LAKIREDDY BALIREDDY COLLEGE OF ENGINEERING (AUTONOMOUS)
(Approved by AICTE, Affiliated to JNTUK, Accredited by NBA,
ISO 9001 : 2008 Certified & Accredited by NAAC with “A” Grade)

B.TECH. FOUR YEAR DEGREE COURSE
(Applicable for the batch admitted 2010-11)

MECHANICAL ENGINEERING

L.B.Reddy Nagar :: Mylavaram – 521 230 :: Krishna District
ANDHRA PRADESH STATE
### I - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T118</td>
<td>Applied Mathematics-I</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T131</td>
<td>C Programming</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T197</td>
<td>English-I</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T191</td>
<td>Engineering Chemistry</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T195</td>
<td>Engineering Physics - I</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>P806</td>
<td>C Programming Lab</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>P830</td>
<td>Engineering Physics &amp; Chemistry Lab.</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>P831</td>
<td>Engineering Workshop</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>20</td>
<td>03</td>
<td>09</td>
<td>200</td>
</tr>
</tbody>
</table>

### II - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T119</td>
<td>Applied Mathematics- II</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T198</td>
<td>English -II</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T264</td>
<td>Numerical Methods</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T193</td>
<td>Engineering Mechanics-I</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>T192</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>--</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P812</td>
<td>Computer Aided Engineering Graphics</td>
<td>-</td>
<td>--</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P832</td>
<td>English Language Communication Skills Lab</td>
<td>-</td>
<td>--</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P845</td>
<td>Lab view</td>
<td>-</td>
<td>--</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P855</td>
<td>Mini Project - I</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>03</td>
<td>14</td>
<td>200</td>
</tr>
</tbody>
</table>
### III - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T194</td>
<td>Engineering Mechanics-II</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T330</td>
<td>Thermodynamics</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T319</td>
<td>Strength of Materials</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T250</td>
<td>Metallurgy &amp; Material Science</td>
<td>4</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>T177</td>
<td>Electrical &amp; Electronics Engineering</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T241</td>
<td>Machine Drawing</td>
<td>6</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>P877</td>
<td>Strength of Materials &amp; Metallurgy Lab</td>
<td>-</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P821</td>
<td>Electrical &amp; Electronics Lab</td>
<td>-</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P870</td>
<td>Seminar - I</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>26</td>
<td>04</td>
<td>07</td>
<td>250</td>
</tr>
</tbody>
</table>

### IV - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T289</td>
<td>Production Technology</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T234</td>
<td>Kinematics of Machines</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T204</td>
<td>Fluid Mechanics</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T216</td>
<td>IC Engines &amp; Gas Turbines</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T199</td>
<td>Environmental Studies</td>
<td>4</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>T285</td>
<td>Probability &amp; Statistics</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>P879</td>
<td>Thermal Engineering Lab</td>
<td>-</td>
<td></td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P968</td>
<td>Production Technology Lab</td>
<td>-</td>
<td></td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P870</td>
<td>Mini Project - II</td>
<td>-</td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>24</td>
<td>04</td>
<td>08</td>
<td>225</td>
</tr>
</tbody>
</table>
## V - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T328</td>
<td>Thermal Engineering</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T239</td>
<td>Machine Design –I</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T170</td>
<td>Dynamics of Machines</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T207</td>
<td>Fluid Power Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T242</td>
<td>Machine Tools</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T221</td>
<td>Industrial Management</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>P834</td>
<td>Fluid Mechanics &amp; Hydraulic Machines Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P849</td>
<td>Machine Tools &amp; Modeling Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P871</td>
<td>Seminar - II</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>23</td>
<td>04</td>
<td>07</td>
<td>250</td>
</tr>
</tbody>
</table>
### VI - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T211</td>
<td>Heat Transfer</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T240</td>
<td>Machine Design –II</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T333</td>
<td>Unconventional Machining Processes</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T290</td>
<td>Professional Ethics</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T268</td>
<td>Operations Research</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T276</td>
<td>Power Plant Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td><strong>ELECTIVE - I</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T248</td>
<td>Mechanical Vibrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T228</td>
<td>Introduction to Aerospace Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T332</td>
<td>Tribology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T331</td>
<td>Total Quality Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T270</td>
<td>Optimization Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P836</td>
<td>Heat Transfer Lab</td>
<td></td>
<td></td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P844</td>
<td>Mechanics of Machines Lab</td>
<td></td>
<td></td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P810</td>
<td>Comprehensive Viva-Voce - I</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>27</td>
<td>03</td>
<td>06</td>
<td>32.5</td>
</tr>
</tbody>
</table>
## VII - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T203</td>
<td>Finite Element Method</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T132</td>
<td>CAD / CAM</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T251</td>
<td>Metrology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T297</td>
<td>Refrigeration &amp; Air Conditioning</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T247</td>
<td>Mechanical Measurements</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T324</td>
<td>Theory of Elasticity</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>T126</td>
<td>Automobile Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T249</td>
<td>Mechatronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T124</td>
<td>Automation in Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T148</td>
<td>Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P807</td>
<td>CAD / CAM Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P850</td>
<td>Metrology &amp; Instrumentation Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P843</td>
<td>Internship</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>P878</td>
<td>Term Paper</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>24</td>
<td>02</td>
<td>07</td>
<td>275</td>
</tr>
</tbody>
</table>
### VIII - SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the Course</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Total</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods per Week</td>
<td>Maximum Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Tutorial</td>
<td>Lab.</td>
<td>Internal</td>
</tr>
<tr>
<td>T300</td>
<td>Robotics</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T107</td>
<td>ELECTIVE – III Advanced Strength of Materials</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T263</td>
<td>Non Conventional Energy Sources</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T139</td>
<td>Cognitive Engineering</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T208</td>
<td>Gas Dynamics</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T252</td>
<td>Micro Electro Mechanical Systems</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T230</td>
<td>ELECTIVE – IV Introduction to Computational Fluid Dynamics</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T200</td>
<td>Experimental Stress Analysis</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T288</td>
<td>Production Planning and Control</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T144</td>
<td>Computer Graphics</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>T261</td>
<td>Nano Technology</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>P867</td>
<td>Project Work</td>
<td></td>
<td>8</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>P811</td>
<td>Comprehensive Viva-Voce - II</td>
<td></td>
<td>100</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12</td>
<td>8</td>
<td>235</td>
<td>365</td>
</tr>
</tbody>
</table>

**TOTAL CREDITS : 220**
I-SEMESTER
UNIT - I


UNIT - II

Linear differential equations of second and higher order with constant coefficients and with variable coefficients, method of variation of parameters and their simple applications to Simple Harmonic Motion and Electrical Circuits.

UNIT - III

Generalized Mean Value theorems (without proof), Functions of several variables, Maxima and Minima of functions of two variables with constraints and without constraints. Lagrangian Multiplier method.

UNIT - IV

Curve tracing – Cartesian curves. Applications of Integration to Lengths, Volumes and Surface areas of revolution in Cartesian Coordinates. Multiple integrals - double and triple integrals (Cartesian Coordinates only) – Changing of order of Integration. (Cartesian Coordinates only)

UNIT - V


TEXT BOOKS

1. Higher Engineering Mathematics by Dr. B.S. Grewal
2. Higher Engineering Mathematics by Dr. B. V. Ramana – TMGH

REFERENCES

T131 – C - PROGRAMMING

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : 1 Period/Week  External Marks : 75
Credits : 4  External Examination : 3 Hrs

UNIT - I

Algorithm / pseudo code, flowchart, program development steps, structure of C program, A Simple C program, identifiers, basic data types and sizes, Constants, variables, arithmetic, relational and logical operators, increment and decrement operators, conditional operator, bit-wise operators, assignment operators, expressions, type conversions, conditional expressions, precedence and order of evaluation.
Input-output statements, statements and blocks, if and switch statements, loops- while, do-while and for statements, break, continue, goto and labels, programming examples.

UNIT - II

Designing structured programs, Functions, basics, parameter passing, storage classes- extern, auto, register, static, scope rules, block structure, user defined functions, standard library functions, recursive functions, header files, C preprocessor, example c programs.

UNIT - III

Arrays- concepts, declaration, definition, accessing elements, storing elements, arrays and functions, two dimensional and multi-dimensional arrays, applications of arrays. pointers-concepts, initialization of pointer variables, pointers and function arguments, address arithmetic. Character pointers and functions, pointers to pointers, pointers and multidimensional arrays, dynamic memory managements functions, command line arguments, c program examples.

UNIT - IV

Derived types- structures- declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bitfields, C program examples.

UNIT - V

Input and output – concept of a file, text files and binary files, streams, standard i/o, Formatted i/o, file i/o operations, error handling, C program examples.

TEXT BOOKS

2. The C Programming Language, B.W. Kernighan, Dennis M.Ritchie, PHI/Pearson Education

REFERENCES

C/C++ for Engineers and Scientists, Harry H.Cheng ,McGrawHill,
English Language continues to be regarded as an important tool for global communication and employability. Hence, it is imperative that students need to acquire communicative competence besides their core skills. The syllabus has been designed to develop linguistic and communicative competence of Engineering students with special emphasis on professional and functional aspects of English language i.e., on Listening, Speaking, Reading and Writing (LSRW Skills).

OBJECTIVES

- To improve the language proficiency of the students in English with emphasis on LSRW skills.
- To develop the study skills and Communication skills of the students in both formal and informal situations.
- To enable the students to face the academic and professional challenges of the present day scenario.
- To help students acquire the ability to speak effectively in English in the real life situations.
- To inculcate reading as a habit and to develop reading skills among students.
- To train students to improve their active and passive vocabulary.
- To familiarize the students with different rhetorical functions of Technical English.
- To enable the students write letters and reports effectively in formal and professional situations.

UNIT - I

Chapter – 1: “Read & Proceed” from Step by Step (Pearson)
Extensive Reading - Masterminds– The Trailblazers – Jagadis Chandra Bose (Orient Longman)

UNIT - II

Chapter – 2: “Travel” from Step by Step (Pearson)
Extensive Reading - Masterminds– The World of Figures and Physics – Chandra Sekhara Venkata Raman (Orient Longman)

UNIT - III

Chapter – 3: “Gender” from Step by Step (Pearson)
Extensive Reading - Masterminds–The Institution Builders– Shanti Swarup Bhatnagar (Orient Longman)
UNIT - IV

Vocabulary – Synonyms, Antonyms, Words often Confused, Gerunds & Infinitives, Prefixes & Suffixes, Word plurals, Analogy
Grammar – Parts of Speech, Sentence Completion, Question Tags, Tense and Aspect

UNIT - V

Analytical Writing – Sentence Construction – Types of sentences, Exercises with scrambled words & Jumbled sentences, Paragraph writing, Dialogue writing (Formal & Informal), Letter Writing (Formal & Informal), Resume writing, Expansion (of a given topic), Abstract Writing (Summarizing / Synopsis), Decision-making, Drafting E-Mails & Memo writing, Essay writing.

TEXT BOOKS

- Step by Step (Pearson)
- Masterminds by Enakshi Chatterjee (Orient Longman)

REFERENCES

UNIT - I


UNIT - II

FUELS AND COMBUSTION: Definition and classification of Fuels- conventional fuels (solid, liquid, gaseous), Solid fuels- coal - analysis, Proximate and ultimate analyses of coal – significances, Liquid Fuels – primary- petroleum- refining of petroleum- cracking, knocking, synthetic petrol – Bergius and Fischer Tropsech’s process; Gaseous fuels- octane number – cetane number,- water gas, producer gas CNG, and biogas - gross and net calorific values – (definition only) – flue gas analysis – Orsat’s apparatus.

UNIT - III


UNIT - IV

UNIT - V


2. LUBRICANTS: Introduction to Lubricants, Principles and function of lubricants - Types of Lubrication and Mechanism - Thick Film or Hydrodynamic Lubrication, Thin Film or Boundary Lubrication, Extreme Pressure Lubrication. Classification and properties of lubricants-Viscosity, flash and fire point, cloud and pour point, aniline point, Neutralization Number and mechanical strength, Selection of lubricants.

TEXT BOOKS


REFERENCES

T195 - ENGINEERING PHYSICS-I

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : 1 Period/Week  External Marks : 75
Credits : 4  External Examination : 3 Hrs

UNIT - I

INTERFERENCE: Superposition of waves-double slit interference- Young’s double slit experiment- Coherence – Interference from thin films- Newton’s rings.
DIFFRACTION: Diffraction and wave theory of light (Fresnel and Fraunhofer diffractions) - single slit Diffraction, Intensity in single- slit diffraction, Calculating the intensity- Double slit interference and diffraction combined.
GRATINGS AND SPECTRA - Multiple slits-width of the maxima, Diffraction gratings, Grating spectrum – Dispersion and Resolving power.
POLARIZATION: Polarization by reflection Brewster’s law - Double refraction -Polarization by scattering - Retarders - Optical Activity.

UNIT - II

CRYSTAL STRUCTURES: Introduction –periodic arrays of atoms-Lattice translation vectors, Basis and crystal structure, Primitive cell, fundamental types of lattices-three dimension lattice types, Crystal systems- Structure and packing fractions of Simple cubic- Body centered cubic- Face centered cubic crystals.
X-RAY DIFFRACTION: Directions and planes in crystals – Miller indices – separation between successive (h k l) planes- Diffraction of X-rays by crystal planes – Braggs law-Laue method- powder method.

UNIT - III


UNIT - IV

SUPER CONDUCTIVITY :Phenomenon, Meissner effect, critical parameters, Type I, Type II Super conductors, BCS theory of super conductivity, Applications of Super conductors.

UNIT - V


TEXT BOOKS
2. Engineering Physics by V RAJENDRAN TataMcGrahill

REFERENCES
1. Introduction to solid state physics, C. Kittel, John wiley, 1999.
2. Engineering physics by H K MALIK AK SINGH TATA McGRAHILL

HEAD

Dept. of Mechanical Engineering
LAKIREDDY BALIREDDY COLLEGE OF ENGG.
MYLAVARAM - 521230, KRISHNAGIRI, A.P.
1. Write a programme in 'C' language to cover the following problems.
   a) Roots of Quadratic Equation.
   b) Example program which shows the usage of various Operators available in C Language.
   c) Example program which shows the usage of various preliminary Data types available in C Language.
   d) Example programs to illustrate the order of evaluation.

II) WRITE EXAMPLE PROGRAMS

   a) To check whether the given year is leap year (or) not
   b) Converting given two digit number into words using switch statement
   c) To illustrate the usage of 'goto' statement.
   d) Finding smallest & biggest number from the given set of 4 numbers using 'if' statement.
   e) Calculate the student grade in the examination – assume suitable constraints.
   f) Prepare electricity bill for the consumed units – assume suitable constraints.

III) EXAMPLE PROGRAMS

   a) To Display first N natural numbers
   b) To find whether the given number is Armstrong (or) not
   c) To find reverse of the given number and to check whether it is palindrome (or) not.
   d) To find whether given number is strong number (or) not.
   e) To check whether given number is Prime (or) not
   f) To display prime numbers with the given range(Nesting of Loops).
   g) To display the following structure(Nesting of Loops)

   i) 1 1 2 3 4 5

   ii) 2 3 2 1

   IV) Write example programs in C Language:
   a) To find factorial of a given number using functions.
   b) Swap two numbers using functions.
   c) To find GCD of two numbers using recursion
   d) Write a recursive function to solve Towers of Honai problem.
   e) Write an example program to illustrate use of external & static storage classes.
V) Write example programs in C Language to perform following operations:
   a) Finding the sum and average of given numbers using Arrays.
   b) To display elements of array in reverse order
   c) To search whether the given element is in the array (or) not using linear search &
      binary search.
   d) Write a C program to perform the following operations
      i) Addition, subtraction and multiplication of Matrices
      ii) Transpose of given matrix (The above operations are to be exercised using
           functions also by passing arguments)
   e) Write a C program to find whether the given string is palindrome (or) not.
   f) To accept line of text and find the number of characters, number of vowels and
      number of blank spaces in it.
   g) Write an example program to illustrate the use of any 5 string handling functions.

VI) a) Example program to bring clarity on pointer declaration & initialization and Pointer
    arithmetic.
   b) Write an example program to describe the usage of call by reference.
   c) Write a program to find sum of the elements of the array using functions.
   d) Write an example program to illustrate the usage of command line arguments.
   e) Program to illustrate the usage of dynamic memory management functions.

VII) a) Write an example program using structures to process the student record. Assume
     suitable fields for student structures (Different kinds of initialization of structure
     variables are to be exercised)
   b) Write a program to read records of 10 employees and find their average salary (exercise
      array of structures & Nested structures concepts through this program).
   c) Write a program to handle a structure variable using pointers and
      implement self referential structure(i.e. A structure variable
      having a pointer to itself)

VIII) Write an example program on file to perform following operations:
   a) Accessing content from files and writing content in to it. (Exercise different file
      operation modes)
   b) Copy the contents of one file into another (Exercise different file
      operation modes)
P830 - ENGINEERING PHYSICS AND CHEMISTRY LAB

<table>
<thead>
<tr>
<th>Credits</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals</td>
<td>3 Period/Week</td>
</tr>
<tr>
<td>Internal Marks</td>
<td>25</td>
</tr>
<tr>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

ENGINEERING PHYSICS LABORATORY
(Any 5 experiments)

LIST OF EXPERIMENTS

1. LCR Resonance circuit
2. Newton’s Rings – Determination of Radius of curvature of plano convex lens
3. Verification of laws by using sonometer
4. Melody’s experiment
5. Wedge shaped film
6. Volume Resonator
7. Refractive index of light
8. Diffraction Grating – Normal incidence method
9. Rigidity modulus of a given wire
10. Frequency of AC supply – Sonometer

ENGINEERING CHEMISTRY LABORATORY
(Any 5 experiments)

1. Estimation of total Hardness of water by EDTA method
2. Determination of Temporary and permanent hardness of water.
3. Iodometric Titration of $K_2Cr_2O_7$ v/s $Na_2S_2O_3$ to determine the percentage purity of $K_2Cr_2O_7$ sample.
4. Preparation of Stanard Potassium Dichromate and Estimation of Copper by Iodometry.
5. Determine the amount of Oxalic acid and Sulphuric acid in 1 liter solution by using given standard Sodium Hydroxide and Potassium Permanganate solution
7. Determination of Dissolved Oxygen (DO) content by Winkler’s method.

Preparation of Urea formaldehyde resin.
P831 - ENGINEERING WORKSHOP

<table>
<thead>
<tr>
<th></th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals</td>
<td>: 25</td>
<td>: 75</td>
<td>: 3 Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>: 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRADES FOR EXERCISES: (Common to EEE, ECE, CSE, EIE & IT)

At least three exercise from each trade:

1. Carpentry
2. Fitting
3. House – Wiring
4. Plumbing

TRADES FOR EXERCISES: (MECHANICAL ENGINEERING)

At least two exercise from each trade:

1. Carpentry
2. Fitting
3. Tin - Smithy
4. Black - Smithy
5. House - Wiring
6. Plumbing

TEXT BOOK

UNIT - I

Laplace transforms of standard functions – Shifting Theorems, Transforms of derivatives and integrals – Unit step function – Dirac’s delta function. Inverse Laplace transforms – Convolution theorem - Applications of Laplace transforms to ordinary differential equations

UNIT - II


UNIT - III


UNIT - IV

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – solutions of first order linear (Lagrange) equation. Method of Separation of Variables - Applications to wave equation one dimensional, heat equation and Laplace Equation.

UNIT - V

Z-transform – properties – Damping rule – Shifting rule – Initial and final value theorems - Inverse z-transform - Convolution theorem – Solution of difference equation by z-transforms.

TEXT BOOKS

1. Higher Engineering Mathematics by Dr. B.S. Grewal
2. Higher Engineering Mathematics by Dr. B. V. Ramana – TMGH

REFERENCES

English Language continues to be regarded as an important tool for global communication and employability. Hence, it is imperative that students need to acquire communicative competence besides their core skills. The syllabus has been designed to develop linguistic and communicative competence of Engineering students with special emphasis on professional and functional aspects of English language i.e., on Listening, Speaking, Reading and Writing (LSRW Skills).

OBJECTIVES

- To improve the language proficiency of the students in English with emphasis on LSRW skills.
- To develop the study skills and Communication skills of the students in both formal and informal situations.
- To enable the students to face the academic and professional challenges of the present day scenario.
- To help students acquire the ability to speak effectively in English in the real life situations.
- To inculcate reading as a habit and to develop reading skills among students.
- To train students to improve their active and passive vocabulary.
- To familiarize the students with different rhetorical functions of Technical English.
- To enable the students write letters and reports effectively in formal and professional situations.

UNIT - I

Chapter 4: “Disaster Management” from Step by Step (Pearson)
Extensive reading – Masterminds - The institution builders - MeghanadSaha (Orient Longman)

UNIT - II

Chapter 5: “Health” from Step by Step (Pearson)
Extensive reading – Masterminds- The New Age – HomiJehangirBhabha (Orient Longman)

UNIT - III

Chapter 6: “Sports” from Step by Step (Pearson)
Extensive reading – Masterminds - The New Age – Vikram Sarabhai (Orient Longman)

UNIT - IV

Grammar – Articles, Prepositions, Voice, Speech, Concord, Correction of Sentences
Vocabulary – Phrasal verbs, Gerunds, Infinitives, One word Substitutes.
UNIT - V

Analytical writing – Comprehension, Technical dialogue writing, Presentation skills - Note making, Information transfer / Data interpretation (Tables, Pie-charts, Bar graphs, Tree diagrams, Pictograms, etc.), Report writing

TEXTBOOK


REFERENCES

4. GRE and TOEFL, Kaplan and Baron's, Latest editions.
UNIT - I


UNIT - II


UNIT - III


UNIT - IV


UNIT - V


TEXT BOOKS

1. Higher Engineering Mathematics by Dr. B.S. Grewal
2. Higher Engineering Mathematics by Dr. B. V. Ramana – TMGH

REFERENCES

1. Introductory Methods of Numerical Analysis by S. S. Sastry – PHI
2. Numerical Methods for Engineers with programming and software application by Steven C. Chopra and Ra. P. Canale – TMGH
T193 – ENGINEERING MECHANICS – I

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4 Periods/week</th>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>1 Period/Week</td>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT - I

Resultant of Systems of Forces: Resultant of Coplanar Concurrent Forces – Resultant of Coplanar Non-Concurrent Forces.

UNIT - II


UNIT - III


UNIT - IV

Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures
Centre of Gravity: Centre of gravity of simple bodies (from basic principles), centre of gravity of composite Bodies.

UNIT - V

AREA MOMENT OF INERTIA
Moment of Inertia of a plane figure with respect to an axis in its plane–Moment of inertia with respect to an axis perpendicular to the plane of the figure – Parallel axis theorem, Moment of Inertia of composite figures.

TEXT BOOKS


REFERENCES

2 Engineering Mechanics / AK Tayal, ,Umesh Publications
3 Vector Mechanics for Engineers Statics and Dynamics by Beer and Johnston, TATA Mc Graw Hill.
UNIT - I

INTRODUCTION TO DRAWING -- ENGINEERING CURVES
Introduction to Engineering Drawing- Instruments and their uses- Types of lines, Lettering and Dimensioning – BIS conventions –Geometrical Constructions - Construction of polygons.

UNIT - II

ORTHOGRAPHIC PROJECTIONS

PROJECTIONS OF STRAIGHT LINES:
Projections of Straight Lines parallel to both planes, parallel to one and inclined to the other reference plane.

UNIT - III

Projections of straight lines inclined to both the reference planes –True length of a line and its inclination- Traces of a line.

UNIT - IV

PROJECTIONS OF PLANES
Introduction – plane perpendicular to both the reference planes – plane perpendicular to one reference plane and parallel to other - plane perpendicular to one reference plane and inclined to other – oblique planes

UNIT - V

PROJECTIONS OF SOLIDS
Introduction- Types of solids –Simple positions- Axis inclined to one of the reference plane and parallel to the other.

TEXT BOOKS
1. Engineering Drawing, N.D. Bhat / Charitor publishers

REFERENCES
Engineering Drawing and Graphics – Venugopal –New Age publishers
Engineering Graphics for Degree by K.C. John, PHI Publishers
Engineering Drawing by M.B. Shah and B.C. Rana, Pearson Publishers
UNIT - I

COMPUTER AIDED DRAFTING
Introduction - Computer Aided drafting system – Advantages, Applications of AUTOCAD.
Drafting software – AUTOCAD – Advantages, Initial setup commands, utility commands,
Drawing Aids, Entity Draw commands, Display commands, Edit Commands.
Introduction Lettering – Basic types of Dimensioning, Linear, Angular and Radial
Dimensioning.

UNIT - II

ORTHOGRAPHIC PROJECTIONS:
Introduction to orthographic Projections
Projections of Solids: Types of Solids, Prisms, pyramids, solids of revolution-simple
positions Sections of Solids : Introduction – section & section planes – Types of section
planes – True shape of a section.

UNIT - III

ISOMETRIC DRAWING :
Introduction - Theory of Isometric projection, Isometric view and Isometric drawing. Non –
Isometric Lines – Methods to generate an Isometric Drawing.

UNIT - IV

DEVELOPMENT OF SURFACES OF SOLIDS:
Introduction – Theory of development - Methods of developments – Developments of lateral
surfaces along with base.

UNIT - V

INTERSECTION OF SURFACES:
Intersection of plane Vs plane - Intersection of surfaces of two solids, Interpenetration of two
solids.

TEXT BOOKS
1. Engineering Graphics with AutoCAD by Bethune PHI Learning Private Limited, New
   Delhi, 2009.
2. Engineering Graphics with AutoCAD by M. Kulkarni, A.P Rastogi, and A.K. Sarkar;
3. Engineering Drawing, N.D. Bhat / Charltor
P832 - ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

<table>
<thead>
<tr>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals: 3 Period/Week</td>
<td>External Marks</td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>External Examination</td>
</tr>
</tbody>
</table>

The English Language Communications Skills Lab focuses on practice of sounds of language and familiarizes the students with the use of English in everyday situations and contexts. It aims at improving the communicative competence of students and to enrich their power of expression, articulation and persuasiveness. The thrust is on developing competences, both linguistic as well as communicative, in order to improve employability potential.

OBJECTIVES

1. To expose the students to a variety of self-instructional, learner-friendly modes of English language learning and stimulate intellectual and attitudinal exercise.
2. To provide students with the required facility and practice to face computer-based competitive exams such as GRE, TOEFL, IELTS etc.
3. To enable them to learn better pronunciation through emphasis on word accent, intonation, and rhythm.
4. To train them to use language effectively to face interviews, group discussions, public speaking.
5. To develop necessary attitudes and behaviors so as to improve their employability quotient.

SYLLABUS

The following course content is prescribed for the English Language Communication Skills Laboratory sessions:

1. Dimensions of Phonetics: Phonetic Transcription, Sounds, Stress, Intonation, Rhythm, Varieties of Spoken English: Indian, British and American
2. Oral Presentations – Prepared and Extempore – JAM
3. Role Play
4. Describing Objects / Situations / People
5. Information Transfer
6. Debates
7. Group Discussions

SUGGESTED SOFTWARE/BOOKS

* Digital Mentor, Globarena, Hyderabad, 2005
* Sky Pronunciation Suite: Young India Films, Chennai, 2009
* Mastering English in Vocabulary, Grammar, Spelling, Composition, Dorling Kindersley, USA, 2001
* Dorling Kindersley Series of Grammar, Punctuation, Composition, Dorling Kindersley, USA, 2001
* Learning to Speak English - 4 CDs. The Learning Company, USA, 2002
* Krishna Mohan, Effective English Communication, Tata McGraw Hills, New Delhi, 2007
P845 – LAB. VIEW

<table>
<thead>
<tr>
<th></th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>3 Period/Week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAB - I

Exercise 1. Open and Run a VI
Objective: Open, run, and explore the components of a VI.
Open the Temperature System Demo VI from the tutorial_1 directory.

Exercise 2. Use of LabVIEW help utilities
Objective: Become familiar with the context help and the LabVIEW help
Open the Temperature System Demo VI from the tutorial_1 directory if it is not already open
from Exercise 1.

Exercise 3. Create a VI
Objective: Build a simple VI that converts a Celsius temperature reading to Fahrenheit.

Exercise 4. Document a VI
Objective: Document a VI that you have created.

Exercise 5. Navigation and editing
Objective: To learn LabVIEW editing techniques.

Exercise 6. Debug a VI
Objective: To use the probe tool and the probe window and to examine data flow in the block
diagram using execution highlighting.

LAB - II

Converting a VI into a sub VI (Exercise)
Use of sub-VI (demo)
Debug a VI (Demo)
Debug Main (Exercise)
Mechanical action of Boolean (Demo)
While Loop & Charts (exercise)
While Counter (Exercise)
Moving averages (Exercise)
Shift Register (Exercise)
Die Roller (Exercise)

LAB - III

Case structure (Demo)
Calculator
SEQUENCE STRUCTURE
Building arrays with loops (Demo)
Building arrays with loops (Exercise)
Build array function (demo)
Building Tables (demo)
Replace array elements
Sort array values
Temperature Analysis
LAB - IV

Case structure (Demo)
Calculator
SEQUENCE STRUCTURE
CLUSTER ERROR. FIND AND RECTIFY?
BUTTON SELECTION (Demo)
BUTTON SELECTION with Shift Register (Demo)
LOCALS FOR PARALLEL LOOP CONTROL
LOCAL FOR RESET
LOCALS FOR CONTROL
Global Variables (Demo)
Function Generator (demo)
Noisy Signal (Demo)
Noisy Signal Analyzer (Demo)
Noisy Signal Analyzer with Filter (Demo)

LAB - V

Modeling and simulation of Physical Systems
III-SEMESTER
UNIT - I

MASS MOMENT OF INERTIA: Moment of inertia of a rigid body – Moment of inertia of lamina- slender bar, rectangular plate, Circular plate, circular ring, Moment of inertia of 3D bodies- cone, solid cylinder, solid sphere. Moment of Inertia of composite bodies.

UNIT - II

KINEMATICS: Introduction, displacement, velocity and acceleration. Motion with Uniform and Variable acceleration. Angular displacement, Angular velocity and Angular acceleration. Equations of Motion along a circular path.

UNIT - III

PROJECTILES: Introduction, Basic Definitions, Projectile equations, Horizontal projection, Inclined Projection, Projectile on Horizontal plane and Inclined plane.

UNIT - IV


UNIT - V


TEXT BOOK

Engineering Mechanics / Fedinand . L. Singer / Harper – Collins

REFERENCES

4. Vector Mechanics for Engineers Static’s and Dynamics by Beer and Johnston, TATA Mc Graw Hill.
T330 - THERMODYNAMICS

Lecture : 4 Periods/week Internal Marks : 25
Tutorial : 1 Period/Week External Marks : 75
Credits : 4 External Examination : 3 Hrs

UNIT - I


UNIT - II


UNIT - III


UNIT - IV

Pure Substance: Introduction, Phases of Pure Substance, Phase Change Processes, Property Diagrams (T-v, P-v, P-T), P-v-T Surface, Property Tables.

UNIT - V

Refrigeration Cycles: Reversa Carnot Cycle, Bell-Coleman Cycle, Simple Vapor Compression Cycle.

TEXT BOOK

REFERENCES

3. Engineering Thermodynamics – P.K.Nag, TMH
T319 – STRENGTH OF MATERIALS

UNIT - I

SIMPLE STRESSES AND STRAINS: Stresses and strain due to axial force. Hooke’s law, factor of safety, stepped bars – uniformly varying sections - stresses in composite bars due to axial force and temperature - strain energy due to axial force, stresses due to sudden loads and impact. Lateral strain: Poisson’s ratio - change in volume – shear stress - shear strain - relationship between elastic constants

UNIT - II

SHEAR FORCE AND BENDING MOMENT: Relationship between loading - shear force and bending moment - shear force and bending moment diagrams for cantilever, simply supported and overhanging beams subjected to concentrated loads and uniformly distributed loads only - maximum bending moment and point of contra flexure.

UNIT - III

STRESSES IN BEAMS: Theory of simple bending: assumptions - derivation of the equation M/I = E/R = f/y – section modulus - calculation of normal stresses due to flexure application.

TORSION: Theory of torsion and assumptions - derivation of the equation T/J = C9/L = q/r, polar modulus, power transmitted by a shaft, stresses in solid and hollow circular shafts

UNIT - IV

ANALYSIS OF STRESSES IN TWO DIMENSIONS: State of stress at a point, normal and tangential stresses on inclined planes - principal stresses and their planes - plane of maximum shear - Mohr’s circle of stresses.

SHEAR STRESSES: Derivation of formula – Shear stress distribution across various beam cross sections like Rectangular, Circular, Triangular, I and T Sections.

UNIT - V


THIN, THICK AND SPHERICAL SHELLS: Hoop and longitudinal stress- thin and thick cylinders- spherical shells-changes in dimensions and volume.

TEXT BOOK

S.Ramamrutham, Strength of Materials, Dhanpat Rai & Sons

REFERENCES

4. R.Subramanian, Strength of Materials, Oxford University Press
T250 – METALLURGY AND MATERIAL SCIENCE

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : External Marks : 75
Credits : 4  External Examination : 3 Hrs

UNIT - I


UNIT - II


UNIT - III

Steels: Classification of steels, structure and properties of plain carbon steels-low carbon steel, medium carbon steel and high carbon steel.
Cast Irons: Structure and properties of white cast iron, malleable cast iron, grey cast iron, spheroidal graphite cast iron.

UNIT - IV

Hot working, cold working, strain hardening, recovery, recrystallisation and grain growth. Comparison of properties of cold and hot worked parts.

UNIT - V

Ceramic Materials: Properties and applications of ceramic materials, glasses, ceramics, and abrasive materials

TEXT BOOK

Introduction to Physical Metallurgy / Sidney H. Avener-Tata McGraw-Hill

REFERENCES

UNIT - I

Electrical Circuits: Basic definitions, Types of elements, Ohm's Law, Resistive networks, Kirchhoff's Laws, Inductive networks, capacitive networks, Series, Parallel circuits and Star-delta and delta-star transformations

UNIT - II


UNIT - III

Transformers: Principle of operation of single phase transformers, Ideal transformer, Practical transformer, phasor diagram.– emf equation – losses – efficiency and regulation..

UNIT - IV

Diode and Transistors: P-n junction diode, symbol, V-I Characteristics, Diode Applications, Rectifiers – Half wave, Full wave and Bridge rectifiers (simple Problems), PNP and NPN Junction transistor, Transistor as an amplifier, SCR characteristics and applications.

UNIT - V

Electrical and Electronics Measuring Instruments.

Electrical Instruments: Basic Principle of indicating instruments – permanent magnet moving coil and moving iron instruments.


TEXT BOOK

Essentials of Electrical and Computer Engineering by David V. Kems, JR. J. David Irwin/Pearson.

REFERENCES

3. Electrical Technology by JB GUPTA
T241 - MACHINE DRAWING

Lecture : 6 Periods/week
Credits : 4

Internal Marks : 25
External Marks : 75
External Examination : 3 Hrs

MACHINE DRAWING CONVENTIONS

Need for drawing conventions – introduction to IS conventions
a) Conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs, ribs.
b) Types of sections – selection of section planes and drawing of sections and auxiliary sectional views. Parts not usually sectioned.
c) Methods of dimensioning, general rules for sizes and placement of dimensions for holes, centers, curved and tapered features.
d) Title boxes, their size, location and details - common abbreviations & their liberal usage
e) Types of Drawings – working drawings for machine parts.

I. DRAWING OF MACHINE ELEMENTS AND SIMPLE PARTS

Selection of Views, additional views for the following machine elements and parts with every drawing proportions.

a) Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, set screws.
b) Keys, cottered joints and knuckle joint.
c) Rivetted joints for plates
d) Shaft coupling, spigot and socket pipe joint.
e) Journal, pivot and collar and foot step bearings.

II. ASSEMBLY DRAWINGS

Drawings of assembled views for the part drawings of the following using conventions and easy drawing proportions.

a) Engine parts – stuffing boxes, cross heads, Eccentrics, Petrol Engine connecting rod, piston assembly.
b) Other machine parts - Screws jacks, Machine Vices Plummer block, Tailstock.
c) Valves: Steam stop valve, spring loaded safety valve, feed check valve and air cock.

NOTE : First angle projection to be adopted. The student should be able to provide working drawings of actual parts.

TEXT BOOK


REFERENCES

P877 – STRENGTH OF MATERIALS AND METALLURGY LAB

Lab/Practicals: 3 Period/Week
Credits : 2

Internal Marks : 25
External Marks : 75
External Examination : 3 Hrs

Any of the 10 Experiments are required to be conducted

STRENGTH OF MATERIALS

1. Compression test on helical spring.
2. Tension test on mild steel rod.
3. Double shear test on metals.
4. Torsion test on mild steel rod.
5. Impact test on metal specimen.
6. Hardness test on metals.
7. Deflection test on beams.

METALLURGY LAB

1. Preparation and study of the microstructure of pure metals like Iron, Cu and Al.
2. Preparation and study of the microstructure of low carbon steels, medium carbon steel and high carbon steels.
3. Study of the microstructures of gray cast iron, malleable cast iron and nodular cast iron.
4. Study of the microstructures of brass.
5. Study of the microstructures of heat treated steels.
6. Hardenability of steels by jominy end quench test.
7. Hardness of various treated and untreated steels.
8. Wear Test.
Any of the 10 Experiments are required to be conducted

LIST OF EXPERIMENTS

1. Brake Test on 3-Ph Squirrel Cage Induction Motor
2. Regulation of 3-Ph Alternator by Synchronous Impedance Method
3. O.C & S.C tests on 1-phase transformer
4. Separation of core losses of 1-phase transformer
5. Load Test on 1-phase Transformer
6. Mesh Analysis
7. Nodal Analysis
8. RL & RC Series circuits
9. Diode characteristics
10. Transistor characteristics

ADDITIONAL EXPERIMENTS

11. CE Amplifier
12. Half wave & Full wave rectifiers
T289 - PRODUCTION TECHNOLOGY

Lecture: 4 Periods/week  Internal Marks: 25
Tutorial:  External Marks: 75
Credits: 4  External Examination: 3 Hrs

UNIT - I

Melting Practice- Furnaces: Cupola, Crucible and Induction furnace

UNIT - II


UNIT - III


UNIT - IV


UNIT - V

Extrusion of Metals: Basic extrusion process and its characteristics. Hot extrusion and cold extrusion - Forward extrusion and backward extrusion – Impact extrusion, Hydrostatic extrusion.
Sheet Metal Operations: Stamping, forming and other cold working processes:Blanking and piercing – Bending and forming

TEXT BOOK

Manufacturing Engineering and Technology/Kalpakjain S/ Pearson Edu.

REFERENCES

1. Manufacturing Technology / P.N. Rao/TMH
2. Production Technology / R.K. Jain
4. Production Technology /Sarma P C /
   Workshop Technology-B.S. Raghuvamsi-Vol.I /PHI
T234 - KINEMATICS OF MACHINES

<table>
<thead>
<tr>
<th></th>
<th>Lecture</th>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tutorial</td>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT - I


UNIT - II


STEERING MECHANISMS: Conditions for correct steering – Davis Steering gear-Ackerman steering gear

UNIT - III

CAMs: Classification of cam and follower mechanism-Terminology - Types of follower motion - Uniform velocity – Simple harmonic motion and uniform acceleration-Displacement diagrams- Derivations of follower motion -Graphical layouts of cam profiles- Tangent cams.

UNIT - IV


UNIT - V


TEXT BOOK


REFERENCES

3. Theory of Machines - Sadhu Singh - Pearson Education.
T204 - FLUID MECHANICS

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4 Periods/week</th>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>1 Period/Week</td>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT - I

Introduction: General description of Fluid Mechanics, Classification of Fluids, Fluids and Continuum, Properties of Fluid – Pressure, Temperature, Density, Specific Weight, Specific Gravity, Viscosity, Compressibility, Surface Tension, Capillarity, Vapor Pressure, Cavitation.

Fluid Statics: Pressure Force on a Fluid Element, Hydrostatic Pressure Distributions, Hydrostatic forces on submerged plane and curved surfaces, Manometers, Buoyancy and Stability.

UNIT - II


UNIT - III


Flow in Noncircular Ducts: Hydraulic Diameter, Fully developed laminar flow between parallel plates, Fully developed laminar flow through a concentric annulus.

UNIT - IV

Boundary Layer: Introduction, Boundary layer development, Boundary layer thickness, Displacement thickness, Momentum thickness, Energy thickness, Types of boundary layer, Momentum Integral Estimates- Karman Analysis of the Flat plate, Boundary layer Equations-2D Flow, Boundary layer growth on a flat plate-Blasius Solution, Boundary Layer with Pressure Gradient, Brief discussion on Lift and Drag.

UNIT - V

Dimensional Analysis and Similarity: Introduction, Principle of Dimensional Homogeneity, Buckingham's Pi Theorem, Dimensionless Groups, Similarity.

Introduction to Compressible Flow: Introduction, Perfect gas, Speed of sound, Mach Number, Specific heat ratio, Flow regimes based on Mach number, Compressibility-limiting condition for compressibility.

TEXT BOOK

REFERENCES

2. Mechanics of Fluids, Shames, H.,
3. Introduction of Fluid Mechanics, Fox, R.W., and Mcdonald, A.J
T216 - IC ENGINES AND GAS TURBINES

Lecture : 4 Periods/week
Internal Marks : 25

Tutorial : 1 Period/Week
External Marks : 75

Credits : 4
External Examination : 3 Hrs

UNIT - I


Engine Systems: Introduction, Layout of Fuel supply system for SI Engine-Simple Carburettor, Fuel supply system for CI Engine-Solid Injection-Individual pump type-Common rail type only, Cooling and Lubricating systems

UNIT - II

Air-Standard Cycles and Their Analysis: Introduction, Carnot, Otto, Diesel, Dual, Brayton cycles


Actual Cycles And Their Analysis: Introduction, comparison of air-standard and actual cycles, time loss factor, heat loss factor, exhaust blow down, loss due to rubbing friction, actual and fuel-air cycles of engines

UNIT - III

Combustion in SI Engines: Introduction, Homogeneous and Heterogeneous mixture, stages of combustion in SI engines, flame front propagation, factors influencing the flame speed, Abnormal combustion, phenomenon of knock in SI engines, effect of engine variables on knock, combustion chambers for SI engines- Fuel requirement and fuel rating.

Combustion in CI Engines: Introduction, stages of combustion in CI engines, factors affecting the delay period, phenomenon of knock in CI engines, comparison of knock in SI and CI engines, Combustion Chambers for CI engines, Fuel requirement and fuel rating.

UNIT - IV


UNIT - V


TEXT BOOK


REFERENCES

5. Engineering Fundamentals of the I.C. Engines- Pulkabek-PHI
T199 – ENVIRONMENTAL STUDIES

UNIT - I

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems -Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources. Case studies. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles. [11 Lectures]

UNIT – II


UNIT – III

Environmental Pollution: Definition, Types, Cause, effects and control measures of:

a. Air pollution
b. Water pollution
c. Soil pollution
d. Marine pollution
e. Noise pollution
f. Thermal pollution
g. Nuclear hazards

Solid waste Management: Causes, effects and control measures of urban and industrial wastes. - Role of an individual in prevention of pollution. - Pollution case studies. - Disaster management: floods, earthquake, cyclone and landslides. [11 Lectures]
UNIT – IV


UNIT – V


TEXT BOOKS

1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCES

Textbook of Environmental Sciences and Technology by M. Anji Reddy BS Publication.
UNIT - I

Probability: Sample space and events – Probability – The axioms of probability – Some Elementary theorems - Conditional probability – Baye’s theorem.

UNIT - II


UNIT - III

Population and samples. Sampling distribution of mean (with known and unknown variance), proportion, variances. - Sampling distribution of sums and differences. Point and interval estimators for mean, variance and proportions.

UNIT - IV

Statistical Hypothesis – Errors of Type I and Type II errors and calculation. One tail and two-tailed tests. Testing of hypothesis concerning means, proportions and their differences using Z-test.

Tests of hypothesis using Student’s t-test, F-test and $\chi^2$ test. Applications of decision making using the above tests.

UNIT - V

Simple Correlation and Regression. Queueing Theory: Pure Birth and Death Process M/M/1 Model and Simple Problems related to the evaluation of waiting time, length of the queue etc.

TEXT BOOK

Probability and Statistics for Engineers, Miller ,John E. Freund, PHI

REFERENCES

1. Probability and Statistics, Gupta & Kapoor
2. Probability, Statistics and Queuing theory applications for Comp. Sciences, 2/e, Trivedy, John Wiley
P879 - THERMAL ENGINEERING LAB

<table>
<thead>
<tr>
<th>Lab/Practicals</th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>Credits</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Period/Week</td>
<td>25</td>
<td>75</td>
<td>2</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Any of the 10 Experiments are required to be conducted

1. I.C. Engines Valve & Port Timing Diagrams
2. Performance Test on Variable Compression Ratio single cylinder 4-Stroke petrol Engine By using Eddy Current Dynamometer
3. Performance Test on single cylinder 4-Stroke Diesel Engine by using Mechanical Dynamometer
4. Performance test on twin cylinder 4-stroke diesel engine.
5. Performance Test on single cylinder 2-Stroke Petrol Engine.
6. Evaluation of Engine friction power by conducting Morse test on Multi cylinder 4-Stroke Petrol Engine.
7. Evaluation of Engine friction by conducting Retardation test on 4-stroke Diesel Engine.
11. Performance Test on Reciprocating Air – Compressoir.
12. Performance Test on Vapour Compression Refrigeration Unit.
13. Performance Test on Air Conditioning Unit.
15. Viscosity of lubricants by using Redwood/Say bolt viscometer Apparatus
16. Flash and Fire Point of fuels by using pesky Martin Apparatus
17. Carbon Residue test
P866 - PRODUCTION TECHNOLOGY LAB

<table>
<thead>
<tr>
<th>Lab/Practicals : 3 Period/Week</th>
<th>Internal Marks : 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits : 2</td>
<td>External Marks : 75</td>
</tr>
<tr>
<td></td>
<td>External Examination : 3 Hrs</td>
</tr>
</tbody>
</table>

Any of the 10 Experiments are required to be conducted

I. METAL CASTING LAB

1. Pattern Design and making - for one casting drawing.
2. Sand properties testing - Exercise - for strengths, and permeability – 1
3. Moulding Melting and Casting - 1 Exercise

II WELDING LAB

1. ARC Welding Lap & Butt Joint - 2 Exercises
2. Spot Welding - 1 Exercise
3. TIG Welding - 1 Exercise

III MECHANICAL PRESS WORKING

3. Bending and other operations

IV PROCESSING OF PLASTICS

1. Injection Moulding
V-SEMESTER
T328 - THERMAL ENGINEERING

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4 Periods/week</th>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>1 Period/Week</td>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT - I

Combustion: Fuels and combustion, concepts of heat of reaction, Adiabatic flame temperature, Stoichiometry

UNIT - II

Draught System: Functions, Types, Natural Draft-Height of chimney for given draught and discharge, Condition for maximum discharge, Efficiency of chimney, Artificial draught-induced and forced.

UNIT - III

Steam Nozzles: Introduction, Types of nozzle, Flow through nozzles- thermodynamic analysis-assumptions-velocity of nozzle at exit-condition for maximum discharge, critical pressure ratio, Ideal and actual expansion in nozzle, velocity coefficient, Supersaturated flow, degree of super saturation and degree of supercooling -Wilson line

UNIT - IV

Steam Condensers: Introduction, Types, Working principle, vacuum efficiency and condenser efficiency

UNIT - V

Compressors—Introduction, Classification
Reciprocating: Principle of operation, Work required, Isothermal efficiency, Volumetric efficiency and Effect of clearance volume, Free Air Delivery, Multistage Compression-Condition for Minimum work
Rotary: Roots Blower, Vane sealed compressor, principle of working – efficiency considerations
Centrifugal: Principle of operation –Energy transfer-velocity diagram
Axial: Principle of operation – velocity triangles and energy transfer per stage, degree of
TEXT BOOK

Thermodynamics and Heat Engines, VOL-II, R. Yadav, Central Book Depot

REFERENCES

1. Applied Thermodynamics, T.D Eastop and A. McConkey, Pearson Education
3. Thermal Engineering, Mahesh Rathore, TMH
4. Basic Engineering Thermodynamics, Roy Choudhury
5. Power Plant Engineering, P.K Nag, TMH
T239 - MACHINE DESIGN - I

Lecture : 4 Periods/week  
Internal Marks : 25

Tutorial : 1 Period/Week  
External Marks : 75

Credits : 4  
External Examination : 3 Hrs

Machine Design Data Books are Permitted

UNIT - I

INTRODUCTION: Basic procedure of machine design - Basic requirements of machine design - Design of machine elements - Design Analysis-Design synthesis - Introduction to Indian standards-Selection of Preferred sizes

DESIGN FOR STATIC STRENGTH: Modes of failure-Factor of safety-Stress-strain relationship-Shear stress and shear strain-Stresses due to bending moment-Stresses due to torsional moment-Eccentric axial moment-Theories of elastic failure-Maximum principal stress theory-Maximum shear stress theory-Distortion energy theory

UNIT - II

DESIGN FOR FATIGUE STRENGTH: Stress concentration - Stress concentration factors-Reduction of stress concentration-Fluctuating stresses-Fatigue failure-Endurance limit-S-N curve-Notch sensitivity-Endurance limit-Approximate estimation-Reversed stresses-Design for finite and infinite life problems-Soderberg and Goodman lines-Gerber equation- Impact stresses

UNIT - III

THREADED JOINTS: Threaded joints-Terminology of screw threads-Materials and manufacture-Bolted joint-Simple analysis-Eccentrically loaded bolted joints in shear-Eccentric load perpendicular to axis of bolt-Bolts of uniform strength

WELDED JOINTS: Butt joints-Fillet joints-Strength of butt joints-Strength of parallel fillet welds-Strength of transverse fillet welds-Maximum shear stress in parallel fillet and transverse fillet welds-Axially loaded unsymmetrical welded joints-Welded joint subjected to bending moment

UNIT - IV

POWER SCREWS: Forms of thread-Multiple threaded screws-Terminology-Torque requirement for lifting and lowering loads-Self locking screw-Efficiency of square threaded screw-Efficiency of self locking screw- design of screw and nut-Design of screw jack.

KEYS, COTTER AND KNUCKLE JOINTS: Types of keys- Design of square and flat keys-Cotter joints-Socket and Spigot cotter joint-Knuckle joint Failures

UNIT - V

SHAFTS: Transmission shafts-Shaft design on strength basis-Shaft design on torsional rigidity basis-ASME code for shaft design-Design of hollow shaft on strength and torsional rigidity basis

SHAFT COUPLINGS: Requirements - Rigid couplings-Muff coupling-Clamp coupling-Flange coupling-Bushed pin flexible coupling
TEXT BOOK

Mechanical Engineering Design/Shigley. J.E/ Mc Graw-Hill

REFERENCES

6. Data Books: (i) P.S.G. College of Technology (ii) Mahadevan
UNIT - I

Clutches: Friction clutches-Single Disc or plate clutch-Multiple Disc Clutch-Cone Clutch-Centrifugal Clutch.

UNIT - II

BRAKES AND DYNAMOMETERS: Simple block brakes-internal expanding brake-band brake of vehicle-Dynamometers-Absorption and transmission types-General description and methods of operations.
PRECESSION: Gyroscopes-effect of precession motion on the stability of moving vehicles such as motor car, motor cycle, aero planes and ships-Static and dynamic force analysis of planar mechanisms.

UNIT - III

TURNING MOMENT DIAGRAM AND FLY WHEELS: Turning moment-Inertia Torque connecting rod angular velocity and acceleration, crank effort and torque diagrams-Fluctuation of energy-Fly wheels and their design.

UNIT - IV

VIBRATIONS: Types of vibrations-Basic features of vibrating systems-Degrees of freedom-Free longitudinal vibrations-Equilibrium method-Energy method-Rayleigh's method.

UNIT - V

BALANCING: Balancing of rotating masses-Single and multiple-single and different planes-Balancing of reciprocating masses-Primary, Secondary and higher balancing of reciprocating masses-Analytical and graphical methods-Unbalanced forces and couples-locomotive balancing-Hammer blow-Swaying couple-variation of tractive efforts.

TEXT BOOK

Theory of Machines / S.S Ratan/ Mc. Graw Hill

REFERENCES

1. Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age
2. Theory of Machines / Shiegly / MGH
3. Theory of Machines / Thomas Bevan / CBS Publishers
UNIT - I


UNIT - II

Performance of Turbines: Performance Under Unit Head-Unit Quantities- Performance Under Specific conditions – Specific Speed - Performance Characteristic Curves – Cavitation – Selection of Turbines.

UNIT - III

Reciprocating Pumps: Introduction-Main components and working of a Reciprocating pump-Types -Work done by Reciprocating pump-Single Acting & Double Acting Pump-Coefficient of Discharge – Slip-Percentage Slip And Negative Slip- Indicator diagram – Effect of Acceleration Of Piston On Velocity &Pressure in suction and delivery pipes – Air vessels – Rate of flow into and from air vessels

UNIT - IV


UNIT - V


TEXT BOOK

REFERENCES
1. Elements of Hydraulic Machines and Fluidics / Jagdish Lal
2. Hydraulic Turbines / Nechleba M
T242 - MACHINE TOOLS

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial :  External Marks : 75
Credits : 4  External Examination : 3 Hrs

UNIT - I

Elementary Treatment of Metal Cutting Theory: Elements of cutting process – Methods of Metal Cutting – Classification of Cutting Tools - Geometry of Single Point Cutting Tool. Chip formation, mechanism and types of chips - chip breakers. Merchant’s Force diagram, measurement of cutting forces, work done in cutting. Metal cutting theories. Machining parameters - Tool Life, Tool Failure-Cutting Tool Materials, Cutting Fluids

UNIT - II

Turret and Capstan Lathes: Collet chucks – Other work holders – Tool holding devices – Box and tool layout.

UNIT - III

Shaping, Slotting and Planing Machines: Principles of working – Principal parts – Specification classification, operations performed, machining time calculations.

UNIT - IV

Different types of abrasives – bonds specification of grinding wheel and selection of grinding wheel.

UNIT - V

Lapping, Honing and Broaching Machines: Comparison to grinding – lapping and honing. Constructional features of speed and feed units, machining time calculations

TEXT BOOK
Production Technology by R.K. Jain and S.C. Gupta.

REFERENCES
3. Manufacturing Science by Gosh and Malik
4. Manufacturing Engineering & Technology by Kalpakjian S /Pearson Education
T221 - INDUSTRIAL MANAGEMENT

Lecture : 4 Periods/week          Internal Marks : 25
Tutorial :               External Marks : 75
Credits : 3                        External Examination : 3 Hrs

AIM

To make the student to understand concepts and contributions of Management, types of Organizations and also prepare them to have knowledge of several types of managements conducted in Industrial Organizations.

UNIT - I

Introduction

UNIT - II

Operations Management
Plant Location, Factors influencing location, Principles and Types of Plant Layouts-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement.

UNIT - III

Quality and Materials Management

UNIT - IV

Human Resource Management

UNIT - V

Project Management
TEXT BOOK


REFERENCES

2. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004
3. O.P. Khana, Industrial Engineering and Management
4. L.S. Srinath, PERT & CPM
Any of the 10 Experiments are required to be conducted

1. Verification of Bernoullious Theorem
2. Calibration of Venturimeter
4. Determination of friction factor for a given pipe line
5. Determination of loss of head due to sudden contraction in a pipeline
6. Impact of jets on Vanes.
7. Performance Test on Pelton Wheel.
8. Performance Test on Kaplan Turbine.
10. Performance Test on Multi Stage Centrifugal Pump.
11. Performance Test on Reciprocating Pump.
12. Turbine flow meter.
13. Calibration of low speed wind tunnel.
15. Potential Flow Study Using Hele-Shaw Apparatus
16. Flow Visualization study using Water Flow Channel
P849 - MACHINE TOOLS AND MODELING LAB

Internal Marks : 25
Lab/Practicals : 3 Period/Week
Credits : 2
External Marks : 75
External Examination : 3 Hrs

Any of the 10 Experiments are required to be conducted

MACHINE TOOLS LAB

1. Introduction of general purpose machines - Lathe, Drilling machine, Milling machine, Shaper, Planing machine, slotting machine, Cylindrical Grinder, surface grinder and tool and cutter grinder.
2. Step turning and taper turning on lathe machine
3. Thread cutting and knurling on lathe machine.
4. Drilling and Tapping
5. Shaping and Planing
6. Slotting
7. Milling
8. Grinding of Tool angles.

MODELING LAB

2. Part Modeling:(Two examples) Generation of various 3D models through protrusion, revolve, shell, sweep etc. Creation of various features
3. Assembly modeling of machine parts.(Two examples) Ex: knuckle joint,universal joint, IC engine piston and rod end assembly etc
4. Wireframe modeling(One example)
5. Surface modeling(One example)

PACKAGES

ProE/CATIA/UniGraphics.

REFERENCES

Lab Manuals
VI-SEMESTER
T211 - HEAT TRANSFER

Lecture : 4 Periods/week                Internal Marks : 25
Tutorial : 1 Period/Week               External Marks : 75
Credits : 4                              External Examination : 3 Hrs

UNIT - I

One Dimensional Steady State Conduction: Heat flow through plane wall and cylinder with constant thermal conductivity - Electrical analogy-Thermal resistance-Overall heat transfer coefficient-Heat flow through Composite Wall and Cylinder - Critical radius of insulation for Cylinder.

UNIT - II

One Dimensional Steady State Conduction: Heat flow through plane wall and cylinder with Variable Thermal conductivity - Uniform internal heat generation in Slabs-Extended Surfaces - Analysis of Long Fin and Short fin with insulated tip - Fin efficiency and Effectiveness.
One Dimensional Transient Heat Conduction: Systems with negligible internal resistance-Lumped Heat analysis - Significance of Biot and Fourier Numbers - Plane wall with finite surface and internal resistance using Heisler Chart.

UNIT - III

Convective Heat Transfer: Introduction - Types of Convection - Convective heat transfer coefficient - Dimensional analysis - Buckingham Pi Theorem applied to Forced convection - Significance of Non Dimensional numbers - The boundary layer concept - The velocity and Thermal boundary layers.
Forced Convection: External Flow - Laminar and Turbulent Flow over a Flat plate - Internal Flow through Circular pipe - Laminar and Turbulent Flows - Entry length and Fully developed flow - Reynolds Colburn analogy
Natural Convection: Development of Hydrodynamic and thermal boundary layer along a Vertical plate - Empirical correlations for Vertical plate, Vertical Cylinder, Horizontal Plate and Horizontal Cylinder.

UNIT - IV

UNIT - V


NOTE: Heat and Mass Transfer Data Book by C.P. Kothandaraman and Subramanian-New Age Publications is to be allowed in Examination.

TEXT BOOK


REFERENCES

2. Heat Transfer – C. J. Cengel - TMH
3. Heat transfer - J.P.Holman, McGrawHill
T240 - MACHINE DESIGN -II

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : 1 Period/Week Externals Marks : 75
Credits : 4 External Examination : 3 Hrs

Machine Design Data Books are Permitted

UNIT - I

ROLLING CONTACT BEARINGS: Ball and roller bearings – Static loading of ball and roller bearings – Dynamic capacity - Bearing life.

UNIT - II

ENGINE PARTS:
PISTON: Forces acting on piston – Construction -Design and proportions of piston- Cylinder- Cylinder liners.
CONNECTING ROD: Thrust in connecting rod – Rankine’s formula-Johnson’s formula- Stress due to whipping action on connecting rod ends
CRANK SHAFT: Strength and proportions of center crank shaft– Crank pins

UNIT - III


UNIT - IV


UNIT - V


TEXT BOOK

Shigley J.E / Mechanical Engineering Design / McGraw-Hill

REFERENCES

4. Data Books : (i) P.S.G. College of Technology (ii) Mahadevan
T333 - UNCONVENTIONAL MACHINING PROCESSES

Lecture : 4 Periods/week  
Tutorial :  
Credits : 3  
Internal Marks : 25  
External Marks : 75  
External Examination : 3 Hrs

UNIT - I

Introduction – Need for unconventional machining methods-Classification of unconventional machining processes – considerations in process selection.

UNIT - II

Mechanical Processes
Basic principle, equipment, process variable and applications of ultrasonic machining, abrasive jet machining and water jet machining.

UNIT - III

Electrochemical Processes

UNIT - IV

Electrical Discharge Machining

UNIT - V

Electron Beam, Laser Beam and Plasma Arc Machining
Principle, process, equipment and applications of electron beam machining, laser beam machining, plasma arc machining and hot machining.

TEXT BOOK

Modern Machining Process / Pandey P.C. and Shah H.S./ TMH.

REFERENCES

1. Unconventional manufacturing processes/ M.K.Singh/ New age international 
UNIT - I

ENGINEERING ETHICS
Senses of 'Engineering Ethics' variety of moral issues types of inquiry moral dilemmas moral autonomy Kohlberg's theory Gilligan's theory consensus and controversy - Models of Professional Roles theories about right action Selfinterest customs and religion uses of ethical theories.

UNIT - II

HUMAN VALUES

UNIT - III

ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as experimentation engineers as responsible experimenters codes of ethics a balanced outlook on law the challenger case study

UNIT - IV

SAFETY, RESPONSIBILITIES AND RIGHTS
Safety and risk assessment of safety and risk risk benefit analysis and reducing risk the three mile island and Chernobyl case studies. Collegiality and loyalty respect for authority collective bargaining confidentiality conflicts of interest occupational crime professional rights employee rights Intellectual Property Rights (IPR) discrimination.

UNIT - V

GLOBAL ISSUES
Multinational corporations Environmental ethics computer ethics weapons development engineers as managers consulting engineers engineers as expert witnesses and advisors moral leadershpsample code of Ethics ( Specific to a particular Engineering Discipline ).

TEXT BOOKS

REFERENCES
2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics - Concepts and Cases", Wadsworth Thompson Leatning, United States, 2000 ( Indian Reprint now available )
T268 - OPERATIONS RESEARCH

UNIT - I

Introduction to Operations Research, operations research models, applications.

UNIT - II


UNIT - III

Theory Of Games: Minimax (maximin) Criterion and optimal strategy, Solution of games with saddle points, Rectangular games without saddle points, 2 X 2 games—dominance principle—m X 2 & 2 X n games, and graphical method.

UNIT - IV

Waiting Lines: Single Channel—Poisson arrivals—exponential service times—with infinite population and finite population models—Multichannel—Poisson arrivals—exponential service times with infinite population single channel Poisson arrivals.
Inventory: Single item Deterministic models—Purchase inventory models with one price break and multiple price breaks—shortages are not allowed—Stochastic models—demand may be discrete variable or continuous variable—Instantaneous production. Instantaneous demand and continuous demand and no set up cost.

UNIT - V

Project Management: Network Modeling, Probabilistic model, various types of activity times estimation, programme evaluation review technique (PERT), critical path method (CPM).

TEXT BOOK

Operations Research / Paneer Selvam.

REFERENCES

1. Introduction to O.R/Hiller & Libermann (TMH).
4. O.R/Wayne L.Winston/Thomson Brooks/cole. Introduction to O.R/Taha PHI.
T276 - POWER PLANT ENGINEERING

Lecture : 4 Periods/week Internal Marks : 25
Tutorial : External Marks : 75
Credits : 4 External Examination : 3 Hrs

UNIT - I

Introduction: Various Energy sources-Types of power plants-Resources and Development of Power in India.

UNIT - II

Gas Turbine Plant: Introduction-Classification-LAYOUT with auxiliaries-Principles of working of Closed and Open cycle gas turbines-Combined cycle power plants and comparison.

UNIT - III


UNIT - IV

Power From Non-Conventional Sources: Solar power plants-Utilization of Solar collectors-Principle of working of Wind energy-Types- Tidal Energy.

UNIT - V

Pollution and Control: Introduction- Particulate and gaseous pollutants-Air and Water pollution by Thermal plants and its control—Acid rains -Methods to control pollution.

TEXT BOOK

A course in Power plant engineering- Arora & Domkundwar—Dhanpat Rai & Co

REFERENCES

Power plant technology, M.M. El Wakil, TMH.
UNIT - I


UNIT - II

Damped free vibrations of single degree of freedom systems: Introduction – Different types of dampings – Free vibrations with viscous damping – Over damped, critically damped and under damped systems -Logarithmic decrement – Viscous dampers

UNIT - III

Forced vibrations of single degree of freedom systems: Introduction – Forced vibrations with constant harmonic excitation – Steady state vibrations – Forced vibration with rotating and reciprocating unbalance - Forced vibrations due to excitation of the support –Vibration isolation and transmissibility - Typical isolators and mount types – vibration measuring instruments

UNIT - IV

Two degrees of freedom systems: Introduction – Principal modes of vibrations – Other cases of simple two degrees of freedom systems – Two masses fixed on a tightly stretched string - Double pendulum – Torsional system – Undamped forced vibrations with harmonic excitation -Undamped dynamic vibration absorber

UNIT - V


TEXT BOOK

Mechanical vibrations/ G.K.Grover/ Nem chand & Bros.

REFERENCES

2. Mechanical vibrations/William W.Seti/ Schaum outline series
4. Mechanical Vibrations/S.S.Rao/Pearson Education
UNIT - I


UNIT - II


UNIT - III

Aircraft Performance: Introduction: The Drag Polar, Equations of Motion, Thrust Required for Level, Unaccelerated Flight, Thrust Available and Maximum Velocity, Power Required for Level, Power Available and Maximum Velocity, Altitude Effects on Power Required and Available, Rate of Climb, Gliding Flight, Absolute and Service Ceilings, Time to Climb, Range and Endurance

UNIT - IV


UNIT - V


TEXT BOOK

Introduction to Flight, John D. Anderson, Jr., McGrawHill

REFERENCES

1. Aerodynamics for Engineering Students, Houghton and Carpenter
2. Mechanics of Flight, A.C. Kermode,
T332 - TRIBOLOGY

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : Internal Marks : 25
Credits : 3  External Marks : 75
  External Examination : 3 Hrs

UNIT - I

Friction and Wear: Types of friction, Theories of friction, Study of current concepts of boundary friction and dry friction, friction reducing measures. Causes of wear, Types of wear, Mechanism of various types of wear, laws of wear, effects of wear

UNIT - II

Viscosity and Lubricants: Viscosity, flow of fluids, viscosity and its variation -absolute and kinematic viscosity, temperature variation, viscosity index determination of viscosity, different viscometers used, Viscosity standards, Lubricants and their physical properties, Various theories of lubrication

UNIT - III

Theory of hydrodynamic lubrication: petroffs equation, Reynold's equation in two dimensions, bearing modulus, Sommerfield number, Effects of side leakage, pressure, flow, load capacity and friction calculations, heat balance, minimum oil film thickness, oil whip and whirl.

UNIT - IV

Theory of hydrostatic lubrication: Hydrostatic step bearing, pivoted pad thrust bearing, hydrostatic lifts, hydrostatic squeeze films, pressure, flow, load capacity and friction calculations, oil rings, pressure feed bearing, partial bearings, externally pressurized bearings, Air lubricated bearing, Advantages and disadvantages

UNIT - V

Anti-friction bearings and Bearing materials: Anti-friction bearings, types, Advantages and disadvantages, General requirements of bearing materials, types of bearing materials, General bearing design considerations.

TEXT BOOK

Fundamentals of Tribology, Basu, SenGupta and Ahuja/PHI.

REFERENCES

1. Tribology in Industry: Sushil Kumar Srivatsava, S. Chand &Co.
2. Tribology - B.C. Majumdar.
UNIT - I
Introduction: Evolution of total quality management, Definition of Quality, Quality costs, Quality Council, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

UNIT - II

UNIT - III
Statistical process control: The seven tools of quality, Statistical Fundamentals, Population and Sample, Normal curve, Control charts for variables and attributes, Process capability, Concepts of six sigma, New seven Management tools.

UNIT - IV
TQM Tools: Benchmarking, Benchmarking Process, Quality Function Deployment (QFD), House of Quality, QFD Process, Taguchi Quality Loss Function, Total Productive Maintenance-Concept, improvement needs, FMEA- Stages of FMEA.

UNIT - V

TEXT BOOK

REFERENCES
T270 - OPTIMIZATION TECHNIQUES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Internal Marks</th>
<th>: 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>External Marks</td>
<td>: 75</td>
</tr>
<tr>
<td>Credits</td>
<td>External Examination</td>
<td>: 3 Hrs</td>
</tr>
</tbody>
</table>

OBJECTIVE

This course is a basic mathematical tool in solution of number of system operational methods and design of components and systems. The course also contains non-traditional optimization techniques like Genetic Algorithms and Particle Swarm methods. The contents of this course are also widely used in operations research in systems planning and management.

UNIT - I

Linear Programming (LP)
Introduction through engineering applications, standard form of LP problem (LPP), Geometrical interpretation, simplex method and algorithm, two phases of simplex method, Numerical problems, Revised simples method, Duality in LP, Dual simplex method, sensitivity analysis.

UNIT - II

Applications and extensions of LP
Transportation problem, Assignment problem, Karmarkar’s method, Quadratic programming and Engineering Applications.

UNIT - III

Non-linear Programming – Unconstrained minimization

UNIT - IV

Non-linear Programming – Constrained Minimization

UNIT - V

Dynamic Programming & Non-traditional Optimization
Principle of optimality, computational procedure, applications from engineering. Evolutionary Programming Techniques – Genetic Algorithm (GA), the three parameters of GA, computational procedure for both binary and analogue coded inputs. Introduction to Particle swarm Optimization. Numerical examples.
TEXT BOOKS


REFERENCES

P836 - HEAT TRANSFER LAB

<table>
<thead>
<tr>
<th></th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals : 3 Period/Week</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Credits : 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any of the 10 Experiments are required to be conducted

1. Composite Slab Apparatus – Overall heat transfer coefficient.
2. Heat transfer through lagged pipe.
3. Heat Transfer through a Concentric Sphere
4. Thermal Conductivity of given metal rod.
5. Heat transfer in pin-fin
6. Experiment on Transient Heat Conduction
8. Heat transfer in natural convection
9. Parallel and counter flow heat exchanger.
10. Emissivity apparatus.
11. Stefan Boltzmann Apparatus.
15. Study of Two – Phase flow.
Any of the 10 Experiments are required to be conducted

**LIST OF EXPERIMENTS**

1. To determine gyroscopic couple on Motorized Gyroscope
2. To find the coefficient of friction between belt and pulley
3. To determine the endurance strength of specimen using rotating beam machine
4. Determination of transmission efficiency of gear reducers
5. To find the stability and sensitivity of Watt governor
6. To find the stability and sensitivity of Porter governor
7. To find the transverse vibrations of free-free beam
8. Balancing of rotating masses
9. Balancing of reciprocating masses
10. Determination of damping coefficient of single degree of freedom system using spring mass system
11. Determination of critical speed of shaft with concentration loads
12. Determine the moment of inertia of connecting rod by compound pendulum method
13. Determine the moment of inertia of flywheel by oscillation
14. To study various types of cam and follower mechanisms
15. To study inversions of four bar mechanisms, single and double slider crank mechanisms
16. To study various types of gear trains- simple, compound, reverted, epicyclic and differential.
17. To study the working of screw jack and determine its efficiency
T203 - FINITE ELEMENT METHOD

<table>
<thead>
<tr>
<th>Lecture</th>
<th>4 Periods/week</th>
<th>Internal Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>1 Period/Week</td>
<td>External Marks</td>
<td>75</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
<td>External Examination</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT - I


UNIT - II

Analysis of Beams: Element stiffness matrix for two nodes, two degrees of freedom per node beam element Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions.

UNIT - III

Finite element modeling of axisymmetric solids subjected to axisymmetric loading with triangular elements. Two dimensional four noded isoparametric elements and numerical integration-Gauss quadrature

UNIT - IV

One dimensional steady state heat transfer analysis of a fin-Element conductivity matrix- Convection matrix-Heat rate vector. Two dimensional analysis of thin plate with triangular elements-Element conductivity matrix-Convection matrix-Heat rate vector

UNIT - V

Dynamic Analysis: Formulation of finite element model-element matrices-evaluation of eigen values and eigen vectors for a stepped bar and a beam.

TEXT BOOK

Introduction to Finite Elements in Engineering / Chandruputia, Ashok and Belegundu / Prentice – Hall

REFERENCES

2. The Finite Element Methods in Engineering / SS Rao / Pergamon
4. Finite Element Analysis/ C.S.Krishna Murthy
T132 - CAD/CAM

Lecture : 4 Periods/week Internal Marks : 25
Tutorial : External Marks : 75
Credits : 4 External Examination : 3 Hrs

UNIT - I

Fundamentals of CAD: Introduction – The design process – The application of computers for design- Creating the manufacturing data base – Benefits of CAD.

UNIT - II

Geometric Modeling: Representation of curves: Introduction, wireframe models, wireframe entities, curve representation, parametric representation of analytical curves, parametric representation of Bezier and B-Spline curves
Representation of surfaces: Introduction, surface models surface entities, parametric representation of analytical surfaces- parametric representation of Bezier and B-Spline surfaces
Representation of solids: Introduction, solid models, solid entities, Solid representation, Fundamentals of solid modeling, Boundary representation, CSG representation.

UNIT - III


UNIT - IV


UNIT - V

Computer Aided Quality Control: Introduction – the computers in Q C – Contact Inspection methods – Non contact inspection methods: optical, non optical –Computer Aided Testing-Integration of CAQC with CAD/CAM.
TEXT BOOK


REFERENCES

1. Mikell P. Groover and Emory W. Zimmers, CAD/CAM- prentice Hall of India private LTD, New Delhi
3. P. Radhakrishnan, S. Subramanyan & V. Raju, CAD/CAM/CIM, New Age International Publishers
UNIT - I

Linear Measurement: Standards of measurements- line and end standard. Basic principle and applications of slip gauges, dial indicator and micrometers.
Angular Measurement: Bevel protractor – angle slip gauges – spirit levels – sine bar, rollers and spheres used to determine the tapers
Flat Surface Measurement: Basic principle of straight edges and surface plates.

UNIT - II

Optical Measuring Instruments: Tool maker’s microscope and its uses – collimators, optical projector – optical flats and their uses, interferometer.
Comparators: Basic principle and applications of – mechanical, electrical, electronic and pneumatic comparators.

UNIT - III

Limits and Fits: Introduction, normal size, tolerance limits, deviations, allowance, fits and their types – unilateral and bilateral tolerance system, hole and shaft basis systems – interchangeability and selective assembly. Indian standard Institution system
Limit Gauges: Taylor’s principle – Design of go and No go gauges, plug, ring, snap, profile and position gauges

UNIT - IV

Screw Thread Measurement: Screw thread terminology, errors in screw threads – measurement of various elements of screw threads-Major diameter, minor diameter, effective diameter, pitch, flank angle and thread form.

UNIT - V

Coordinate Measuring Machines: Basic principle, types and applications of CMM.

TEXT BOOK


REFERENCES

1. Engineering Metrology / I C Gupta./ Danpath Rai
T297 - REFRIGERATION AND AIR CONDITIONING

Lecture: 4 Periods/week  Internal Marks: 25
Tutorial: 1 Periods/week  External Marks: 75
Credits: 4  External Examination: 3 Hrs

UNIT - I

Refrigerants: Classification of refrigerants- Desirable properties-Nomenclature-Commonly used refrigerants- Alternate refrigerants.
Air Refrigeration System: Introduction-Air refrigeration system working on Reversed Carnot cycle – Air refrigeration system working on Bell Coleman cycle- COP- Open and Dense air systems.

UNIT - II

Vapour Compression Refrigeration System: Working principle-Simple vapour compression refrigeration cycle – COP- Representation of cycle on T-s and P-h charts- Effect of Sub cooling and Superheating --Actual Vapor compression cycle

UNIT - III

Vapour Absorption Refrigeration System: Description and working of Aqua-Ammonia system- Calculation of maximum COP- Lithium Bromide- Water system-Principle of operation of Three fluid absorption system.

UNIT - IV

Psychrometry: Introduction - Psychrometric properties and relations- Psychrometric chart Psychrometric processes-Sensible, Latent and Total heat--Sensible Heat Factor and Bypass Factor-
Human Comfort: Thermodynamics of Human body-Effective temperature – Comfort chart.

UNIT - V

Air Conditioning Systems: Introduction-Components of Air conditioning system-Classification of Air conditioning systems-Central and Unitary systems- Summer, Winter and Year round systems- Cooling load estimation.
Design of Air Condition Systems: Summer air conditioning –ADP-System with Ventilated and re-circulated air with and without bypass factor- RSHF, GSHF and ESHF.


TEXT BOOK
Refrigeration and air conditioning - C. P. Arora. - TMH

REFERENCES
1. A course in refrigeration and air conditioning - S. C. Arora, Domkundwar.- Dhanapat Rai
2. Refrigeration and Air conditioning - Manohar Prasad - TMH
UNIT - I

Basic Concepts: Introduction, Fundamental Methods of Measurement, Basic Elements of Measurement system, Performance Terms, Basic Concepts in Dynamic Measurements
Analysis of Experimental Data: Causes and Types of Experimental Errors, Uncertainty Analysis, Method of Least Squares, Graphical Analysis and Curve Fitting

UNIT - II

Measurement of Displacement: Introduction, Classification, Dimensional Measurement, Gage Blocks, Optical Methods, Pneumatic Gage,
Measurement of Force and Torque: Introduction, Elastic Transducer, Strain Gage Load Cells, Dynamometers- Mechanical, Hydraulic, Electrical

UNIT - III

Measurement of Pressure: Introduction, Barometers, Manometers, Dial type pressure gauge, Pressure Transducers, Pitot, Static, and Pitot-Static Tube and Its characteristics, Low Pressure Measurement Gauges

UNIT - IV

Measurement of Temperature: Introduction, Types of thermometers, Thermocouples, RTD, Thermisters, Pyrometers

UNIT - V

Measurement of Speed: Mechanical Tachometers – Electrical tachometers – Stroboscope, Noncontact type of tachometer
Measurement of Motion and Vibration: Introduction, Elementary Vibrometers, Elementary Accelerometer, Principles of Seismic instruments, Sound Measurement

TEXT BOOK

Mechanical Measurements, BeckWith, Marangoni, Linehard, Person Education Asia

REFERENCES

Experimental Methods for Engineers, J.P. Holman, McGraw Hill
T324 - THEORY OF ELASTICITY

UNIT - I

Elasticity: Two dimensional stress analysis - Plane stress - Plane strain - Equations of compatibility - Stress function - Boundary conditions.
Problem in rectangular coordinates - Solution by polynomials - Saint Venent's principles - Determination of displacement - Simple beam problems.

UNIT - II

Problems in polar coordinates - General equations in polar coordinates - Stress distribution symmetrical about axis - Strain components in polar coordinates - Simple and symmetric problems.

UNIT - III

Analysis of stress and strain in three dimensions - Principle stresses – Homogeneous deformations - Strain spherical and deviatoric stress - Hydrostatic strain.

UNIT - IV

General theorems: Differential equations of equilibrium and compatibility - Displacement - Uniqueness of solution - Reciprocal theorem.

UNIT - V

Bending of prismatic bars - Stress function - Bending of cantilever beam - Beam of rectangular cross-section - Beams of circular cross-section.

TEXT BOOK

Timeshenko & Goodier, Theory of Elasticity - McGraw Hill

REFERENCES

1. Applied stress analysis by Dr. Sadhu Singh, Khanna Publishers
2. Theory of Elasticity by A.I. Lurie, Springer
3. Experimental stress analysis by Dally and Riley, Mc Graw-Hill
4. A treatise on Mathematical theory of Elasticity by LOVE A.H, Dover publications Inc
5. Theory of Elasticity by A. Meceri, Springer
T126 - AUTOMOBILE ENGINEERING

Lecture : 4 Periods/week Internal Marks : 25
Tutorial : External Marks : 75
Credits : 3 External Examination : 3 Hrs

UNIT - I

Introduction: Components of Four Wheeler Automobile-The Basic Structure-Power Unit- Power Transmission - Rear Wheel Drive- Front Wheel Drive- Four Wheel Drive-Types of Automobiles.
Engine: Basic Terminology- Types- firing order- Engine Construction Details-Engine Service- Re boring.

UNIT - II


UNIT - III

Engines Lubricating Systems: Necessity -Types- Petroil- Splash – Pressure lubrication systems- Oil Pumps- Crankcase ventilation.
Ignition System:Functions-Battery Ignition system-Magneto coil Ignition System- Electronic Ignition.

UNIT - IV

Transmission: Clutches-Principle-Types-Cone Type- Single-plate and Multi-plate clutches-Centrifugal clutches-Gear Boxes-Types-Sliding Mesh-Constant Mesh- synchronesh type automatic transmission- overdrive- propeller shaft- Hotch Kiss Drive-Differential

UNIT - V

Steering System: Steering Geometry-Camber-Castor-King Pin Rake- Combined Angle-Toe-In- Center Point Steering-Steering Gears-Types-Power Steering, Wheel Alignment
Suspension Systems: Need for Suspension systems- Torsion bar-shock absorbers-Air Suspension.

TEXT BOOKS


REFERENCES

T249 - MECHATRONICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Periods/week</th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT - I

Introduction: Definition – Trends - Control Methods: Standalone, PC Based (Real Time Operating Systems, Graphical User Interface, Simulation) - Applications: SPM, Robot, CNC, FMS, CIM.


UNIT - II


UNIT - III

Electronic Interface Subsystems: TTL, CMOS interfacing - Sensor interfacing – Actuator interfacing – solenoids, motors isolation schemes- opto coupling, buffer IC’s - Protection schemes – circuit breakers, over current sensing, resetable fuses, thermal dissipation - Power Supply - Bipolar transistors / mosfets


UNIT - IV


UNIT - V

TEXT BOOKS

2. Mechatronics/M.D.Singh/J.G.Joshi/PHI.

REFERENCES

T124 - AUTOMATION IN MANUFACTURING

Lecture : 4 Periods/week
Tutorial : 
Credits : 3

Internal Marks : 25
External Marks : 75
External Examination : 3 Hrs

UNIT - I


UNIT - II

Automated Flow Lines: Methods or work part transport transfer Mechanical buffer storage control function, design and fabrication consideration. Analysis of Automated flow lines: General terminology and analysis of transfer lines without and with buffer storage, partial automation, implementation of automated flow lines

UNIT - III

Automated Manufacturing Systems: Components of a Manufacturing systems, Classification of Manufacturing Systems, overview of Classification Scheme, Single Station Manned Workstations and Single Station Automated Cells.

UNIT - IV

Automated Material Handling: Types of equipment, functions, analysis and design of material handling systems conveyor systems, automated guided vehicle systems. Automated storage systems, Automated storage and retrieval systems; work in process storage, interfacing handling and storage with manufacturing.

UNIT - V

Adaptive Control Systems: Introduction, adaptive control with optimization, Adaptive control with constraints, Application of A.C. in Machining operations. Use of various parameters such as cutting force, Temperatures, vibration and acoustic emission.

TEXT BOOK

Automation, Production systems and computer Integrated Manufacturing : M.P. Groover/PE/PHI

REFERENCES

2. CAD/ CAM / CIM by Radhakrishnan.
3. Automation by W.Buekinsham.
T148 – CONTROL SYSTEMS

Lecture : 4 Periods/week
Tutorial : Internal Marks : 25
Credits : 3
External Marks : 75

External Examination : 3 Hrs

OBJECTIVE

In this course it is aimed to introduce to the students the principles and applications of control systems in everyday life. The basic concepts of the block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in frequency domain and time domain.

UNIT - I

Control system modeling

UNIT - II

Time domain analysis

UNIT - III

Frequency domain analysis

UNIT - IV

Compensators
Realization of basic compensators – cascade compensation in time domain and frequency domain and feedback compensation – design of lag, lead, lag-lead compensator using Bode plot and Root locus. Introduction to P, PI and PID controllers.

UNIT - V

State variable analysis
State variable methods - introduction to the state variable concept - state space models - physical variable - phase variable and diagonal forms from time domain - diagonalisation - solution of state equations - homogenous and non homogenous cases- properties of state transition matrix - relation between transfer function and state space models, Controllability and Observability.
TEXT BOOKS


REFERENCES

Any of the 10 Experiments are required to be conducted

1. Assemble Modeling (At least three examples))
2. Determination of deflection and stresses in 2D and 3D trusses and beams.
3. Determination of deflection and stresses in plane stress, plane strain and Axisymmetric components.
4. Determination of stresses in 3D structures.
5. Determination of stresses in shell structures
8. Steady state heat transfer Analysis of plane and Axisymmetric components,
9. Study of various post processors used in NC Machines.

PACKAGES

ANSYS/NASTRAN/CATIA/ProE etc.

REFERENCES

Lab Manuals
P850 - METROLOGY AND INSTRUMENTATION LAB

<table>
<thead>
<tr>
<th></th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab/Practicals :</td>
<td>25</td>
<td>75</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any of the 10 Experiments are required to be conducted

**METROLOGY**

1. Measurement of lengths, heights, diameters by vernier calipers and micrometers.
3. Taper measurement by using balls and rollers.
4. Use of gear teeth vernier calipers and checking the chordal addendum and chordal height of spur gear.
5. Machine tool alignment of test on the lathe.
7. Tool makers microscope and its application
8. Angle and taper measurements by Bevel protractor, Sine bars, etc.
9. Use of spirit level in finding the flatness of surface plate.
10. Thread measurement by Three wire method or Tool makers microscope.
11. Surface roughness measurement by Taly Surf.

**INSTRUMENTATION**

1. Calibration of Pressure Gauges
2. Calibration of transducer for temperature measurement.
3. Study and calibration of LVDT transducer for displacement measurement.
4. Calibration of strain gauge for temperature measurement.
5. Calibration of thermocouple for temperature measurement.
7. Study and calibration of photo and magnetic speed pickups for the measurement of speed.
8. Calibration of resistance temperature detector for temperature measurement.
9. Study and calibration of a rotometer for flow measurement.
10. Study and use of a Seismic pickup for the measurement of vibration amplitude of an engine bed at various loads.

Study and calibration of McLeod gauge for low pressure.
VIII-SEMESTER
T300 - ROBOTICS

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : External Marks : 75
Credits : 4  External Examination : 3 Hrs

UNIT - I

End Effectors: Introduction - Types of end effectors - Mechanical grippers - Vacuum cups, magnetic grippers, adhesive grippers and others - Robot / End effectors interface - Considerations in gripper selection and design

UNIT - II


UNIT - III

Manipulator jacobian - problems - Dynamics: Introduction, Lagrange Euler formulation, Problems

UNIT - IV

Trajectory Planning: Introduction - considerations on trajectory planning - joint Interpolated trajectory - Cartesian path trajectory - problems

UNIT - V

Sensors: Position sensors: Potentiometers, resolvers, encoders - velocity sensors
Robot Application in Manufacturing: Material transfer and machine loading/ unloading applications - Processing operations - Assembly and inspection - Future applications.

TEXT BOOK


REFERENCES

2. Robert J. Schilling, Fundamentals of robotics analysis & control, PHI learning private limited, New Delhi
3. Saeed B. Niku, Introduction to robotics analysis systems. Application, PHI learning private limited, New Delhi
4. R.C Gonzalez and C.S.G.Lee, Robotics control, Sensing, vision, and intelligence; Mc Graw HILL International Editions

Head
Dept. of Mechanical Engineering
LAKIREDDY BALI REDDY COLLEGE OF ENGG. MYLAVARAM- 521230, KHANDADHAR
T107 - ADVANCED STRENGTH OF MATERIALS

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : External Marks : 75
Credits : 3 External Examination : 3 Hrs

UNIT - I

Shear center and Unsymmetrical bending: Bending axis and shear center – shear center for axi-symmetric and unsymmetrical sections – Bending stresses in beams subjected to nonsymmetrical bending – Deflection of straight beams due to nonsymmetrical bending.

UNIT - II

Continuous beams: Clapeyron’s theorem of three moments – Beams with constant and varying moment of inertia.

UNIT - III

Torsion: St.Venant’s approach - Prandtl approach – Membrane analogy – Torsion of thin walled open and closed sections.

UNIT - IV

Columns: Buckling and stability – Columns with pinned ends – Columns with other support conditions -Limitations of Euler’s formula – Rankine’s formula – Columns with eccentric axial loads – Secant formula.

UNIT - V

Thin walled pressure vessels: Circumferential and longitudinal stresses – Riveted cylindrical boilers –Wire bound thin pipes – Cylinder with hemispherical ends.
Contact stresses: Methods of computing stress – Deflection of bodies in point and line contact applications.

TEXT BOOK


REFERENCES

1. Strength of Materials/ Dr. Sadhu Singh / Khanna Publishers
T263 - NON CONVENTIONAL ENERGY SOURCES

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial :             External Marks : 75
Credits : 3         External Examination : 3 Hrs

UNIT - I

Introduction: Energy sources and availability, new energy techniques, Renewable energy sources

UNIT - II

Solar Energy Collecting Devices:
Solar energy collectors, Concentrated and flat plate, Energy balance and collector efficiency, Solar energy storage, Application to space heating, distillation, Solar heating- air heating system- solar water heating system- forced and natural circulation systems- solar pond - solar stills- solar dryers-- commercial and solar heating/cooling systems-solar refrigeration system- cooking and green house effect.

UNIT - III


UNIT - IV

Energy from ocean: Ocean thermal electric conversion, energy from tides, small scale hydroelectric development- Ocean Energy-principles utilization -OTEC -thermodynamic cycles (Open& Closed Cycle OTEC) -tidal and wave energy
Geothermal Energy: Sources, hydrothermal sources, hot dry rock resources, geothermal fossil system, prime movers for geothermal energy- Geothermal Energy - resources - types of wells - methods of harnessing the energy -potential in India

UNIT - V

Direct Energy Conversion Systems:
Direct energy conversion systems (DECS)-Principles of DECS- Thermo electric generators- seebeck effect- Peltier effect- Thomson effect - fuel cells -Types -Magneto Hydrodynamic Generators (MHD) - principle - Temperature and Ionization - MHD Generators performance- closed and open cycle MHD generators - Photo voltaic conversion system- solar cell configurations - characteristics of solar cells - advantages, disadvantages and limitations of solar photovoltaic cells.
TEXT BOOK

G.D. Rai, Non Conventional energy Sources, Khanna Publishers

REFERENCES

1. Power plant Engineering by P.K. Nag
2. Renewable energy sources Tiwari and Ghosal/Narosa
5. Renewable energy source and emerging technologies, kothari, PHI
UNIT - I


UNIT - II

Three Stage memory model, Sensory memory: the sperling experiment, short-term memory: Jacob’s experiment, Chucks, Long term memory; Ebbing Hans Forgetting Curve; Tulvings long term memory model, memory retrieval.

UNIT - III

The seven stages of action, Gulf of Execution and Gulf of Evaluation, Basic design principles, Visibility, A good conceptual model, good mapping, feed back

UNIT - IV

Physical constraints, semantic constraints, cultural constraints, logical constraints affordances, Natural Mapping, The problem with switches, grouping problem, mapping problem, Visibility and feedback, the structure of tasks, simplifying the structure of tasks.

UNIT - V

User- Centred design: Use of both knowledge in the world and the head; simplifying the structure of tasks, make things visible, bridge the gulf of execution and the gulf of evaluation, get the mapping right, exploit the power of constraints, Design for errors, Case studies of Cognitive Engineering.

TEXT BOOKS

T208 - GAS DYNAMICS

**Lecture**: 4 Periods/week  
**Internal Marks**: 25

**Tutorial**:  
**External Marks**: 75

**Credits**: 3  
**External Examination**: 3 Hrs

---

**UNIT - I**


**UNIT - II**

**Steady One-dimensional Flow**: Introduction, Fundamental Equations, Discharge from a reservoir, Critical values, Streamtube area-velocity relation, Types of nozzles, Applications of nozzles, Area Mach number relation, Isentropic flow through nozzles, Diffusers

**UNIT - III**


**UNIT - IV**

**Prandtl Mayer Flow**: Introduction, Thermodynamics considerations, Prandtle Mayer Expansion Fan, Reflections (3)

**Flow with Friction and Heat Transfer**: Introduction, Flow in constant Area Duct with friction, Adiabatic Constant area flow of a perfect gas, Fanno line Flow, Flow with heating and cooling in ducts, Rayleigh line relation

**UNIT - V**

**Measurements in Compressible Flow**: Pressure measurements, Static pressure and Dynamics head measurement in compressible flow, Compressibility correction to dynamics pressure, Pressure coefficient, Temperature measurements, Supersonic flow visualization techniques.

**TEXT BOOK**


**REFERENCES**

T252 - MICRO ELECTRO MECHANICAL SYSTEMS (MEMS)

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial :  External Marks : 75
Credits : 3  External Examination : 3 Hrs

UNIT - I

Overview of MEMS
MEMS and Microsystems definitions and examples, Difference between Microsystems and Microelectronics, Benefits of miniaturization, Applications: Industrial/automotives sensors, Medical systems, aircraft sensors, Structural health monitoring, Telecommunication etc, Materials for MEMS.

UNIT - II

SCALING LAWS IN MINIATURIZATION
Introduction to Scaling, Scaling in Geometry, Scaling in Electrostatic forces. MEMS Design Considerations.

UNIT - III

MICRO FABRICATION - I
Introduction, Photolithography, Photoresists and Application, Light Sources, Photoresist Removal, Ion Implantation, Diffusion, Oxidation, Chemical Vapor Deposition (CVD), Sputtering, Deposition by Epitaxy, Etching.

UNIT - IV

MICRO FABRICATION - II
Bulk Micromachining: Etching-Isotropic and Anisotropic, Wet Etching and Dry Etching (Plasma, Deep reactive ion) Comparison.
Surface Micromachining: Process, associated Mechanical problems (Adhesion, Interfacial stresses, Stiction), LIGA process, MEMS Packaging.

UNIT - V

MEMS DEVICES AND STRUCTURES
Microsensors: Biomedical Sensors, Chemical sensors, Optical Sensors, Pressure Sensors, Thermal Sensors.
Microactuation: Actuation using thermal forces, Piezoelectric crystals, Electrostatic forces, MEMS with microactuators: Microgrippers, Micromotors, Microgears, Micropumps.

TEXT BOOK
Tai-Ran Hsu, MEMS & Microsystems Design and Manufacture, Tata McGraw Hill.

REFERENCES
1. Fundamentals of Micro Fabrication, Marc Madou, CRC Press
2. The MEMS Handbook, Mohamed Gad-el-Hak, CRC Press
3. Micro and Smart Systems, G.K.Anantha Suresh, Wiley India
T230 - INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Lecture : 4 Periods/week
Tutorial : 
Credits : 3
Internal Marks : 25
External Marks : 75
External Examination : 3 Hrs

UNIT - I

Introduction: Computational Fluid Dynamics as a Research and Design Tool, Applications of Computational Fluid Dynamics
Governing Equations of Fluid Dynamics: Introduction, Control Volume, Substantial Derivative, Divergence of Velocity, Continuity Equation, Momentum Equation and Energy Equation

UNIT - II

Mathematical Behavior of Partial Differential Equations:
Introduction, Classification of Quasi-Linear Partial Differential Equations, Eigen Value Method, Hyperbolic Equations, Parabolic Equations, Elliptic Equations

UNIT - III


UNIT - IV


UNIT - V


TEXT BOOK


REFERENCES

UNIT - I


UNIT - II

Strain Measurement: Strain - its relation to experimental determination - properties of strain Gauge systems - Electrical resistance strain gauges - strain gauge circuits - recording instruments - analysis of strain gauge data.

UNIT - III

Moire Methods: Mechanism of formation of Moire fringe - geometrical approach to Moire fringe analysis - displacement field approach to Moire fringe analysis - out of plane measurements experimental procedure.

UNIT - IV

Photo Elasticity Methods: Temporary double refraction - stress optic law - effects of stressed model in a plane polariscope fringe multiplication - isochromatic fringe patterns - isoclinic fringe pattern compensation techniques - calibration methods - separation methods - scaling model to prototype stresses - materials.

UNIT - V

Birefringent Coatings: Coating stresses and strains - sensitivity - materials and applications - effect of thickness - stress separation.

TEXT BOOK

Experimental Stress Analysis, James Dalley, W.F.Riley, McGraw Hill

REFERENCES

1. Experimental Stress Analysis, Dove Adams, McGraw Hill
2. Strain Gauge Primer, Perry and Lissener, McGraw Hill
3. Photomechanics, Durelli, Prentice Hall
# T288 - PRODUCTION PLANNING AND CONTROL

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Internal Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Periods/week</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutorial</th>
<th>External Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>External Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

---

### UNIT - I

**Introduction:** Definition – Objectives of Production Planning and Control – Functions of production planning and control – Elements of production control – Types of production – Organization of production planning and control department – Internal organization of department.

### UNIT - II

Forecasting – Objectives and Importance of forecasting – Types of forecasting, forecasting techniques-simple moving average method, weighted moving average method, exponential smoothing method, linear regression and Delphi method. Errors in forecasting-MAD, MSE, MAPE, MFE.

### UNIT - III

Inventory management – purpose of inventories – relevant inventory costs, EOQ model and assumptions in EOQ, ABC analysis – VED analysis. Inventory control systems – P–Systems and Q–Systems. Introduction to MRP, inputs to MRP, Bill of material, JIT inventory-Kanban system.

### UNIT - IV


### UNIT - V


### TEXT BOOK

Operations Management / Joseph Monks.

### REFERENCES

1. Elements of Production Planning and Control / Samuel Eilon.
3. Modern Production/ operation managements / Baffa & Rakesh Sarin
T144 – COMPUTER GRAPHICS

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial : External Marks : 75
Credits : 3  External Examination : 3 Hrs

UNIT - I


UNIT - II


UNIT - III


UNIT - IV

Two Dimensional Viewing: The viewing Pipeline-Viewing Coordinate Reference Frame-Window-to-Viewport Coordinate Transformation-Two Dimensional Viewing Functions-Clipping Operations-Point Clipping-Line Clipping-Polygon Clipping.

UNIT - V


TEXT BOOK


REFERENCES

1. David F. Rogers; “Procedural Elements for Computer Graphics”; TMH
T261 - NANO TECHNOLOGY

Lecture : 4 Periods/week  Internal Marks : 25
Tutorial :  External Marks : 75
Credits : 3  External Examination : 3 Hrs

UNIT - I


UNIT - II


UNIT - III


UNIT - IV

Synthesis of Nano Materials Top Down (Nanolithography CVD)- Bottom Up (Sol-get Processing, Chemical Synthesis) – Wet Deposition Techniques- Molecular design and modeling

UNIT - V


TEXT BOOKS

2. Nano Structured Materials and Nano Technology-Hari Singh Nailwa

REFERENCES

Nano Essentials – T.Pradeep /TMH