COURSE STRUCTURE (R20)

O- SEMESTER

Induction Program

3 Weeks

I - SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>CIE SEE Total</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20FE01</td>
<td>Professional Communication-I</td>
<td>2 0 0 2</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20FE03</td>
<td>Differential Equations</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20FE07</td>
<td>Applied Physics</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20CS01</td>
<td>Programming for Problem Solving using C</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20EE02</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20FE51</td>
<td>Professional Communication Skills Lab</td>
<td>0 0 2 1</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20FE54</td>
<td>Applied Physics Lab</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20CS51</td>
<td>Programming for Problem Solving using C Lab</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20IT51</td>
<td>IT Workshop</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 2 11 19.5</td>
<td>210</td>
<td>490 700</td>
</tr>
</tbody>
</table>

II - SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>CIE SEE Total</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20FE02</td>
<td>Professional Communication-II</td>
<td>2 0 0 2</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20FE04</td>
<td>Linear Algebra and Transformation Techniques</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20FE06</td>
<td>Engineering Chemistry</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20CS05</td>
<td>Python Programming</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20CS03</td>
<td>Data Structures</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20MC01</td>
<td>Constitution of India</td>
<td>2 0 0 0</td>
<td>30 70 100</td>
<td></td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20FE53</td>
<td>Engineering Chemistry Lab</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20CS54</td>
<td>Python Programming Lab</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20CS53</td>
<td>Data Structures Lab</td>
<td>0 0 3 1.5</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20CS55</td>
<td>Shell Scripting</td>
<td>0 0 2 1</td>
<td>15 35 50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 1 11 19.5</td>
<td>240</td>
<td>560 800</td>
</tr>
</tbody>
</table>
III SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20FE09</td>
<td>Probability & Statistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20CS04</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20CS07</td>
<td>Database Management Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20CS08</td>
<td>Computer Organization</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20CS09</td>
<td>Object Oriented Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20CS56</td>
<td>Database Management Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>20CS57</td>
<td>Object Oriented Programming Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>20IT53</td>
<td>R Programming Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>20CSS1</td>
<td>Web Application Development using Full Stack - Module-I (Frontend Development)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

IV SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20CS06</td>
<td>Design & Analysis of Algorithms</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20CS10</td>
<td>Data Warehousing & Data Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20CS11</td>
<td>Operating Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20IT01</td>
<td>Software Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20HS01</td>
<td>Universal Human values 2: Understanding Harmony</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>20MC02</td>
<td>Environmental Science</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20CS58</td>
<td>Data Mining Using Python Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>20CS59</td>
<td>Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>20IT55</td>
<td>Software Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>20CSS2</td>
<td>Web Application Development using Full Stack - Module-II (Backend Development)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Honors/Minor Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
V - SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20CS12</td>
<td>Computer Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20AD04</td>
<td>Machine Learning</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20CS13</td>
<td>Theory of Computation</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20CS14</td>
<td>Computer Graphics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20CS15</td>
<td>Principles of Programming Languages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20CS16</td>
<td>Principles of Artificial Intelligence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>PROGRAM ELECTIVE – I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>OPEN ELECTIVE – I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20CS60</td>
<td>Computer Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>20AD54</td>
<td>Machine Learning Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>20CSS3</td>
<td>Mean Stack Technologies</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>20PI01</td>
<td>Summer Internship</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>16</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honors/Minor Courses</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
VI - SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20CS17</td>
<td>Information Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20CS18</td>
<td>Compiler Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20CS19</td>
<td>Bigdata Analytics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20CS20</td>
<td>Pattern Recognition</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20CS21</td>
<td>Information Retrieval Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20CS22</td>
<td>Distributed Operating Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>OPEN ELECTIVE – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20CS61</td>
<td>Information Security Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>20CS62</td>
<td>Data Analytics and Visualization Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>20CS63</td>
<td>Server-Side Scripting Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>20HSS1</td>
<td>Soft Skills Course</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>16</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Honors/Minor Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
VII - SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>20CS23</td>
<td>Software Testing Methodologies</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20CS24</td>
<td>Cloud Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20AD07</td>
<td>Deep Learning</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20CS25</td>
<td>Software Project Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20AD09</td>
<td>Natural Language Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20CS26</td>
<td>Soft Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20CS27</td>
<td>Social Network Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20CS28</td>
<td>Computer Vision</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20CS29</td>
<td>Block Chain Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>OPEN ELECTIVE– III</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>OPEN ELECTIVE– IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>20HS02</td>
<td>Management Science for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Laboratory Courses

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>20PI02</td>
<td>Industrial/Research Internship</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>20CSS4</td>
<td>Continuous Integration and Delivery using DevOps</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>19</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

| Honors / Minor Courses | 3 | 1 | 0 | 4 | 30 | 70 | 100 |

VIII - SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact hours/week</th>
<th>Credits</th>
<th>Scheme of Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>20PI03</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
OPEN ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Offered to the branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>20AD81</td>
<td>Introduction to Artificial Intelligence</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20AD82</td>
<td>Introduction to Data Science</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20AD83</td>
<td>Introduction to Machine Learning</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20AD84</td>
<td>Fundamentals of Deep Learning</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20AE81</td>
<td>Principles of Flight</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20AE82</td>
<td>Space Science</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20AE83</td>
<td>Aircraft Systems</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20AE84</td>
<td>Air Transportation Systems</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20CE81</td>
<td>Basics of Civil Engineering</td>
<td>AI&DS, ASE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20CE82</td>
<td>Disaster Management</td>
<td>AI&DS, ASE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20CE83</td>
<td>Fundamentals of Geospatial Technologies</td>
<td>AI&DS, ASE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20CE84</td>
<td>Environmental Sanitation</td>
<td>AI&DS, ASE, CSE, CSE(AI&ML), ECE, EEE, IT & ME</td>
</tr>
<tr>
<td>20CS81</td>
<td>Unix and Shell Programming</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20CS82</td>
<td>Introduction to Algorithm Techniques</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20CS83</td>
<td>Principles of Computer Architecture</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20CS84</td>
<td>PHP Programming</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20CS85</td>
<td>Object Oriented Software Engineering</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20EC81</td>
<td>Satellite Technology</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
<tr>
<td>20EC82</td>
<td>Elements of Communication Systems</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
<tr>
<td>20EC83</td>
<td>Microprocessors and Interfacing</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
<tr>
<td>20EC84</td>
<td>Analog and Digital Communications</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
<tr>
<td>20EC85</td>
<td>Systems and Signal Processing</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
<tr>
<td>20EC86</td>
<td>Cellular Technology</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), EEE, IT & ME</td>
</tr>
</tbody>
</table>
OPEN ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Offered to the branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>20EE81</td>
<td>Linear Control Systems</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), ECE, IT & ME</td>
</tr>
<tr>
<td>20EE82</td>
<td>Basics of Electrical Measurements</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), ECE, IT & ME</td>
</tr>
<tr>
<td>20EE83</td>
<td>Utilization of Electrical Energy</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), ECE, IT & ME</td>
</tr>
<tr>
<td>20EE84</td>
<td>Electric Vehicles</td>
<td>AI&DS, ASE, CE, CSE, CSE(AI&ML), ECE, IT & ME</td>
</tr>
<tr>
<td>20IT81</td>
<td>OOP through JAVA</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20IT82</td>
<td>Web Technologies using PHP</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20IT83</td>
<td>Mobile Application Development</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20IT84</td>
<td>Cyber Security & Digital Forensics</td>
<td>ASE, CE, ECE, EEE, & ME</td>
</tr>
<tr>
<td>20ME81</td>
<td>Renewable Energy Sources</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE & IT</td>
</tr>
<tr>
<td>20ME82</td>
<td>Robotics in Automation</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE & IT</td>
</tr>
<tr>
<td>20ME83</td>
<td>Operations Research Techniques</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE & IT</td>
</tr>
<tr>
<td>20ME84</td>
<td>Elements of Automobile Engineering</td>
<td>AI&DS, CE, CSE, CSE(AI&ML), ECE, EEE & IT</td>
</tr>
</tbody>
</table>
Pre-requisites: Nil

Course Educational Objectives: To improve English language proficiency of the students in various aspects like vocabulary, grammar, communication skills, listening skills, reading & writing skills.

Course Outcomes: At the end of the course, the student will be able to

CO1 : Write sentences and paragraphs using proper grammatical structures and word forms (Remember – L1)
CO2 : Comprehend the given text by employing suitable strategies for skimming and scanning and draw inferences (Understand – L2)
CO3 : Write summaries of reading texts using correct tense forms & appropriate structures (Remember – L1)
CO4 : Write Formal Letters, Memos & E-Mails (Apply – L3)
CO5 : Edit the sentences/short texts by identifying basic errors of grammar/vocabulary/syntax (Understand – L2)

Unit - I
Exploration - ‘A Proposal to Girdle the Earth – Nellie Bly’; Reading: Skimming for main idea; Scanning for specific information; Grammar & Vocabulary: Content Words; Function Words; Word Forms: verbs, nouns, adjectives and adverbs; Nouns: Countable and Uncountable, Singular and Plural forms; Wh - Questions; Word Order in Sentences; Writing: Paragraph Analysis; Paragraph Writing; Punctuation and Capital Letters

Unit – II
On Campus- ‘The District School as it Was by One Who Went to it – Warren Burton’; Reading: Identifying Sequence of Ideas; Grammar & Vocabulary: Cohesive Devices: Linkers/Signposts/Transition signals, Synonyms, Meanings of Words/Phrases in the context; Writing: Memo Drafting.

Unit – III
Working Together- ‘The Future of Work’
Reading: Making basic inferences; Strategies to use text clues for comprehension; Summarizing; Grammar & Vocabulary: Verbs: Tenses; Reporting Verbs for Academic Purpose; Writing: Rephrasing what is read; Avoiding redundancies and repetitions; Abstract Writing/Summarizing.

Unit – IV
‘A.P.J.Abdul Kalam’; Grammar & Vocabulary: Direct & Indirect Speech; Articles and their Omission; Writing: E-Mail Drafting.

Unit – V
‘C.V.Raman’; Grammar & Vocabulary: Subject-Verb Agreement; Prepositions; Writing: Formal Letter Writing.
Text Books:

Reference Books:
Pre-requisites: Nil

Course Educational Objective: The objective of this course is to introduce the first order and higher order differential equations, functions of several variables. The students also learn solving of first order partial differential equations.

Course Outcomes: At the end of this course, the student will be able to

- CO1: Apply first order and first-degree differential equations to find orthogonal trajectories (Apply – L3).
- CO2: Distinguish between the structure and methodology of solving higher order differential equations with constant coefficients (Understand – L2).
- CO3: Apply various Numerical methods to solve initial value problem (Apply – L3).
- CO4: Generate the infinite series for continuous functions and investigate the functional dependence (Understand – L2).

UNIT – I

Differential Equations of First Order and First Degree

Differential equations of first order and first degree – Exact and Non Exact differential Equations, Applications of differential equations – Orthogonal Trajectories.

UNIT – II

Linear Differential Equations of Higher Order

Homogeneous and Non Homogeneous Linear differential equations of second and higher order with constant coefficients with R.H.S. functions e^{ax}, $\sin (ax+b)$, $\cos (ax+b)$, x^n, $e^{ax}V(x)$, $xV(x)$, Method of variation of parameters.

UNIT – III

Numerical solution of Ordinary Differential Equations

Euler’s Method - Runge- Kutta Methods.

UNIT – IV

Functions of several variables

Generalized Mean Value Theorem (without proof), Maclaurin’s series, Functions of several variables, Jacobians (Cartesian and polar coordinates), Functional dependence. Maxima and Minima of function with two variables.
UNIT – V
Partial Differential Equations

TEXTBOOKS:

Reference Books:
Pre-requisites: Nil

Course Educational Objectives: It enables the students to understand the fundamental concepts of optics, quantum mechanics, free electron theory of metals, semiconductors, dielectrics and their applications.

Course Outcomes: At the end of this course, the student will be able to

- CO1: Define the nature of interference and diffraction (Remember – L1).
- CO2: Apply the lasers and optical fibers in different fields (Apply – L3).
- CO3: Estimate the electrical conductivity of metals (Understand – L2).
- CO4: Analyze the properties of semiconducting materials (Understand – L2).
- CO5: Classify the different types of magnetic and dielectric materials (Understand – L2).

UNIT – I
Wave Optics

UNIT – II
Lasers and optical fibers
Optical Fibers: Optical Fiber principle, Structure of optical fiber, numerical aperture and acceptance angle, types of optical fibers - applications.

UNIT – III
Principles of Quantum Mechanics & Free electron theory
Principles of quantum mechanics: de Broglie Hypothesis, Davisson - Germer experiment, Schrodinger time independent and dependent wave equations, physical significance of the wave function – particle in a box.
Free electron theory
Classical free electron theory- Postulates, Advantages and Draw backs, Fermi-Dirac distribution function-Temperature dependence of Fermi- Dirac distribution function, Classification of Solids on the basis of Band theory.

UNIT – IV
Semiconductor physics
Conductivity of Intrinsic and Extrinsic semiconductors, Drift and Diffusion Current, Einstein relation, Hall Effect, Differences between direct and indirect Band Gap semiconductors, Solar Cell, Applications of Solar Cells.
UNIT – V:
Magnetic & Dielectric materials

Magnetic parameters, Classification of magnetic materials-Diamagnetic, paramagnetic and ferromagnetic materials, Hysteresis loop, soft and hard magnetic materials, Applications of Ferro magnetic materials

Dielectrics: polarization - Electronic and ionic polarization, orientation polarization (Qualitative), Local field, Claussius-Mosotti equation, Applications of dielectric materials.

TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisite : Nil

Course Educational Objective: The Objective of the course is to make learn the basic elements of C programming, control structures, derived data types, Modular programming, user defined structures, basics of files and its I/O operations.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** Familiar with syntax and semantics of the basic programming language constructs. (Understand - L2)
- **CO2:** Construct derived data types like arrays in solving problem. (Apply - L3)
- **CO3:** Decompose a problem into modules and reconstruct it using various ways of user-defined functions. (Apply - L3)
- **CO4:** Use user-defined data types like structures and unions and its applications to solve problems. (Apply - L3)
- **CO5:** Discuss various file I/O operations and its application. (Understand - L2)

UNIT – I

Introduction to Problem solving through C-Programming: Problem Specification, Algorithm / pseudo code, flowchart, examples.

C-Programming: Structure of C program, identifiers, basic data types and sizes, Constants, variables, Input-output statements, A sample c program, operators, expressions, type conversions, conditional expressions, precedence of operators and order of evaluation.

Control statements: if, if else, else if ladder and switch statements, while, do-while and for statements, break, continue, go to and labels.

UNIT – II

Arrays- concept, declaration, definition, accessing elements, storing elements, two dimensional and multi-dimensional arrays.

Character Arrays: declaration, initialization, reading, writing strings, string handling functions, pre-processor Directives, and macros.

Applications of Arrays: Linear search, Binary search, Bubble Sort.

UNIT – III

Pointers- concepts, declaring & initialization of pointer variables, pointer expressions, pointer arithmetic, pointers and arrays, pointers and character arrays, pointers to pointers.

Functions: basics, category of functions, parameter passing techniques, recursive functions-comparison with Iteration, Functions with arrays, Standard library functions, dynamic memory management functions, command line arguments.

Storage classes - auto, register, static and extern.

UNIT – IV

Derived types- structures- declaration, definition, and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self-referential structures, unions, typedef.
UNIT – V

Files – concept of a file, text files and binary files, streams, standard I/O, Formatted I/O, file I/O operations, error handling.

Textbook:

Reference books:
Prerequisite: Physics

Course Educational Objective: This course enables student to illustrate the basics of applied electricity and electronics.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Apply network reduction techniques to simplify electrical circuits (Apply – L3).
CO2: Illustrate the working principle of DC machines and transformers (Understand – L2).
CO3: Understand V-I characteristics of semiconductor devices (Understand – L2).
CO4: Illustrate the configuration of Transistors and their applications (Understand – L2).

UNIT – I: Electrical Circuit Fundamentals

Basic definitions, Types of elements-active and passive, Ohm’s Law, Kirchhoff’s Laws-Network reduction techniques- series, parallel, star to delta, delta to star transformations, source transformation (for resistive networks), mesh analysis, nodal analysis (Basic problems).

UNIT – II: DC Network Theorems and AC Fundamentals

Theorems-Superposition, Thevenin’s, Norton’s and Maximum Power Transfer (Basic problems in DC excitation only)
Peak, R.M.S, average, instantaneous values, form factor and peak factor– periodic waveforms – Phase and Phase difference –concepts of reactance, impedance, susceptance and admittance, real, reactive and apparent powers, Power Factor- resonance-bandwidth-quality factor.

UNIT – III: DC Machine Fundamentals and Single-Phase Transformers

DC generator principle, constructional details, emf equation, types of generators (Theory only).
DC motor principle, Back emf, types of motor (Theory only).
Construction and Principle of operation of single-phase transformers-Emf equation

UNIT–IV: P-N Junction Diode and Zener Diode

P-N Junction Diode: Operation and V-I characteristics of PN junction diode, Rectifiers-Half Wave Rectifier, Full Wave Rectifier-Bridge type, Zener Diode-Voltage Regulator.

UNIT – V: Transistors

Construction, Principle of Operation, Symbol, CB, CE configurations, JFET, MOSFET and application of transistor as an amplifier (Theory only).
TEXTBOOKS:

REFERENCE BOOK(S):

Pre-requisites : Nil

Course Educational Objective: To improve the proficiency of students in English with an emphasis on better communication in formal and informal situations; Develop speaking skills required for expressing their knowledge and abilities and to face interviews with confidence.

Course Outcomes: At the end of this course, the student will be able to

CO1: Introduce oneself and others using appropriate language and details (Understand – L2)
CO2: Comprehend short talks and speak clearly on a specific topic using error free English(Understand – L2)
CO3: Report effectively after participating in informal discussions ethically (Remember – L1)
CO4: Interpret data aptly, ethically & make oral presentations (Apply – L3)

Syllabus: Professional Communication Skills Lab (PCS) shall have two parts:

- **Computer Assisted Language Learning (CALL) Lab** for 60 students with 60 systems, LAN facility and English language software for self-study by learners.
- **Interactive Communication Skills (ICS) Lab** with movable chairs and audio-visual aids with a P.A System, a T. V., a digital stereo – audio & video system and camcorder etc.

Exercise – I

CALL Lab: Understand - Sentence structure

ICS Lab: Practice - Listening: Identifying the topic, the context and specific information
Speaking: Introducing oneself and others

Exercise – II

CALL Lab: Understand - Framing questions

ICS Lab: Practice - Listening: Answering a series of questions about main idea and supporting ideas after listening to audio text
Speaking: Discussing in pairs/small groups on specific topics; Delivering short structured talks using suitable cohesive devices (JAM)

Exercise – III

CALL Lab: Understand - Comprehension practice – Strategies for Effective Communication

ICS Lab: Practice - Listening: Listening for global comprehension and summarizing
Speaking: Discussing specific topics in pairs/small groups, reporting what is discussed
Exercise – IV

CALL Lab: Understand- Features of Good Conversation – Strategies for Effective Communication.

ICS Lab: Practice - Listening: Making predictions while listening to conversations/transactional dialogues with/without video
Speaking: Role – plays – formal & informal – asking for and giving information / directions / instructions / suggestions

Exercise – V

CALL Lab: Understand - Features of Good Presentation, Methodology of Group Discussion
ICS Lab: Practice - Introduction to Group Discussions
Listening: Answering questions, identifying key terms and understanding concepts
Speaking: Formal Oral & Poster presentations on topics from academic contexts without the use of PPT

Lab Manual:

Suggested Software:

1. Digital Mentor: Globarena, Hyderabad, 2005
4. Dorling Kindersley Series of Grammar, Punctuation, Composition, USA, 2001
Pre-requisites: Nil

Course Educational Objective: This course enables the students to acquire theoretical ideas, analytical techniques, and graphical analysis, by completing a host of experiments with the procedures and observational skills for appropriate use of simple and complex apparatus.

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1: Analyze the wave characteristics of light (Understand – L2).

CO2: Estimate the magnetic field using Stewart’s and Gee’s apparatus (Understand – L2).

CO3: Verify the characteristics of semiconductor diodes (Apply – L3).

CO4: Determine the acceptance angle and numerical aperture of optical fiber (Apply – L3).

CO5: Improve report writing skills and individual teamwork with ethical values (Understand – L2).

List of Experiments
(Any of the 10 experiments are required to be conducted)

GENERAL EXPERIMENTS:
1. Determine the energy band gap of a semiconductor Diode.
2. Study the characteristics of Zener Diode.
3. Study the magnetic field along the axis of a current carrying circular coil using Stewart’s & Gee’s apparatus and to verify Biot - Savart’s law.
4. Study the characteristics of Solar cell
5. Determination of dielectric constant by charging and discharging method.
6. Study the characteristics of Photo diode.
7. Determination of resistivity of semiconductor by four probe method.

OPTICS LAB EXPERIMENTS:
9. Determine the width of a single slit by forming diffraction pattern.
11. Determine the Wavelengths of various spectral lines by using diffraction grating.
12. Resolving power of grating.
13. Determine the acceptance angle and numerical aperture of a fiber.
14. Measure the bending losses in the optical fiber cable at different wavelengths.
Pre-requisite : NIL

Course Educational Objective: The objective of the course is to learn the basic elements of C Programming Structures like Data Types, Expressions, Control Statements, and Various I/O Functions and to solve simple mathematical problems using control structures. Design and implementation of various software components, which solve real world problems.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Apply control structures of C in solving computational problems. (Apply - L3)
CO2: Implement derived data types & use modular programming in problem solving (Apply- L3)
CO3: Implement user defined data types and perform file operations. (Apply- L3)
CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

of modules at most 10 can be taught and all the modules should be in line with theory.

Module 1: Introduction to Raptor Tool.
Module 2: Problem solving using Raptor Tool.
Module 3: Exercise Programs on Basics of C-Program.
Module 4: Exercise Programs on Control Structures.
Module 5: Exercise Programs on Loops & nesting of Loops.
Module 6: Exercise Programs on Arrays & Strings.
Module 7: Exercise Programs on Pointers.
Module 8: Exercise Programs on Functions.
Module 9: Exercise Programs on user defined data types.
Module 10: Exercise Programs on Files.
Pre-requisite: NIL

Course Educational Objective:
The objective of the course is to impart knowledge about the components of PC, Assembling PC, Installation of OS, softwares like MS-Office, LaTex and concepts related to Networking, Internet as well as antivirus.

COURSE OUTCOMES (COS): At the end of this course, the student will be able to:

CO1: Identify the basic hardware components, keyboard shortcuts, assembling and disassembling of the system (PC). (Understand - L2)

CO2: Demonstrate Operating System installation, apply various commands of linux operating system, and networking. (Apply - L3)

CO3: Create web pages using HTML, documents using applications like LaTeX, Google forms and use application software packages: MS-Word, MS-Excel, MS-Power Point to create documents and presentation. (Apply - L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

PC Hardware

Week 1
Task: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

PC Assembling

Week 2
Task: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. In addition, students need to go through the video, which shows the process of assembling a PC. A video would be given as part of the course content.
Operating System Installation

Week 3

Task 1: Every student should individually install MS windows and Linux/ Ubuntu OS on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 2: Linux Operating System commands:

- General command syntax
- Basic help commands
- Basic File system commands
- Date and Time
- Basic Filters and Text processing
- Basic File compression commands
- Miscellaneous: apt-get, vi editor

Network & Internet

Week 4

Task 1: Networking Commands:

ping, ssh, ifconfig, scp, netstat, ipstat, nslookup, traceroute, telnet, host, ftp, arp, wget, route

Week 5

Task 1: Internet Services:

- WebBrowser usage and advanced settings like LAN, proxy, content, privacy, security, cookies, extensions/ plugins
- Malicious Software: Virus, Worm, Logic Bomb, Trojan Horse
- Antivirus installation, configuring a firewall, blocking pop-ups
- Mail creation and usage, Creating a Digital Profile on LinkedIn

Productivity Tools

Week 6

Task 1: Basic HTML tags, Introduction to HTML5 and its tags, Introduction to CSS3 and its properties. Preparation of a simple website/ homepage

Every student should develop your home page using HTML Consisting of your photo, name, address and education details as table and your skill set as a list.
Office Tools

Week 7

Task-1: Demonstration and Practice on Text Editors like Notepad++, Sublime Text, Atom, Brackets, Visual code, etc

Week 8

Task-1: Demonstration and Practice on Microsoft Word, PowerPoint, Microsoft Excel

Week 9

Task-1: Demonstration and Practice on LaTeX and produce professional pdf documents.

Week 10

Task-1: Creating online documents using Google docs - Create and share Bio-data form.

References:

1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech.
2. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
4. PCHardwareTroubleShootingMadeEasy, TMH
5. https://www.google.com/docs/about/
Pre-requisites: Nil

Course Educational Objective: To improve English language proficiency of the students in various aspects like vocabulary, grammar, communication skills, listening skills, reading & writing skills.

Course Outcomes: At the end of the course, the student will be able to

CO1: Produce a coherent paragraph interpreting a figure/graph/chart/table (Understand – L2)

CO2: Comprehend the given texts thoroughly by guessing the meanings of the words contextually (Understand – L2)

CO3: Use language appropriately for describing /comparing/contrasting/giving directions & suggestions (Remember – L1)

CO4: Write formal/informal dialogues with an understanding of verbal/non-verbal features of communication. (Understand – L2)

CO5: Write well structured essays; Reports & Résumé (Apply – L3)

UNIT - I
Fabric of Change - ‘H.G. Wells and the Uncertainties of Progress – Peter J. Bowler’; Reading: Studying the use of Graphic elements in texts; Grammar & Vocabulary: Quantifying Expressions; Adjectives and adverbs; Comparing and Contrasting; Degrees of Comparison; Writing: Information Transfer

UNIT - II
Tools for Life - ‘Leaves from the Mental Portfolio of a Eurasian – Sui Sin Far’; Reading: Global Comprehension; Detailed Comprehension; Grammar & Vocabulary: Active & Passive Voice; Idioms & Phrases; Writing: Structured Essays using suitable claims and evidences

UNIT - III
‘Homi Jahangir Bhabha’;
Grammar & Vocabulary: Words often confused; Common Errors; Writing: Incident & Investigation Reports

UNIT - IV
‘Jagadish Chandra Bose’; Grammar & Vocabulary: Use of Antonyms; Correction of Sentences; Writing: Dialogue Writing

UNIT - V
‘Prafulla Chandra Ray’; Grammar & Vocabulary: Analogy; Sentence Completion; Writing: Writing a Résumé
TEXT BOOKS:

REFERENCE BOOKS:
B.Tech. (II Sem.) 20FE04 - LINEAR ALGEBRA AND
TRANSFORMATION TECHNIQUES

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisites: Nil

Course Educational Objective: In this course, students learn Matrix Algebra and introduced with transformation techniques such as Laplace Transforms and Z – Transforms.

Course Outcomes: At the end of the course, the student will be able to

CO1: Investigate the consistency of the system of equations and solve them (Apply – L3).
CO2: Determine the eigen vectors and inverse, powers of a matrix using Cayley – Hamilton theorem (Apply – L3).
CO3: Use the concepts of Laplace Transforms to various forms of functions.
CO4: (Understand – L2).
CO5: Solve ordinary differential equations by using Laplace Transforms (Apply – L3).

UNIT – I
System of Linear Equations

UNIT – II
Eigen Values and Eigen Vectors

UNIT – III
Laplace Transforms
Laplace transforms of standard functions –Linear Property - Shifting Theorems, Change of Scale Property
Multiplication and Division by ‘t’ - Transforms of derivatives and integrals – Unit step function – Dirac’s delta function.

UNIT – IV
Inverse Laplace Transforms
Inverse Laplace transforms– Linear Property - Shifting Properties - Convolution theorem, Applications of Laplace transforms to ordinary differential equations.

UNIT – V
Z-Transforms
TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisites: Nil

Course Educational Objectives: It enables the students to understand the fundamental concepts of chemistry and to provide them with the knowledge of industrial problems and finding the solutions. It helps to strengthen the basic concepts of electrochemistry, corrosion, nanotechnology, polymers, liquid crystals and analytical techniques.

Course Outcomes: At the end of the course, students will be able to,

CO1: Apply Nernst Equation for calculating electrode cell potentials and compare battery different applications (Apply – L3).
CO2: Apply principles of corrosion for design and effective maintenance of various equipment (Apply – L3).
CO3: Analyse the suitability of advanced materials like nano materials in electronics and medicine (Understand – L2).
CO4: Identify the importance of liquid crystals, polymers in advanced technologies (Understand – L2).
CO5: Apply the principles of analytical techniques in chemical analysis (Apply – L3).

UNIT – I
Electro Chemistry & Batteries
Types of Electrodes - Calomel Electrode, Glass Electrode, Calculation of EMF of Cell, Applications of Nernst Equation & Electro chemical Series, Batteries - Lead-acid Battery, Lithium ion Battery, \(\text{H}_2 \) – \(\text{O}_2 \) Fuel Cell, Mg - Cu reserve battery.

UNIT – II
Science of Corrosion
Dry Corrosion (Direct Chemical corrosion) - Types of dry corrosion-oxidative corrosion, Pilling Bed worth rule, corrosion by other gases and liquid metal corrosion; Wet Corrosion (Electro Chemical corrosion) - Mechanism- oxygen absorption, hydrogen evolution, types of wet corrosion, Galvanic Corrosion, Concentration Cell Corrosion, passivity and Galvanic series; Factors Influencing Corrosion - Nature of metal (Purity, position in galvanic series, relative area of cathode & anode, nature of surface film) and nature of environment (temperature, humidity, atmospheric pollution and nature of ions in the medium); Control of Corrosion: Cathodic Protection - Sacrificial anode and impressed current methods, electro plating and metal cladding.

UNIT – III
Chemistry of Engineering Materials
Nano Materials - Extraordinary changes observed at nano size of materials and reasons, types of nano-materials, Gas-Phase Synthesis of nanomaterials, Applications; Materials in Electronic devices: Very brief note on raw materials that make IC units of CPU, GPU, RAM, PCBs, hard disks and other electronic devices with special reference to polymers; Molecular Switches - Characteristics of Molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes – linear motions in rotaxanes, an acid-base controlled molecular shuttle, molecular elevator, automated light-powered molecular motor.
UNIT – IV
Liquid Crystals & Polymers
Liquid crystals - Identification and structural aspects of molecules to form liquid crystals; Classification of liquid crystals - Thermo trope liquid crystals and types, lyotropic liquid crystals. Mechanism of working of liquid crystals and applications; Polymers - Differences between thermoplasts and thermosets, Types of polymerization with examples; Plastics - Preparation properties and engineering applications of P.M.M.A, Teflon, Polycarbonate; Rubbers - Structure of raw rubber and vulcanized rubber, Preparation properties and engineering applications of Polyurethane, Buna-S, conducting polymers; Bio-degradable polymers - PLA & PGA (Polylactic Acid and Polyglycolic Acid).

UNIT – V
Analytical Techniques
Types of analysis; Physical analysis: Analysis of physical characteristics; Chemical analysis: Gravimetric and volumetric analysis (basic concept only); Instrumental analysis: Electro analytical techniques – Introduction; Conductometric techniques: strong acid-strong base and strong acid-weak base, weak acid -strong base and weak acid -weak base & advantages; Potentiometric techniques: Acid-base and oxidation-reduction titrations-advantages; Colorimetric techniques: Principle and determination of iron by using thiocynate as a reagent.

TEXTBOOKS

REFERENCE BOOKS
Pre-requisite : Problem Solving Skills

Course Educational Objective: The objective of the course is to provide basic knowledge of python. Python programming is intended for software engineers, system analysts, program managers and user support personnel who wish to learn the Python programming language for Problem solving and programming capability.

Course Outcomes: At the end of this course, the student will be able to

CO1: Identify basic building blocks of python to solve mathematical problems. (Understand-L2)
CO2: Apply the in-built data structures like list, tuple, set and dictionary for solving problems. (Apply - L3)
CO3: Use exception-handling mechanism to catch run-time errors (Apply - L3)
CO4: Demonstrate compelling concepts about string manipulation, regular expressions, and file handling. (Understand - L2)
CO5: Demonstrate object-oriented programming principles of python. (Understand - L2)

UNIT-I
Control Structures: Conditional Statements - if, if-else, Nested if-else. Jumping Statements - continue, break, and pass. Python Loops - while, for, Nested loops with Programming Examples, Mathematical Functions and Constants (import math), Random Number Functions.

UNIT-II
Lists: Concept, Creating and Accessing Elements, Updating & Deleting Lists, basic List Operations, Reverse, Indexing, Slicing and Matrices, Built-in List Functions.
Tuples: Introduction, Creating & Deleting Tuples, Accessing values in a Tuple, Updating tuples, Delete Tuple Elements, basic Tuple Operations, Indexing, Slicing and Matrices, built-in tuple Functions.
Sets: Concept, Operations.
Dictionaries: Introduction, Accessing values in dictionaries, working with dictionaries, Properties, Functions.

UNIT-III
Functions: Defining a Function, Calling a Function, Types of Functions, Function Arguments, Anonymous functions, Global and Local Variables, Recursion
Modular Design: Creating modules, import statement, from, Date and Time Module.
Exception Handling: Exception, Exception Handling, except clause, Try, finally clause, User Defined Exceptions.
UNIT-IV

Regular Expression Operations: Using Special Characters, Regular Expression Methods, Named Groups in Python Regular Expressions, Regular Expression with glob Module.

Files: Introduction to files, file operations - Read, write, and search

UNIT-V

Object Oriented Programming OOP in Python: Classes, 'self-variable', Methods, Constructor Method, Inheritance, Overriding Methods, and Data hiding.

TEXTBOOKS:

2. Python for Everybody: Exploring Data In Python 3 by Dr. Charles Russell Severance, Sue Blumenberg

Reference books:

Pre-requisite : Programming Language

Course Educational Objectives:

The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

Course Outcomes (COs): At the end of this course, the student will be able to

CO 1: Write the algorithms for various operations on list using arrays and linked list and analyze the time complexity of its operations.(Understand - L2)

CO 2: Apply linear data structures like stack and queue in problem solving.(Apply - L3)

CO 3: Demonstrate various searching and sorting techniques and compare their computational complexities in terms of space and time.(Understand - L2)

CO 4: Write the algorithms for various operations on binary trees, binary search trees and AVL trees.(Understand - L2)

CO 5: Demonstrate graph traversal techniques and hashing techniques.(Understand - L2)

UNIT - I
Algorithm Analysis:
Introduction to Algorithm, Algorithm Analysis, Asymptotic Notations.

Introduction to arrays and Abstract Data Type (ADT)
Lists: List using arrays and linked list- Singly Linked List, Doubly Linked List, Circular Linked List.

UNIT – II
Stacks: Stack ADT, Implementation using arrays and linked list.
Applications of stacks: Infix to postfix expression conversion, Evaluation of Postfix expressions and balancing the symbols.

Queues:
Queue: Queue ADT, Implementation of Queue using arrays and linked list, circular queue, DEQUE

UNIT - III
Sorting: Bubble sort, Insertion Sort, Selection sort, Merge Sort, Quick Sort & Heap Sort

UNIT - IV
UNIT - V
Graphs: Fundamentals, Representation of graphs, Graph Traversals: BFS, DFS.
Hashing: Hash Table, Hash Function, Collision resolution Techniques- separate Chaining, Open addressing, rehashing.

TEXTBOOKS:
2. ReemaThareja, Data Structures using c, Oxford Publications [3,4,5].

REFERENCE BOOKS:
1. Langson, Augenstein&Tenenbaum, ‘Data Structures using C and C++’, 2nd Ed, PHI.
Pre-requisites: Nil

Course Educational Objectives

• To enable the student to understand the importance of constitution.
• To understand the structure of Executive, Legislature and Judiciary.
• To understand Philosophy of fundamental rights and duties.
• To understand the autonomous nature of constitution bodies like Supreme Court and High Court Controller and Auditor General of India and Election Commission of India.
• To understand the Central and State relation, financial and administrative.

Course Outcomes: At the end of the course, the student shall be able to

CO 1: Understand history and philosophy of constitution with reference to Preamble, Fundamental Rights and Duties (Understand – L2).

CO 2: Understand the concept of Unitary and Federal Government along with the role of President, Prime Minister and Judicial System (Understand – L2).

CO 3: Understand the structure of the state government, Secretariat, Governor and Chief Minister and their functions (Understand – L2).

CO 4: Learn local administration viz. Panchayat, Block, Municipality and Corporation (Understand – L2).

CO 5: Learn about Election Commission and the process and about SC, ST, OBC and women (Understand – L2).
UNIT – I:

UNIT – II:
Union Government and its Administration Structure of the Indian Union: Federalism Centre – State relationship, President: Role, Power and Position. Prime Minister (PM) and Council of Ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. The Supreme Court and High Court: Powers and Functions.

UNIT – III:
State Government and its Administration Governor – Role and Position – Chief Minister (CM) and Council of Ministers. State Secretariat: Organization, Structure and Functions.

UNIT – IV:
A Local Administration -- Role and Importance, Municipalities – Mayor and Role of Elected Representative, Panchayati Raj: Functions of Panchayati Raj Institution, Zilla Panchayat, Elected Officials and their roles, Village level – Role of Elected and Appointed officials.

UNIT – V:

Reference Books
3. J.A. Siwach, Dynamics of Indian Government and Politics.

E-Resources:
1. nptel.ac.in/courses/109104074/8.
2. nptel.ac.in/courses/109104045.
3. nptel.ac.in/courses/101104065.
5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indianconstitution
Pre-requisites: Nil

Course Educational Objectives: This course enables the students to analyze water samples and perform different types of volumetric titrations. It provides them with an overview of preparation of polymers and analytical techniques.

Course Outcomes: At the end of the course, the student shall be able to

CO1: Assess alkalinity of water based on the procedure given (Understand – L2).
CO2: Distinguish different types of titrations in volumetric analysis after performing the experiments listed in the syllabus (Understand – L2).
CO3: Acquire practical knowledge related to preparation of polymers. (Understand – L2).
CO4: Exhibit skills in performing experiments based on theoretical fundamentals. (Understand – L2).

List of Experiments
(Any of the 10 experiments are required to be conducted)

Model Experiment
1. Determination of Na2CO3 using standard HCl solution.

Water Analysis
2. Determination of alkalinity of water sample.

Complexometric Titrations
3. Estimation of Mg+2/Zn+2/Ca+2 in given solution by using standard EDTA solution.

Preparation of Polymers (only demonstration)
4. Nylon Fibers
5. Bakelite

Redox Titrations
6. Estimation of Mohr’s salt by using potassium permanganate.
7. Estimation of Mohr’s salt by using potassium dichromate.
8. Estimation of copper (II) ion using standard hypo solution.

Conductometric Measurements
10. Estimation of amount of HCl conductometrically using NH4OH solution.

Potentiometric Measurements

Estimations
12. Measuring pH of the given sample solution using pH meter (demonstration only).

Colorimetric Analysis

REFERENCES
1. LAB Manual
Pre-requisite: Basic Knowledge of Programming.

Course Educational Objective:

The Objective of Python course is to lead the students from the basics of writing and running Python scripts in problem solving and to design and implement the modules and understands the working of classes and objects in python.

Course Outcomes: At the end of the course, the student shall be able to

CO 1: Apply building blocks of Python in solving computational problems. (Apply - L3)

CO 2: Implement in-built data structures available in Python to solve computational problems. (Apply - L3)

CO 3: Implement modular programming, string manipulations and Object-oriented programming in python. (Apply - L3)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Introduction: Language basics and example problems (Two weeks)

a) Implement Python Script for checking the given year is leap year or not.

b) Implement Python Script for finding biggest number among 3 numbers.

c) Implement Python Script for displaying reversal of a number.

d) Implement Python Script to check given number is Armstrong or not.

e) Implement Python Script to check given number is palindrome or not.

f) Implement Python Script to print factorial of a number.

h) Implement Python Script to print all prime numbers within the given range.

i) Implement Python Script to calculate the series: $S=1+x+x^2+x^3+.......x^n$

j) Implement Python Script to print the following pattern:

```
*  *
* * *
* * *
```
Module 1: Exercise Programs on Lists.
 a) Write a Python script to display elements of list in reverse order.
 b) Write a Python script to find the minimum and maximum elements without using built-in operations in the lists.
 c) Write a Python script to remove duplicates from a list.
 d) Write a Python script to append a list to the second list.
 e) Write a Python script to count the number of strings in a list where the string length is 2 or more.

Module 2: Exercise Programs on Tuples.
 a) Write a Python script to create a tuple with different data types.
 b) Write a Python script to find the repeated items of a tuple.
 c) Write a Python script to replace last value of tuples in a list.
 Sample list: [(10, 20, 40), (40, 50, 60), (70, 80, 90)]
 Expected Output: [(10, 20, 100), (40, 50, 100), (70, 80, 100)]
 d) Write a Python script to sort a tuple by its float element.
 Sample data: [('item1', '12.20'), ('item2', '15.10'), ('item3', '24.5')]
 Expected Output: [('item3', '24.5'), ('item2', '15.10'), ('item1', '12.20')]

Module 3: Exercise Programs on Sets and Dictionaries.
 a) Write a Python script to add member(s) in a set.
 b) Write a Python script to perform Union, Intersection, difference and symmetric difference of given two sets.
 c) Write Python script to test whether every element in S is in T and every element in T is in S.
 d) Write a Python script to sort (ascending and descending) a dictionary by value.
 e) Write a Python script to check whether a given key already exists or not in a dictionary.
 f) Write a Python script to concatenate following dictionaries to create a new one.
 g) Sample Dictionary : dic1={1:10, 2:20} dic2={3:30, 4:40} dic3={5:50,6:60}
 Expected Result : {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
 h) Write a Python script to print a dictionary where the keys are numbers between 1 and 15 (both included) and the values are square of keys.
 i) Write a Python program to map two lists into a dictionary.
Module 4: Exercise Programs on functions and recursion.

a) Define a function `max_of_three()` that takes three numbers as arguments and returns the largest of them.

b) Write a program which makes use of function to display all such numbers which are divisible by 7 but are not a multiple of 5, between given range X and Y.

c) Define functions to find mean, median, mode for the given numbers in a list.

d) Define a function which generates Fibonacci series up to n numbers.

e) Implement a python script for factorial of number by using recursion.

f) Implement a python script to find GCD of given two numbers using recursion.

Module 5: Exercise programs on Date and Time Modules.

a) Write a Python script to get the current time in Python.

b) Write a Python script to get current time in milliseconds in Python.

c) Write a Python script to print next 5 days starting from today.

Module 6: Exercise programs on Exception Handling.

a) Write a Python script to handle simple errors by using exception handling mechanism.

b) Write a Python script to handle multiple errors with one except statement.

Module 7: Exercise programs on Strings

a) Implement Python Script to perform various operations on string using string libraries.

b) Implement Python Script to check given string is palindrome or not.

c) Implement python script to accept line of text and find the number of characters, number of vowels and number of blank spaces in it.

d) Implement python script that takes a list of words and returns the length of the longest one.

Module 8: Exercise programs on Regular Expressions

a) Write a Python script to check that a string contains only a certain set of characters (in this case a-z, A-Z and 0-9).

b) Write a Python script to check whether password is valid or not.

Conditions for a valid password are:

- Should have at least one number.
- Should have at least one uppercase and one lowercase character.
- Should have at least one special symbol.
- Should be between 6 to 20 characters long.
Module 9: Exercise programs on Object Oriented Programming
 a) Write a Python script to create and access class variables and methods.
 b) Write a Python script to implement method overloading.
 c) Write a Python script to implement single inheritance.
 d) Write a Python script to implement method overriding.

Module 10: Exercise programs on Python Libraries – Numpy, Pandas, Matplotlib
 a) Write a NumPy program to generate a matrix product of two arrays.
 b) Write a NumPy program to create a random array with 1000 elements and compute the average, variance, standard deviation of the array elements.
 c) Demonstrate how to download dataset and how to create DataFrame
 i. Write a Pandas program to get the first 3 rows of a DataFrame
 ii. Write a Pandas program to select the specified columns and rows from a given data frame.
 iii. Write a Pandas program to select the rows where the score is missing, i.e. is NaN.
 iv. Write a Pandas program to insert a new column in existing DataFrame.
 d) Write a Python programming to display a bar chart using different color for each bar.
 e) Write a Python programming to create a pie chart with a title.
Pre-requisite : Programming Language

Course Educational Objectives:
The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

Course Outcomes (COs): At the end of this course, the student will be able to

CO 1: Implement Linear Data Structures using array and Linked list. (Apply - L3)
CO 2: Implement Various Sorting Techniques. (Apply - L3)
CO 3: Implement Non-Linear Data Structure such as Trees & Graphs. (Apply - L3)
CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

I) Exercise Programs on List ADT
 a) Implementation of List using Arrays.
 b) Implementation of List using Linked List.

II) Exercise Programs on Stacks & Queue ADT
 a) Implementation of Stack Operations using Arrays.
 b) Implementation of Stack Operations using Linked List.
 c) Implementation of Queue Operations using Arrays.
 d) Implementation of Queue Operations using Linked List.

III) Exercise Programs on Stack Applications
 a) Conversion of Infix Expression to postfix Expression.
 b) Conversion of Infix Expression to prefix Expression.
 c) Evaluation of Postfix Expression
 d) Implementation of Balancing Symbols.

IV) Exercise Programs on Types of Queues
a) Implementation of Circular Queues Linked List.

b) Implementation of Double Ended Queue using Arrays.

c) Implementation of Double Ended Queue using Linked List.

V) Exercise Programs on Sorting Techniques.

a) Implementation of Insertion Sort and

b) Implementation of Selection Sort.

c) Implementation of Merge Sort.

d) Implementation of Quick Sort.

e) Implementation of Bubble Sort.

f) Implementation of Heap Sort.

VI) Exercise Programs on Trees

a) Implementation of Binary Tree Traversals.

b) Implementation of Binary Search Tree Operations.

VII) Exercise Programs on Graph Traversal Techniques.

a) Breadth First Search (BFS)
b) Depth First Search (DFS)
Course Educational Objective:
The main objective of this course is to familiarize with the Unix/Linux command line and running simple commands and concept of environment variables and with the simple use of environment variables.

Course Outcomes (COs): *At the end of this course, the student will be able to*

CO 1: Understand the basic unix/linux commands. *(Understand - L2)*

CO 2: Learn importance of shell scripting. *(Understand - L2)*

CO 3: Apply shell programming to various files. *(Apply - L3)*

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Module – I: Basic Linux Commands

Study of Unix/Linux general purpose utility command list obtained from (man, who, cat, cd, cp, ps, ls, mv, rm, mkdir, rmdir, echo, more, date, time, kill, history, chmod, chown, finger, pwd, cal, logout, shutdown) commands, study of vi editor, study of Unix/Linux file system

Module – II: Introduction to Shell

Introduction to Shell, Shell responsibilities, running a shell script. Variables, passing arguments, Basic Operators, Basic String Operations, Decision Making, Loops, Arrays, Arrays – Comparison, Shell functions.

Module – III: Advanced Shell

Special Variables, Bash trap command, File Testing, Input Parameter Parsing, Pipelines, Process Substitution, Regular Expressions, **Special Commands:** sed, awk, grep, sort

Example Programs:

1. Use of Basic UNIX Shell Commands: ls, mkdir, rmdir, cd, cat, touch, file, wc, sort, cut, grep, dd, dospace, du, ulimit
2. Commands related to inode, I/O redirection and piping, process control commands, mails.
3. Shell Programming: Shell script exercises based on following:
 - (i) Interactive shell scripts
 - (ii) Positional parameters
 - (iii) Arithmetic
 - (iv) if-then-fi,
 - if-then- else-fi, nested if-else (v) Logical operators
 - (vi) else + if equals elif,
 - case structure (vii) while, until, for loops, use of break
4. Write a shell script to create a file. Follow the instructions
(i) Input a page profile to yourself, copy it into other existing file
(ii) Start printing file at certain line
(iii) Print all the difference between two file, copy the two files.
(iv) Print lines matching certain word pattern.

5. Write shell script for-
 (i) Showing the count of users logged in,
 (ii) Printing Column list of files in your home directory
 (iii) Listing your job with below normal priority
 (IV) Continue running your job after logging out.

6. Write a shell script to change data format. Show the time taken in execution of this script.

7. Write a shell script to print files names in a directory showing date of creation & serial number of the file.

8. Write a shell script to count lines, words, and characters in its input (do not use wc).

Reference books:

1. Learning the bash Shell, 3rd Edition by Cameron Newham, Publisher(s): O'Reilly Media, Inc., ISBN: 9780596009656
Pre-requisite : Nil

Course Educational Objective: The objective of this course is to provide students with the foundations and applications of probabilistic and statistical methods mainly used in varied applications in engineering and science.

Course Outcomes: At the end of this course, the student will be able to

CO1: Understand various probabilistic situations using the various laws of probability and random variables (Understand - L2)

CO2: Apply probability distributions like Binomial, Poisson, Normal and Exponential distributions in solving engineering problems (Apply - L3)

CO3: Calculate the standard error of sampling distribution and confidence intervals for parameters like mean and proportion based on the sample data. (Apply - L3)

CO4: Analyze the data scientifically with the appropriate statistical methodologies to apply the suitable test of hypothesis (Analyze - L4)

CO5: Construct the regression lines to predict the dependent variables and calculate the Correlation Coefficient for a bivariate statistical data. (Apply – L3)

UNIT – I
Probability and Random variables
Probability, Sample space and events, Additive Rule, Conditional probability, Multiplicative rule, Baye’s theorem.

UNIT – II
Probability Distributions
Binomial distribution, Poisson distribution, Poisson approximation to Binomial distribution, Exponential distribution, Normal distribution, Normal approximation to Binomial distribution

UNIT – III
Sampling distribution & Estimation
Population, sample, parameter, statistic, sampling distribution, Standard error, Types of sampling, Sampling distribution of means and sampling distribution of variance, Parameter estimations – point estimation and interval estimation for mean and proportions.

UNIT – IV
Tests of Hypothesis
Hypothesis, Null and Alternate Hypothesis, , Type I and Type II errors, level of significance. Z-test for means and proportions, t-test for single mean, difference of means, paired t-test, F-test for equality of population variances, χ^2 - test for goodness of fit and independence of attributes.
UNIT – V
Correlation & Regression
Karl Pearson’s coefficient of correlation, linear Regression, Regression lines, Regression coefficients, Spearman’s Rank correlation coefficient, Spearman’s Rank correlation for repeated ranks.

TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisite: Basic mathematical knowledge

Course Educational Objective: The objective of the course is to perform the operations associated with relations and functions. Relate practical examples to the functions and relations and interpret the associated operations and terminology used in the context. Use formal logic proofs and/or informal but rigorous logical reasoning to, for example, predict the behavior of software or to solve problems such as puzzles.

Course Outcomes: At the end of this course, the student will be able to

CO1: Construct mathematical arguments using logical connectives and quantifiers and verify them. (Apply - L3)
CO2: Demonstrate the basic terminology of functions, relations, lattices and their operations. (Understand - L2)
CO3: Apply the properties of graphs to solve the graph theory problems in Computer science. (Apply - L3)
CO4: Illustrate the basic principles/techniques to solve different algebraic structures & combinatorial problems. (Understand - L2)
CO5: Solve linear recurrence relations by recognizing homogeneity using constant coefficients, characteristic roots and Generating functions. (Apply – L3)

UNIT – I: Mathematical Logic

UNIT – II: Sets, Relations & Functions

Introduction to Sets, representation of Sets, Operation on Sets, Properties of Binary Relations, Relation Matrix, Operations on Relations, Transitive Closure, Equivalence Relation, Compatibility and Partial Ordering Relations, Hasse Diagrams, Lattices: LUB, GLB.

Functions: Bijective Functions, Composition of Functions, Inverse Functions.

UNIT – III: Graph Theory I & II

Graph Theory II: Planar Graphs, Euler’s Formula, Graph Coloring, Chromatic Number, Graph Traversals: BFS, DFS. Trees: Spanning Trees: Properties, Algorithms for Minimum cost Spanning Trees

UNIT – IV: Algebraic Structures & Combinatorics

Algebraic Systems with one Binary Operation, Properties of Binary operations, Semi groups and Monoids: Homomorphism of Semi groups and Monoids, Group, Abelian group, Sub Groups, Lagrange’s Theorem

UNIT – V: Recurrence Relation

Generating Function of Sequences, Calculating Coefficient of Generating Functions, Recurrence Relations, solving linear homogeneous recurrence Relations by substitution, generating functions and The Method of Characteristic Roots.

TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisite : Data Structures

Course Educational Objective: The Objective of this course is to know about basic concepts of DBMS, Database Languages, Database Design, Normalization Process, Transaction Processing, Indexing, and Interfacing with NOSQL using MongoDB.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** State the Basic Components of Database Management System and data modelling using Entity-Relationship Diagrams. *(Understand - L2)*
- **CO2:** Examine the relational model using Structured Query Language (SQL). *(Apply - L3)*
- **CO3:** Employ principles of normalization for effective database design. *(Apply - L3)*
- **CO4:** Demonstrate the necessity of transaction processing, Concurrency control mechanisms and recovery strategies in DBMS. *(Understand - L2)*
- **CO5:** Describe file organization, indexing techniques and the competency in selecting NoSQL Database. *(Understand - L2)*

UNIT – I

Data Modelling using the Entity Relationship Model: ER model concepts, Notation for ER Diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Relationships of Higher Degree.

UNIT – II

Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Key Constraints, Domain Constraints, and Relational Algebra.

Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data types and Literals, Insert, Update and Delete Operations, Tables, Views and Indexes, Nested Queries, Aggregate Functions, Joins, Unions, Intersection, Minus, Cursors in SQL, Triggers in SQL.

UNIT – III

Normalization: Functional Dependencies, Normal Forms - First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Multi Valued Dependencies, Fourth Normal Form, Join Dependencies and Fifth Normal Form.

UNIT – IV

Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializability, Recoverability, Deadlock Handling.
Concurrency Control Techniques: Concurrency Control, Locking Techniques for Concurrency Control, Time Stamping Protocols for Concurrency Control, Validation Based Protocol, Multiple Granularity, Recovery with Concurrent Transactions.

Crash Recovery: Log Based Recovery, Checkpoints, ARIES Algorithm

UNIT – V

Physical Database Design: Storage and file structure, indexed files, hashed files, B+ trees, files with dense index; files with variable length records.

Interfacing And Interacting With NoSQL: Introduction to NoSQL, Storing and Accessing Data, Storing Data In and Accessing Data from MongoDB, Querying MongoDB.

TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisite: IT Workshop

Course Educational Objective: The objective of the course is to learn about the functional blocks and data representation of computer system, and understands the design principles of processor and organization and management of memory and peripheral devices.

Course Outcomes: At the end of this course, the student will be able to

- **CO1**: Evaluate digital number systems and use Boolean algebra theorems, Properties and Canonical forms for digital logic circuit design. (Understand- L2)
- **CO2**: Design Combinational logic circuits and Sequential logic circuits. (Apply- L3)
- **CO3**: Understand computer architecture and Data representation to perform computer arithmetic operations. (Understand- L2)
- **CO4**: Illustrate the design principles of control unit and pipelining. (Understand- L2)
- **CO5**: Analyze the memory hierarchy in a computer system. (Understand- L2)

UNIT-I
Number Systems, logic Gates and Boolean algebra

Number Systems: Binary, Octal, Decimal, Hexadecimal Number Systems. Conversion of Numbers from One, Radix to another Radix, r's Complement and (r-1)'s Complements, Binary Codes, Basic Gates: NOT, AND, OR, Universal Gates: NAND, NOR, Special Gates: Ex-OR and Ex-NOR Gates

Boolean algebra

Fundamental postulates of Boolean algebra, Basic theorems and properties, Complement and Dual of Logical Expressions, SOP, POS, Minimizations of Logic Functions Using Boolean Theorems, Karnaugh Map Method (K-Map): Minimization of Boolean Functions maximum up to Four Variables, Simplifications with Don’t Care Conditions Using K-Map.

UNIT-II
Combinational Logic Circuits & Sequential Logic Circuits

Design of Half Adder, Full Adder, Half Subtractor, Full Subtractor, Ripple Carry Adder. Design of Decoders, Encoders, Multiplexers, De-multiplexers, Priority Encoder,

Sequential Logic Circuits:

UNIT-III

UNIT-IV
CPU control unit design: Hardwired and micro-programmed design approaches. Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.

UNIT-V
Memory system design: Memory hierarchy, Cache Memory and Main Memory. Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, I/O transfers–program controlled, interrupt driven and DMA.

TEXTBOOKS:

REFERENCE BOOKS:
Pre-requisite: Programming for Problem Solving using C.

Course Educational Objective: The objective of the course is to learn the constructs of the Java programming language along with built-in facilities to create different applications such as console & graphical user interfaces. In the process of learning the language, they will be applying knowledge of object-oriented programming; they will get the fundamental knowledge reason collection framework.

Course Outcomes: At the end of this course, the student will be able to

CO 1 Demonstrate the fundamentals of object-oriented programming and basic building blocks of Java. *(Understand - L2)*

CO 2 Apply object-oriented programming principles for the development of reusable applications. *(Apply - L3)*

CO 3 Understand the importance of abstraction, user defined package creation and handling different exceptions. *(Understand - L2)*

CO 4 Develop multitasking applications using JAVA multithreaded programming and perform different operations upon various data structures by using collection framework. *(Apply – L3)*

CO 5 Develop GUI applications using AWT (Abstract Window Toolkit). *(Apply - L3)*

UNIT-I

Introduction to OOP: Programming paradigms, procedural programming language versus object-oriented language, principles of OOP.

Introduction to JAVA: Data types, variables, keywords, operators, and control statements.

Introduction to Classes and Object: Class definition, variables, and methods. Declaring Objects, Constructors, and this keyword.

UNIT-2

Classes and objects: overloading methods and constructors, parameter passing, returning objects, recursion. Access control, nested and inner classes, final and static keyword, variable and command-line arguments.

Inheritance and polymorphism: Inheritance, types of inheritance, super keyword, polymorphism (overloading & overriding), dynamic method dispatch, abstract class, using final with inheritance.

String handling classes: String, StringBuffer, StringTokenizer.

UNIT-3

Interfaces and packages: Interface methods, inheritance in interfaces. API: The built-in JAVA packages and creating and managing user defined packages, importance of CLASSPATH.
Exception Handling: Exception hierarchy, importance of try, catch, throw, throws and finally. Block creation of user-defined exceptions, Assertions.

UNIT-4

Multithreading: Introduction, thread life cycle, creation of threads, naming a thread, joining a thread, thread priorities, daemon thread, thread pool, thread group, thread synchronization, Inter-thread communication.

Collection Framework: Introduction, generics, collection framework hierarchy, list, set, queue, and map.

UNIT-5

AWT: AWT hierarchy, components and containers, Button, Label, Text Field, Checkbox, Choice, List, Canvas, Scrollbar, Menu Item & Menu, Container class, Layout managers (Border Layout, Flow Layout, Grid Layout, Card Layout).

Event handling: Event delegation model, event classes (Action Event, Mouse Event, Key Event, Window Event), listener interfaces (Action Listener, Mouse Listener and MouseMotionListener, Key Listener, Window Listener), adapter classes, close AWT window.

TEXTBOOKS:

REFERENCE BOOKS:

Pre-requisite : Programming language, Discrete Mathematical Structures, and Data Structures.

Course Educational Objective: The objective of this lab is to provide a strong formal foundation in database concepts, technology, and practice to the participants to groom them into well-informed database application developers.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Create & manipulate the relational database using SQL.(Apply- L3)

CO2: Implement Views, procedures, triggers, and cursors on relational database.

CO3: Create Unstructured Databases using MongoDB.(Apply- L3)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Introduction: Language basics and example queries (one or two weeks)

1) Create a table STUDENT with appropriate data types and perform the following queries. Attributes are Roll number, student name, date of birth, branch and year of study.

a) Insert 5 to 10 rows in a table?

b) List all the students of all branches

c) List student names whose name starts with ‘s’.

d) List student names whose name contains ‘s as third literal.

e) List student names whose contains two ‘s’ anywhere in the name

f) List students whose branch is NULL.

g) List students of CSE & ECE who born after 1980.

h) List all students in reverse order of their names.

i) Delete students of any branch whose name starts with ‘s’.

j) Update the branch of CSE students to ECE.

k) Display student name padded with *'after the name of all the students.

2) Create the following tables based on the above Schema Diagram with appropriate data types and constraints and perform the following queries.

SAILORS (Saild, Salname, Rating, Age)
RESERVES (Sailid, boatid, Day)
BOATS (Boatid, Boat-name, Color)

a) Insert 5 to 10 rows in all tables?

b) Find the name of sailors who reserved boat number 3.

c) Find the name of sailors who reserved green boat.

d) Find the colors of boats reserved by Ramesh.

e) Find the names of sailors who have reserved at least one boat.
f) Find the allsailid of sailors who have a rating of 10 or have reserved boated 104.
g) Find the Sailid's of sailors with age over 20 who have not registered a red boat.
h) Find the names of sailors who have reserved a red or green boat.
i) Find sailors whose rating is better than some sailor called Salvador.
j) Find the names of sailors who are older than the oldest sailor with a rating of 10.

3) Schema Diagram for the rest of the SQL and PLSQL Programs.

Create the following tables based on the above Schema Diagram with appropriate data types and constraints.

EMPLOYEE (Fname, Mname, Lname, SSN, Bdate, Address, Gender, Salary, SuperSSN, Dno)

DEPARTMENT (Dnumber, Dname, MgrSSN, Mgrstartdate)

DEPENDENT (ESSN, Dependent_Name, Gender, Bdate, Relationship)

4) Create the following tables based on the above Schema Diagram with appropriate data types and constraints in addition to the tables in Experiment 2.

DEPT_LOCATIONS (Dnumber, Dlocation)
PROJECT (Pname, Pnumber, Plocation, Dnum)
WORKS_ON (ESSN, Pno, Hours)

a) Insert 5 to 10 rows into all the tables.
b) Find the names of the employees who work on all the projects controlled by the department Research.

c) List the project number, name and no. Of employees who work on that project for all the projects.

d) List the names of all the projects controlled by the departments department wise.

e) Retrieve the names of employees who work on all projects that John works on.

f) List the project numbers for projects that involve an employee either as worker or as a manager of the department that controls the project.

g) List the names of all employees in one department who work more than 10 hours on one specific project.

h) For each project, list the project name and total hours (by all employees) spent on that project.

i) Retrieve the names of all employees who work on every project.

j) Retrieve the names of all employees who do not work on any project.

5) Create a view that has project name, controlling department name, number of employees and total hours worked on the project for each project with more than one employee working on it.

 a) List the projects that are controlled by one department from this view.

 b) List the managers of the controlling departments for all the projects.

 c) Demonstrate one update operation on this view.

 d) List the Location of the controlling departments for all the projects.

 e) Retrieve the data from the view.

6) Create a view emp from employee such that it contains only emp_no, emp_name and department.

7) Create a view dept from department with only dept_no and location.

8) Create a view that contains the details of employees who are managers only.

9) Write a procedure to check whether the given number is Armstrong or not.

10) Write a procedure which accept the account number of a customer and retrieve the balance.

11) Write a procedure which accepts the student number and displays the department in which he belongs to.

12) Create a cursor to modify the salary of all employees belonging to 'Research' department by 150%.

13) Consider the college database. Retrieve all students who have registered for a specific course and store their details into another table using Cursors.

14) Write an update trigger on Account table. The system should keep track of the records that are being updated.

15) Create NoSQL database for a sample application and perform CURD operations.

Design Database for any one of the following Case Studies

Case Study 1: Hospital Management System

Aim: XYZ hospital is a multi-specialty hospital that includes a number of departments, rooms, doctors, nurses, compounders, and other staff working in the hospital. Patients having different kinds of ailments come to the hospital and get checkup done from the concerned doctors. If required they are admitted in the hospital and discharged after treatment. The aim of this case study is to design and develop a database for the hospital to maintain therecords of various departments, rooms, and doctors in the hospital. It also maintains recordsof the regular patients, patients admitted in the hospital, the checkup of patients done by the doctors, the patients that have been operated, and patients discharged from the hospital.
Description: In hospital, there are many departments like Orthopedic, Pathology, Emergency, Dental, Gynecology, Anesthesics, I.C.U., Blood Bank, Operation Theater, Laboratory, M.R.I., Neurology, Cardiology, Cancer Department, Corpse, etc. There is an OPD where patients come and get a card (that is, entry card of the patient) for check up from the concerned doctor. After making entry in the card, they go to the concerned doctor’s room and the doctor checks up their ailments. According to the ailments, the doctor either prescribes medicine or admits the patient in the concerned department. The patient may choose either private or general room according to his/her need. But before getting admission in the hospital, the patient has to fulfill certain formalities of the hospital like room charges, etc. After the treatment is completed, the doctor discharges the patient. Before discharging from the hospital, the patient again has to complete certain formalities of the hospital like balance charges, test charges, operation charges (if any), blood charges, doctors’ charges, etc. Next we talk about the doctors of the hospital. There are two types of the doctors in the hospital, namely, regular doctors and call on doctors. Regular doctors are those doctors who come to the hospital daily. Calls on doctors are those doctors who are called by the hospital if the concerned doctor is not available.

Table Description:

Following are the tables along with constraints used in Hospital Management database

1. DEPARTMENT: This table consists of details about the various departments in the hospital. The information stored in this table includes department name, department location, and facilities available in that department. Constraint: Department name will be unique for each department.

2. ALL.DOCTORS: This table stores information about all the doctors working for the hospital and the departments they are associated with. Each doctor is given an identity number starting with DR or DC prefixes only. Constraint: Identity number is unique for each doctor and the corresponding department should exist in DEPARTMENT table.

3. DOC_REG: This table stores details of regular doctors working in the hospital. Doctors are referred to by their doctor number. This table also stores personal details of doctors like name, qualification, address, phone number, salary, date of joining, etc. Constraint: Doctor’s number entered should contain DR only as a prefix and must exist in ALL.DOCTORS table.

4. DOC_ON_CALL: This table stores details of doctors called by hospital when additional doctors are required. Doctors are referred to by their doctor number. Other personal details like name, qualification, fees per call, payment due, address, phone number, etc., are also stored. Constraint: Doctor’s number entered should contain DC only as a prefix and must exist in ALL.DOCTORS table.

5. PAT_ENTRY: The record in this table is created when any patient arrives in the hospital for a checkup. When patient arrives, a patient number is generated which acts as a primary key. Other details like name, age, sex, address, city, phone number, entry date, name of the doctor referred to, diagnosis, and department name are also stored. After storing the necessary details patient is sent to the doctor for checkup.
6. PAT_CHKUP: This table stores the details about the patients who get treatment from the doctor referred to. Details like patient number from patient entry table, doctor number, date of checkup, diagnosis, and treatment are stored. One more field status is used to indicate whether patient is admitted, referred for operation or is a regular patient to the hospital. If patient is admitted, further details are stored in PAT_ADMIT table. If patient is referred for operation, the further details are stored in PAT_OPR table and if patient is a regular patient to the hospital, the further details are stored in PAT_REG table.
Constraint: Patient number should exist in PAT_ENTRY table and it should be unique.

7. PAT_ADMIT: When patient is admitted, his/her related details are stored in this table. Information stored includes patient number, advance payment, mode of payment, room number, department, date of admission, initial condition, diagnosis, treatment, number of the doctor under whom treatment is done, attendant name, etc.
Constraint: Patient number should exist in PAT_ENTRY table. Department, doctor number, room number must be valid.

8. PAT_DIS: An entry is made in this table whenever a patient gets discharged from the hospital. Each entry includes details like patient number, treatment given, treatment advice, payment made, mode of payment, date of discharge, etc.
Constraint: Patient number should exist in PAT_ENTRY table.

9. PAT_REG: Details of regular patients are stored in this table. Information stored includes date of visit, diagnosis, treatment, medicine recommended, status of treatment, etc.
Constraint: Patient number should exist in patient entry table. There can be multiple entries of one patient as patient might be visiting hospital repeatedly for checkup and there will be entry for patient’s each visit.

10. PAT_OPR: If patient is operated in the hospital, his/her details are stored in this table. Information stored includes patient number, date of admission, date of operation, number of the doctor who conducted the operation, number of the operation theater in which operation was carried out, type of operation, patient’s condition before and after operation, treatment advice, etc.
Constraint: Patient number should exist in PAT_ENTRY table. Department, doctor number should exist or should be valid.

11. ROOM_DETAILS: It contains details of all rooms in the hospital. The details stored in this table include room number, room type (general or private), status (whether occupied or not), if occupied, then patient number, patient name, charges per day, etc.
Constraint: Room number should be unique. Room type can only be G or P and status can only be Y or N.

Case Study 2: Railway Reservation
Aim: The railway reservation system facilitates the passengers to enquire about the trains available on the basis of source and destination, booking and cancellation of tickets, enquire about the status of the booked ticket, etc. The aim of case study is to design and develop a database maintaining the records of different trains, train status, and passengers. The record of train includes its number, name, source, destination, and days on which it is available, whereas record of train status includes dates for which tickets can be booked, total number of seats available, and number of seats already booked. The database has been developed and tested on the Oracle.

Description:
Passengers can book their tickets for the train in which seats are available. For this, passenger must provide the desired train number and the date for which ticket is to be booked. Before booking a ticket for a passenger, the validity of train number and booking date is checked. Once the train number and booking date are validated, it is checked whether the seat is available. If yes, the ticket is booked with confirm status and corresponding ticket ID is generated which is stored along with other details of the passenger. After all the available tickets are booked, certain numbers of tickets are booked with waiting status. If waiting lot is also finished, then tickets are not booked and a message of non-availability of seats is displayed. The ticket once booked can be cancelled at any time. For this, the passenger must provide the ticket ID (the unique key). The ticket ID is searched, and the corresponding record is deleted. With this, the first ticket with waiting status also gets confirmed.

List of Assumption
Since the reservation system is very large in reality, it is not feasible to develop the case study to that extent and prepare documentation at that level. Therefore, a small sample case study has been created to demonstrate the working of the reservation system. To implement this sample case study, some assumptions have been made, which are as follows:

1. The number of trains has been restricted to 5.
2. The booking is open only for next seven days from the current date.
3. Only two categories of tickets can be booked, namely, AC and General.
4. The total number of tickets that can be booked in each category (AC and General) is 10.
5. The total number of tickets that can be given the status of waiting is 2.
6. The in-between stoppage stations and their bookings are not considered.

Description of Tables and Procedures
Tables and procedures that will be created are as follows:

1. TrainList: This table consists of details about all the available trains. The information stored in this table includes train number, train name, source, destination, fair for AC ticket, fair for general ticket, and weekdays on which train is available.

 Constraint: The train number is unique.

2. Train_Status: This table consists of details about the dates on which ticket can be booked for a train and the status of the availability of tickets. The information stored in this table includes
train number, train date, total number of AC seats, total number of general seats, number of AC seats booked, and number of general seats booked.

Constraint: Train number should exist in TrainList table.

3. Passenger: This table consists of details about the booked tickets. The information stored in this table includes ticket ID, train number, date for which ticket is booked, name, age, sex and address of the passenger, status of reservation (either confirmed or waiting), and category for which ticket is booked.

Constraint: Ticket ID is unique and the train number should exist in TrainList table.

4. Booking: In this procedure, the train number, train date, and category is read from the passenger. On the basis of the values provided by the passenger, corresponding record is retrieved from the Train_Status table. If the desired category is AC, then total number of AC seats and number of booked AC seats are compared in order to find whether ticket can be booked or not. Similarly, it can be checked for the general category. If ticket can be booked, then passenger details are read and stored in the Passenger table.

5. Cancel: In this procedure, ticket ID is read from the passenger and corresponding record is searched in the Passenger table. If the record exists, it is deleted from the table. After deleting the record (if it is confirmed), first record with waiting status for the same train and same category are searched from the Passenger table and its status is changed to confirm.

Case Study 3: Painting Hire Business

System Description:

A local businesswoman has decided to start her own Internet business, called Masterpieces Ltd, hiring paintings to private individuals and commercial companies. Because of your reputation as a database designer, she has called upon your services to design and implement a database to support her new business. At the initial planning meeting, to discuss the design, the following user requirements were requested. The system must be able to manage the details of customers, paintings and those paintings currently on hire to customers. Customers are categorized as B (bronze), S (silver), G (gold) or P (platinum). These categories entitle a customer to a discount of 0%, 5%, 10% or 15% respectively.

Customers often request paintings by a particular artist or theme (e.g. animal, landscape, seascape, naval, still-life, etc). Over time a customer may hire the same painting more than once.

Each painting is allocated a customer monthly rental price defined by the owner. The owner of the painting is then paid 10% of that customer rental price. Any paintings that are not hired within six months are returned to the owner. However, after three months, an owner may resubmit a returned painting. Each painting can only have one artist associated with it. Several reports are required from the system. Three main ones are:

1. For each customer, a report showing an overview of all the paintings they have hired or are currently hiring
2. For each artist, a report of all paintings submitted for hire
3. For each artist, a returns report for those paintings not hired over the past six months

remember to identify key attributes and any foreign key attributes.
Pre-requisite: Programming for Problem Solving using C and Data structures

Course Educational Objective: The objective of the course is to apply the constructs of Java programming language along with built-in facilities to create different applications such as console & graphical user interfaces. They will be applying knowledge of object-oriented programming, collection framework to perform all operations on data.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Solve basic mathematical problems using fundamentals of Java and its object-oriented principles. (Apply – L3)
CO2: Implement multithreading and exception handling mechanisms. (Apply – L3)
CO3: Develop GUI applications and basic data structures using collection framework. (Apply – L3)
CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Introduction: Language basics and example problems (one or two Modules)

1. Write a C++ program to display default value of all primitive data type of Java.
2. Write a C++ program that display the roots of a quadratic equation ax^2+bx=0. Calculate the discriminate D and basing on value of D, describe the nature of root.
3. Write a C++ Program to find the factorial of list of numbers reading input as command line argument.
4. Write a C++ Program to display all prime numbers between two limits.
5. Five bikers compete in a race such that they drive at a constant speed, which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all five racers. Take as input the speed of each racer and print back the speed of qualifying racers.
6. Write a C++ program to implement Rhombus pattern reading the limit from the user.
7. Write a C++ program to calculate gross salary & net salary taking the following data.
 Input: empno, empname, basic salary
 Process: DA=50% of basic, HRA=25% of basic, CCA=Rs240/-, PF=10% of basic, PT=Rs100/-.
8. Write a C++ program to search for an element in a given list of elements using binary search mechanism.
Module 1:

a. Develop a java program to create class, which contains data & methods, create an object to access those members.
b. Develop a java program, which implements all types of java variables (local, class level: static, instance).
c. Develop a java program to calculate the sum of diagonal elements of given n x n matrix.

Module 2:

a. Develop a java program, which contains both static and non-static methods.
b. Develop a java program to find area of geometrical figures using method.
c. Develop a java program to initialize instance variables by using constructors.
d. Develop a java program, which implements constructor overloading by passing different number of parameters of different types.

Module 3:

a. Develop a java program to count the words, characters in the given line of text.
b. Develop a java program for sorting a given list of names in ascending order.
c. Develop a java program that reads a line of integers separated by commas and then displays each integer, find the sum of the integers (using StringTokenizer).
d. Develop a java program to implement multi-level inheritance.

Module 4:

a. Develop a java program to create and access user-defined package.
b. Develop a java program to identify the accessibility of a variable by means of different access specifies within and outside the package.
c. Develop a java program to implement the concept of method overloading.
d. Develop a java program to implement the concept of method overriding.

Module 5:

a. Develop a java program for abstract class to find areas of different shapes.
b. Develop a java program to achieve multiple inheritance using interfaces.
c. Develop a java program to create an interface named Vehicle which contains two abstract methods (Specifications (), Display ()). Provide two classes named Two-wheeler, Four-wheeler that is implemented by that interface.

Module 6:

a. Develop a java program that implements a multi-threaded program, which has three threads. First thread generates a random integer for every 1 second, if the generated integer is even the second thread computes the square of the number and print it. If the generated integer is odd the third thread will print the value of cube of the number.
b. Develop a java program to identify the use of synchronized blocks, synchronized methods and static synchronized methods in threads concept.
c. Develop a java program to illustrate the concept of inter thread communication.

Module 7:

a. Develop a java program that creates a user interface to perform integer divisions with possible validations (Divide by Zero, NumberFormatException).
b. Develop a java program to implement mouse events like mouse pressed, mouse released, and mouse moved by means of adapter classes.
Module 8:

a. Develop a java program that works as a simple calculator. Use a Grid Layout to arrange Buttons for digits and for the + - * % operations. Add a text field to display the result. Handle any possible exceptions like divide by zero.

b. Develop a java program to simulate a traffic light, user can select any one of the three buttons with: red, yellow, and green color. On selecting a button, an appropriate message with “Stop” or “Ready” or “Go” should appear with the selected button color.

Module 9:

a. Develop a java program to print the collection data by using the following ways
 i) for loop ii) for each loop iii) Iterator iv) ListIterator

b. Develop a java program to perform all the operations in Collection interface.

Module 10:

a. Develop a java program to implement and perform all the operations in List, Set Interface.

b. Develop a java program to implement and perform all the operations in Map interface.
Course Educational Objective: In this course student will learn about the fundamentals of R programming, standard R libraries, solid understanding of R functions, write programs using the R and gain skills in R programming Language, get acquaintances with Arrays, Files, Strings, Packages, and distributions using R.

Course Outcomes: At the end of this course,

CO1: Implement basic concepts of R programming, and its different module that includes conditional, looping, lists, Strings, Functions, Frames, Arrays, and File programming. (Understand - L2)

CO2: Implement the concepts of R Script to extract the data from dataframes and file operations. (Apply – L3)

CO3: Implement the various statistical techniques with visualization using R add-on packages. (Apply – L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values

Week 1:
 a) Installing R and RStudio
 b) Basic functionality of R, variable, data types in R

Week 2:
 a) Implement R script to show the usage of various operators available in R language.
 b) Implement R script to read person’s age from keyboard and display whether he is eligible for voting or not.
 c) Implement R script to find biggest number between two numbers.
 d) Implement R script to check the given year is leap year or not.

Week 3:
 a) Implement R Script to create a list.
 b) Implement R Script to access elements in the list.
 c) Implement R Script to merge two or more lists.
 d) Implement R Script to perform matrix operation

Week 4:
 Implement R script to perform following operations:
 a) various operations on vectors
 b) Finding the sum and average of given numbers using arrays.
 c) To display elements of list in reverse order.
 d) Finding the minimum and maximum elements in the array.

Week 5:
 a) Implement R Script to perform various operations on matrices
 b) Implement R Script to extract the data from dataframes.
 c) Write R script to display file contents.
 d) Write R script to copy file contents from one file to another
Week 6:
 a) Write an R script to find basic descriptive statistics using `summary()`, `str()`, `quartile()` function on `mtcars` datasets.
 b) Write an R script to find subset of dataset by using `subset()`, `aggregate()` functions on `iris` dataset

Week 7:
 a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in file in specific disk location.
 b) Reading Excel data sheet in R.
 c) Reading XML dataset in R

Week 8:
 a) Implement R Script to create a Pie chart, Bar Chart, Scatter Plot and Histogram (Introduction to ggplot2 graphics)
 b) Implement R Script to perform mean, median, mode, range, summary, variance, standard deviation operations.

Week 9:
 a) Implement R Script to perform Normal, and Binomial distributions.
 b) Implement R Script to perform correlation, Linear and multiple regression.

Week 10:
 a) Introduction to Non-Tabular Data Types: Time series, spatial data, Network data.
 b) Data Transformations: Converting Numeric Variables into Factors, Date Operations, String Parsing, Geocoding.

Week 11:
 Introduction to Dirty data problems: Missing values, data manipulation, duplicates, forms of data dates, outliers, spelling.

Week 12:
 Data sources: SQLite examples for relational databases, Loading SPSS and SAS files, Reading from Google Spreadsheets, API and web scraping examples

REFERENCE BOOKS:

3. R Programming for Dummies by Joris Meys Andrie de Vries, Wiley Publications
10. R-programming for Data science, Roger D.Peng.
11. An Introduction to statistical learning-with applications in R, Trevor Hastie and Rob Tibshirani.
WEB LINKS:

1. URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Online Resources)
2. http://nptel.ac.in/courses/106104135/48
3. http://nptel.ac.in/courses/110106064/

SOFTWARE REQUIREMENTS:

1. The R statistical software program. Available from: https://www.r-project.org/
2. RStudio an Integrated Development Environment (IDE) for R. Available from: https://www.rstudio.com/
Pre-requisite: Knowledge of basic Computer hardware & software.

Course Educational Objective: The objective of the course is to understand the design of HTML web pages, Styling of HTML pages using CSS, web forms validation using JavaScript and developing responsive web page using JQuery.

Course Outcomes (CO): *At the end of this course, the student will be able to:*

CO1: Understand the basic design and styling of web pages. *(Understand- L2)*

CO2: Understand the DOM of web design, markup language and client-side scripting. *(Understand- L2)*

CO3: Understand the responsive web design using DHTML. *(Understand- L2)*

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Modules

1. Design of web pages (Basic Structure, text formatting tags, heading tags, image tag, marquee tag, hyperlink, paragraph, font, line breaking, types of lists).
2. Creating Web applications using HTML5 (Table tags, Form elements, Frames concept)
4. Validating the web forms using JavaScript (JavaScript Introduction, JavaScript DOM, Form validation).
5. Handling and validating semi-structured data
 a. XML document validation using DTD & Schema
 b. JSON
6. jQuery
 a. selectors
 b. validation
 c. hide
 d. slide
 e. fades
 f. animation

REFERENCE BOOKS:

2. Beginning HTML, XHTML, CSS, and JavaScript by Jon Duckett, Wiley India, 2010.
3. jQuery Cookbook by Cody Lindley, O'Reilly Media, 2009
6. Head first HTML & CSS 2nd Edition by Elisabeth Robson, Eric Freeman, O'Reilly.
Pre-requisite: Discrete Mathematical Structures and DataStructures.

Course Educational Objective: The Objective of the course is to learn various algorithm design techniques and analyze the computing resources of the algorithms, and motivate the students to design new algorithms for various problems

Course Outcomes: At the end of this course, the student will be able to

CO1: Identify the characteristics of an algorithm and analyze its time and space complexity. (Understand - L2)
CO2: Apply the divide-and-conquer method for solving problems like searching and sorting. (Apply - L3)
CO3: Design Greedy algorithms for the optimization problems like knapsack problem, minimum cost spanning tree, single source shortest path problem. (Apply - L3)
CO4: Apply dynamic programming paradigm to solve optimization problems like travelling salesperson problem, 0/1 knapsack problem, Optimal binary search tree. (Apply - L3)
CO5: Analyze the backtracking and branch-and-bound search methods on optimization problems like N-queens, sum of subsets, 0/1 knapsack, Hamiltonian circuit and so on. (Apply - L3)

UNIT – I

Divide and Conquer: General Method, Binary Search, Finding Maximum and Minimum, Merge Sort, Quick sort, closest pair of points.

UNIT – II

UNIT – III

Dynamic Programming - General method, Multistage graph, All pairs shortest path, Single Source Shortest path, Optimal Binary search trees, 0/1 Knapsack, Reliability design, the travelling salesman problem.

UNIT - IV

Back tracking - The General Method, The 8-Queens Problem, Sum of subsets, Graph Coloring, Hamiltonian cycles.
UNIT-V

Branch and Bound – General method, Job sequencing with deadlines –LC Branch and Bound, FIFO Branch and Bound and LIFO Branch and Bound. 0/1 Knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution, Travelling salesperson Problem – LC Branch and Bound solution

TEXTBOOK(S):

REFERENCE BOOKS:

4. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, PEA,
Course Educational Objective: The Objective of the course is to introduce the concepts of data warehouse and data mining, which gives a complete description about the principles, used, architectures, applications, design and implementation of data mining and data ware housing concepts.

Course Outcomes: At the end of this course, the student will be able to

CO1: Summarize the architecture of data warehouse. (Understand - L2)
CO2: Apply different preprocessing methods, Similarity, Dissimilarity measures for any given raw data. (Apply – L3)
CO3: Construct a decision tree and resolve the problem of model overfitting. (Analyze – L4)
CO4: Compare Apriori and FP-growth association rule mining algorithms for frequent itemset generation. (Apply - L3)
CO5: Apply suitable clustering algorithm for the given data set. (Apply - L3)

UNIT-1

Data Warehouse and OLAP Technology: An Overview: Data Warehouse, A Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, From Data Warehousing to Data Mining. (Han & Kamber)

UNIT-2

Data Mining: Introduction, Data Mining, Motivating challenges, The origins of Data Mining, Data Mining Tasks, Types of Data, Data Quality.
Data Preprocessing: Aggregation, Sampling, Dimensionality Reduction, Feature Subset Selection, Feature creation, Discretization and Binarization, Variable Transformation, Measures of Similarity and Dissimilarity. (Tan & Vipin)

UNIT-3

Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction.
Model Overfitting: Due to presence of noise, due to lack of representation samples, evaluating the performance of classifier: holdout method, random sub sampling, cross-validation, bootstrap. Bayes Theorem, Naïve Bayes Classifier (Tan & Vipin)

UNIT-4

UNIT-5

TEXTBOOKS:

1. Introduction to Data Mining : Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Fifth Impression, Pearson, 2015.

2. Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber, Elsevier, 2011

REFERENCE BOOKS:

Pre-requisite : Knowledge of Computer fundamentals & Data structures & Algorithms

Course Educational Objective: The objective of the course is to provide basic knowledge of computer operating system structure and functioning, understand how Operating Systems evolved with advent of computer architecture, and comprehend the different CPU scheduling algorithms, page replacement algorithms, disk scheduling and identify best one.

Course Outcomes: At the end of this course, the student will be able to

CO1: Demonstrate the underlying principles and techniques of operating system (Understand-L2)

CO2: Interpret scheduling and communication methods of processes handled by operating systems (Understand-L2).

CO3: Distinguish the process synchronization methods and deadlock handling approaches employed in operating systems (Understand-L2).

CO4: Classify memory management techniques and virtual memory mechanisms (Understand-L2).

CO5: Interpret the strategies of disk scheduling algorithms and file system architecture (Understand-L2).

Unit-1: Introduction to Operating System

Operating System Structures: Operating-System Services, User Operating-System Interface, System Calls, Types of System Calls, System Programs, Operating-System Design and Implementation, Operating-System Structure, Virtual Machines, Operating-System Generation, System Boot.

Unit-2: Process Management

Processes: Process concept, Inter-process Communication, Communication in Client-Server Systems. **Threads:** Overview, Multithreading Models

Process Scheduling: Scheduling Criteria, Scheduling Algorithms (FCFS, SJF, PRIORITY, ROUNDROBIN)

Unit-3: Synchronization and Deadlocks

Synchronization: The Critical-Section Problem, Peterson’s Solution, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors.

Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention. Deadlock Avoidance, Deadlock Detection, Recovery from deadlock.

Unit-4: Memory Management

Memory Management Strategies: Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation.
Virtual Memory Management: Demand Paging, Page Replacement, Allocation of Frames, Thrashing.

Unit-5: File System Management
Mass-Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management.

TEXTBOOKS:

REFERENCE BOOKS:
4. https://swayam.gov.in/nd1_noc19_cs50/preview
Pre-requisite : Object Oriented Programming

Course Educational Objective: The objective of the course is to provide understanding of different s/w process models and how to choose one among them by gathering the requirements from a client and specifying them. Using those requirements in the design of the software architecture based on the choices with the help of modules and interfaces. To enable s/w development, by using different testing techniques like unit, integration and functional testing, the quality assurance can be achieved.

Course Outcomes: At the end of this course, the student will be able to

- **CO 1** Understand the fundamentals of software engineering concepts and software process models. *(Understand-L2)*
- **CO 2** Apply the requirement elicitation techniques for preparing SRS and design engineering. *(Apply-L3)*
- **CO 3** Understanding the basic building blocks of UML, Class and object diagrams. *(Understand-L2)*
- **CO 4** Apply the behavioral models for real world applications. *(Apply-L3)*
- **CO 5** Demonstrate different software testing approaches for testing the real time applications. *(Understand-L2)*

UNIT – I:

Software and software Engineering: The evolving role of Software, Characteristics of Software, Importance of software Engineering, Changing nature of software, Legacy Software, Software Myths.

Software Process and Process Models: Layered technology, Process frame work, The process and Product, software process models, the water fall model, incremental model, the spiral and V Model. Component based s/w development, Unified process model,

UNIT – II:

Requirements Analysis and Software design: Requirements gathering and analysis, software requirements specifications (SRS).

Design Engineering: overview of design process, Design Concepts, Architectural Concepts

UNIT – III:

Design Using UML: Building Blocks of UML, Defining things, relationships and diagrams, Common Mechanism in UML, Class and Object Diagrams

UNIT – IV:

Behavioral Modeling: Interactions, Interaction diagrams, use cases, Use case Diagrams, Activity Diagrams, Events and signals, state machines, processes and Threads, time and space, state chart diagrams
Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams.

UNIT – V:

Testing Techniques: Software testing fundamentals, Unit testing, Integration testing, Black box testing, white box testing, Debugging, System testing.

TEXTBOOKS:

REFERENCE BOOKS:

2. Object-oriented analysis and design using UML”, Mahesh P. Matha, PHI
4. https://onlinecourses.nptel.ac.in/noc20_cs68 [1,2,3,4,5]
Pre-requisite: Nil

Course Educational Objective: The objective of the course is to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

Course Outcomes: At the end of this course,

CO1: Apply the value inputs in life and profession (Apply – L3)
CO2: Distinguish between values and skills, happiness and accumulation of physical facilities, the self, and the Body (Understand – L2)
CO3: Understand the role of a human being in ensuring harmony in society (Understand – L2).
CO4: Understand the role of a human being in ensuring harmony in the nature and existence. (Understand – L2)
CO5: Distinguish between ethical and unethical practices (Apply – L3)

UNIT – I: Need, Basic Guidelines, Content and Process for Value Education
‘Natural Acceptance’ and Experiential Validation- as the process for self-exploration; Continuous Happiness and Prosperity- A look at basic Human Aspirations; Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity

UNIT – II: Understanding Harmony in the Human Being - Harmony in Myself!
Understanding human being as a co-existence of the sentient ‘I’ and the material ‘Body’; Understanding the needs of Self (‘I’) and ‘Body’ - happiness and physical facility; Understanding the Body as an instrument of ‘I’ (I am being the doer, seer and enjoyer);
Understanding the characteristics and activities of ‘I’ and harmony in ‘I’; Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT – III: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship
Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship.
Understanding the harmony in the society: Resolution, Prosperity, fearlessness and co-existence as comprehensive Human Goals; Visualizing a universal harmonious order in society- Undivided
Society, Universal Order- from family to world family, Gratitude as a universal value in relationships.

UNIT – IV: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

Understanding the harmony in the Nature; Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature; Understanding Existence as Coexistence of mutually interacting units in all-pervasive space; Holistic perception of harmony at all levels of existence.

UNIT – V: Implications of the above Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values; Definitiveness of Ethical Human Conduct; Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order; Competence in professional ethics, Strategy for transition from the present state to Universal Human Order

TEXTBOOK(S):

REFERENCE BOOKS:

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
Pre-requisite : Nil

Course Educational Objective: The objective of this course is to understand Environmental issues like over population, human health etc., related to local, regional, and global levels. The necessity of resources, their exploitation and sustainable management. The interactions of human and ecosystems and their role in the food web in the natural world. The global biodiversity, threats to biodiversity and its conservation. Environmental problems like pollution, disasters and possible solutions. The importance of environmental decision making in organizations through audits.

Course Outcomes: At the end of this course, the student will be able to

CO1: Identify environmental problems arising due to engineering and technological activities that help to be the part of sustainable solutions. (Remember – L1)

CO2: Evaluate local, regional, and global environmental issues related to resources and their sustainable management (Understand - L2)

CO3: Realize the importance of ecosystem and biodiversity for maintaining ecological balance. (Understand - L2)

CO4: Acknowledge and prevent the problems related to pollution of air, water, and soil. (Apply – L3)

CO5: Identify the significance of implementing environmental laws and abatement devices for environmental management. (Understand - L2)

UNIT – I : Nature and scope of Environmental Problems

- Introduction to Environment Science.
- Population explosion, variations among nations
- Resettlement and Rehabilitation - Issues and possible solutions
- Environmental hazards – causes and solutions. Biological hazards – AIDS, Malaria, Chemical hazards- BPA, PCB, Phthalates, Mercury, Nuclear hazards- Risk and evaluation of hazards.
- Role of Information Technology in environmental management and human health

UNIT – II : Natural Resources and Conservation

Introduction and classification of Natural Resources
- Forest resources: Use and over-exploitation, deforestation, Timber extraction, mining, dams and their effects on forests and tribal people
- Water resources: Use and over-utilization of surface and ground water, conflicts over water, interlinking of rivers, dams-benefits and problems, Rainwater harvesting
- Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources
- Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, soil salinity
- Energy resources: Growing energy needs renewable, non-renewable and alternate energy resources
UNIT – III : Ecology and Biodiversity

- Structure and functions of an Ecosystem, Food chains and Food webs, Ecological succession, Ecological pyramids, Biogeochemical cycles
- Biodiversity, Values of biodiversity, Bio geographical classification of India. Endangered and endemic species of India, Threats to biodiversity; Man and wild life conflicts, Conservation of biodiversity: In-situ and Ex-situ conservation methods

UNIT – IV : Environmental Pollution

Introduction to Environmental Pollution Causes, effects and control measures of:
Air pollution, Water pollution, Noise pollution, Solid Waste Management – Sources, Classification, effects and control measures of Municipal solid waste, Biomedical waste & Hazardous and e-waste, Disaster Management.

UNIT – V : Environmental Management

- Sustainable development and unsustainability
- Climate disruption, Greenhouse effect, Ozone layer depletion and Acid rain.
- Stockholm and Rio Summit
- Environmental Impact Assessment (EIA)
- Green building
- Environmental Law- Air, Water, Wildlife, Forest, and Environmental protection act

TEXTBOOKS:

REFERENCE BOOKS:
Pre-requisite: Python Programming.

Course Educational Objective: The objective of this lab is to Practical exposure on implementation of well-known data mining algorithms and Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Apply preprocessing techniques on real world datasets. (Apply-L3)
CO2: Apply apriori algorithm to generate frequent itemsets. (Apply L3)
CO3: Apply Classification and clustering algorithms on different datasets. (Apply L3)
CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Use python library scikit-learn wherever necessary

1. Demonstrate the following data preprocessing tasks using python libraries.
 a) Loading the dataset
 b) Identifying the dependent and independent variables.
 c) Dealing with missing data
2. Demonstrate the following data preprocessing tasks using python libraries.
 a) Dealing with categorical data.
 b) Scaling the features.
 c) Splitting dataset into Training and Testing Sets
3. Demonstrate the following Similarity and Dissimilarity Measures using python
 a) Pearson’s Correlation
 b) Cosine Similarity
 c) Jaccard Similarity
 d) Euclidean Distance
 e) Manhattan Distance
4. Build a model using linear regression algorithm on any dataset.
5. Build a classification model using Decision Tree algorithm on iris dataset
6. Apply Naïve Bayes Classification algorithm on any dataset
7. Generate frequent itemsets using Apriori Algorithm in python and also generate association rules for any market basket data.
9. Apply Hierarchical Clustering algorithm on any dataset.
10. Apply DBSCAN clustering algorithm on any dataset.

Web Resources:
3. https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell-9a43564f533e
Pre-requisite: Shell Scripting and Object-Oriented Programming

Course Educational Objective: The objective of this lab is to provide the various UNIX/Linux operating system commands, importance of System calls, Scheduling algorithms and Memory Management techniques.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Experiment with Unix commands and shell programming (Understand - L2)
CO2: Implement CPU scheduling algorithms and memory management techniques (Apply - L3).
CO3: Simulate process synchronization and file system management using system calls (Apply - L3).
CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Cycle-1:
Execute various UNIX system calls
1. Process Management
2. File Management
3. Input/Output System Calls

Cycle-2:
Simulate the following CPU scheduling algorithms.
a) FCFS b) SJF c) Round Robin d) Priority.

Cycle-3:
Simulate the file allocation strategies:
a) Sequential b) Indexed c) Linked

Cycle-4:
Simulate MVT and MFT
Simulate contiguous memory allocation techniques
a) Worst-fit b) Best fit c) First fit

Cycle-5:
Simulate all File Organization techniques
A) Single level directory b) Two level c) Hierarchical d) DAG

Cycle-6:
Simulate Bankers Algorithm for Deadlock Avoidance
Simulate Bankers algorithm for Deadlock Prevention

Cycle-7:
Simulate disk scheduling algorithms.
a) FCFS b) SCAN c) C-SCAN

Cycle-8:
Programs on process creation and synchronization, inter process communication including shared memory, pipes, and messages. (Dinning - Philosopher problem).

REFERENCES:

1. https://github.com/brenns10/lsh/tree/407938170e8b40d231781576e05282a41634848c
2. https://github.com/MaaSTaaR/SSFS
Pre-requisite : Object Oriented Programming

Course Educational Objective: The main objective of this course is that a student will be familiar with principles behind the Object-Oriented Design and able to apply those principles in a project setting. Students will analyze applications and know how to take a pragmatic approach to software design and development.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Analyze Software Requirements for the given Real-World Application using Use Cases. (Analyze-L4)

CO2: Develop the UML Diagrams to view Software System in static aspects. (Analyze-L4)

CO3: Develop the UML Diagrams to view Software System in dynamic aspects.(Analyze-L4)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Consider the following Case Studies:
1) Automated Teller Machine (ATM)
2) Library Management System
3) Railway Ticket Reservation System
4) Point-of-Sale Terminal
5) Customer Support Service Operations
6) Cab Booking Service

Cycle-1: Analyze the Requirements for the following Case Studies.
1) Automated Teller Machine (ATM)
2) Library Management System
3) Railway Ticket Reservation System

Cycle-2: Analyze the Requirements for the following Case Studies.
1) Point-of-Sale Terminal
2) Customer Support Service Operations
3) Cab Booking Service
Cycle-3: Basics of UML
 1) Introduction to UML.
 2) Familiarization with any one of the Software such as Rational Rose or Umbrello or Gliffy Diagram etc.

Cycle-4: For each case study given earlier, Construct Use Case Diagram for following:
 1) Identify and Analyze the Actors.
 2) Identify the Actions.
 3) Analyze the Relationships between Actors and Actions.
 4) Sketch the Use Case Diagram.

Cycle-5 and Cycle-6: For each case study given earlier, Construct Class Diagram in the following manner:
 1) Identify and Analyze the Classes related to your problem.
 2) Analyze the Attributes and Operations
 3) Analyze the Relationships between Classes
 4) Sketch the Class Diagram

Cycle-7: For each case study given earlier, Construct Interaction Diagrams in the following manner:
 1) Identify the Objects participating in Communication.
 2) Identify the Messages between the objects.
 3) Give numbering to messages.
 4) Use Flat Sequencing or Procedural Sequencing for numbering.

Cycle-8: For each case study given earlier, Construct Activity Diagram in the following manner:
 1) Identify activities in your case study.
 2) Identify relationships among activities.
 3) Use Fork or Join, if necessary.
 4) Sketch the diagram.

Cycle-9: For each case study given earlier, Construct State Chart Diagram in the following manner:
 1) Identify the different states in your case study.
 2) List out the different sub-states present in the state.
 3) Identify relationships among the state to state.
 4) Sketch the diagram.
Cycle-10: For each case study given earlier, Construct Component Diagram in the following manner:

1) Identify the different components in your case study.
2) Create a visual for each of the component.
3) Describe the organization and relationships between components using interfaces, ports etc.
4) Sketch the diagram.

Cycle-11: For each case study given earlier, Construct Deployment Diagram in the following manner:

1) Identify the nodes.
2) Identify the relationships among the nodes.
3) Sketch the Diagram.

REFERENCE BOOK(S):

Pre-requisite: Object Oriented Programming and Data Base Management Systems.

Course Educational Objective: The objective of this course is to learn the importance of client-server architecture in the web application development and able to develop dynamic data driven web applications by using advanced java technologies (Servlets, JSP, Struts2 and Hibernate framework).

Course Outcomes (CO): At the end of this course, the student will be able to:

- **CO1**: Apply JDBC concepts to establish the communication between Java Applications and database. (Apply L3)
- **CO2**: Develop Static and Dynamic Web Applications by using Servlets and Java Server Pages (JSP). (Apply L3)
- **CO3**: Develop Dynamic Data Driven Web Applications by using Struts2 and Hibernate frameworks. (Apply L3)
- **CO 4**: Improve individual / teamwork skills, communication & report writing skills with ethical values.
Module 1:

a) Develop a java program to connect oracle database by using JDBC Connection string.
b) Develop a java program to prepare the Statement to execute the query to insert the number of records into oracle database.
c) Develop a java program to fetch the records from the oracle database table by using ResultSet Interface.

Module 2:

a) Develop a java program to prevent the SQL Injection attacks by using PreparedStatement.
b) Develop a java program to execute stored procedures and sub functions by using Callable Statement.
c) Develop a java program to Scroll the ResultSet data in both forward and backword directions by using ScrollableResultSet.
d) Develop a java program to print the database table meta data by using ResultSetMetaData.

Module 3:

a) Develop a Servlet program to demonstrate the role of Servlet Life Cycle methods in the web application.
b) Develop a Servlet program to access Init parameter values form web.xml to Servlet program by using ServletConfiginterface.
c) Develop a Servlet program to navigate from one Servlet page to another Servlet page by using RequestDispatcher interface.

Module 4:

a) Develop a Servlet program to AUTHENTICATE User details from oracle database by using JDBC connectivity. (Dynamic Login Checking for the registered users in the oracle database)
b) Develop a Servlet program to implement Session Management concept by using HttpSession.

Module 5:

a) Develop a JSP program to demonstrate the importance of Scripting elements in JSP.
b) Develop a JSP program to illustrate the importance of implicit objects in JSP.
c) Develop a JSP program to access JavaBean class by using jsp:useBean, jsp:setProperty and jsp:getProperty.

Module 6:

a) Develop a JSP program to insert and retrieve the records from the oracle database.
b) Develop a JSP program to demonstrate the session management in between login and logout period of the end user.
c) Develop a JSP program to illustrate the process of handling errors and exceptions in JSP pages.
Module 7:

a) Develop a Struts2 web application to perform Insert, Update and Delete operations in the oracle database table through JDBC.
b) Develop a Struts2 web application to fetch all the records of the table created in the above from oracle database.

Module 8:

a) Develop a Program how to code a basic Java Hibernate program by using eclipse IDE.
b) Develop a web application to insert the record of the user in the oracle database by using Hibernate.

REFERENCE BOOK(S):

Pre-requisite: Data Structures and Operating Systems

Course Educational Objective: The Objective of the course is to provide a foundation to understand computer networks using layered architectures. It also helps students to understand the various network models, addressing concept, routing protocols and design aspects of computer networks.

Course Outcomes: At the end of this course, the student will be able to

CO1: Demonstrate the modern network architectures from a design perspective (Understand- L2)

CO2: Apply various Data Link layer design issues and error detection & correction techniques to solve collisions problems. (Apply- L3)

CO3: Demonstrate the network Layer functionalities (Understand- L2)

CO4: Outline the functions of transport layer protocols (Understand- L2)

CO5: Examine different application layer protocols. (Understand- L2)
UNIT-I

UNIT-II
Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA

UNIT-III
Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

UNIT-IV

UNIT-V
Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls,

TEXT BOOKS:

REFERENCE BOOKS:
Pre-requisite: Probability and Statistics, Data Warehousing and Data Mining

Course Educational Objective: The objective of the course provides the basic concepts and techniques of Machine Learning and helps to use recent machine learning software for solving practical problems. It enables students to gain experience by doing independent study and research.

Course Outcomes: At the end of this course, the student will be able to

| CO1: Identify the characteristics of machine learning. (Understand- L2) |
| CO2: Understand the Model building and evaluation approaches (Understand- L2) |
| CO3: Apply regression algorithms for real-world Problems. (Apply- L3) |
| CO4: Handle classification problems via supervised learning algorithms. (Apply- L3) |
| CO5: Learn advanced learning techniques to deal with complex data (Apply- L3) |
UNIT-I: Introduction to Machine Learning and Preparing to Model

Preparing to Model - Introduction, Machine Learning Activities, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing

UNIT-II: Modelling & Evaluation, Basics of Feature Engineering

Modelling & Evaluation - Introduction, selecting a Model, training a Model (for Supervised Learning), Model Representation and Interpretability, Evaluating Performance of a Model.

Basics of Feature Engineering - Introduction, Feature Transformation – Feature Construction, Feature Extraction, Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Linear Discriminant Analysis (LDA), Feature Subset Selection

UNIT-III: Regression

Introduction to regression analysis, Simple linear regression, Multiple linear regression, Assumptions in Regression Analysis, Main Problems in Regression Analysis, Improving Accuracy of the linear regression model, Polynomial Regression Model, Logistic Regression, Regularization, Regularized Linear Regression, Regularized Logistic Regression.

UNIT-IV: Supervised Learning: Classification

Classification - Introduction, Example of Supervised Learning, Classification Model, Classification Learning Steps.

Common Classification Algorithms - k-Nearest Neighbour (kNN), Support vector Machines (SVM), Random Forest model.

UNIT-V: Other Types of Learning

Ensemble Learning - Bagging, Boosting, Stacking and its impact on bias and variance, AdaBoost, Gradient Boosting Machines, XGBoost.

Reinforcement Learning - Introduction, Q Learning.

TEXT BOOKS:

REFERENCE BOOKS:
Pre-requisite : Discrete Mathematical Structures

Course Educational Objective: The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of Automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

Course Outcomes: At the end of this course, the student will be able to

CO1: Construct finite automata for regular languages and prove it’s equivalence. (Apply-L3)

CO2: Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata. (Apply-L3)

CO3: Design Pushdown automata for the context-free languages. (Understand-L2)

CO4: Design Turing machine to model computational problems. (Apply-L3)

CO5: Distinguish decidable and undecidable problems with the help of Turing machine. (Understand – L2)
UNIT-1: Finite Automata

Introduction: Alphabet, Strings and Languages and grammars, Classification of Automata, definitions, and its applications.

Finite Automata: Deterministic finite automata (DFA), nondeterministic finite automata (NFA). Equivalence of NFA and DFA. Equivalence of NFA with epsilon and NFA without epsilon, and minimization of finite automata. Finite Automata with output: Melay and Moore Machine and it’s equivalence.

UNIT-II: Regular Expression and Regular languages

Regular Expression: Equivalence of regular expression and finite automata.

Regular Grammar: Definition of grammar, derivation and parse tree, equivalence of regular grammar and finite automata, closure properties of regular languages, pumping lemma for regular languages.

UNIT-III: CFL and Pushdown Automata

Context-Free Languages: Context-Free Grammars (CFG), ambiguity in CFG, Chomsky and Greibach normal forms.

Pushdown automata (PDA): Definition of PDA, Deterministic and Non-deterministic PDA, equivalence of PDA and CFG, pumping lemma for context-free languages, closure properties of CFLs.

UNIT-IV: Turing Machine

Turing Machine: The basic model for Turing Machine (TM), Turing-recognizable (recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators.

UNIT-V: Undecidability

Undecidability: Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice’s theorem, Post’s correspondence problem, undecidable problems about languages.

TEXT BOOKS:

REFERENCE BOOKS:

Pre-requisite: Knowledge of coordinate geometry, and Programming for Problem solving using C.

Course Educational Objective: The objective of the course is to have an appreciation of the history and evolution of computer graphics, both hardware and software. Students will understand 2D graphics and algorithms which include line drawing, polygon filling, clipping, and transformations. Students will understand the concepts & techniques used in 3D computer graphics, including viewing transformations, hierarchical modeling, colour, lighting and texture mapping.

Course Outcomes: At the end of this course, the student will be able to

CO 1 Summarize the working principle of display devices, interactive input devices and graphic applications (L1-Remember)
CO 2 Analyze line, circle, ellipse and character generation algorithms. (L2-Understand)
CO 3 Demonstrate 2-Dimensional geometrical transformations. (L3-Apply)
CO 4 Apply the clipping algorithms on points, lines, and polygons. (L3-Apply)
CO 5 Apply transformation techniques on 3-Dimensional objects. (L3-Apply)
UNIT – I: Introduction to Computer Graphics and their Applications

UNIT – II: Output primitives

UNIT – III: Two Dimensional Geometric Transformations

UNIT – IV: Two-Dimensional Viewing

Two-Dimensional Viewing: The viewing Pipeline, Viewing Coordinate Reference Frame, Window-to-Viewport Coordinate Transformation, Two Dimensional Viewing Functions, Clipping Operations: Point Clipping, Line Clipping, Polygon Clipping.

UNIT – V: Three Dimensional Concepts, Object Representations, Geometric and modelling Transformations

Three Dimensional Concepts and Object representations: 3D display methods, 3DGraphics-Polygon Surfaces, Curved Lines and Surfaces, Quadratic Surfaces Three Dimensional Geometric and Modelling Transformations: Translation, Rotation, Scaling, Other Transformations, Composite Transformations, 3D Transformation Functions, Modelling and Coordinate Transformations.

TEXT BOOK

REFERENCE BOOKS:

5. NPTEL : Introduction to computer graphics by Prof. Prem K KalraDepartment of Computer Science and Engineering, IIT Delhi url : https://nptel.ac.in/courses/106/102/106102065/
Pre-requisite: Object Oriented Programming.

Course Educational Objective: Introduce the Programming Language Categories and Implementation Methods for learning Various Concepts of Imperative Programming Languages that include Exception and Event Handling.

Course Outcomes: At the end of this course, the student will be able to

CO1: Understand the Preliminary Concepts and Implementation Methods for Programming Languages. (Understand- L2)

CO2: Summarize Semantic issues of Variables and design issues of the Data Types in different Programming Languages. (Understand- L2)

CO3: Demonstrate Statement-Level Control Structures and concepts of Subprograms. (Understand- L2)

CO4: Illustrate the process of Exception and Event handling in different Programming Languages. (Understand- L2)

CO5: Describe the features of Functional Programming Languages and Scripting Languages. (Remember- L1)

UNIT – I

UNIT – II

Names, Bindings, Type Checking and Scopes: Names, Variables, The Concept of Binding, Type Checking, Strong Typing, Type Compatibility, Scope and Lifetime.

Data types: Introduction, Primitive Data Types, Character String Type, User Defined Ordinal Types, Array Types, Associative Arrays, Record Types, Union Types, Pointer and Reference Types.

UNIT – III

Subprograms: Fundamentals of Subprograms, Design issues of Subprograms, Local Referencing Environments, Parameter Passing Methods, Parameters that are Subprogram
Names, Overloaded Subprograms, Design Issues for Functions, User defined Overloaded Operators, Co-routines.

UNIT – IV

Exception Handling and Event Handling: Introduction to Exception Handling, Exception Handling in Ada, Exception Handling in C++, Exception Handling in Java, Introduction to Event Handling, Event Handling in Java, Event Handling in C#.

UNIT-V

Functional Programming Languages: Introduction, Fundamentals of FPL, LISP, Applications of Functional Programming Languages and Comparison of Functional and Imperative Languages. **Scripting Language:** Pragmatics, Key Concepts, Case Study: Python – Values and Types, Variables, Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library.

TEXT BOOK:

REFERENCE BOOKS:

B.Tech. (V Sem.) 20CS16-PRINCILES OF ARTIFICIAL INTELLIGENCE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS), MYLAVARAM

Pre-requisite: Basic Engineering Mathematics Knowledge

Course Educational Objective: The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, reasoning, and learning. Students will implement a small AI system in a team environment. The knowledge of artificial intelligence plays a considerable role in some applications students develop for courses in the program.

Course Outcomes: At the end of this course, the student will be able to

CO1: Understand the fundamentals of Artificial Intelligence types of AI agents and their structures to solve engineering problems. (Understand - L2)

CO2: Identify different searching algorithms to find and optimize the solution for the given problem. (Understand - L2)

CO3: Apply different gaming algorithms and identify the importance of knowledge representation in Artificial Intelligence. (Apply - L3)

CO4: Make use of predicate logic and rule-based system to represent the knowledge in AI domain. (Understand - L2)

CO5: Interpret the forms of learning in the AI domain as well as present efficient techniques to remove uncertainty in knowledge domain. (Understand - L2)
UNIT - I

Introduction: AI introduction, applications of AI, history of AI, types of AI.

Intelligent Agents: Agents and rationality, structure of agents, agent environment and nature of the environment, types of agents - simple reflex agents, model-based agents, goal-based agents, utility-based agents, learning agents.

Problem Solving: Problems, search spaces, defining the problem as state space search, production system, problem characteristics, issues in the design of search programs.

UNIT - II

Search Algorithms: Problem solving agents, search algorithms terminologies, properties of search algorithms, types of search algorithms.

UNIT - III

Adversarial Search/ Game Playing: Introduction, Minimax algorithm, Alpha-Beta pruning.

Knowledge Representation: Representations and mappings, approaches of knowledge representation, issues in knowledge representation.

UNIT - IV

Knowledge Representation Using Predicate Logic: Representing simple facts in logic, representing instance and Isa relationships, computable functions and predicates, resolution, natural deduction.

Representing Knowledge using Rules: Procedural verses declarative knowledge, logic programming, forward verses backward reasoning, matching, control knowledge.

UNIT - V

Uncertain Knowledge and Reasoning: Probability and Bayes’ theorem, certainty factors and rule-based systems, Bayesian networks, Dempster-Shafer theory, Fuzzy logic.

Learning: Overview of different forms of learning, Learning Decision Trees, Neural Networks.

TEXT BOOKS:

REFERENCE BOOKS:

Pre-requisite: Data Structures, and Operating Systems

Course Educational Objective: The Objective of the course is to prepare students to write programs to illustrate communication in networks, configure different networks (LAN, WAN) and prepare students to differentiate various protocols and their performance.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Implement Network layer functionalities using NS3 simulator. (Apply-L3)

CO2: Demonstrate Transport Layer functionalities. (Understand- L2)

CO3: Analyze Application layer protocols using Wireshark. (Analyze – L4)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

1. To gain familiarity with the basic network commands & utilities available in the Linux OS.

2. To learn about network layer tools and analyze captures for congestion.

3. To learn about queue management techniques, and global routing in ns3.

4. To learn about broadcasting, multicasting, and bridging in a Local Area Network using ns3.

5. To learn about Wifi and Mobile Adhoc topologies with ns3.

6. To introduce Socket Programming in TCP and UDP.

9. To introduce Wireshark & tcpdump, and observation of packets in a LAN network.

10. To analyze HTTP packets using Wireshark tool, and understand the records returned by a DNS server.
Pre-requisite: Probability and Statistics, Programming Knowledge

Course Educational Objective: The objective of this lab is to Make use of Data sets in implementing the machine learning algorithms in any suitable language of choice.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Apply the appropriate pre-processing techniques on data set. (Apply – L3)

CO2: Implement supervised Machine Learning algorithms. (Apply – L3)

CO3: Implement advanced Machine Learning algorithms (Apply – L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Experiments:

1. Basic statistical functions for data exploration
2. Data Visualization: Box plot, scatter plot, histogram
3. Data Pre-processing: Handling missing values, outliers, normalization, Scaling
4. Principal Component Analysis (PCA)
5. Singular Value Decomposition (SVD)
6. Linear Discriminant Analysis (LDA)
7. Regression Analysis: Linear regression, Logistic regression, Polynomial regression
8. Regularized Regression
9. K-Nearest Neighbour (kNN) Classifier
10. Support Vector Machines (SVMs)
11. Random Forest model
12. AdaBoost Classifier and XGBoost
Pre-requisite: Full Stack Development

Course Outcomes:
At the end of the Course, Student will be able to:

CO1: Develop professional web pages of an application using HTML elements like lists, navigations, tables, various form elements, embedded media which includes images, audio, video and CSS Styles (Apply-L3)

CO2: Build a basic web server using Node.js, Express.js and also working with Node Package Manager (NPM) (Apply-L3)

CO3: Make use of Type script to optimize JavaScript code by using the concept of strict type checking. (Apply-L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values

List of Exercises

| 1.a | Course Name: HTML5 - The Language
Module Name: Case-insensitivity, Platform-independency, DOCTYPE Declaration, Types of Elements, HTML Elements - Attributes, Metadata Element
Include the Metadata element in Homepage.html for providing description as "IEKart's is an online shopping website that sells goods in retail. This company deals with various categories like Electronics, Clothing, Accessories etc." https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_28320667711144660000_shared?collectionId=lex_17739732834840810000_shared&collectionType=Course

| 1.b | Course Name: HTML5 - The Language
Module Name: Sectioning Elements
Enhance the Homepage.html of IEKart's Shopping Application by adding appropriate sectioning elements. https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_63722913471108570000_shared?collectionId=lex_17739732834840810000_shared&collectionType=Course

| 1.c | Course Name: HTML5 - The Language
Module Name: Paragraph Element, Division and Span Elements, List Element
Make use of appropriate grouping elements such as list items to "About Us" page of IEKart's Shopping Application https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_32785192040894940000_shared?collectionId=lex_17739732834840810000_shared&collectionType=Course

| 1.d | Course Name: HTML5 - The Language
Module Name: Link Element
Link "Login", "SignUp" and "Track order" to "Login.html", "SignUp.html" and "Track.html" page respectively. Bookmark each category to its details of IEKart's Shopping application. https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_15515105953273338000_shared?collectionId=lex_17739732834840810000_shared&collectionType=Course

| 1.e | Course Name: HTML5 - The Language
Module Name: Character Entities
<table>
<thead>
<tr>
<th>Course Name: HTML5 - The Language</th>
<th>Module Name: HTML5 Global Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the global attributes such as contenteditable, spellcheck, id etc. to enhance the Signup Page functionality of IEKart's Shopping application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: HTML5 - The Language</th>
<th>Module Name: Creating Table Elements, Table Elements : Colspan/Rowspan Attributes, border, cellspacing, cellpadding attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance the details page of IEKart's Shopping application by adding a table element to display the available mobile/any inventories.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: HTML5 - The Language</th>
<th>Module Name: Creating Form Elements, Color and Date Pickers, Select and Datalist Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the form elements create Signup page for IEKart's Shopping application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: HTML5 - The Language</th>
<th>Module Name: Input Elements – Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance Signup page functionality of IEKart's Shopping application by adding attributes to input elements.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: HTML5 - The Language</th>
<th>Module Name: Media, Iframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add media content in a frame using audio, video, iframe elements to the Home page of IEKart's Shopping application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: Javascript</th>
<th>Module Name: Type of Identifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a JavaScript program to find the area of a circle using radius (var and let - reassign and observe the difference with var and let) and PI (const)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: Javascript</th>
<th>Module Name: Primitive and Non Primitive Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write JavaScript code to display the movie details such as movie name, starring, language, and ratings. Initialize the variables with values of appropriate types. Use template literals wherever necessary.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Javascript</td>
<td>Operators and Types of Operators</td>
</tr>
<tr>
<td></td>
<td>Write JavaScript code to book movie tickets online and calculate the total price, considering the number of tickets and price per ticket as Rs. 150. Also, apply a festive season discount of 10% and calculate the discounted amount.</td>
</tr>
<tr>
<td>Javascript</td>
<td>Types of Statements, Non-Conditional Statements, Types of Conditional Statements, if Statements, switch Statements</td>
</tr>
<tr>
<td></td>
<td>Write a JavaScript code to book movie tickets online and calculate the total price based on the 3 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed. (c) If se</td>
</tr>
<tr>
<td>Javascript</td>
<td>Types of Loops</td>
</tr>
<tr>
<td></td>
<td>Write a JavaScript code to book movie tickets online and calculate the total price based on the 3 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed. (c) If</td>
</tr>
<tr>
<td>Javascript</td>
<td>Types of Functions, Declaring and Invoking Function, Arrow Function, Function Parameters, Nested Function, Built-in Functions, Variable Scope in Functions</td>
</tr>
<tr>
<td></td>
<td>Write a JavaScript code to book movie tickets online and calculate the total price based on the 3 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed. (c) If</td>
</tr>
<tr>
<td>Javascript</td>
<td>Working With Classes, Creating and Inheriting Classes</td>
</tr>
<tr>
<td></td>
<td>Create an Employee class extending from a base class Person. Hints: (i) Create a class Person with name and age as attributes. (ii) Add a constructor to initialize the values (iii) Create a class Employee extending Person with additional attributes role</td>
</tr>
<tr>
<td>Javascript</td>
<td>In-built Events and Handlers</td>
</tr>
<tr>
<td></td>
<td>Write a JavaScript code to book movie tickets online and calculate the total price based on the 3 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed. (c) If se</td>
</tr>
</tbody>
</table>
| 4.d | **Course Name:** Javascript
Module Name: Working with Objects, Types of Objects, Creating Objects, Combining and cloning Objects using Spread operator, Destructuring Objects, Browser Object Model, Document Object Model
If a user clicks on the given link, they should see an empty cone, a different heading, and a different message and a different background color. If user clicks again, they should see a re-filled cone, a different heading, a different message, and a different background color.
| 5.a | **Course Name:** Javascript
Module Name: Creating Arrays, Destructuring Arrays, Accessing Arrays, Array Methods
Create an array of objects having movie details. The object should include the movie name, starring, language, and ratings. Render the details of movies on the page using the array.
| 5.b | **Course Name:** Javascript
Module Name: Introduction to Asynchronous Programming, Callbacks, Promises, Async and Await, Executing Network Requests using Fetch API
Simulate a periodic stock price change and display on the console. Hints: (i) Create a method which returns a random number - use Math.random, floor and other methods to return a rounded value. (ii) Invoke the method for every three seconds and stop when
| 5.c | **Course Name:** Javascript
Module Name: Creating Modules, Consuming Modules
Validate the user by creating a login module. Hints: (i) Create a file login.js with a User class. (ii) Create a validate method with username and password as arguments. (iii) If the username and password are equal it will return "Login Successful" else
| 6.a | **Course Name:** Node.js
Module Name: How to use Node.js
Verify how to execute different functions successfully in the Node.js platform.
| 6.b | **Course Name:** Node.js
Module Name: Create a web server in Node.js
Write a program to show the workflow of JavaScript code executable by creating web server in Node.js.
| 6.c | **Course Name:** Node.js
Module Name: Modular programming in Node.js
Write a Node.js module to show the workflow of Modularization of Node application. |
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Module Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6.d | Node.js | **Course Name:** Node.js
Module Name: Restarting Node Application
Write a program to show the workflow of restarting a Node application. |
| 6.e | Node.js | **Course Name:** Node.js
Module Name: File Operations
Create a text file src.txt and add the following data to it. Mongo, Express, Angular, Node. |
| 7.a | Express.js | **Course Name:** Express.js
Module Name: Defining a route, Handling Routes, Route Parameters, Query Parameters
Implement routing for the AdventureTrails application by embedding the necessary code in the routes/route.js file. |
| 7.b | Express.js | **Course Name:** Express.js
Module Name: How Middleware works, Chaining of Middlewares, Types of Middlewares
In myNotes application: (i) we want to handle POST submissions. (ii) display customized error messages. (iii) perform logging. |
| 7.c | Express.js | **Course Name:** Express.js
Module Name: Connecting to MongoDB with Mongoose, Validation Types and Defaults
Write a Mongoose schema to connect with MongoDB. |
| 7.d | Express.js | **Course Name:** Express.js
Module Name: Models
Write a program to wrap the Schema into a Model object. |
| 8.a | Express.js | **Course Name:** Express.js
Module Name: CRUD Operations
Write a program to perform various CRUD (Create-Read-Update-Delete) operations using Mongoose library functions. |
| 8.b | Express.js | **Course Name:** Express.js
Module Name: Files Operations
Create a text file src.txt and add the following data to it. Mongo, Express, Angular, Node. |
<table>
<thead>
<tr>
<th>Module Name: API Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the myNotes application, include APIs based on the requirements provided. (i) API should fetch the details of the notes based on a notesID which is provided in the URL. Test URL - http://localhost:3000/notes/7555 (ii) API should update the details based on the notesID. Test URL: https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_auth_013035745250975744755_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.c Course Name: Express.js</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Why Session management, Cookies</td>
</tr>
<tr>
<td>Write a program to explain session management using cookies.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_24299316914857090000_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.d Course Name: Express.js</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Sessions</td>
</tr>
<tr>
<td>Write a program to explain session management using sessions.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_905413034723449100_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.e Course Name: Express.js</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Why and What Security, Helmet Middleware</td>
</tr>
<tr>
<td>Implement security features in myNotes application.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_31677453061177940000_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.a Course Name: Typescript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Basics of TypeScript</td>
</tr>
<tr>
<td>On the page, display the price of the mobile-based in three different colors. Instead of using the number in our code, represent them by string values like GoldPlatinum, PinkGold, SilverTitanium.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_28910354929502245000_shared?collectionId=lex_94362331165126780000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.b Course Name: Typescript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Function</td>
</tr>
<tr>
<td>Define an arrow function inside the event handler to filter the product array with the selected product object using the productId received by the function. Pass the selected product object to the next screen.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_10783156469383723000_shared?collectionId=lex_94362331165126780000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.c Course Name: Typescript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Parameter Types and Return Types</td>
</tr>
<tr>
<td>Consider that developer needs to declare a function - getMobileByVendor which accepts string as input parameter and returns the list of mobiles.</td>
</tr>
<tr>
<td>https://infyspringboard.onwingspan.com/web/en/viewer/hands-on/lex_auth_012712912427057152901_shared?collectionId=lex_94362331165126780000_shared&collectionType=Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.d Course Name: Typescript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name: Arrow Function</td>
</tr>
<tr>
<td>Consider that developer needs to declare a manufacturer's array holding 4 objects with id and price as a parameter and needs to implement an arrow function - myfunction to populate the id parameter of manufacturers array whose price is greater than or equ</td>
</tr>
</tbody>
</table>
9.e **Course Name:** Typescript
Module Name: Optional and Default Parameters
Declare a function - `getMobileByManufacturer` with two parameters namely manufacturer and id, where manufacturer value should passed as Samsung and id parameter should be optional while invoking the function, if id is passed as 101 then this function should

10.a **Course Name:** Typescript
Module Name: Rest Parameter
Implement business logic for adding multiple Product values into a cart variable which is type of string array.

10.b **Course Name:** Typescript
Module Name: Creating an Interface
Declare an interface named - `Product` with two properties like `productId` and `productName` with a number and string datatype and need to implement logic to populate the `Product` details.

10.c **Course Name:** Typescript
Module Name: Duck Typing
Declare an interface named - `Product` with two properties like `productId` and `productName` with the number and string datatype and need to implement logic to populate the `Product` details.

10.d **Course Name:** Typescript
Module Name: Function Types
Declare an interface with function type and access its value.

11.a **Course Name:** Typescript
Module Name: Extending Interfaces
Declare a `productList` interface which extends properties from two other declared interfaces like `Category`, `Product` as well as implementation to create a variable of this interface type.

11.b **Course Name:** Typescript
Module Name: Classes
Consider the Mobile Cart application, Create objects of the `Product` class and place them into the `productList` array.
11.c Course Name: Typescript
Module Name: Constructor
Declare a class named Product with the below-mentioned declarations: (i) productId as number property (ii) Constructor to initialize this value (iii) getProductId method to return the message "Product id is <<id value>>".

11.d Course Name: Typescript
Module Name: Access Modifiers
Create a Product class with 4 properties namely productId, productName, productPrice, productCategory with private, public, static, and protected access modifiers and accessing them through Gadget class and its methods.

12.a Course Name: Typescript
Module Name: Properties and Methods
Create a Product class with 4 properties namely productId and methods to setProductId() and getProductId().

12.b Course Name: Typescript
Module Name: Creating and using Namespaces
Create a namespace called ProductUtility and place the Product class definition in it. Import the Product class inside productlist file and use it.

12.c Course Name: Typescript
Module Name: Creating and using Modules
Consider the Mobile Cart application which is designed as part of the functions in a module to calculate the total price of the product using the quantity and price values and assign it to a totalPrice variable.

12.d Course Name: Typescript
Module Name: What is Generics, What are Type Parameters, Generic Functions, Generic Constraints
Create a generic array and function to sort numbers as well as string values.

Software configuration and installation
1. HTML & Javascript
• Simple editors such as Notepad or go for IDEs like Visual Studio Code (recommended), Eclipse etc. which makes coding easier.
• And, to execute application, you can use any commonly used browser such as Google Chrome (recommended), Mozilla Firefox etc
• Setup details: Environmental Setup for HTML5 - Viewer Page | Infosys Springboard (onwingspan.com)
• Environment Setup: Internal - Viewer Page | Infosys Springboard (onwingspan.com)

2. Node JS
Download Node.js from the official site
Setup details: How to use Node.js - Viewer Page | Infosys Springboard (onwingspan.com)

3. TypeScript
Installing TypeScript - Internal - Viewer Page | Infosys Springboard (onwingspan.com)

Text Books:

Reference Books:

Web Links:
Pre-requisite : Computer Networks, Number theory and programming language

Course Educational Objective: The Objective of the course is to course elevates the security aspects and provides the knowledge to understand the basic concept of Cryptography and Network Security principles. It antilght 's different types of cipher mechanisms and various symmetric and asymmetric algorithms. Also provides the knowledge on digital signatures, different threats, viruses, intruders, and firewalls.

Course Outcomes: At the end of this course, the student will be able to

CO1: Summarize encryption algorithms to achieve data confidentiality. (Understand-L2)
CO2: Apply Secure hash functions for attaining data integrity. (Apply-L3)
CO3: Illustrate the email security mechanisms to achieve authentication. (Understand- L2)
CO4: Demonstrate the techniques of web security. (Understand-L2)
CO5: Examine the threats and remedial measures for system security. (Apply-L3)
UNIT - I: INTRODUCTION:

Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, Access Control and Availability) and Mechanisms. A Model for Internetwork security, Conventional Encryption Principles, Conventional Encryption Algorithms (DES, Triple DES and AES), Cipher Block Modes of Operations (CBC, CFB only), Stream Ciphers and RC4, Location of Encryption Devices, Key Distribution.

UNIT - II: PUBLIC -KEY CRYPTOGRAPHY:

Approaches of Message Authentication, MD5, Secure Hash Functions (SHA-512) and HMAC Algorithm, Public Key Cryptography principles, Public Key Cryptography Algorithms, Digital Signatures, Public Key Infrastructure, Digital Certificates, Certificate Authority, Key Management, X.509 certificate.

UNIT - III: EMAIL PRIVACY:

UNIT - IV: WEB SECURITY:

Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET) and HTTPS.

UNIT - V: INTRUDERS:

TEXTBOOKS:

REFERENCE BOOKS:

5. https://www.mat.unical.it/ianni/storage/Intro-2013.ppt
Pre-requisite: Programming language, and Automata theory and formal languages.

Course Educational Objective: The objective of the course is to understand and list the different stages in the process of compilation, identify different methods of lexical analysis, design top-down and bottom-up parsers, develop syntax directed translation schemes, and develop algorithms to generate code for a target machine.

Course Outcomes: At the end of this course, the student will be able to

- **CO1**: Design the lexical analyzer using LEX tool. *(Apply - L3)*
- **CO2**: Design a parser using top-down and bottom-up parser design methods. *(Apply - L3)*
- **CO3**: Construct syntax-directed translator for semantic checking and intermediate code generation Using YACC tool *(Apply –L3)*
- **CO4**: Demonstrate the machine dependent and machine independent code optimization techniques. *(Understand-L2)*
- **CO5**: Understand the design issues of the code generator and run-time environment of the program. *(Understand-L2)*
UNIT - I
Introduction to Compiler: Language Processing System, Compiler vs Interpreter, The Phases of Compiler, Compiler Construction Tools, and Boot Strapping.

Lexical Analysis: The role of lexical analyzer, Input buffering, Specification of tokens, Recognition of Tokens, A language for specifying lexical analyzer (LEX).

UNIT - II
Syntax Analyzer: The role of parser, writing a Grammar-Elimination of Left recursion, Left factoring.
Top-Down Parsing – Recursive descent parsing, Predictive parsing, Pre-processing steps required for predictive parsing, LL (1) grammar, Error recovery in predictive parsing, Backtracking.

UNIT - III
Bottom-Up parsing: Handle Pruning, Shift-Reduce parsing, and Operator Precedence Parsing, LR parsers-SLR, CLR and LALR, Handling ambiguous grammars, Error recovery in LR parsing, YACC – automatic parser generator.

UNIT - IV
Syntax Directed Translation: Syntax-directed Definitions, Evaluation order of SDD’s, Applications of SDD and Syntax directed Translation Schemes.
Intermediate code generation: - Syntax tree, polish notation and three address code, static single assignment. Translation of expressions and control flow statements, and Boolean Expressions.

Run time storage: Storage organization, storage allocation strategies, and parameter passing techniques.

UNIT - V
Code Optimization: Basic Blocks and flow graphs, principal sources of optimization, loop optimization, Introduction to Data-flow analysis.

Code generation: Design issues, object code forms, optimization of Basic blocks- DAG representation of basic blocks and code generation using DAG, A simple code generator, peephole optimization, and Register allocation and assignment.

TEXTBOOK:

REFERENCE BOOKS:

3. http://nptel.ac.in/courses/106108052/(Video lectures for Compiler design)
Pre-requisite: Database Management Systems, Data Warehousing and Data Mining

Course Educational Objective: Understanding the process of distributed data (Structured, Semi-Structured and Unstructured) that process the Terabytes of data using Hadoop Eco System Tools.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** Identify Big Data and its Business Implications. *(Understand - L2)*
- **CO2:** Process of distributed file system using Hadoop *(Apply - L3)*
- **CO3:** Illustrate the MapReduce mechanism *(Apply - L3)*
- **CO4:** Develop structured data processing tools *(Apply - L3)*
- **CO5:** Develop semi/unstructured data processing tools *(Apply – L3)*

UNIT – I: Introduction to Big data

UNIT – II: Hadoop Distributed File System
The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file system interfaces, Data flow, Data Ingestion with Sqoop and Hadoop archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures.

UNIT – III: MapReduce Technique
How MapReduce works?, Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task Execution, Map Reduce Types and Formats, Map Reduce Features.

UNIT – IV: Structured Data Processing Tools
Hive: Installation, Running Hive, HiveQL, Tables, Querying Data, User Defined functions
Sqoop: Introduction, generate code, Database import, working with imported data, Importing large objects, performing an exports.

UNIT – V: Semi-structured and unstructured Data Processing Tools
Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators.
HBase: Basics, Concepts, Clients, Example, HBase Versus RDBMS.

TEXT BOOKS:

REFERENCE BOOKS:
Pre-requisite : Basic knowledge of probability & statistics, data mining.

Course Educational Objective: The main objective of the course is that the concept of a pattern and the fundamentals of pattern recognition and its relevance to classical and modern problems and to be able to identify where, when and how pattern recognition can be applied.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** Understand the primitives of Pattern Recognition. *(Understand - L2)*
- **CO2:** Understand the fundamental concepts of Bayesian approach *(Understand – L2)*
- **CO3:** Understand Bayesian classifier with respect to its parameter estimation. *(Understand - L2)*
- **CO4:** Gain knowledge of Mixture densities and clustering techniques. *(Understand - L2)*
- **CO5:** Develop a statistical framework for Speech Recognition. *(Apply - L3)*
UNIT-I

Introduction: Machine perception, pattern recognition example, pattern recognition systems, the Design cycle, learning and adaptation

Bayesian Decision Theory: Introduction, continuous features – two categories classifications, minimum error-rate classification-zero–one loss function, classifiers, discriminant functions, and decision surface

UNIT- II

Normal density: Univariate and multivariate density, discriminant functions for the normal Density different cases, Bayes decision theory – discrete features, compound Bayesian decision theory and context

UNIT- III

Maximum likelihood and Bayesian parameter estimation: Introduction, maximum likelihood Estimation, Bayesian estimation, Bayesian parameter estimation–Gaussian case.

UNIT- IV

Un-supervised learning and clustering: Introduction, mixture densities and identifiability, maximum likelihood estimates, application to normal mixtures, K-means clustering. Date description and clustering – similarity measures, criteria function for clustering.

UNIT- V

Pattern recognition using discrete hidden Markov models: Discrete-time Markov process, Extensions to hidden Markov models, three basic problems of HMMs, Types of HMMs

TEXT BOOKS:

REFERENCE BOOKS:

Online Courses and Video Lectures:

1. http://freevideolectures.com/Course/3194/Pattern-Recognition
2. http://nptel.ac.in/courses/117105101/
Pre-requisite

DBMS, Data Structures, and DW&DM

Course Educational Objective:
The main objective of this course is to present the basic concepts in information retrieval and the significance of various indexing and searching techniques for information retrieval.

Course Outcomes:
At the end of this course, the student will be able to

<table>
<thead>
<tr>
<th>CO</th>
<th>Identify the basic concepts of Information retrieval system. (Remember – L1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 2</td>
<td>Describe the taxonomy of different information retrieval models. (Understand-L2)</td>
</tr>
<tr>
<td>CO 3</td>
<td>Demonstrate and evaluate automatic indexing, document & term clustering techniques. (Understand-L2)</td>
</tr>
<tr>
<td>CO 4</td>
<td>Demonstrate and evaluate various searching techniques. (Understand- L2)</td>
</tr>
<tr>
<td>CO 5</td>
<td>Evaluate text processing techniques and operations in information retrieval system. (Apply- L3)</td>
</tr>
</tbody>
</table>
UNIT I
Introduction: Definition, Objectives, Functional Overview, Relationship to DBMS, Digital libraries and Data Warehouses.
Information Retrieval System Capabilities: Search, Browse and Miscellaneous Capabilities.

UNIT II

UNIT III
Automatic Indexing: Classes of automatic indexing, Statistical indexing, Natural language, Concept indexing, Hypertext linkages.
Document and Term Clustering: Introduction, Thesaurus generation, Item clustering, Hierarchy of clusters.

UNIT IV
User Search Techniques: Search statements and binding, Similarity measures and ranking, Relevance feedback, Selective dissemination of information search, weighted searches of Boolean systems, Searching the Internet and hypertext.
Information Visualization: Introduction, Cognition and perception, Information visualization technologies.

UNIT V
Text Search Algorithms: Introduction, Software text search algorithms, Hardware text search systems.
Information System Evaluation: Introduction, Measures used in system evaluation, Measurement example – TREC results.

TEXT BOOK

REFERENCE BOOKS
20CS22- DISTRIBUTED OPERATING SYSTEMS

Pre-requisites: Knowledge of Operating systems, Computer Networks

Course Educational Objectives:

This course enables the students to know about a comprehensive introduction to understand the underlying principles, techniques and approaches which constitute a coherent body of knowledge in operating systems. In particular, the course will consider inherent functionality and processing of program execution. The emphasis of the course will be placed on understanding how the various elements that underlie operating system interact and provides services for execution of application software.

Course Outcomes (COs): At the end of this course, the student will be able to

CO1: Identify the hardware and software components to design the communication model in Distributed System. (L2-Understand)

CO2: Illustrate the processor allocation and process scheduling algorithms in Distributed Systems. (L2-Understand)

CO3: Apply the Clock Synchronization protocols and Deadlock handling mechanisms in Distributed system. (L3-Apply)

CO4: Analyze the implementation of Distributed Shared memory for real world problems. (L2-Understand)

CO5: Demonstrate the Implementation of Distributed file system and CHROUS, MACH distributed operating systems. (L3-Apply)
Unit-1: Introduction to Distributed Systems

Unit-2: Processes and Processors in Distributed Systems
Threads, System Models, Processor Allocation, Scheduling in Distributed Systems, Fault tolerance, Real time Distributed Systems.

Unit-3: Synchronization in Distributed Systems
Clock Synchronization, Mutual Exclusion, Election Algorithms, Atomic Transactions, Deadlocks in Distributed Systems.

Unit-4: Distributed Shared Memory
Introduction, Consistency Models, Page-based Distributed shared memory, Shared-variable Distributed shared memory, Object-based Distributed shared memory.

Unit-5: Distributed File Systems
Distributed File System design, Distributed File System implementation, Trends in Distributed File Systems.
Case Studies: MACH, CHORUS

TEXT BOOKS

REFERENCE BOOKS
2. SunitaMahajan, Seema Shan, Distributed Computing, Oxford University Press, 2015
Pre-requisite: Computer Programming, Mathematics, Computer Networks

Course Educational Objective: The Objective of the course is to provide practical level training that enables the usage of security algorithms for handling security projects. It also provides foundation level training for network analysis to find out the intruders in a network traffic.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Demonstrate the security concepts, type of attacks and network security algorithms. (Understand - L2)

CO2: Apply symmetric and asymmetric cryptography technique to encrypt and decrypt text. (Apply - L3)

CO3: Apply network-based tools for network analysis. (Apply - L3)

CO4: Improve individual / teamwork skills, communication & report writing skills with ethical values.
List of Experiments

1. Implement any two Substitution Techniques.
2. Implement any two Transposition Techniques.
3. Implement any two Symmetric algorithms.
4. Implement any two Private -Key based algorithms.
5. Explore any four network diagnosis tools.
6. Study about Wireshark packet sniffer tool in promiscuous and non-promiscuous mode.
7. Download and install nmap. Use it with different options to scan open ports, do a ping scan, tcp port scan, udp port scan.
8. Iptables in linux.
9. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w).

TEXT BOOKS

REFERENCES

Pre-requisite: Object Oriented programming & Database Management Systems

Course Educational Objective: The Objective of the course is to provide practical, foundation level training that enables immediate and effective participation in Big Data and other Analytics projects using Hadoop and Data Visualization using Tableau.

Course Outcomes (CO): At the end of this course, the student will be able to:

- **CO1:** Demonstrate the installation of Bigdata analytic tools. (Understand – L2)
- **CO2:** Apply data modelling techniques to large data sets. (Apply – L3)
- **CO3:** Conduct exploratory data analysis using visualization. (Understand – L2)
- **CO 4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.
List of Experiments

1. Refreshing Linux Commands and Installation of Hadoop
2. Implementation of Run a basic Word Count Map Reduce program
3. Implementation of Matrix Multiplication with Hadoop Map Reduce.
4. Implementation of Weather mining by taking weather data set using Map Reduce.
5. Installation of Hive along with practice examples.
6. Installation of Sqoop along with Practice examples.
7. Downloading and installing Tableau Understanding about importing data, saving, opening, and sharing workbooks.
8. Data Preparation with Tableau
11. Interactive Dashboards

TEXTBOOKS:

REFERENCES:

7. http://nptel.ac.in/courses/110106064/
Pre-requisite: JAVA Programming & Web Technologies

Course Educational Objective: Students will learn the importance of client-server architecture in the web application development and able to develop dynamic data driven (server-side) web applications by using advanced technologies (AJAX, PHP)

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Understand the differences between server-side and client-side script, develop simple server-server-side web applications. (Understand - L2)

CO2: Identify the importance of AJAX, PHP programming constructs to design server-side web applications. (Remember - L1)

CO3: Develop Dynamic Data Driven (Server-side) Web Applications by using AJAX, PHP. (Apply - L3)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.
Module 1:

a) Develop a static web application and deploy it in any one of the web servers (WAMP/Apache Tomcat/IIS).
b) Develop a JavaScript program to validate the client-side user input data (Example: username, password, email, phone number).

Module 2:

a) Create a XMLHttpRequest with a callback function and retrieve data from a TXT file by using AJAX.
b) Create an XMLHttpRequest to retrieve data from an XML file and display the data in an HTML table by using AJAX.

Module 3:

a) Develop AJAX application to demonstrate how a web page can communicate with a web server while a user types characters in an input field.
b) Develop a simple web application to demonstrate how a web page can fetch information from a database with AJAX.

Module 4:

a) Develop a PHP program to illustrate the PHP Form handling by using GET and POST methods.
b) Develop a PHP program to demonstrate the importance of include() and require() functions.

Module 5:

a) Develop a PHP program to manage the state information about the user by using PHP Cookie.
b) Develop a PHP program to manage the state information about the user by using PHP Session.

Module 6:

a) Develop a PHP program to perform various file handling operations.
b) Develop a PHP program to demonstrate the process of uploading and downloading the file.

Module 7:

a) Develop a PHP program to describe the importance of mail function to send the email.
b) Develop a PHP and AJAX program which demonstrates how a web page can communicate with a web server while a user types characters in an input field.

Module 8:

a) Develop a PHP web application which demonstrates the process of storing HTML form data into MySQL database.
b) Develop a PHP web application which demonstrates the process of retrieving table data from the MySQL database and display it in the HTML table.
Module 9:

a) Develop a PHP web application which demonstrates the process of deleting a particular record in MySQL database table.
b) Develop a PHP web application to illustrate the process of updating MySQL database table data.

Module 10:

a) Develop a PHP web application which demonstrates how to upload image into database and display it.
b) Develop a PHP web application which demonstrates the process of encode and decode JSON by the help of json_encode() and json_decode() functions.

REFERENCE BOOKS:

Course Educational Objectives:
The Soft Skills Laboratory course equips students with required behavioral, interpersonal & intrapersonal skills, communication skills, leadership skills etc. It aims at training undergraduate students on soft skills leading to enhanced self-confidence, esteem, and acceptability in professional circles.

Course Outcomes (COs): At the end of the course, student will be able

CO1: To Develop self-awareness and personality traits for professional growth (Understand – L2)
CO2: Work effectively in multi-disciplinary and heterogeneous teams through knowledge of teamwork, inter-personal relationships, conflict management and leadership quality. (Apply – L3)
CO3: Communicate through verbal/oral communication with good listening skills and empathy (Apply – L3)
CO4: Apply skills required to qualify in recruitment tests, Interviews & other professional assignments (Apply – L3)

Personality Development Skills
Role of language in Personality – How language reflects, impacts Personality – Using gender-neutral language in MNCs – being culturally-sensitive-Personality Traits - Grooming & Dress code
Activities: Group Discussion/Role play/Presentations (authentic materials: News papers, pamphlets and news clippings)

Impactful Communication
Activities : Extempore / Story Telling/ Group Discussion (Case studies/Current affairs etc.)/Elocution on Interpretation of given quotes/ Critical Appreciation and Textual Analysis/ Writing reviews on short story/videos/book/Social Media profiling/ Pronunciation Practice

Professional Skills:
Activities: SWOT analysis of the self/Goal setting-Presentation/Writing Report/Listening exercises/Effective Resume-Writing and presentation/ Interview Skills: Mock interviews/Video samples.

REFERENCES :
4. Ace of Soft skills Gopalaswamy Ramesh, Pearson Education India, 2018
5. Soft Skills for the Workplace, Goodheart-Willcox Publisher · 2020.
6. How to Win Friends and Influence People, Dale Carnegie · 2020
Pre-requisite: Software Engineering and UML

Course Educational Objective: To know the importance of automation testing compared with manual testing by identifying the risks associated with bugs, using different testing approaches like path, Transaction flow, Domain, logic-based testing, and finally converting flow graphs into graph matrices with associated operations for the node reduction.

Course Outcomes: At the end of this course, the student will be able to

CO1: Analyze the purpose, model of testing and consequences due to bugs. (Understand-L2)
CO2: Demonstrate control flow graph with complete Path testing and Transaction flow testing for detecting anomalies. (Understand-L2)
CO3: Illustrate domain testing strategies for different domains. (Understand-L2)
CO4: Apply reduction procedure to control flow graphs and path expressions. (Apply-L3)
CO5: Demonstrate Transition testing in state graphs and graph matrices for node reduction. (Understand-L2)
UNIT – I

Introduction: Purpose of Testing, Dichotomies, model for testing, consequences of bugs, Taxonomy of bugs.

UNIT – II

FlowGraphs and Path testing: Basic concepts, Predicates, Path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

Transaction flow testing: Transaction flows, transaction flow testing techniques. Data flow testing: Basics of Data flow testing, strategies in dataflow testing, application of dataflow testing.

UNIT – III

Domain Testing: Domains and paths, Nice and ugly domains, domain testing, domains and interfaces testing, domains and testability.

UNIT – IV

Paths, path products and Regular expressions: Path products & Path expression, reduction procedure, applications, regular expressions and flow anomaly detection.

Logic Based Testing: Overview, decision tables, path expressions, kv charts, specifications.

UNIT – V

State, state graphs and Transition Testing: State Graphs, good and bad state graphs, state testing, testability tips.

Graph matrices and Application: Motivational overview, matrix of graph relations, power of a matrix, node reduction algorithm, building tools.

TEXT BOOKS:

REFERENCE BOOKS:

5. https://www.youtube.com/watch?v=gPE9emPFrwo
Pre-requisite: Computer networks, and Operating Systems.

Course Objectives:
• To explain the evolving computer model and cloud computing.
• To introduce the various levels of services that can be achieved by cloud.
• To describe the security aspects in cloud.
• To motivate students to do programming and experiment with the various cloud computing environments.

Course Outcomes: At the end of the course, student will be able to
• Illustrate the key dimensions of the challenge of Cloud Computing (Understand – L2)
• Classify the Levels of Virtualization and mechanism of tools. (Understand – L2)
• Analyze Cloud infrastructure including Google Cloud and Amazon Cloud. (Analyze – L4)
• Create Combinatorial Auctions for cloud resource and design scheduling algorithms for computing cloud. (Apply – L3)
• Assess control storage systems and cloud security, the risks involved its impact and develop cloud application (Analyze – L4)
UNIT I:

UNIT II:
Virtual Machines and Virtualization of Clusters and Data Centers: Implementation Levels of Virtualization, Virtualization Structures/ Tools and Mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data-Center Automation.

UNIT III:
Cloud Platform Architecture: Cloud Computing and Service Models, Public Cloud Platforms, Service Oriented Architecture, Programming on Amazon AWS, and Microsoft Azure

UNIT IV:

UNIT V:
Storage Systems: Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems, Google file system.

Text Books:

Reference Books:
Pre-requisite : Probability and Statistics, LATT, Machine Learning

Course Educational Objective: The objective of the course is to make students learn the frameworks of deep learning and their application

Course Outcomes: At the end of this course, the student will be able to

CO1: Apply the fundamentals of linear algebra to machine learning algorithms. (Apply- L3)

CO2: Understand the fundamental building blocks of deep learning (Understand- L2)

CO3: Apply the concepts of Convolutional Neural Networks to computer vision applications. (Apply- L3)

CO4: Apply the concepts of Recurrent Neural Networks to Natural Language Processing. (Apply- L3)

CO5: Apply the regularization techniques to improve the model performance. (Apply- L3)
UNIT-I: Mathematical foundations of Deep Learning
 Scalars, Vectors, Matrices and Tensors, Multiplying Matrices and Vectors, Identity and Inverse Matrices, Linear dependence and span, Norms, Special kinds of matrices and vectors, Trace operations, Eigen value decomposition

UNIT-II: Fundamentals of Deep Learning
 Anatomy of Neural Networks: Layers, Models, Loss functions and optimizers
 Training Deep Networks: Cost Functions, Optimizers
 Types of Deep Neural Networks

UNIT-III: Convolutional Neural Networks
 Motivation, Convolution Operation, Types of layers, Pooling, LENET5 Architecture

UNIT-IV: Recurrent Neural Networks
 Architecture of traditional RNN, Types and applications of RNN, Variants of RNNs, Word Embedding using Word2vec

UNIT-V: Regularization and Autoencoders
 Regularization for Deep Learning: L1 and L2, Dropout, Data Augmentation, Early Stopping, Case study on MNIST data
 Autoencoders: Architecture, Implementation, Denoising Autoencoders, Sparse Autoencoders, Use cases

TEXTBOOKS:
 4. Deep Learning from Scratch - Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc., ISBN: 9781492041412

Reference Books:

Web Link:
 Swayam NPTEL: https://onlinecourses.nptel.ac.in/noc22_cs22/preview B.Tech.(Artificial Intelligence and Data Science) Deep Learning:

Course Educational Objective: This course is centered on unique aspects of software project management at three levels: Organizational management, Infrastructure management and project management and measurement of the Project, and how these are applied to actual software projects.

Course Outcomes: At the end of this course, the student will be able to

CO1: Identify the process of Conventional Software Management the Evolution and Improvement of Software Economics. *(Remember-L1)*

CO2: Describe the basic s/w processes, Cost estimation and improvement in s/w Economics. *(Remember-L1)*

CO3: Summarize Life cycle phases and Artifactsof theprocess in Software project management. *(Understand-L2)*

CO4: Apply Workflows and checkpoints in Iterative Process planning.*(Apply-L3)*

CO5: Illustrate Project Organizations, process automation building blocks and metrics in assessing Software Quality. *(Understand-L2)*
UNIT-I

Conventional Software Management: The waterfall model, conventional software management performance.

Improving Software Economics: Reducing Software product size, improving software processes, the principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT-II

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts, A Management perspective and technical perspective.

UNIT-III

Checkpoints of the process: Major milestones, Minor Milestones, Periodic status assessments.

Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning.

UNIT-IV

Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics.

UNIT–V

Tailoring the Process: Process discriminates

Future Software Project Management: Modern Project Profiles, Next generation Software economics, modern process transitions.

Case Study: The commandCenterProcessingandDisplaysystem-Replacement(CCPDS)

TEXTBOOK:

REFERENCE BOOKS:

Pre-requisite : Nil

Course Educational Objective: The Objective of the course is to make learn the basic elements of C programming, control structures, derived data types, Modular programming, user defined structures, basics of files and its I/O operations.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** Familiar with the basic components of NLP. (Understand - L2)
- **CO2:** Applying N-gram models to predict a sequence of text. (Apply - L3)
- **CO3:** Build a basic language understanding system using preliminary concepts of NLTK library. (Apply - L3)
- **CO4:** Exposure on advanced techniques for understanding patterns in text (Apply- L3)
- **CO5:** Understand the semantics of linguistic components in a natural dialogue (Understand - L2)
UNIT – I
Introduction
Knowledge in Speech and Language Processing; Ambiguity; Models and Algorithms; Language, Thought and Understanding;

Regular Expressions
Regular Expression; Words; Corpora; Text Normalization; Minimum Edit Distance

UNIT – II
N-gram Language Models
N-Grams; Evaluating Language Models. Generalization and Zeros.

Smoothing: Laplace Smoothing; Add-k Smoothing; Backoff and Interpolation; Kneser-Ney Smoothing

UNIT – III
Natural language processing tools in Python (NLTK Package)

Part-I: Introduction to NLTK; Tokenizing; Filtering Stop words; Stemming; Tagging parts of speech; Lemmatizing; Chunking; Chinking

Part-II: Using Named Entity Recognition (NER); Getting Text to Analyze; Using a Concordance; Making a Dispersion Plot;

UNIT – IV
Information Extraction: Relation Extraction Algorithms; Using Patterns to extract relations; Relation extraction via supervised learning; Semi supervised relation extraction via bootstrapping; Distant Supervision for Relation Extraction; Evaluation of Relation Extraction; Extracting Times; Extracting Events and their Times; Template Filling

UNIT – V
Word Senses and WordNet
- Defining Word Senses; How many senses do words have?
- Relations between senses

WordNet: Sense relations in WordNet; Word Sense Disambiguation; Alternate WSD algorithms and Tasks

TEXTBOOKS:

REFERENCE BOOKS:
1. Natural Language Processing with Python: Analysing Text with the Natural Language Toolkit, Steven Bird, Ewan Klein, 2011
2. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, Benjamin Bengfort, Rebecca Bilbro, 2018
4.
Pre-requisite: Linear Algebra and Python.

Course Educational Objective: Introduce soft computing concepts to students and foster their abilities in designing and implementing soft computing-based solutions for real-world and engineering problems. The fundamental concepts of fuzzy systems, fuzzy logic, and its applications will be introduced to the students.

Course Outcomes: At the end of this course, the student will be able to

- **CO1:** Describe the preliminaries of Artificial intelligence and Neural networks. *(Understand - L2)*
- **CO2:** Map the issues to AI-based solutions. *(Apply - L3)*
- **CO3:** Apply Soft computing techniques to solve real world problems. *(Apply – L3)*
- **CO4:** Implement systems based on fuzzy logic. *(Apply – L3)*
- **CO5:** Use Genetic algorithms to develop evolutionary approaches for solving real-world problems. *(Apply – L3)*
UNIT -I

UNIT- II

Perceptron model, solution, single layer artificial neural network, multi-layer perception model; back propagation learning methods, effect of learning rule co-efficient; back propagation algorithm, factors affecting back propagation training, applications.

UNIT- III

Fuzzy Logic-I: Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion.

Fuzzy relations, rules, propositions, implications, and inferences. Defuzzification techniques. Some applications of Fuzzy logic.

Unit -IV

Unit -V

Genetic Algorithms: Concept of "Genetics" and "Evolution" and its application to probabilistic search techniques, Basic GA framework and different GA architectures.

GA operators: Encoding, Crossover, Selection, Mutation, etc. Solving single-objective optimization problems using GAs.

TEXTBOOKS

REFERENCE BOOKS

4. https://pypi.org/project/fuzzywuzzy/
Pre-requisite: Graph Theory, Computer Networks.

Course Educational Objective: The learning objective of the course «Social Network Analysis» is to provide students with essential knowledge of network analysis applicable to real world data, with examples from today’s most popular social networks.

Course Outcomes: At the end of this course, the student will be able to

CO1: Develop semantic web applications. (Apply – L3)

CO2: Represent social network data using the principles of Ontology. (Apply - L3)

CO3: Implement community mining algorithms to extract knowledge from Social Network Applications. (Apply – L3)

CO4: Predict human behavior in social web and related communities (Apply – L3)

CO5: Use visualization tools to represent the knowledge of social network data. (Apply – L3)
UNIT - I: INTRODUCTION:

UNIT II : MODELLING, AGGREGATING AND KNOWLEDGE REPRESENTATION:

UNIT - III: EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS:

UNIT - IV : PREDICTING HUMAN BEHAVIOUR AND PRIVACY ISSUES

UNIT - V : VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

TEXT BOOKS:

REFERENCE BOOKS:

Course Educational Objective: To introduce students the fundamentals of image formation; To introduce students the major ideas, methods, and techniques of computer vision and pattern recognition; To develop an appreciation for various issues in the design of computer vision and object recognition systems; and to provide the student with programming experience from implementing computer vision and object recognition applications.

Course Outcomes: At the end of this course, the student will be able to

CO1: Understand image processing techniques required for computer vision. (Understand – L2)
CO2: Describe image formation models. (Understand – L2)
CO3: Understand feature extraction and motion estimation techniques. (Understand- L2)
CO4: Apply segmentation algorithms for shape analysis. (Apply – L3)
CO5: Implement image classification Applications using object recognition methods. (Apply – L3)
UNIT-I

UNIT-II

Image Formation Models: Monocular imaging system, Radiosity: The ‘Physics’ of Image Formation, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection. Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of 3D model from images.

UNIT-III

Image Processing and Feature Extraction: Image preprocessing, Image representations (continuous and discrete), Edge detection.

Motion Estimation: Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion.

UNIT-IV

Shape Representation and Segmentation: Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medial representations, and Multiresolution analysis.

UNIT-V

Object recognition: Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal Component analysis, Shape priors for recognition.

TEXT BOOKS:

REFERENCE BOOKS:

Pre-requisite: Information Security

Course Educational Objective: To understand block chain technology and Crypto currency works

Course Outcomes: After the completion of the course, student will be able to

CO1: Demonstrate the block chain basics, Crypto currency (Understand-L2)

CO2: Compare and contrast the use of different private vs. public block chain and use cases (Understand-L2)

CO3: Design an innovative Bit Coin, Block chain and scripts, Block chain Science on varies coins (Apply-L3)

CO4: Classify Permission Block chain and use cases – Hyper ledger, Corda (Analyze-L4)

CO5: Use of Block-chain in E-Governance, Land Registration, Medical Information Systems and others (Apply-L3)
UNIT I:
Introduction: Introduction, basic ideas behind block chain, how it is changing the Landscape of digitalization, introduction to cryptographic concepts required, Block chain or distributed trust, Currency, Cryptocurrency, how a Cryptocurrency works, Financial services, Bitcoin prediction markets.

UNIT II:
Hashing, public key cryptosystems, private vs public block chain and use cases, Hash Puzzles, Extensibility of Block chain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Block chain Environment

UNIT III:
Introduction to Bitcoin: Bitcoin Block chain and scripts, Use cases of Bitcoin Block chain scripting language in micropayment, escrow etc Downside of Bit coin mining, Block chain Science: Grid coin, folding coin, Block chain Genomics, Bit coin MOOCs.

UNIT IV:
Ethereum continued, IOTA, The real need for mining, consensus, Byzantine Generals Problem, and Consensus as a distributed coordination problem, Coming to private or permissioned block chains, Introduction to Hyper ledger, Currency, Token, Campus coin, Coin drop as a strategy for Public adoption, Currency Multiplicity, Demurrage currency

UNIT V:
Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations, Uses of Block chain in E-Governance, Land Registration, Medical Information systems.

Text Books:
1. Block chain Blue print for Economy by Melanie Swan

Reference Books:
Course Description:
In this course, students will learn fundamental concepts and contributions of management. This course also teaches human resources practices which play a vital role in the organisation it gives knowledge about use of improve quality of work and project management.

Course Objectives:
1. To make students understand management, its principles, contribution to management, organization, and its basic issues and types
2. To make students understand the concept of plant location and its factors and plant layout and types, method of production and work study importance
3. To understand the purpose and function of statistical quality control. And understand the material management techniques
4. To make students understand the concept of HRM and its functions
5. To make students understand PERT & CPM methods in effective project management and need of project crashing and its consequence on cost of project

Course Outcomes:
- **CO1:** Understand management principles to practical situations based on the organization structures. (L2)
- **CO2:** Design Effective plant Layouts by using work study methods. (L2)
- **CO3:** Apply quality control techniques for improvement of quality and materials management. (L3)
- **CO4:** Develop best practices of HRM in corporate Business to raise employee productivity. (L2)
- **CO5:** Identify critical path and project completion time by using CPM and PERT techniques. (L3)

UNIT I

UNIT II
Operations Management: Plant location, Factors influencing location, Principles and types of plant layouts - Methods of production (job, batch and mass production), Work study - Basic procedure involved in method study and Work measurement

UNIT III
Statistical quality control – Concept of Quality & Quality Control-functions, Meaning of SQC - Variables and attributes - X chart, R Chart, C Chart, P Chart, (simple Problems) Acceptance sampling, Sampling plans, Deming’s contribution to quality.

Materials management – Meaning and objectives, inventory control-Need for inventory control, Purchase procedure, Store records, EOQ, ABC analysis, Stock levels
UNIT IV

UNIT V
Project management: Early techniques in project management - Network analysis: Programme evaluation and review technique (PERT), Critical path method (CPM), Identifying critical path, Probability of completing project within given time, Project cost analysis, project crashing (simple problems)

Text Books:
Dr. A.R.Aryasri, Management Science, TMH, 10th edition, 2012

References:
2. Stoner, Freeman, Gilbert, Management, 6th edition Pearson education, New Delhi, 2004
3. O.P. Khana, Industrial engineering and Management L.S.Srinath, PERT & CPM
Pre-requisite: Basic knowledge of certain basic programming languages such as Java, and Python

Course Educational Objective: This course is designed to provide the core education necessary to build your DevOps vocabulary and to understand its principles and practices. With the help of key DevOps concepts and terminology, real-life case studies, examples and interactive group discussions and exercises, you will acquire a fundamental understanding of DevOps.

Course Outcomes (CO): *At the end of this course, the student will be able to:*

- **CO1**: Understand the why, what, and how of DevOps adoption (*Understand – L2*)
- **CO2**: Attain literacy on DevOps (*Apply L3*)
- **CO3**: Align capabilities required in the team and create an automated CICD pipeline using a stack of tools (*Apply L3*)
- **CO4**: Improve individual / teamwork skills, communication & report writing skills with ethical values.

Module 1:

<table>
<thead>
<tr>
<th>Reference Course Name: Software Engineering and Agile Software Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get an understanding of the stages in software development lifecycle, the process models, values and principles of agility and the need for agile software development. This will enable you to work in projects following an agile approach to software development.</td>
</tr>
<tr>
<td>Solve the questions given in the reference course name to gauge your understanding of the topic</td>
</tr>
</tbody>
</table>

Module 2:

<table>
<thead>
<tr>
<th>Reference course name: Development & Testing with Agile: Extreme Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get a working course knowledge of using extreme automation through XP programming practices of test first development, refactoring and automating test case writing.</td>
</tr>
<tr>
<td>Solve the questions in the “Take test” module given in the reference course name to gauge your understanding of the topic</td>
</tr>
</tbody>
</table>

Module 3:

<table>
<thead>
<tr>
<th>Module name: DevOps adoption in projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is important to comprehend the need to automate the software development lifecycle stages through DevOps. Gain an understanding of the capabilities required to implement DevOps, continuous integration, and continuous delivery practices.</td>
</tr>
<tr>
<td>Solve the questions given in Quiz1, Quiz2, Quiz 3</td>
</tr>
</tbody>
</table>
Module 4:
Module name: Implementation of CICD with Java and open-source stack
Configure the web application and Version control using Git using Git commands and version control operations.

Module 5:
Module Name: Implementation of CICD with Java and open-source stack
Configure a static code analyzer which will perform static analysis of the web application code and identify the coding practices that are not appropriate. Configure the profiles and dashboard of the static code analysis tool.

Module 6:
Module Name: Implementation of CICD with Java and open-source stack
Write a build script to build the application using a build automation tool like Maven. Create a folder structure that will run the build script and invoke the various software development build stages. This script should invoke the static analysis tool and unit test cases and deploy the application to a web application server like Tomcat.

Module 7:
Module Name: Implementation of CICD with Java and open-source stack
Configure the Jenkins tool with the required paths, path variables, users, and pipeline views.

Module 8:
Module name: Implementation of CICD with Java and open-source stack
Configure the Jenkins pipeline to call the build script jobs and configure to run it whenever there is a change made to an application in the version control system. Make a change to the background color of the landing page of the web application and check if the configured pipeline runs.

Module 9:
Module name: Implementation of CICD with Java and open-source stack
Create a pipeline view of the Jenkins pipeline used in Exercise 8. Configure it with user defined messages.

Module 10:
Module name: Implementation of CICD with Java and open-source stack
In the configured Jenkins pipeline created in Exercise 8 and 9, implement quality gates for static analysis of code.

Module 11:
Module name: Implementation of CICD with Java and open-source stack
In the configured Jenkins pipeline created in Exercise 8 and 9, implement quality gates for static unit testing.
Module 12:

Module name: Course end assessment

In the configured Jenkins pipeline created in Exercise 8 and 9, implement quality gates for code coverage.

Reference Books:

1. Learning Continuous Integration with Jenkins: A beginner's guide to implementing Continuous Integration and Continuous Delivery using Jenkins - Nikhil Pathania, Packt publication [https://www.amazon.in/Learning-Continuous-Integration-Jenkins-Pathania/dp/1785284835]

Hardware and Software Configuration:

1. Git [GitHub or Gitlab]
2. Sonarqube
3. Jenkins
4. JUnit
5. Eclipse
6. Tomcat server
7. Maven
8. Cobertura or JaCoCo
9. Java SDK
10. All necessary drivers and jar files for connecting the software
11. Windows machine with 16GB RAM

Web Links: (Courses mapped to Infosys Springboard platform)