin | in societal and environmental contexts, and demonstrate the knowledge of, and need for | | PO 9 Individual diverse to Communication engineering effective clear instructions PO 11 engineering engineering engineering effective engineering engi | oply ethical principles and commit to professional ethics and responsibilities and norms | | PO 9 Individudiverse to Commune engineeri effective clear inst Project PO 11 Individudiverse to Commune engineeri effective clear inst Project engineeri | | | PO 10 diverse to Commune engineeri effective clear inst Project engineeri | al and team work: Function effectively as an individual, and as a member or leader in | | PO 10 Communengineeri effective clear inst PO 11 Poject engineeri | ams, and in multidisciplinary settings. | | PO 10 engineeri effective clear inst Project PO 11 engineeri engineeri | ication: Communicate effectively on complex engineering activities with the | | effective clear inst Project PO 11 engineeri | ng community and with society at large, such as, being able to comprehend and write | | clear inst Project PO 11 engineeri | reports and design documentation, make effective presentations, and give and receive | | PO 11 Project engineeri | | | PO 11 engineeri | management and finance: Demonstrate knowledge and understanding of the | | | ng and management principles and apply these to one's own work, as a member and | | l leader in | a team, to manage projects and in multidisciplinary environments. | | | learning: Recognize the need for, and have the preparation and ability to engage in | | | ent and life-long learning in the broadest context of technological change | | i U 12 maepena | | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | |-------|---| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|-------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. R. Ashok | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D.Veeraiah | | Signature | | | | | # STANK STANK ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) ### Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India ### **COURSE HANDOUT** ### Part-A **PROGRAM** : B.Tech., II-Sem., (CSM) / A **ACADEMIC YEAR** : 2024-2025 **COURSE NAME & CODE** : ENGINEERING PHYSICS LAB L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1 COURSE INSTRUCTOR : Dr N Aruna / Dr.N.T.Sarma COURSE COORDINATOR : Dr S Yusub ### **Course Objectives:** To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. #### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). ### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | | Engineering Physics Lab | | | | | | | | | | | |------------------------|-------------------------|---------------------------------|---|---|--|--|--|---|---|--|---| | COURSE | | | | | | | | | | | | | DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | Course Outcomes | | Programme Outcomes | | | | | | | | | | | PO's
→ | 1 | 1 2 3 4 5 6 7 8 9 10 11 12 | | | | | | | | | | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | 1 | | CO2. | 3 | 3 | 2 | 1 | | | 1 | 1 | | | 1 | |------------------|---|-----|------|-------|-------|-------|-----|------|--------|----------|----| | CO3. | 3 | 3 | 2 | 1 | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | 1 | 1 | | | 1 | | 1 = slight (Low) |) | 2 = | Mode | erate | (Med | lium) | 3 = | Subs | tantia | l (Higl | h) | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). ### **BOS APPROVED TEXT BOOKS:** 1. Lab Manual Prepared by the LBRCE. Part-B COURSE DELIVERY PLAN
(LESSON PLAN): Section- AI&DS | S.No. | Topics to be covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Methods | HOD
Sign
Weekly | |-------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|---|-----------------------| | 1. | Introduction | 3 | 22-01-2025 | | TLM4 | | | 2. | Demonstration | 3 | 29-01-2025 | | TLM4 | | | 3. | Experiment 1 | | 05-02-2025 | | TLM4 | | | 4. | Experiment 2 | 3 | 12-02-2025 | | TLM4 | | | 5. | Experiment 3 | 3 | 19-02-2025 | | TLM4 | | | 6. | Experiment 4 | 3 | 05-03-2025 | | TLM4 | | | 7. | Experiment 5 | 3 | 12-03-2025 | | TLM4 | | | 8. | MID -1 | 3 | 19-03-2025 | | TLM4 | | | 9. | Demonstration | 3 | 26-03-2025 | | TLM4 | | | 10. | Experiment 6 | 3 | 02-04-2025 | | TLM4 | | | 11. | Experiment 7 | 3 | 09-04-2025 | | TLM4 | | | 12. | Experiment 8 | 3 | 16-04-2025 | | TLM4 | | | 13. | Experiment 9 | 3 | 23-04-2025 | | TLM4 | | | 14. | Experiment 10 | 3 | 30-04-2025 | | TLM4 | | | 15. | Internal Exam | 3 | 07-05-2025 | | TLM4 | | | 16. | Internal Exam | 3 | 14-05-2025 | | TLM4 | | | | No. of classes | required t
Syllabus: | o complete | 48 | | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|---------------------------------|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | ### **EVALUATION PROCESS:** | Evaluation Task | | |--|-----------------| | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) - 1.To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education. - 2. To Function professionally in the rapidly changing world with advances in technology. - 3. To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices. - 4. To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner. ### **PROGRAM OUTCOMES:** Engineering Graduates will be able to: - (1). **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2). **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3). **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - (4). Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - (5). **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. - (6). The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12).Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ### **PROGRAM SPECIFIC OUTCOMES (PSOs):** Graduate of the ECE will have the ability to - (1)Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry. - (2) Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools - (3) Apply the Signal processing techniques to synthesize and realize the issues related to real time applications. | Dr N Aruna /
Dr.N.T.Sarma | Dr. S. Yusub | Dr. S. Yusub | Dr A. Rami Reddy | |------------------------------|--------------------|--------------------|------------------| | Course Instructor | Course Coordinator | Module Coordinator | HOD | ## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 ### **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING** ## **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Mr.P.SRIHARI **Course Name & Code** : ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP & 23EE51 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/CSE-F, II SEM A.Y.: 2024-25 **Course Educational Objective:** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | |------------|---| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | CO6 | Demonstrate the working of various logic gates using ICs. (Understand) | ### **COURSE ARTICULATION MATRIX** (Correlation between COs & POs): | | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | PO 11 | PO 12 | |-----|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|-------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | 1 - Low 2 - Medium 3 - High | | | | | | | | | | | | $\underline{PART\text{-}B}$ COURSE DELIVERY PLAN (LESSON PLAN): ELECTRICAL ENGINEERING | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative
Date of
Completio
n | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |--------|---|-------------------------------|--|---------------------------------|---------------------------------|-----------------------|--| | 1. | Introduction to BEEE Lab,
Importance of Electrical Lab, its
Objectives and Outcomes,
BASIC MEASURING METERS,
SAFETY PRECUATIONS & Other
suggestions. | 3 | 24-01-2025 | | TLM4 | | | | 2. | Verification of KCL and KVL | 3 | 31-01-2025 | | TLM4 | | | | 3. | Verification of Superposition theorem | 3 | 07-02-2025 | | TLM4 | | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 07-02-2025 | | TLM4 | | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 14-02-2025 | | TLM4 | | | | 6. | Measurement of Power and
Power factor using Single-phase
wattmeter | 3 | 21-02-2025 | | TLM4 | | | | 7. | Calculation of Electrical Energy for Domestic Premises | 3 | 28-02-2025 | | TLM4 | | | | 8. | Internal Lab Examination (Electrical) | 3 | 07-03-2025 | | TLM4 | | | | No. of | No. of classes taken: | | | | | | | | Teaching Learning Methods | | | | | | |---------------------------|----------------|------|------------------------------------|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | ## PART-C ## EVALUATION PROCESS (R20 Regulation): | Evaluation Task | Expt. no's | Marks |
--|-----------------|--------| | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | Date: 20-01-2025 | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------------|-------------------|--------------------------|-----------------------|---------------------------| | Name of
the
Faculty | Mr.P.SRIHARI | Dr.
A.V.G.A.MARTHANDA | Dr.G.NAGESWARA
RAO | Dr.J.S.V.PRASAD | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) #### Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230 #### DEPARTMENT OF MECHANICAL ENGINEERING #### **COURSE HANDOUT** PROGRAM: B.Tech. II-Sem, CSE-F SECTION **ACADEMIC YEAR** : 2024-25 **COURSE NAME & CODE**: Engineering Workshop, 20ME51 L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1.5 **COURSE INSTRUCTOR** : Mr. Mallikarjuna Rao Dandu, Sr. Assistant Professor, Dr. L. Prabhu, Associate Professor **COURSE COORDINATOR**: Seelam Srinivasa Reddy, Assoc. Professor PRE-REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability #### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. #### **COURSE OUTCOMES (CO)** | CO1 | Design and model different prototypes in the carpentry trade such as Cross lap joint, Dove tail joint. | |-----|--| | COI | Cross lap joint, Dove tail joint. | | CO2 | Fabricate and model various basic prototypes in the trade of fitting such | | CO2 | as Straight fit, V-fit. | | CO3 | Produce various basic prototypes in the trade of Tin smithy such as | | 003 | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | #### **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):** | COs | PO PSO | PSO | PSO | |------------|----|----|----|----|----|----|----|----|----|----|----|----|------------|-----|------------| | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | **Note:** Enter Correlation Levels **1**or **2** or **3**. If there is no correlation, **put"1** Slight (Low), **2**-Moderate (Medium), **3**-Substantial (High). #### **REFERENCE:** | R1 | Lab Manual | |----|------------| COURSE DELIVERY PLAN (LESSON PLAN): Section-A | S.
No. | Experiment to be conducted | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Reference | HOD Sign
Weekly | |-----------|----------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------|--------------------| | 1. | Induction | 3 | 21-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 28-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 04-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 11-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 18-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 25-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 04-03-2025 | | TLM8 | R1 | | | | | I-Mid Exa | aminations (10- | 03-2025 to 15 | -03-2025) | | | | 8. | Experiment-7 | 3 | 18-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 25-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 08-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 15-04-2025 | | TLM8 | R1 | | | 12. | Repetition lab | 3 | 22-04-2025 | | TLM8 | | | | 13. | Repetition lab | 3 | 29-04-2025 | | TLM8 | | | | 14. | Repetition lab | 3 | 06-05-2025 | | TLM8 | | | | 15. | Lab Internal | 3 | 13-05-2025 | | TLM6 | | | | Teaching Learning Methods | | | | | | | |---------------------------|----------------|------|--------------------|------|----------------|--| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | | #### **ACADEMIC CALENDAR:** | Description | From | То | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions-1 | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | #### Part-C #### **EVALUATION PROCESS:** | Parameter | Marks | |--|------------------| | Day–to–Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination (CIE = A1 + B1 + C1) | A1+B1+C1=30Marks | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: A-SEC** | Batch | Reg. No. of | Number of | Batch | Reg. No. of | Number of | |-------|-----------------|-----------|-------|---------------|-----------| | No. | Students | Students | No. | Students | Students | | B11 | 24761A05W8TO | 9 | B21 | 24761A05AB TO | 8 | | DII | 24761A05X6 | 9 | DZ 1 | 24761A05AI | O | | B12 | 24761A05X7 TO | 8 | B22 | 24761A05AJ TO | 8 | | DIZ | 24761A05Y4 | O | DZZ | 24761A05AQ | O | | B13 | 24761A05Y5Y5 TO | 8 | B23 | 24761A05AR TO | 8 | | D13 | 24761A05Z2 | O | D23 | 24761A05AY | O | | B14 | 24761A05Z3 TO | 8 | B24 | 24761A05DN TO | 0 | | D14 | 24761A05AA | Ö | DZ4 | 24761A05BG | 8 | | Batch
No: | Exp.
01 | Exp.
02 | Exp.
03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp.
07 | Exp.
08 | Exp.
09 | |--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | B11 | F1 | F2 | P1 | P2 | C1 | C2 | E1 | E2 | T1 | | B12 | F2 | F1 | P2 | P1 | C2 | C1 | E2 | E1 | T1 | | B13 | P1 | P2 | C1 | C2 | E1 | E2 | F1 | F2 | T1 | | B14 | P2 | P1 | C2 | C1 | E2 | E1 | F2 | F1 | T1 | | B21 | C1 | C2 |
E1 | E2 | F1 | F2 | P1 | P2 | T1 | | B22 | C2 | C1 | E2 | E1 | F2 | F1 | P2 | P1 | T1 | | B23 | E1 | E2 | F1 | F2 | P1 | P2 | C1 | C2 | T1 | | B24 | E2 | E1 | F2 | F1 | P2 | P1 | C2 | C1 | T1 | #### LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove Tail Joint | CO1 | | 3. | Fitting-1(F1)-L-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | 7. | House Wiring-1(E1)-Series and Parallel connection | CO4 | | 8. | HouseWiring-2(E2)-Fluorescent Lamp and Calling Bell Circuit | CO4 | | 9. | Tinsmity-1(T1)- Rectangular Tray | CO2 | | 10. | Demonstration- Welding and Foundry | CO2 | #### NOTIFICATION OF CYCLE: | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|----------|--|------------| | H H | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | e 2 | 7. | House Wiring-1(E1)–Series and Parallel Connection | CO4 | | Cycle | 8. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | | | 9. | Tinsmity-1(T1)- Rectangular Tray | CO2 | | | 10. | Demonstration- Welding and Foundry | CO2 | #### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi-disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. **PROGRAM OUT COMES (POs)** **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - **2. Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. - **9. Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings. - **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course
Instructors | Course
Coordinator | Module
Coordinator | HOD | |--|---------------------------|-----------------------|-------------------------------| | Mr. Mallikarjuna Rao
Dandu
Dr. L. Prabhu | Mr. S. Srinivasa
Reddy | Mr. J. Subba Reddy | Dr. M. B. S
Sreekara Reddy | # SEEDOY COLLEGE CAN A PLAVAR MAN TRIMPER MA #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING #### (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Mr. R. Ashok **Course Name & Code**: DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/F A.Y.: 2024-25 PREREQUISITE: PPSC #### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. #### **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) **CO3:** Develop and implement hashing techniques for solving problems (**Apply - L3**) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. #### **COURSE ARTICULATION MATRIX (Correlation between Cos. Pos & PSOs):** | | 1 | | | | | | | | | | | | | | | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Cos | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | PO12 | PSO1 | PSO2 | PS03 | | CO1 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO4 | | | | | | | | 2 | 2 | 2 | | | | | | Note: 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | HOD
Sign | |-----------|---|-------------------------------|------------------------------------|---------------------------------|-------------| | 1. | Array Manipulations | 3 | 25-01-2025 | | | | 2. | Searching and Sorting Techniques | 3 | 01-02-2025 | | | | 3. | Single Linked List | 3 | 08-02-2025 | | | | 4. | Double Linked List | 3 | 15-02-2025 | | | | 5. | Circular Linked List | 3 | 22-02-2025 | | | | 6. | Polynomial Representation & Polynomial Addition | 3 | 01-03-2025 | | | | 7. | Linked List Applications | 3 | 22-03-2025 | | | | 8. | Stack Implementation | 3 | 29-03-2025 | | | | 9. | Stack Applications | 3 | 05-04-2025 | | | | 10. | Queue Implementation &
Circular Queue | 3 | 19-04-205 | | | | 11. | Double Ended Queue | 3 | 26-04-2025 | | | | 12. | Trees | 3 | 03-05-2025 | | | | 13. | Hashing | 3 | 10-05-2025 | | | | 14. | Internal Exam | 3 | 17-05-2025 | | | ## PART-C ## **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--------------------------------|-----------------| | Day to Day Work: | 15 | | Internal Test | 15 | | Continuous Internal Assessment | <mark>30</mark> | | Procedure | 20 | | Execution & Results | 30 | | Viva-voce | 20 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | |--------------|---| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the Department | |------------------------|-------------------|--------------------|-----------------------|------------------------| | Name of the
Faculty | Mr. R. Ashok | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | Signature | | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) #### **FRESHMANENGINEERINGDEPARTMENT** #### **COURSEHANDOUT** #### **PART-A** PROGRAM :I B.Tech.,II-Sem.,CSE-G ACADEMICYEAR :2024-25 COURSENAME & CODE : ENGINEERING PHYSICS L-T-PSTRUCTURE :4-0-0 COURSECREDITS 3 COURSEINSTRUCTOR :Dr. P. Sobhanachalam PRE-REQUISITE :Basic Knowledge of Physics #### **Course Objectives:** To bridge the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors. #### COURSE OUT COMES(COs): At the end of this course, the student will be able to | CO1 | Analyze the intensity variation of light due to interference, diffraction and Polarization | |-----|--| | | (Apply) | | CO2 | Understand the basics of crystals and their structures (Understand) | | CO3 | Summarize various types of polarization of dielectrics and classify the magnetic materials | | | (Understand) | | CO4 | Explain fundamentals of quantum mechanics and free electron theory of metals | | | (Understand) | | CO5 | Interpret the type of semiconductor using Hall Effect (Apply) | #### **COURSEARTICULATIONMATRIX**(Correlation between COs, Pos & PSOs): | ENGINEERING PHYSICS | | | | | | | | | | | | | | |-----------------------|-------|---------------------------------|---------|---------------|----|-----|-------|----------|-------|----|----|----|--| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | | Course | Progr | amme | Outco | mes | | | | | | | | | | | Outcomes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | PO's | | | | | | | | | | | | | | | CO1.→ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | CO2. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | CO3. | 3 | 3 | 2 | 1 | 1 | 1 | | | | | | 1 | | | CO4. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | CO5. | 3 | 3 | 2 | 1 | 1 | 1 | 1 | | | | | 1 | | | 1 = Slig | 2 = | Moder | ate (N | 1edium | 1) | 3 = | Subst | antial (| High) | • | | | | #### **TEXT BOOKS** - 1. A Text book of "Engineering Physics" M.N. Avadhanulu, P.G. Kshirsagar, TVS Arun Murthy, S. Chand & Co., 11th Edition, 2019. - 2. Engineering Physics D.K. Bhattacharya & Poonam Tandon, Oxford press (2015) #### REFERENCES - 1. Engineering Physics -B.K.Pandey& S. Chaturvedi, Cengage Learning 2021. - 2. Engineering Physics -Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018. - 3. Engineering Physics -Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press 2010. - 4. Engineering Physics -M.R. Srinivasan, New Age international publishers (2009). #### WEBRESOURCES - 1. http://www.loc.gov/rr/scitech/selected-internet/physics.html - 2. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html - 3. http://physicsdatabase.com/free-physics-books/ - 4. http://www.e-booksdirectory.com - 5. http://www.thphys.physics.ox.ac.uk | | TEACHINGLEARNINGMETHODS | | | | | | | | | | | |--|--------------------------|-------|------------------------------------|--|--|--|--|--|--|--|--| | TLM-1 Chalk and Talk TLM-4 Demonstration(Lab/Field Vis | | | | | | | | | | | | | TLM-2 | PPT/A illustrations | | ICT(NPTEL/Swayam
Prabha /MOOCS) | | | | | | | | | | TLM-3 | Tutorial/Quiz/Assignment | TLM-6 | Group Discussion/Project | | | | | | | | | #### PART-B #### **COURSEDELIVERYPLAN(LESSONPLAN):** #### <u>UNIT-I:INTERFERENCE, DIFFRACTION & POLARIZATION</u> Course Outcome :-CO1;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Introduction to the Subject, Course Outcomes | 1 | 20.1.25 | | TLM-2 | | | | 2. | Principle of superposition, Interference of light | 1 | 21.1.25 | | TLM-3 | | | | 3. | Interference in thin films by reflection & applications | 1 | 22.1.25 | | TLM-2 | | | | 4. | Interference in thin films by reflection & applications | 1 | 25.1.25 | | TLM-2 | | | | 5. | Colors in thin films,
Newton's rings | 1 | 27.1.25 | | TLM-1 | | | | 6. | Determination of wavelength and refractive index | 1 | 28.1.25 | | TLM-4 | | | | 7. | Problems& | 1 | 29.1.25 | | TLM-1 | | | | | Assignment/Quiz | | | | | |-----|---|---------------|-----------|----------------------|--| | 8. | Introduction, Fresnel and Fraunhoffer diffractions | 1 | 1.2.25 | TLM-3 | | | 9. | Fraunhoffer diffraction due to single slit | 1 | 3.2.25 | TLM-2 | | | 10. | Double slit& N
slits(Qualitative) | 1 | 4.2.25 | TLM-4 | | | 11. | Diffraction Grating,
Dispersive power &
Resolving power of
Grating-Qualitative | 1 | 5.2.25 | TLM-4 | | | 12. | Problems&
Assignment/Quiz | 1 | 8.2.25 | TLM-3 | | | 13. | Introduction – Types of polarization | 1 | 10.2.25 | TLM-2 | | | 14. | Polarization by reflection, refraction & double refraction | 1 | 11.2.25 | TLM-2 | | | 15. | Nicol's prism | 1 | 12.2.25 | TLM-5 | | | 16. | Half wave and
Quarter wave plates | 1 | 15.2.25 | TLM-2 | | | 17. | Problems&
Assignment/Quiz | 1 | 17.2.25 | TLM-3 | | | 18. | Problems&
Assignment/Quiz | 1 | 18.2.25 | TLM-3 | | | | No.of classes required | d to complete | UNIT-I:18 | No.of classes taken: | | ## UNIT-II:CRYSTALLOGRAPHY & X- RAY DIFFRACTION Course Outcome :-CO2;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|---|------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------| | | Space lattice; | | | | | | | | | Basis, Unit cell & | | 19.2.25 | | TLM-3 | | | | 1. | Lattice parameters | 1 | | | | | | | 2. | Bravais Lattices | 1 | 22.2.25 | | TLM-2 | | | | 3. | Crystal
Systems(3D) | 1 | 24.2.25 | | TLM-2 | | | | 4. | Coordination
number – Packing
fraction of –SC,
BCC | 1 | 25.2.25 | | TLM-1 | | | | 5. | Coordination
number – Packing
fraction of FCC | 1 | 1.3.25 | | TLM-1 | | | |
6. | Miller indices&
Properties, | 1 | 3.3.25 | | TLM-2 | | | | | Separation
between
successive (hkl)
planes | | | | | | | |-----|---|------------|------------|---------|--------------|---|--| | 7. | Bragg's law; X–
ray Diffractometer | 1 | 4.3.25 | | TLM-3 | | | | 8. | Crystal Structure determination by Laue's method | 1 | 5.3.25 | | TLM-2 | | | | 9. | Crystal Structure determination by Powder method | 1 | 8.3.25 | | TLM-5 | | | | 10. | MID-1
Examinations | 1 | 10.4.25 | | | | | | 11. | MID-1
Examinations | 1 | 11.3.25 | | | | | | 12. | MID-1
Examinations | 1 | 12.3.25 | | | | | | 13. | MID-1
Examinations | 1 | 15.3.25 | | | | | | No. | of classes required to | complete U | NIT-II: 13 | No.of c | lasses taken | : | | ## <u>UNIT-III :DIELECTRIC & MAGNETIC MATERIALS</u> Course Outcome :-CO3;TextBook:-T1,R2 | S.No | Topics to be covered | No.of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |------|---|------------------------------|------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Dielectric polarization Dielectric polarizability, Susceptibility | 1 | 17.3.25 | | TLM-2 | | | | 2. | Dielectric constant &
Displacement Vector,
Relation between the
electric vectors | 1 | 18.3.25 | | TLM-3 | | | | 3. | Types of polarizations- Electronic polarization | 1 | 19.3.25 | | TLM-1 | | | | 4. | Types of polarizations- ionic & orientation polarizations (Qualitative) | 1 | 22.3.25 | | TLM-1 | | | | 5. | Lorentz internal field | 1 | 24.3.25 | | TLM-2 | | | | 6. | Claussius-Mosotti
equation, Complex
dielectric constant | 1 | 25.3.25 | | TLM-1 | | | | 7. | Frequency dependence of polarization | 1 | 26.3.25 | | TLM-5 | | | | | dielectric loss | | | | | |-----|--|------------|----------|----------------------|--| | | D 11 | | | | | | 8. | Problems&
Assignment/Quiz | 1 | 29.3.25 | TLM-3 | | | 9. | Introduction Magnetic dipole moment, Magnetization Magnetic susceptibility & permeability | 1 | 1.4.25 | TLM-4 | | | 10. | Atomic origin of magnetism | 1 | 2.4.25 | TLM-1 | | | 11. | Classification of
magnetic materials-
Dia, para, Ferro, anti-
ferro & Ferri
magnetic materials | 1 | 7.4.25 | TLM-2 | | | 12. | Domain concept for Ferromagnetism & Domain walls | 1 | 8.4.25 | TLM-2 | | | 13. | Hysteresis | 1 | 9.4.25 | TLM-5 | | | 14. | soft and hard magnetic materials | 1 | 12.4.25 | TLM-1 | | | 15. | Problems&
Assignment/Quiz | 1 | 15.4.25 | TLM-3 | | | No. | of classes required to co | mplete UNI | T-III:15 | No.of classes taken: | | ## <u>UNIT-IV :OUANTUM MECHANICS&FREEELECTRONTHEORY</u> ## Course Outcome :-CO4;TextBook:-T1,R2 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------| | 1. | Dual nature of
matter, De-Broglie's
Hypothesis | 1 | 16.4.25 | | TLM-2 | | | | 2. | Heisenberg's
Uncertainty Principle | 1 | 19.4.25 | | TLM-2 | | | | 3. | Significance & properties of wave function | 1 | 21.4.25 | | TLM-2 | | | | 4. | Schrodinger's time independent and dependent wave equations | 1 | 22.4.25 | | TLM-1 | | | | 5. | Particle in a one – dimensional infinite potential well | 1 | 23.4.25 | | TLM-1 | | | | 6. | Problems&
Assignment/Quiz | 1 | 26.4.25 | | TLM-3 | | | | 7. | Classical free
electron theory-
merits and demerits,
Quantum free | 1 | 28.4.25 | | TLM-2 | | | | | electron theory | | | | | | |--|---|---|---------|--|-------|--| | 8. | Electrical conductivity based on quantum free electron theory | 1 | 29.4.25 | | TLM-1 | | | 9. | Fermi -Dirac distribution and temperature dependence | 1 | 30.4.25 | | TLM-5 | | | 10. | Density of states, | 1 | 3.5.25 | | TLM-1 | | | No.of classes required to complete UNIT-IV:10 No.of classes taken: | | | | | | | ## <u>UNIT-V:SEMICONDUCTORPHYSICS</u> CourseOutcome :-CO5;TextBook:-T2,R1 | S.No. | Topics to be covered | No.of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign | Remarks | |-------|--|------------------------------|------------------------------------|---------------------------|---------------------------------|-------------|---------| | 1. | Formation of energy bands, Classification of crystalline solids | 1 | 5.5.25 | | TLM-6 | | | | 2. | Intrinsic semiconductors, Density of charge carriers | 1 | 6.5.25 | | TLM-1 | | | | 3. | Electrical conductivity, Fermi level | 1 | 7.5.25 | | TLM-2 | | | | 4. | Extrinsic semiconductors, Density of charge carriers | 1 | 10.5.25 | | TLM-1 | | | | 5. | Dependence of Fermi energy on carrier concentration &temperature | 1 | 12.5.25 | | TLM-2 | | | | 6. | Drift and Diffusion
Currents, Einstein's
equation | 1 | 13.5.25 | | TLM-1 | | | | 7. | Hall Effect & its applications | 1 | 14.5.25 | | TLM-4 | | | | 8. | Problems&
Assignment/Quiz | 1 | 17.5.25 | | TLM-3 | | | | 9. | MID-2
Examinations | 1 | 2.6.25 | | | | | | 10. | MID-2
Examinations | 1 | 3.6.25 | | | | | | 11. | MID-2
Examinations | 1 | 4.6.25 | | | | | | No | of classes required to | complete U | NIT-V:11 | No.of classes | taken: | | | ## PART-C ## **EVALUATION PROCESS(R-23Regulation)** | Evaluation Task | Marks | |--|--------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M= 30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMMEOUTCOMES(POs): | | Engineering knowledge: Apply the knowledge of mathematics, science, | | | | | | | | |------|--|--|--|--|--|--|--|--| | PO 1 | engineeringfundamentals, and an engineering specialization to the solution of complex | | | | | | | | | | engineeringproblems. | | | | | | | | | | Problemanalysis: Identify, formulate, review research literature, and analyze | | | | | | | | | PO 2 | complexengineeringproblemsreachingsubstantiatedconclusionsusingfirstprinciplesofm | | | | | | | | | | athematics,naturalsciences,and engineeringsciences. | | | | | | | | | | Design/developmentofsolutions: Designsolutions for complex engineering problems | | | | | | | | | PO 3 | and design system components or processes that meet the specified | | | | | | | | | 103 | needswithappropriateconsiderationforthepublichealthandsafety, and the cultural, | | | | | | | | | | societal, and environmental considerations. | | | | | | | | | |
Conductinvestigationsofcomplexproblems: Useresearch-basedknowledgeand | | | | | | | | | PO 4 | researchmethodsincludingdesignofexperiments, analysis and interpretation of data, and sy | | | | | | | | | | nthesisoftheinformationtoprovidevalidconclusions. | | | | | | | | | | Moderntoolusage: Create, select, and apply appropriate techniques, resources, and | | | | | | | | | PO 5 | $modern engineering and IT tools including prediction and modeling to complex engineering a {\tt modern} and $ | | | | | | | | | | ctivities with an understanding of the limitations | | | | | | | | | | The engineer and society: Apply reasoning informed by the contextual | | | | | | | | | PO 6 | knowledgetoassesssocietal,health,safety,legalandculturalissuesandtheconsequent | | | | | | | | | | responsibilitiesrelevanttotheprofessionalengineeringpractice | | | | | | | | | | Environmentandsustainability: Understandtheimpactoftheprofessionalengineeringsol | | | | | | | | | PO 7 | utionsinsocietalandenvironmentalcontexts, and demonstrate the | | | | | | | | | | knowledgeof,andneed forsustainabledevelopment. | | | | | | | | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and | | | | | | | | | 100 | responsibilities and norms of the engineering practice. | | | | | | | | | PO 9 | Individualandteamwork:Functioneffectivelyasanindividual,andasamember | | | | | | | | | |-------|---|--|--|--|--|--|--|--|--| | 109 | orleaderindiverseteams, and in multidisciplinary settings. | | | | | | | | | | | Communication: Communicate effectively on complex engineering activities | | | | | | | | | | PO 10 | withtheengineeringcommunityandwithsocietyatlarge, suchas, beingabletocomprehenda | | | | | | | | | | 1010 | ndwriteeffectivereportsanddesigndocumentation,makeeffective | | | | | | | | | | | presentations, and give and receive clear instructions. | | | | | | | | | | | Projectmanagementandfinance: Demonstrate knowledge andunderstandingofthe | | | | | | | | | | PO 11 | engineering and management principles and apply these to one's own work, as | | | | | | | | | | 1011 | amemberandleaderinateam,tomanageprojectsandinmultidisciplinary | | | | | | | | | | | environments. | | | | | | | | | | | Life-longlearning:Recognizetheneedforandhavethepreparationandabilityto | | | | | | | | | | PO 12 | engageinindependentandlife-longlearninginthebroadestcontextoftechnologicalchange. | CourseInstructor CourseCoordinator ModuleCoordinator HOD Dr. P. Sobhanachalam Dr.S.YUSUF Dr.S.YUSUF Dr.A.RAMIREDDY #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### FRESHMAN ENGINEERING DEPARTMENT #### **COURSE HANDOUT** #### Part-A PROGRAM : I B. Tech., II-Sem., CSE-G ACADEMIC YEAR : 2023-24 **COURSE NAME & CODE**: Differential Equations & Vector Calculus L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3 COURSE INSTRUCTOR : CH.Padma COURSE COORDINATOR : Dr. K.R. Kavitha **PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration #### **COURSE EDUCATIONAL OBJECTIVES (CEOs):** - To enlighten the learners in the concept of differential equations and multivariable calculus - To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications. #### **COURSE OUTCOMES (COs)** After completion of the course, the student will be able to CO1: Solve the differential equations related to various engineering fields -L3 CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations -L3 CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence $-\mathbf{L3}$ CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – $\mathbf{L3}$ #### COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs): | COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | - | 1 | | CO2 | 3 | 1 | - | - | - | - | - | - | - | - | - | 1 | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High). #### **BOS APPROVED TEXT BOOKS:** - **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44ndEdition, Khanna Publishers, New Delhi, 2017. - **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & sons, New Delhi, 2018. #### **BOS APPROVED REFERENCE BOOKS:** - **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14th Edition, Pearson Publishers, 2018. - **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018. - **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5th Edition, Pearson Publishers, 2018. - **R4** R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5th Edition (9th reprint), Alpha Science International Ltd., 2021. - **R5** B. V. Ramana, "Higher Engineering Mathematics", 3rd Edition McGraw Hill Education, 2017. # Part-B COURSE DELIVERY PLAN (LESSON PLAN): | S.
No | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Outcome | Text
Book
followed | HOD
Sign
Weekly | |----------|--------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|---------|--------------------------|-----------------------| | 1. | Introduction to the course | 1 | 20-01-25 | | TLM2 | | | | | 2. | Course Outcomes,
Program Outcomes | 1 | 21-01-25 | | TLM2 | | | | #### UNIT-I: Differential Equations of first order and first degree | S. | | No. of | Tentative | Actual | Teaching | Learning | Text | HOD | |------|-----------------------------------|----------|------------|----------|----------|--------------|------------|----------| | No. | Topics to be covered | Classes | Date of | Date of | Learning | Outcome | Book | Sign | | 110. | Topics to be covered | Required | Completion | | Methods | COs | followed | Weekly | | 3. | Introduction to UNIT I | 1 | 22-01-25 | , | TLM1 | CO1 | T1,T2 | <i>.</i> | | 4. | Linear Differential equation | 1 | 23-01-25 | | TLM1 | CO1 | T1,T2 | | | 5. | Bernoulli's DE | 1 | 25-01-25 | | TLM1 | CO1 | T1,T2 | | | 6. | Exact DE | 1 | 27-01-25 | | TLM1 | CO1 | T1,T2 | | | 7. | Exact DE | 1 | 28-01-25 | | TLM1 | CO1 | T1,T2 | | | 8. | TUTORIAL – I | 1 | 29-01-25 | | TLM3 | CO1 | T1,T2 | | | 9. | Non-exact DE
Type-I | 1 | 30-01-25 | | TLM1 | CO1 | T1,T2 | | | 10. | Non-exact DE
Type II | 1 | 01-02-25 | | TLM1 | CO1 | T1,T2 | | | 11. | Non-exact DE
Type III | 1 | 03-02-25 | | TLM1 | CO1 | T1,T2 | | | 12. | Non-exact DE
Type IV | 1 | 04-02-25 | | TLM1 | CO1 | T1,T2 | | | 13. | TUTORIAL – II | 1 | 05-02-25 | | TLM3 | CO1 | T1,T2 | | | 14. | Newton's Law of cooling | 1 | 06-02-25 | | TLM1 | CO1 | T1,T2 | | | 15. | Newton's Law of cooling | 1 | 08-02-25 | | TLM1 | CO1 | T1,T2 | | | 16. | Law of natural growth an decay | d 1 | 10-02-25 | | TLM1 | CO1 | T1,T2 | | | 17. | Electrical circuits | 1 | 11-02-25 | | TLM1 | CO1 | T1,T2 | | | 18. | TUTORIAL – III | 1 | 12-02-25 | | TLM3 | CO1 | T1,T2 | | | | f classes required to lete UNIT-I | 16 | | | | No. of class | ses taken: | | **UNIT-II:** Linear Differential equations of higher order (Constant Coefficients) | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|--------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 19. | Introduction to UNIT II | 1 | 13-02-25 | | TLM1 | CO1 | T1,T2 | | | 20. | Solving a homogeneous DE | 1 | 15-02-25 | | TLM1 | CO1 | T1,T2 | | | 21. | Solving a homogeneous DE | 1 | 17-02-25 | _ | TLM1 | CO1 | T1,T2 | | | 22. | Finding Particular Integral, P.I for e^{ax+b} | 1 | 18-02-25 | TLM1 | CO1 | T1,T2 | | |-----|---|----|----------|------|--------------|-----------|--| | 23. | TUTORIAL – IV | 1 | 19-02-25 | TLM3 | CO1 | T1,T2 | | | 24. | P.I for Cos bx, or sin bx | 1 | 20-02-25 | TLM1 | CO1 | T1,T2 | | | 25. | P.I for polynomial function | 1 | 22-02-25 | TLM1 | CO1 | T1,T2 | | | 26. | P.I for $e^{ax+b}v(x)$ | 1 | 24-02-25 | TLM1 | CO1 | T1,T2 | | | 27. | P.I for $x^k v(x)$ | 1 | 25-02-25 | TLM1 | CO1 | T1,T2 | | | 28. | Method of Variation of parameters | 1 | 27-02-25 | TLM1 | CO1 | T1,T2 | | | 29. | Method of Variation of parameters | 1 | 01-03-25 | TLM1 | CO1 | T1,T2 | | | 30. | Simultaneous linear equations | 1 | 03-03-25 | TLM1 | CO1 | T1,T2 | | | 31. | Simultaneous linear equations | 1 | 04-03-25 | TLM1 | CO1 | T1,T2 | | | 32. | TUTORIAL –V | 1 | 05-03-25 | TLM3 | CO1 | T1,T2 | | | 33. | L-C-R circuits | 1 | 06-03-25 | TLM1 | CO1 | T1,T2 | | | 34. | Simple Harmonic motion | 1 | 08-03-25 | TLM1 | CO1 | T1,T2 | | | N | o. of classes required to complete UNIT-II | 16 | | | No. of class | es taken: | | ## I MID EXAMINATIONS (10-03-2025 TO 15-03-2025) ## **UNIT-III:
Partial Differential Equations** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 35. | Introduction to Unit III | 1 | 17-03-25 | Completion | TLM1 | CO2 | T1,T2 | VVCCKIY | | 36. | Formation of PDE by elimination of arbitrary constants | 1 | 18-03-25 | | TLM1 | CO2 | T1,T2 | | | 37. | | 1 | 19-03-25 | | TLM3 | CO2 | T1,T2 | | | 38. | Formation of PDE by elimination of arbitrary functions | 1 | 20-03-25 | | TLM1 | CO2 | T1,T2 | | | 39. | Formation of PDE by elimination of arbitrary functions | 1 | 22-03-25 | | TLM1 | CO2 | T1,T2 | | | 40. | Solving of PDE | 1 | 24-03-25 | | TLM1 | CO2 | T1,T2 | | | 41. | Solving of PDE | 1 | 25-03-25 | | TLM1 | CO2 | T1,T2 | | | 42. | TUTORIAL -VII | 1 | 26-03-25 | | TLM3 | CO4 | T1,T2 | | | 43. | Lagrange's Method | 1 | 27-03-25 | | TLM1 | CO2 | T1,T2 | | | 44. | Lagrange's Method | 1 | 29-03-25 | | TLM1 | CO2 | T1,T2 | | | 45. | Homogeneous Linear
PDE with constant
coefficients | 1 | 01-04-25 | | TLM1 | CO2 | T1,T2 | | | 46. | TUTORIAL -VIII | 1 | 02-04-25 | | TLM3 | CO2 | T1,T2 | | | | of classes required to complete UNIT-III | 12 | | | No. of class | es taken: | | | **UNIT-IV: Vector Differentiation** | r | Civil-1v. vector principitation | | | | | | | | |-----------|--|-------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | | 47. | Introduction to UNIT IV | 1 | 03-04-25 | | TLM1 | CO3 | T1,T2 | | | 48. | Vector
Differentiation | 1 | 07-04-25 | | TLM1 | CO3 | T1,T2 | | | 49. | Gradient | 1 | 08-04-25 | | TLM1 | CO3 | T1,T2 | | | 50. | TUTORIAL -IX | 1 | 09-04-25 | | TLM3 | CO3 | T1,T2 | | | 51. | Directional
Derivative | 1 | 10-04-25 | | TLM1 | CO3 | T1,T2 | | | 52. | Divergence | 1 | 12-04-25 | | TLM1 | CO3 | T1,T2 | | | 53. | Curl | 1 | 15-04-25 | | TLM1 | CO3 | T1,T2 | | | 54. | TUTORIAL -X | 1 | 16-04-25 | | TLM3 | CO3 | T1,T2 | | | 55. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 17-04-25 | | TLM1 | CO3 | T1,T2 | | | 56. | Solenoidal fields,
Irrotational fields,
potential surfaces | 1 | 19-04-25 | | TLM1 | CO3 | T1,T2 | | | 57. | Laplacian, second order operators | 1 | 21-04-25 | | TLM1 | CO3 | T1,T2 | | | 58. | Vector Identities | 1 | 22-04-25 | | TLM1 | CO3 | T1,T2 | | | 59. | TUTORIAL -XI | 1 | 23-04-25 | | TLM3 | CO3 | T1,T2 | | | 60. | Vector Identities | 1 | 24-04-25 | | TLM1 | CO3 | T1,T2 | | | | of classes required to omplete UNIT-IV | 14 | | | | No. of clas | ses taken: | | #### **UNIT-V: Vector Integration** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |--------|------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | 61. | Introduction to Unit-V | 1 | 26-04-25 | - | TLM1 | CO4 | T1,T2 | | | 62. | Line Integral | 1 | 28-04-25 | | TLM1 | CO4 | T1,T2 | | | 63. | Circulation | 1 | 29-04-25 | | TLM1 | CO4 | T1,T2 | | | 64. | TUTORIAL -XII | 1 | 30-04-25 | | TLM3 | CO4 | T1,T2 | | | 65. | Work done | 1 | 01-05-25 | | TLM1 | CO4 | T1,T2 | | | 66. | Surface Integral | 1 | 03-05-25 | | TLM1 | CO4 | T1,T2 | | | 67. | Surface Integral | 1 | 05-05-25 | | TLM1 | CO4 | T1,T2 | | | 68. | Flux | 1 | 06-05-25 | | TLM1 | CO4 | T1,T2 | | | 69. | TUTORIAL -XIII | 1 | 07-05-25 | | TLM3 | CO4 | T1,T2 | | | 70. | Green's Theorem | 1 | 08-05-25 | | TLM1 | CO4 | T1,T2 | | | 71. | Green's Theorem | 1 | 10-05-25 | | TLM1 | CO4 | T1,T2 | | | 72. | Stoke's Thoerem | 1 | 12-05-25 | TLM1 | CO3 | T1,T2 | | |-----|--------------------------------------|---|----------|------|--------------|-----------|--| | 73. | Divergence Theorem | 1 | 13-05-25 | TLM1 | CO3 | T1,T2 | | | 74. | TUTORIAL-XIV | 1 | 14-05-25 | TLM3 | CO4 | T1,T2 | | | | f classes required to mplete UNIT-IV | 4 | | | No. of class | es taken: | | **Content beyond the Syllabus** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual
Date of
Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign
Weekly | |--------|--|-------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------| | | Non-homogeneous
Linear PDE with
constant
coefficients | 2 | 15-05-25
17-05-25 | | TLM2 | CO2 | T1,T2 | | | | No. of classes | 2 | | | No. of clas | ses taken: | | | | | II MID EXAMINATIONS (03-06-2024 TO 08-06-2024) | | | | | | | | | Teaching I | Learning Methods | | | |------------|------------------|------|---------------------------------| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | TLM2 | PPT | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS) | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | <u>PART-CEVALUATION PROCESS (R23 Regulation):</u> | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II) | A1=5 | | I-Descriptive Examination (Units-I, II) | M1=15 | | I-Quiz Examination (Units-I, II) | Q1=10 | | Assignment-II (Unit-III, IV & V) | A2=5 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | II-Quiz Examination (UNIT-III, IV & V) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M = 30 | | Cumulative Internal Examination (CIE): | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | PART-D PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals | |------|---| | 101 | and an engineering specialization to the solution of complex engineering problems. | | | Problem analysis : Identify, formulate, review research literature and analyze complex engineering | | PO 2 | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | | and engineering sciences. | | | Design/development of solutions : Design solutions for complex engineering problems and design | | PO 3 | system components or processes that meet the specified needs with appropriate consideration for | | | the public health and safety and the cultural, societal and environmental considerations. | | | Conduct investigations of complex problems: Use research-based knowledge and research | | PO 4 | methods including design of experiments, analysis and interpretation of data and synthesis of the | | | information to provide valid conclusions. | | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | PO 5 | engineering and IT tools including prediction and modeling to complex engineering activities with | | | an understanding of the limitations | | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | PO 6 | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | | professional engineering practice | | | Environment and sustainability: Understand the impact of the professional engineering solutions | | PO 7 | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable | | | development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms | | PUS | of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual and as a member or leader in | |-------|--| | PO9 | diverse teams and in multidisciplinary settings. | | | Communication : Communicate effectively on complex engineering activities with the engineering | | PO 10 | community and with society at large, such as being able to comprehend and write effective reports | | | and design documentation, make effective presentations and give and receive clear instructions. | | | Project management and finance : Demonstrate knowledge and understanding of the engineering | | PO 11 | and management principles and apply these to one's own work, as a member and leader in a team, | | | to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | FO
12 | independent and life-long learning in the broadest context of technological change. | | CH.Padma | Dr. K.R. Kavitha | Dr. A. RAMI REDDY | Dr. A. RAMI REDDY | |-------------------|--------------------|--------------------|-------------------| | Course Instructor | Course Coordinator | Module Coordinator | HOD | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 #### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ## **COURSE HANDOUT PART-A** Name of Course Instructor: / Mr.P.Rathnakar Kumar Course Name & Code: BASIC ELECTRICAL & ELECTRONICS ENGINEERING – 23EE01 **L-T-P Structure** : 3-0-0 Credits: 3 Program/Branch/Sem/Sec: B.Tech/CSE-G II SEM **A.Y.:** 2024-25 **Pre-requisites:** Physics **Course Educational Objective:** To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field. To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | | PART-A | | | | | | | |-----|---|--|--|--|--|--|--| | CO1 | Extract electrical variables of AC & DC circuits usin fundamental laws. (Understand) | | | | | | | | CO2 | Understand the operation of electrical machines and measuring instruments. | | | | | | | | COZ | (Understand) | | | | | | | | CO3 | Classify various energy resources, safety measures and interpret electricity bill | | | | | | | | COS | generation in electrical sysems. | | | | | | | | | PART-B | | | | | | | | CO4 | Interpret the characteristics of various semiconductor devices. (Knowledge) | | | | | | | | CO5 | | | | | | | | | CO6 | Contrast various logic gates, sequential and combinational logic circuits. (Understand) | | | | | | | #### **CO-PO Articulation Matrix:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO 1 | 3 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | CO 3 | 2 | 2 | _ | _ | _ | 3 | _ | _ | _ | _ | 2 | 2 | | CO 4 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 5 | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | | CO 6 | 2 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | Where: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) #### Textbooks: - Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition - 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013 - Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition #### Reference Books: - 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021. - 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009 #### **PART-B** #### **COURSE DELIVERY PLAN (LESSON PLAN):** #### **UNIT-I: DC & AC CIRCUITS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Electrical circuit elements | 1 | 20-01-2025 | | TLM1 | | | 2. | Ohm's Law and its limitations | 1 | 23-01-2025 | | TLM1 | | | 3. | KCL & KVL | 1 | 24-01-2025 | | TLM1 | | | 4. | series, parallel, series-parallel circuits | 1 | 25-01-2025 | | TLM1 | | | 5. | Problems | 1 | 27-01-2025 | | TLM3 | | | 6. | Super Position theorem | 1 | 30-01-2025 | | TLM1 | | | 7. | Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference | 1 | 31-01-2025 | | TLM2 | | | 8. | average value, RMS value, form factor, peak factor | 1 | 01-02-2025 | | TLM1 | | | 9. | RLC Circuits | 1 | 03-02-2025 | | TLM1 | | | 10. | Impedance, Power | 1 | 06-02-2025 | | TLM1 | | | 11. | Problems | 1 | 07-02-2025 | | TLM3 | | | No. o | f classes required to complete UNIT-I: 11 | | No. of classes | taken: | | | #### **UNIT – II: MACHINES AND MEASURING INSTRUMENTS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | Construction, principle and operation of (i) DC Motor | 1 | 10-02-2025 | | TLM2 | | | 13. | Construction, principle and operation of (ii) DC Generator. | | 13-02-2025 | | TLM2 | | | 14. | Single Phase Transformer | 1 | 14-02-2025 | | TLM2 | | | 15. | Three Phase Induction Motor | 1 | 15-02-2025 | | TLM2 | | | 16. | Alternators | 1 | 17-02-2025 | | TLM2 | | | 17. | Applications of electrical machines | 1 | 20-02-2025 | | TLM2 | | | 18. | Construction and working principle of Permanent Magnet Moving Coil (PMMC) | 1 | 21-02-2025 | | TLM2 | | | 19. | Moving Iron (MI) Instruments | 1 | 22-02-2025 | | TLM2 | | | 20. | Wheat Stone bridge | 1 | 24-02-2025 | | TLM2 | | | 21. | Problems | 1 | 27-02-2025 | | TLM3 | | | No. of classes required to complete UNIT-II: 09 No. of cla | | | | | taken: | | #### UNIT – III: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 22. | Conventional and non-conventional energy resources | 1 | 28-02-2025 | | TLM2 | | | 23. | Hydel & Nuclear power generation | 1 | 01-03-2025 | | TLM2 | | | 24. | Solar & Wind power plants | 1 | 03-03-2025 | | TLM2 | | | 25. | Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1 | 06-03-2025 | | TLM2 | | | 26. | Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, | 1 | 07-03-2025 | | TLM2 | | | 27. | calculation of electricity bill for domestic consumers. | 1 | 08-03-2025 | | TLM2 | | | 28. | Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. | 1 | 17-03-2025 | | TLM2 | | | 29. | Personal safety measures: Electric Shock | 1 | 20-03-2025 | | TLM2 | | | 30. | Earthing and its types& Safety Precautions | 1 | 21-03-2025 | | TLM2 | | | No. o | of classes required to complete UNIT-III: 9 | | | No. of classes | taken: | | #### **UNIT – IV: SEMICONDUCTOR DEVICES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative Date of Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------| | 31. | Introduction | 1 | 22-03-2025 | | TLM1 | | | 32. | Evolution of electronics – Vacuum tubes to nano electronics | 1 | 24-03-2025 | | TLM2 | | | 33. | PN Junction diode | 1 | 27-03-2025 | | TLM2 | | | 34. | Characteristics of PN Junction Diode | 1 | 28-03-2025 | | TLM2 | | | 35. | Zener Effect — Zener Diode and its
Characteristics | 1 | 29-03-2025 | | TLM2 | | | 36. | Bipolar Junction Transistor | 1 | 31-03-2025 | | TLM2 | | | 37. | CB Configuration | 1 | 03-04-2025 | | TLM2 | | | 38. | CE Configuration | 1 | 04-04-2025 | | TLM2 | | | 39. | CC Configuration | 1 | 05-04-2025 | | TLM2 | | | 40. | Elementary Treatment of Small Signal CE Amplifier. | 1 | 07-04-2025 | | TLM2 | | | No. o | No. of classes required to complete UNIT-IV: 10 | | | No. of classes | taken: | · | #### UNIT - V: BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION | UTTI | V: BASIC EEECTROTTIC CI | | | | | HOD | |--------|---|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------| | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Sign
Weekly | | 41. | Introduction | 1 | 10-04-2025 | | TLM1 | | | 42. | Block diagram RPS | 1 | 11-04-2025 | | TLM1 | | | 43. | working of a full wave bridge rectifier | 1 | 12-04-2025 | | TLM1 | | | 44. | capacitor filter | 1 | 14-04-2025 | | TLM1 | | | 45. | working of simple zener voltage regulator | 1 | 17-04-2025 | | TLM1 | | | 46. | Block diagram of Public Address system | 1 | 18-04-2025 | | TLM1 | | | 47. | Circuit diagram and working of RC coupled amplifier | 1 | 19-04-2025 | | TLM1 | | | 48. | Frequency response. | 1 | 21-04-2025 | | TLM1 | | | 49. | Electronic Instrumentation | 1 | 24-04-2025 | | TLM1 | | | 50. | Block diagram of an electronic instrumentation | 1 | | | TLM1 | | |--------
--|---|------------|----------------|--------|--| | | system | | 25-04-2025 | | | | | No. of | classes required to complete UNIT-V: 10 | | | No. of classes | taken: | | ## **UNIT - VI: DIGITAL ELECTRONICS** | S. No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |----------|--|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------------------| | 54. | Number Systems | 1 | 26-04-2025 | | TLM2 | | | 56. | Logic gates | 1 | 28-04-2025 | | TLM1 | | | 57. | BCD & XS-3 code | 1 | 01-05-2025 | | TLM2 | | | 58. | Gray and Hamming code | 1 | 02-05-2025 | | TLM1 | | | 59. | Basic theorems & Boolean
Algebra | 1 | 03-05-2025 | | TLM2 | | | 61. | Logic diagrams using logic gates only | 1 | 05-05-2025 | | TLM2 | | | 62. | Combinational Vs Sequential circuits | 1 | 08-05-2025 | | TLM1 | | | 63. | Half & Full adder | 1 | 09-05-2025 | | TLM1 | | | 65. | Introduction to sequential circuits, | 1 | 10-05-2025 | | TLM1 | | | 66. | Flip flops- SR & D | 1 | 12-05-2025 | | TLM2 | | | 67. | Flip flops- JK & T | 1 | 15-05-2025 | | TLM2 | | | 68. | Registers & counters | 1 | 16-05-2025 | | TLM1 | | | 69 | Content Beyond the Syllabus: Op-Amp and Applications | 1 | 17-05-2025 | | TLM1 | | | No. of c | classes required to complete UNIT-V: 12 | | No. of classes | taken: | | | | Teaching Learning Methods | | | | | | | |---------------------------|----------------|------|---------------------------------|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | ## PART-C #### **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |--|-----------------| | Assignment-I (Units-I, II, III) | A1=5 | | I-Descriptive Examination (Units-I, II, III) | M1=15 | | I-Quiz Examination (Units-I, II, III) | Q1=10 | | Assignment-II (Units-IV, V, VI) | A2=5 | | II- Descriptive Examination (Units-IV, V, VI) | M2=15 | | II-Quiz Examination (Units-IV, V, VI) | Q2=10 | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | Cumulative Internal Examination (CIE): M | <mark>30</mark> | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = CIE + SEE | 100 | ## PART-D ## PROGRAMME OUTCOMES (POs): | 11001 | AAMME OUTCOMES (1 Os). | |-------|---| | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and | | 101 | an engineering specialization to the solution of complex engineering problems. | | PO 2 | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | | Title | Course Instructor | Course Coordinator | Module Coordinator | Head of the
Department | |------------------------|-------------------------|--------------------|--------------------|---------------------------| | Name of the
Faculty | Mr P.Rathnakar
Kumar | | | | | Signature | | | | | #### **COURSE HANDOUT** #### PART-A Name of Course Instructor: Dr. P. Ravindra Kumar, Professor, Dr. S.Rami Reddy, Sr.Asst.Professor Dr. A.Nageswara Rao, Sr. Asst. Professor, | Course Name & Code | : Engineering Drawing – 23ME01 | : Engineering Drawing – 23ME01 | | | | | | |--------------------|--------------------------------|--------------------------------|--|--|--|--|--| | L-T-P Structure | : 3-0-4 | Credits: 4 | | | | | | | Program/Sem/Sec | : B.Tech/II Sem | A.Y.: 2024-25 | | | | | | **COURSE EDUCATIONAL OBJECTIVES (CEOs):** To recognize the Bureau of Indian Standards of Engineering Drawing and develop an ability to get familiarized with orthographic projections and isometric views of solid objects. #### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Understand the principles of engineering drawing, including engineering curves, scales, Orthographic and | |-----|---| | | isometric projections. (Understanding Level –L2) | | 002 | Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views. | | CO2 | (Applying Level –L3) | | CO2 | Understand and draw projection of solids in various positions in first quadrant. | | CO3 | (Applying Level –L3) | | CO4 | Draw the development of surfaces of simple objects. (Applying Level –L3) | | CO5 | Prepare isometric and orthographic sections of simple solids. (Applying Level –L3) | | CO3 | | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|-------|------|------|------|------| | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | 1 | 2 | | CO2 | 3 | 2 | 1 | 2 | - | - | - | - | - | - | - | 3 | 1 | 1 | 2 | | CO3 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - | 1 | 2 | | CO4 | 3 | 2 | 2 | - | ı | ı | - | - | - | - | - | 3 | 2 | 1 | 2 | | CO5 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | - | - | - | | | | | 1 - L | ow | | 2 | –Medi | um | | | 3 - H | igh | | | | #### **TEXTBOOKS:** N. D. Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers, 2012 #### **REFERENCE BOOKS:** - **R1** Narayana K L, Kannaiah P, Textbook on Engineering Drawing, 2nd Edition, SciTech publishers. - **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD. - **R3** Venugopal, Engineering Drawing and Graphics, New Age publishers - **R4** Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill Publishers - **R5** N.S.Parthasarathy, Vela Murali, Engineering Drawing, Oxford Higher Education #### PART-B #### **COURSE DELIVERY PLAN (LESSON PLAN):** ## UNIT-I: INTRODUCTION TO ENGINEERING GRAPHICS, LETTERING, LINES AND DIMENSIONING, CONICS, CYCLOIDS, INVOLUTES | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual Date | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|-------------------------------|-------------|---------------------------------|-----------------------| | 1 2 | UNIT I: INTRODUCTION: Introduction to Engineering Drawing, CEOs, COs, PEOs, and POs and PSOs Principles of Engineering Graphics and their significance, Drawing Instruments and their use- Conventions in Drawing – | 3 | 21-01-2025 | | TLM1/
TLM2 | | | 3 | Practical orientation Lettering and Dimensioning – BIS Conventions- Geometrical Constructions – Theory Class | 2 | 24-01-2025 | |
TLM1/
TLM2 | | | 4 | Practice | 3 | 28-01-2025 | | TLM4 | | | 5 | Engineering Curves: Conic Sections-
Construction of ellipse, parabola and
Hyperbola –Theory class | 2 | 31-01-2025 | | TLM1/
TLM2 | | | 6 | Construction of Parabola, ellipse, hyperbola – General method -Practice | 3 | 04-02-2025 | | TLM4 | | | 7 | Cycloids and Involutes–Theory class | 2 | 07-02-2025 | | TLM1/
TLM5 | | | 8 | Construction of Cycloids and Involutes – Practice | 3 | 11-02-2025 | | TLM4 | | | No. | of classes required to complete UNIT-I: 18 (Lo | etice:12) | No. of classe
(including P | | | | UNIT-II: PROJECTIONS OF POINTS, LINES AND PLANES | | Juli-II. I ROJECTIONS OF TOIMIS, LINE | | | T | 1 | TTOD | |-----------|---|-------------------------------|-------------------|----------------|---------------------------------|-----------------------| | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Feaching
Learning
Methods | HOD
Sign
Weekly | | | Orthographic Projections, First and third angle | | | | | | | 9 | projection methods, Projections of Points,
Lines inclined to one plane | 2 | 14-02-2025 | | TLM1/
TLM2 | | | 10 | Practice | 3 | 18-02-2025 | | TLM4 | | | 11 | Projection of lines - Projections of Straight
Line Inclined to both the reference planes | 2 | 21-02-2025 | | TLM1/
TLM2 | | | 12 | Practice | 3 | 25-02-2025 | | TLM4 | | | 13 | Projections of planes- Regular planes
Perpendicular to both reference planes,
parallel to one reference plane and inclined to
the other reference plane; plane inclined to
both the reference planes. | 2 | 28-02-2025 | | TLM1/
TLM2 | | | 14 | Practice | 3 | 04-03-2025 | | TLM4 | | | 15 | Revision | 2 | 07-03-2025 | | TLM1/
TLM2 | | | | of classes required to complete UNIT-II: 15 | | | No. of class | es taken: | • | | (Lec | cture:6 Practice:9) | | | (including l | Practice) | | #### **UNIT-III: PROJECTIONS OF SOLIDS** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date | Actual
Date | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|-------------------------------|----------------|---------------------------------|-----------------------| | 16 | Polyhedra and Solids of revolution.
Projections of solids in simple positions:
Axis perpendicular to horizontal plane, Axis
perpendicular to vertical plane – Theory and
practice | 3 | 18-03-2025 | | TLM1/
TLM2/
TLM4 | | | 17 | Axis parallel to both the reference planes,
Projection of Solids with axis inclined to one
reference plane and parallel to another plane. | 2 | 21-03-2025 | | TLM1/
TLM2 | | | 18 | Practice Session | 3 | 25-03-2025 | | TLM 4 | | | | of classes required to complete UNIT-III: 08 ture:3 Practice:5) | | No. of classe
(including P | | | | #### UNIT-IV: SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES | S.
No. | Topics to be covered | No. of
Class
Required | Tentative
Date | ActualDate | Teaching
Learning
ng Method | HOD
Sign
Weekly | |-----------|--|-------------------------------|-------------------|------------|-----------------------------------|-----------------------| | 19 | Sections of Solids Solids in simple positions, Perpendicular and inclined section planes | 2 | 28-03-2025 | | TLM1/
TLM2 | | | 20 | Practice Session | 3 | 01-04-2025 | | TLM4 | | | 21 | Sections of solids: Sectional views and True shape of section | 2 | 04-04-2025 | | TLM1/
TLM2 | | | 22 | Practice | 3 | 08-04-2025 | | TLM4 | | | 23 | Development of solids Methods of Development: Parallel line development and radial line development | 2 | 11-04-2025 | | TLM1/
TLM2 | | | 24 | Practice | 3 | 15-04-2025 | | TLM4 | | | 25 | Development of solids Development of a cube, prism, cylinder, pyramid and cone. | 3 | 22-04-2025 | | TLM4 | | | | of classes required to complete UNIT-IV: 18 eture:6 Practice:12) | No. of classe
(including P | | | | | #### UNIT-V: CONVERSION OF VIEWS | S. | T | No. of | Tentative | Actual | Teaching | HOD | |-----|---|---------------------|------------|--------|---------------------|----------------| | No. | Topics to be covered | Classes
Required | Date | Date | Learning
Methods | Sign
Weekly | | 26 | Introduction to Isometric Views | 2 | 25-04-2025 | | TLM1/
TLM2 | | | 27 | Theory of isometric projection, isometric views, isometric axes, scale, lines & planes | 3 | 29-04-2025 | | TLM4 | | | 28 | Practice | 2 | 02-05-2025 | | TLM1/
TLM2 | | | 29 | Isometric view of prism, pyramid,cylinder & cone, non-isometric lines-methods to generate an isometricdrawing | 3 | 06-05-2025 | | TLM4 | | | 30 | Practice | 2 | 09-05-2025 | | TLM1/
TLM2 | | | 31 | Isometric view of prism, pyramid, cylinder & cone, non-isometric lines-methods to generate an isometric drawing | 3 | 13-05-2025 | | TLM4 | | | | f classes required to complete UNIT-V: 27 ure:12 Practice:15) | | | No. of classes taken: | |----|---|---|------------|-----------------------| | 36 | Revision of IV Unit | 2 | 30-05-2025 | TLM1/
TLM2 | | 35 | Revision of V Unit | 3 | 27-05-2025 | TLM1/
TLM2 | | 34 | Revision of II and III Units | 2 | 23-05-2025 | TLM1/
TLM2 | | 33 | Revision of I Unit | 3 | 20-05-2025 | TLM1 | | 32 | Practice | 2 | 16-05-2025 | TLM1/
TLM2 | | Teaching Learning Methods | | | | | | | | |---------------------------|----------------|------|------------------------------------|--|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | #### PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | |---|-----------------| | I-Descriptive Examination (Units-I, II) | M1=15 | | II- Descriptive Examination (UNIT-III, IV & V) | M2=15 | | Day to Day Evaluation (Assignment) | 15 | | Mid Marks =80% of Max (M1,M2)+ 20% of Min ((M1, M2) + Day to Day Evaluation | M = 30 | | Cumulative Internal Examination (CIE): M | 30 | | Semester End Examination (SEE) | <mark>70</mark> | | Total Marks = $CIE + SEE$ | 100 | ## PART-D #### PROGRAMME OUTCOMES (POs): #### **Engineering Graduates will be able to:** | PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions: Design solutions for complex engineering problems and designsystem components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with anunderstanding of the limitations. | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment. | | PO 8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, tomanage projects and in multidisciplinary environments. | | PO 12 | Life-long learning: Recognize the need for, and have
the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change. | ## PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO1 | To apply the principles of thermal sciences to design and develop various thermal systems. | |------|---| | PSO2 | To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products. | | PSO3 | To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | | Title | Course Instructor | Course Coordinator | Head of the Department | |---------------------|----------------------|--------------------|------------------------| | Name of the Faculty | Dr. P.Ravindra Kumar | Mr.J.Subba Reddy | Dr. M B S S Reddy | | Signature | | | | #### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 #### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** #### **COURSE HANDOUT** #### **PART-A** Name of Course Instructor: Mr. S. SRINIVASA REDDY **Course Name & Code** : DATA STRUCTURES & 23CS02 PREREQUISITE: Programming for Problem Solving Using C-20CS01 #### **COURSE EDUCATIONAL OBJECTIVES (CEO):** The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | COCHEL | COT COTTLES (COS). The time chart of the course, statement with se asie to | |------------|--| | CO1 | Understand the role of linear and nonlinear data structures in organizing and | | COI | accessing data (Understand-L2) | | CO2 | Implement abstract data type (ADT) and data structures for given application. | | COZ | (Apply-L3) | | CO3 | Design algorithms based on techniques like linked list, stack, queue, trees etc. | | CUS | (Apply-L3) | | CO4 | Apply the appropriate linear and nonlinear data structure techniques for solving a | | LU4 | problem. (Apply-L3) | | CO5 | Design hash-based solutions for specific problems. (Apply-L3) | #### **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs): | COs | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |--------------------|-----|-----|-----|-----|-----|--------|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | | | | | | | | | | | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 2 | 3 | | CO3 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO4 | 3 | 2 | 2 | 1 | | | | | | | | | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | 3 | 3 | | 1 - Low 2 - Medium | | | | | 3 | - High | | | | | | | | | | #### **TEXTBOOKS:** - **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition. - T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008 #### **REFERENCE BOOKS:** - **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders - **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft - **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum - **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein - **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick ## PART-B ## **COURSE DELIVERY PLAN (LESSON PLAN):** #### **UNIT-I: Introduction to Linear Data Structures** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 1. | Introduction and Discussion of CO's | 1 | 21-01-2025 | | TLM1 | | | 2. | Definition and Importance of Linear Data Structures | 1 | 22-01-2025 | | TLM1 | | | 3. | Abstract Data Types and Implementation | 1 | 23-01-2025 | | TLM1 | | | 4. | Overview of time and space complexity | 1 | 25-01-2025 | | TLM1 | | | 5. | Examples – Time Complexity,
Space Complexity | 2 | 28-01-2025
29-01-2025 | | TLM1 | | | 6. | Revise Arrays-Basic Operations | 1 | 30-01-2025 | | TLM1 | | | 7. | Searching Techniques: Linear
Search | 1 | 01-02-2025 | | TLM1 | | | 8. | Binary Search & Analysis | 2 | 04-02-2025
05-02-2025 | | TLM1 | | | 9. | Bubble Sort & Analysis | 1 | 06-02-2025 | | TLM1 | | | 10. | Insertion Sort & Analysis | 1 | 11-02-2205 | | TLM1 | | | 11. | Selection Sort & Analysis | 1 | 12-02-2025 | | TLM1 | | | No. o | of classes required to complete U | NIT-I: 13 | | No. of classes | s taken: | | #### **UNIT-II: Linked Lists** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 12. | List Implementation using Arrays and Array Disadvantages | 1 | 13-02-2025 | | TLM1 | | | 13. | Linked List Representation | 1 | 15-02-2025 | | TLM1 | | | 14. | Sing Linked List : Operations | 2 | 18-02-2025
19-02-2025 | | TLM1 | | | 15. | Double Linked List : Operations | 2 | 20-02-2025
22-02-2025 | | TLM1 | | | 16. | Circular Single Linked List | 1 | 25-0202025 | | TLM1 | | | 17. | Circular Double Linked List | 2 | 27-02-2025
01-03-2025 | | TLM1 | | | 18. | Comparing Arrays and Linked List | 1 | 04-03-2025 | | TLM1 | | | 19. | Applications of Linked Lists: Polynomial Representation | 1 | 05-03-2025 | | TLM1 | | | 20. | Polynomial Addition | 1 | 06-03-2025 | | TLM1 | | | No. | of classes required to complete UNIT- | ·II: 12 | | No. of clas | sses taker | 1: | #### **UNIT-III: Stacks:** | S.
No. | Topics to be covered | No. of Classes Date of Completion | | Actual
Date of
Completio
n | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|---------------------------------------|-----------------------------------|------------|-------------------------------------|---------------------------------|-----------------------| | 21. | Introduction to Stacks : Properties | 1 | 18-03-2025 | | TLM1 | | | 22. | Operations of Stacks | 1 | 19-03-2025 | | TLM1 | | | 23. | Implementation of stacks using arrays | 1 | 20-03-2025 | | TLM1 | | | | No. of classes required to complete UNIT-III: 11 No. of classes taken: | | | | | | | | |-----|--|---|--------------------------|------|--|--|--|--| | 29. | Backtracking | 1 | 03-04-2025 | TLM1 | | | | | | 28. | Reversing a List | 1 | 02-04-2025 | TLM1 | | | | | | 27. | Checking Balanced Parenthesis | 1 | 01-04-2025 | TLM1 | | | | | | 26. | Infix to Postfix Conversion | 2 | 27-03-2025
29-03-2025 | TLM1 | | | | | | 25. | Expressions: Expression evaluation | 2 | 25-03-2025
26-03-2025 | TLM1 | | | | | | 24. | Stacks using Linked List | 1 | 22-03-2025 | TLM1 | | | | | ## **UNIT-IV: Queues** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------| | 30. | Introduction to queues: properties and operations, | 1 | 05-04-2025 | | TLM1 | | | 31. | Implementing queues using arrays | 1 | 08-04-2025 | | TLM1 | | | 32. | Implementing queues using Linked
List | 1 | 09-04-2025 | | TLM1 | | | 33. | Applications of Queue : Scheduling | 1 | 10-04-2025 | | TLM1 | | | 34. | Breadth First Search | 1 | 15-04-2025 | | TLM1 | | | 35. | Circular Queue | 2 | 16-04-2025
17-04-2025 | | TLM1 | | | 36. | Double ended queue | 2 | 19-04-2025
22-04-2025 | | TLM1 | | | 37. | Applications of Deque | 1 | 23-04-2025 | | TLM1 | | | No. | of classes required to complete | UNIT-IV: 10 | | No. of clas | sses taker | 1: | ## **UNIT-V: TREES & HASHING TECHNQIUES** | S.
No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual
Date of
Completion | Teaching
Learning
Methods | HOD
Sign
Weekly | | |-----------|--|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--| | 38. | Introduction to Trees, | 1 | 24-04-2025 | | TLM1 | | | | 39. | Representation of Trees | 1 | 26-04-2025 | | TLM1 | | | | 40. | Tree
Traversals | 1 | 29-04-2025 | | TLM1 | | | | 41. | Binary Search Trees-
Operations | 2 | 30-04-2025
01-05-2025 | | TLM1 | | | | 42. | Hashing Introduction, | 1 | 03-05-2025 | | TLM1 | | | | 43. | Hash Functions | 1 | 06-05-2025 | | TLM1 | | | | 44. | Collison Resolution Techniques: Separate Chaining | 1 | 07-05-2025 | | TLM1 | | | | 45. | Open Addressing: Linear
Probing, Quadratic Probing | 1 | 08-05-2025 | | TLM1 | | | | 46. | Double Hashing, Rehashing | 1 | 13-05-2025 | | TLM1 | | | | No. o | No. of classes required to complete UNIT-V: 10 No. of classes taken: | | | | | | | **Content Beyond Syllabus** | S. No. | Topics to be
covered | No. of
Classes
Require
d | Tentative
Date of
Completion | Actual
Date of
Comple
tion | Teachin
g
Learnin
g
Method
s | Learnin
g
Outcom
e
COs | Text
Book
followe
d | HOD
Sign
Weekl
y | |--------|------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---|------------------------------------|------------------------------|---------------------------| | 1. | Evaluation of
Prefix Expression | 1 | 14-05-2025 | | | | | | | 2. | Towers of Hanoi | 1 | 15-05-2025 | | | | | | | 3. | Extendable
Hashing | 1 | 17-05-2025 | | | | | | | | No. of classes | 3 | | No. of classes taken: | | | | | | | I | I MID EXAM | IINATIONS (19- | 05-2025 T | 0 24-05-20 | 24) | | | | Teaching Learning Methods | | | | | |---------------------------|----------------|------|------------------------------------|--| | TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam
Prabha/MOOCS) | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | ## PART-C ## **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | | | |--|------|--| | Assignment-I (Units-I, II) | | | | I-Descriptive Examination (Units-I, II) | | | | I-Quiz Examination (Units-I, II) | | | | Assignment-II (Unit-III ,IV & V) | | | | II- Descriptive Examination (Unit-III ,IV & V) | | | | II-Quiz Examination (Unit-III ,IV & V) | | | | Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30 | | | Cumulative Internal Examination (CIE): M | | | | Semester End Examination (SEE) | | | | Total Marks = CIE + SEE | 100 | | ## PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | | | | | | | |-------|---|--|--|--|--|--|--| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | | | | | | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | | | | | | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | | | | | | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | | | | | | | PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | | | | | | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | | | | | | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | | | | | | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | | | | | | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | | | | | | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | | | | | | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | | | | | | | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | | | | |--------------|---|--|--|--|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and | | | | | | | | | 1 30 2 | IoT as per the society needs. | | | | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | | | | Title | Course Instructor | Course
Coordinator | Module
Coordinator | Head of the
Department | |---------------------|---------------------------|-----------------------|-----------------------|---------------------------| | Name of the Faculty | Mr. S. Srinivasa
Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D.Veeraiah | | Signature | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) # FRESHMANENGINEERINGDEPARTMENT COURSEHANDOUT ### Part-A PROGRAM : B.Tech.,II-Sem.,CSE-G ACADEMICYEAR : 2024-25 COURSENAME & CODE : ENGINEERING PHYSICS LAB L-T-PSTRUCTURE : 0-0-3 COURSECREDITS : 1 COURSEINSTRUCTOR : Dr. P. Sobhanachalam / Dr. N.T. Sarma COURSECOORDINATOR : Pre-requisites : Nil Course Objective: To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments. ### **Course Outcomes:** CO1: Analyze the wave properties of light using optical instruments (Apply-L3). CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3). CO3: Demonstrate the vibrations in stretched strings (Understand-L2). CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3). CO5: Examine the characteristics of semiconductor devices (Apply-L3). ### Course articulation matrix (Correlation between CO's and PO's): | Engineering Physics Lab | | | | | | | | | | | | | |---|---|---------------------------------|---|---|-----|-------|-------|--------|---|----|----|----| | COURSE
DESIGNED BY | | FRESHMAN ENGINEERING DEPARTMENT | | | | | | | | | | | | Course Outcomes | | | | | Pro | ogram | me Ou | tcomes | | | | | | PO's | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | CO1. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO2. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO3. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO4. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | CO5. | 3 | 3 | 2 | 1 | | | | 1 | 1 | | | 1 | | 1 = slight (Low) 2 = Moderate (Medium) 3 = Substantial (High) | | | | | | | | | | | | | # **List of Experiments** - 1. Determination of radius of curvature of a given Plano Convex lens by Newton's rings. - 2. Determination of dielectric constant using charging and discharging method. - 3. Determination of wavelength of a laser light using diffraction grating. - 4. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method. - 5. Determination of temperature coefficients of a thermistor. - 6. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum. - 7. Determination of Frequency of electrically maintained tuning fork by Melde's experiment. - 8. Determination of rigidity modulus of the material of the given wire using Torsional pendulum. - 9. Sonometer- Verification of laws of a stretched string. - 10. Determination of energy band gap of a semiconductor using p-n junction diode. - 11. Verification of Brewster's Law. - 12. Determination of Hall coefficient and Hall voltage. ### **References:** • A Textbook of Practical Physics – S. Balasubramanian, M.N. Srinivasan, S. Chand publishers-2017. ### **BOSAPPROVEDTEXTBOOKS:** 1. LabManualPreparedbytheLBRCE.
EVALUATIONPROCESS: | Evaluation Task | Marks | |---|----------------| | Day-to-Day Work | A1 = 10 | | Record & Observation | B1 = 5 | | Internal Exam | C1 = 15 | | Cumulative Internal Examination (CIE): (A1+B1+C1) | 30 | | Semester End Examination (SEE) | 70 | | Total Marks = CIE + SEE | 100 | Part-B COURSEDELIVERYPLAN (LESSONPLAN): CSE-G | S.No. | Topics to be covered | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Learning
Outcome
COs | Text
Book
followed | HOD
Sign | |-------|----------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------------|--------------------------|-------------| | 1. | Introduction & Demonstrati | 3 | 22.1.25 | | TLM-4 | CO1,
CO2,CO3,CO
4
& CO5 | T1 | | | 2. | Experiment1 | 3 | 29.1.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 3. | Experiment2 | 3 | 5.2.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 4. | Experiment3 | 3 | 12.2.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 5. | Experiment 3 | 3 | 19.2.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 6. | Experiment 4 | 3 | 5.3.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 7. | MID-1 Exam | 3 | 12.3.25 | | | | | | | 8. | Experiment5 | 3 | 19.3.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 9. | Experiment 6 | 3 | 26.3.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 10. | Experiment 7 | 3 | 2.4.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 11. | Experiment8 | 3 | 9.4.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 12. | Experiment 8 | 3 | 16.4.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 13. | Experiment 9 | 3 | 23.4.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 14. | Experiment 10 | 3 | 30.4.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 15. | Internal
Exam | 3 | 7.5.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 16. | Internal
Exam | 3 | 14.5.25 | | TLM-4 | CO1,
CO2,CO3,CO4
& CO5 | T1 | | | 17 | MID-2 Exam | 3 | 4.6.25 | | | | | | | No.of classes | | | |---------------|----|----------------------| | required | 16 | No.of classes taken: | | to completed | | | ### **PROGRAM OUT COMES:** Engineering Graduates will be able to: - (1). Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - (2).Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - (3). Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - (4). Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation provide valid conclusions. - **(5)**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with anunderstanding of the limitations. - **(6)**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assessocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - (9). Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi disciplinary settings. - (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - (11).Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. - (12). Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. CourseInstructor CourseCoordinator ModuleCoordinator H.O.D Dr. P. Sobhanachalam/ Dr. N.T. Sarma Dr.S.YUSUF Dr.S.YUSUF Dr.A. RAMIREDDY ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931 ### **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING** # **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Dr.G.Nageswara Rao/ Mr.P.Rathnakar Kumar Course Name & Code: ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP & 23EE51 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/CSE-G, II SEM A.Y.: 2024-25 **Course Educational Objective:** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations. **COURSE OUTCOMES (COs):** At the end of the course, student will be able to | CO1 | Compute voltage, current and power in an electrical circuit. (Apply) | | | | | | | |------------|---|--|--|--|--|--|--| | CO2 | Compute medium resistance using Wheat stone bridge. (Apply) | | | | | | | | CO3 | Discover critical field resistance and critical speed of DC shunt generators. (Apply) | | | | | | | | CO4 | Estimate reactive power and power factor in electrical loads. (Understand) | | | | | | | | CO5 | Plot the characteristics of semiconductor devices. (Apply) | | | | | | | | CO6 | Demonstrate the working of various logic gates using ICs. (Understand) | | | | | | | ### **COURSE ARTICULATION MATRIX** (Correlation between COs & POs): | | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | PO 11 | PO 12 | |-----|-----|-----|-------|-----|-----|-----|--------|------|------|------|-------|-------| | CO1 | 3 | 2 | | | | | | 2 | 3 | 2 | | 1 | | CO2 | 2 | 2 | | 2 | | | | 2 | 2 | 2 | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | | CO4 | 2 | 2 | | 3 | | | | 2 | 3 | 2 | | 1 | | CO5 | 3 | 2 | | | 2 | | | 2 | 2 | 2 | 1 | 1 | | CO6 | 3 | 3 | | 2 | 2 | | | 2 | 3 | 3 | | 1 | | | | | 1 - L | ow | | 2 - | Medium | ı 3- | High | | | | $\underline{PART-B}$ COURSE DELIVERY PLAN (LESSON PLAN): ELECTRICAL ENGINEERING | S.No. | Topics to be covered.
(Experiment Name) | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Complet ion | Teaching
Learning
Methods | HOD
Sign
Weekly | |--------|---|-------------------------------|------------------------------------|----------------------------|---------------------------------|-----------------------| | 1. | Introduction to BEEE Lab, Importance of Electrical Lab, its Objectives and Outcomes, BASIC MEASURING METERS, SAFETY PRECUATIONS & Other suggestions. (DEMO) | 3 | 23-01-2025 | | TLM4 | | | 2. | Verification of KCL and KVL | 3 | 30-01-2025 | | TLM4 | _ | | 3. | Verification of Superposition theorem | 3 | 30-01-2025 | | TLM4 | | | 4. | Measurement of Resistance using Wheat stone bridge | 3 | 06-02-2025 | | TLM4 | | | 5. | Magnetization Characteristics of DC shunt Generator | 3 | 13-02-2025 | | TLM4 | | | 6. | Measurement of Power and
Power factor using Single-phase
wattmeter | 3 | 20-02-2025 | | TLM4 | | | 7. | Calculation of Electrical Energy
for Domestic Premises | 3 | 27-02-2025 | | TLM4 | | | 8. | Internal Lab Examination (Electrical) | 3 | 06-03-2025 | | TLM4 | | | No. of | classes required: 21 | <u> </u> | <u> </u> | No. of clas | sses taken: | <u> </u> | | Teaching Learning Methods | | | | | | | | |---|----------|------|---------------------------------|--|--|--|--| | TLM1Chalk and TalkTLM4Demonstration (Lab/Field Visit) | | | | | | | | | TLM2 | PPT | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) | | | | | | TLM3 | Tutorial | TLM6 | Group Discussion/Project | | | | | # PART-C # **EVALUATION PROCESS (R20 Regulation):** | Evaluation Task | Expt. no's | Marks | |--|-----------------|--------| | Day to Day work | 1,2,3,4,5,6,7,8 | A1 =10 | | Record and observation | 1,2,3,4,5,6,7,8 | B1 = 5 | | Internal Exam | 1,2,3,4,5,6,7,8 | C1=15 | | Cumulative Internal Examination (CIE):(A1+B1+C1) | 1,2,3,4,5,6,7,8 | 30 | | Semester End Examination (SEE) | 1,2,3,4,5,6,7,8 | 70 | | Total Marks=CIE+SEE | | 100 | # PART-D # PROGRAMME OUTCOMES (POs): | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, | |--| | | |
and an engineering specialization to the solution of complex engineering problems. | | Problem analysis : Identify, formulate, review research literature, and analyze complex engineering | | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, | | nd engineering sciences. | | Design/development of solutions : Design solutions for complex engineering problems and design | | ystem components or processes that meet the specified needs with appropriate consideration for | | he public health and safety, and the cultural, societal, and environmental considerations. | | Conduct investigations of complex problems: Use research-based knowledge and research | | nethods including design of experiments, analysis and interpretation of data, and synthesis of the | | nformation to provide valid conclusions. | | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern | | engineering and IT tools including prediction and modelling to complex engineering activities with | | n understanding of the limitations | | The engineer and society: Apply reasoning informed by the contextual knowledge to assess | | ocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the | | professional engineering practice | | Environment and sustainability : Understand the impact of the professional engineering solutions | | n societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable | | levelopment. | | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of | | he engineering practice. | | ndividual and team work: Function effectively as an individual, and as a member or leader in | | liverse teams, and in multidisciplinary settings. | | Communication : Communicate effectively on complex engineering activities with the engineering | | ommunity and with society at large, such as, being able to comprehend and write effective | | eports and design documentation, make effective presentations, and give and receive clear | | nstructions. | | Project management and finance: Demonstrate knowledge and understanding of the engineering | | nd management principles and apply these to one's own work, as a member and leader in a team, | | o manage projects and in multidisciplinary environments. | | ife-long learning: Recognize the need for and have the preparation and ability to engage in | | ndependent and life-long learning in the broadest context of technological change. | | | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the
Department | |---------------------------|-------------------------|--------------------------|-----------------------|---------------------------| | Name of
the
Faculty | Mr P.Rathnakar
Kumar | Dr.
A.V.G.A.MARTHANDA | Dr.G.NAGESWARA
RAO | Dr.J.S.V.PRASAD | | Signature | | | | | ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (An Autonomous Institution since 2010) ### Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230 ### DEPARTMENT OF MECHANICAL ENGINEERING ### **COURSE HANDOUT** PROGRAM : B.Tech. II-Sem, CSE-G SECTION **ACADEMIC YEAR** : 2024-25 **COURSE NAME & CODE**: Engineering Workshop, 20ME51 L-T-P STRUCTURE : 0-0-3 COURSE CREDITS : 1.5 **COURSE INSTRUCTOR** : Mr. Mallikarjuna Rao Dandu, Sr. Assistant Professor, Mr. K. V. Viswanath, Sr. Assistant Professor **COURSE COORDINATOR:** Seelam Srinivasa Reddy, Assoc. Professor PRE-REQUISITE: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability ### **COURSE OBJECTIVE:** The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools. ### **COURSE OUTCOMES (CO)** | | Design and model different prototypes in the carpentry trade such as | |-----|--| | CO1 | Design and model different prototypes in the carpentry trade such as Cross lap joint, Dove tail joint. | | CO2 | Fabricate and model various basic prototypes in the trade of fitting such | | | as Straight fit, V-fit. | | CO3 | Produce various basic prototypes in the trade of Tin smithy such as | | CO3 | Rectangular tray, and open Cylinder. | | CO4 | Perform various basic House Wiring techniques. | ### COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs): | CO- | PO PSO | PSO | PSO | |------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----| | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO2 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO3 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | | CO4 | 3 | | 2 | 3 | 3 | 3 | | | 3 | | | 2 | | 3 | 2 | **Note:** Enter Correlation Levels **1**or **2** or **3**. If there is no correlation, **put"1** Slight (Low), **2**-Moderate (Medium), **3**-Substantial (High). ### REFERENCE: |--| COURSE DELIVERY PLAN (LESSON PLAN): Section-A | S.
No. | Experiment to be conducted | No. of
Classes
Required | Tentative
Date of
Completion | Actual Date of Completion | Teaching
Learning
Methods | Reference | HOD Sign
Weekly | |-----------|----------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-----------|--------------------| | 1. | Induction | 3 | 20-01-2025 | | TLM8 | - | | | 2. | Experiment-1 | 3 | 27-01-2025 | | TLM8 | R1 | | | 3. | Experiment-2 | 3 | 03-02-2025 | | TLM8 | R1 | | | 4. | Experiment-3 | 3 | 10-02-2025 | | TLM8 | R1 | | | 5. | Experiment-4 | 3 | 17-02-2025 | | TLM8 | R1 | | | 6. | Experiment-5 | 3 | 24-02-2025 | | TLM8 | R1 | | | 7. | Experiment-6 | 3 | 03-03-2025 | | TLM8 | R1 | | | | | I-Mid Exa | aminations (10-0 | 03-2025 to 15 | -03-2025) | | | | 8. | Experiment-7 | 3 | 17-03-2025 | | TLM8 | R1 | | | 9. | Experiment-8 | 3 | 24-03-2025 | | TLM8 | R1 | | | 10. | Experiment-9 | 3 | 07-04-2025 | | TLM8 | R1 | | | 11. | Experiment-10 | 3 | 21-04-2025 | | TLM8 | R1 | | | 12. | Repetition lab | 3 | 28-04-2025 | | TLM8 | | | | 13. | Repetition lab | 3 | 28-04-2025 | | TLM8 | | | | 14. | Lab Internal | 3 | 05-05-2025 | | TLM6 | | | | Teaching Learning Methods | | | | | | | | | |---------------------------|----------------|------|--------------------|------|----------------|--|--|--| | TLM1 | Chalk and Talk | TLM4 | Problem Solving | TLM7 | Seminars or GD | | | | | TLM2 | PPT | TLM5 | Programming | TLM8 | Lab Demo | | | | | TLM3 | Tutorial | TLM6 | Assignment or Quiz | TLM9 | Case Study | | | | ### ACADEMIC CALENDAR: | Description | From | To | Weeks | |-----------------------------|------------|------------|-------| | I Phase of Instructions-1 | 13-01-2025 | 08-03-2025 | 8W | | I Mid Examinations | 10-03-2025 | 15-03-2025 | 1W | | II Phase of Instructions | 17-03-2025 | 17-05-2025 | 9W | | II Mid Examinations | 02-06-2025 | 07-06-2025 | 1W | | Preparation and Practical's | 09-06-2025 | 14-06-2025 | 1W | | Semester End Examinations | 16-06-2025 | 28-06-2025 | 2W | ### Part-C ### **EVALUATION PROCESS:** | Parameter | Marks | |--|------------------| | Day–to–Day Work | A1=10 Marks | | Record And Observation | B1= 05 Marks | | Internal Test | C1 = 15 Marks | | Cumulative Internal Examination (CIE = A1 + B1 + C1) | A1+B1+C1=30Marks | | Semester End Examinations (SEE) | D1 = 70 Marks | | Total Marks : A1+B1+C1+D1 | 100 Marks | **Details of Batches: A-SEC** | Batch | Reg. No. of | Number of Batch | | Reg. No. of | Number of | | |-------|---------------|-----------------|-----|---------------|-----------|--| | No. | Students | Students | No. | Students | Students | | | B11 | 24761A05BH TO | 9 | B21 | 24761A05CP TO | 0 | | | DII | 24761A05BP | 9 B21 | | 24761A05CW | 8 | | | B12 | 24761A05BQ TO | 8 | B22 | 24761A05CX TO | 8 | | | D1Z | 24761A05BX | 0 | DZZ | 24761A05DE | 0 | | | B13 | 24761A05BY TO | 9 | B23 | 24761A05DF TO | 8 | | | D13 | 24761A05CG | 9 | D23 | 24761A05DM | 0 | | | B14 | 24761A05CH TO | 8 | B24 | 24761A05DN TO | 8 | | | D14 | 24761A05CO | 0 | D24 | 24761A05DU | 0 | | | Batch
No: | Exp.
01 | Exp.
02 | Exp.
03 | Exp.
04 | Exp.
05 | Exp.
06 | Exp.
07 | Exp.
08 | Exp.
09 | |--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | B11 | F1 | F2 | P1 | P2 | C1 | C2 | E1 | E2 | T1 | | B12 | F2 | F1 | P2 | P1 | C2 | C1 | E2 | E1 | T1 | | B13 | P1 | P2 | C1 | C2 | E1 | E2 | F1 | F2 | T1 | | B14 | P2 | P1 | C2 | C1 | E2 | E1 | F2 | F1 | T1 | | B21 | C1 | C2 | E1 | E2 | F1 | F2 | P1 | P2 | T1 | | B22 | C2 | C1 | E2 | E1 | F2 | F1 | P2 | P1 | T1 | | B23 | E1 | E2 | F1 | F2 | P1 | P2 | C1 | C2 | T1 | | B24 | E2 | E1 | F2 | F1 | P2 | P1 | C2 | C1 | T1 | ### LIST OF EXPERIMENTS: | Exp. No. | Name of the Experiment | Related CO | |----------|---|------------| | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | 2. | Carpentry-2(C2)-Dove Tail Joint | CO1 | | 3. | Fitting-1(F1)-L-Joint | CO2 | | 4. | Fitting-2(F2)-V-Joint | CO2 | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | 7. | House Wiring-1(E1)-Series and Parallel connection | CO4 | | 8. | HouseWiring-2(E2)-Fluorescent Lamp and Calling Bell Circuit | CO4 | | 9. | Tinsmity-1(T1)- Rectangular Tray | CO2 | | 10. | Demonstration- Welding and Foundry | CO2 | ### NOTIFICATION OF CYCLE: | cycle | Exp. No. | Name of the Experiment | Related CO | |-------|----------
--|------------| | H H | 1. | Carpentry-1(C1)-Corner Bridle Joint | CO1 | | | 2. | Carpentry-2(C2)-Dove tail Joint | CO1 | | Cycle | 3. | Fitting-1(F1)-T-Joint | CO2 | | | 4. | Fitting-2(F2)-V-Joint | CO2 | | | 5. | Plumbing-1(P1)-Pipe Threading practice | CO3 | | | 6. | Plumbing-2(P2)-Pipe Layout | CO3 | | e 2 | 7. | House Wiring-1(E1)–Series and Parallel Connection | CO4 | | Cycle | 8. | House Wiring-2(E2)–Fluorescent Lamp and Calling bell Circuit | CO4 | | | 9. | Tinsmity-1(T1)- Rectangular Tray | CO2 | | | 10. | Demonstration- Welding and Foundry | CO2 | ### PROGRAMME EDUCATIONAL OBJECTIVES: **PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering. **PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi-disciplinary activities. **PEO3:** To develop inquisitiveness towards good communication and lifelong learning. **PROGRAM OUT COMES (POs)** **Engineering Graduates will be able to:** - **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - **2. Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - **6. The engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. - **9. Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings. - **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction - **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments. - **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. ### PROGRAMME SPECIFIC OUTCOMES (PSOs): - **1.** To apply the principles of thermal sciences to design and develop various thermal systems. - **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products. - **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment. | Course
Instructors | Course
Coordinator | Module
Coordinator | HOD | |--|---------------------------|-----------------------|-------------------------------| | Mr. Mallikarjuna Rao
Dandu
Mr. K. V. Viswanath | Mr. S. Srinivasa
Reddy | Mr. J. Subba Reddy | Dr. M. B. S
Sreekara Reddy | # SECON COLLEGE CO. ### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931 ### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING** ### **COURSE HANDOUT** ### **PART-A** Name of Course Instructor: Mr. S. SRINIVASA REDDY **Course Name & Code**: DATA STRUCTURES LAB & 23CS52 L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/CSE/II/G A.Y.: 2024-25 PREREQUISITE: PPSC ### **COURSE EDUCATIONAL OBJECTIVE:** The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques. ### **COURSE OUTCOMES (CO):** CO1: Apply Linear Data Structures for organizing the data efficiently (Apply-L3) CO2: Apply Non- Linear Data Structures for organizing the data efficiently (Apply-L3) **CO3**: Develop and implement hashing techniques for solving problems (**Apply - L3**) **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values. ### **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):** | Cos | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO2 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO3 | 3 | 2 | 2 | 1 | 3 | | | | | | | | 3 | 3 | 3 | | CO4 | | | | | | | | 2 | 2 | 2 | | | | | | **Note: 1-** Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High) PART-B: COURSE DELIVERY PLAN (LESSON PLAN): | S. | | No. of | Tentative | Actual | HOD | |-----|--|----------|------------|------------|------| | No. | Topics to be covered | Classes | Date of | Date of | Sign | | NO. | | Required | Completion | Completion | | | 1. | Array Manipulations | 3 | 24-01-2025 | | | | 2. | Searching and Sorting
Techniques | 3 | 31-01-2025 | | | | 3. | Single Linked List | 3 | 07-02-2025 | | | | 4. | Double Linked List | 3 | 14-02-2025 | | | | 5. | Circular Linked List | 3 | 21-02-2025 | | | | | Polynomial Representation | 3 | 28-02-2025 | | | | 6. | & Polynomial Addition | | | | | | 7. | Linked List Applications | 3 | 07-03-2025 | | | | 8. | Stack Implementation | 3 | 21-03-2025 | | | | 9. | Stack Applications | 3 | 28-03-2025 | | | | 10. | Queue Implementation &
Circular Queue | 3 | 04-04-205 | | | | 11. | Double Ended Queue | 3 | 11-04-2025 | | | | 12. | Trees | 3 | 25-04-2025 | | | | 13. | Hashing | 3 | 02-05-2025 | | | | 14. | Internal Exam | 3 | 09-05-2025 | | | # PART-C # **EVALUATION PROCESS (R23 Regulation):** | Evaluation Task | Marks | | | |--------------------------------|-------|--|--| | Day to Day Work: | | | | | Internal Test | 15 | | | | Continuous Internal Assessment | 30 | | | | Procedure | 20 | | | | Execution & Results | 30 | | | | Viva-voce | 20 | | | | Semester End Examination (SEE) | | | | | Total Marks = CIE + SEE | | | | # PART-D # PROGRAMME OUTCOMES (POs): | PO 1 | Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. | |-------|---| | PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | PO 3 | Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | | PO 4 | Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | | PO 5 | Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | PO 6 | The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | | PO 7 | Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts,
and demonstrate the knowledge of, and need for sustainable development. | | PO 8 | Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. | | PO 9 | Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | PO 10 | Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | | PO 11 | Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. | | PO 12 | Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change | # PROGRAMME SPECIFIC OUTCOMES (PSOs): | PSO 1 | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. | | | | | | |-------|---|--|--|--|--|--| | PSO 2 | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs. | | | | | | | PSO 3 | To inculcate an ability to analyze, design and implement database applications. | | | | | | | Title | Course Instructor | Course Coordinator | Module
Coordinator | Head of the Department | | |------------------------|------------------------|--------------------|-----------------------|------------------------|--| | Name of the
Faculty | Mr. S. Srinivasa Reddy | Dr. Y.V.B Reddy | Dr. Y.V.B Reddy | Dr. D. Veeraiah | | | Signature | | | | | |